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Abstract

Federated Learning (FL) refers to the paradigm where multiple worker nodes
(WNs) build a joint model by using local data. Despite extensive research, for a
generic non-convex FL problem, it is not clear, how to choose the WNs’ and the
server’s update directions, the minibatch sizes, and the number of local updates, so
that the WN’s use the minimum number of samples and communication rounds to
achieve the desired solution. This work addresses the above question and considers
a class of stochastic algorithms where the WNs perform a few local updates before
communication. We show that when both the WN’s and the server’s directions are
chosen based on certain stochastic momentum estimator, the algorithm requires
O(e3/?) samples and O(e~') communication rounds to compute an e-stationary
solution. To the best of our knowledge, this is the first FL algorithm that achieves
such near-optimal sample and communication complexities simultaneously. Fur-
ther, we show that there is a trade-off curve between the number of local updates
and the minibatch sizes, on which the above sample and communication complexi-
ties can be maintained. Finally, we show that for the classical FedAvg (a.k.a. Local
SGD, which is a momentum-less special case of the STEM), a similar trade-off
curve exists, albeit with worse sample and communication complexities. Our
insights on this trade-off provides guidelines for choosing the four important design
elements for FL algorithms, the number of local updates, WNs’ and server’s update
directions, and minibatch sizes to achieve the best performance.

1 Introduction

In Federated Learning (FL), multiple worker nodes (WNs) collaborate with the goal of learning a
joint model, by only using local data. Therefore it has become popular for machine learning problems
where datasets are massively distributed [1]. In FL, the data is often collected at or off-loaded to
multiple WNs which in collaboration with a server node (SN) jointly aim to learn a centralized model
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Figure 1: The 3D surface in (a) plots the communication complexity of the proposed STEM for different
minibatch sizes and number of local updates. The surface is generated such that each point represents STEM with

a particular choice of (b, I), so that it requires O (e ~3/2) samples to achieve e-stationarity. Plot (b) shows the
optimal trade off between the minibatch sizes and the number of local updates at each WN (i.e., achieving the
lowest communication and sample complexities). Both plots are generated for an accuracy of ¢ = 10™° and
all the constants dependent on system parameters (variance of stochastic gradients, heterogeneity parameter,
optimality gap, Lipschitz constants, etc.) are assumed to be 1. Fed STEM is a special case of STEM where
O(1) minibatch is used; Minibatch STEM is a special case of STEM where O(1) local updates are used.

[2,13]. The local WNs share the computational load and since the data is local to each WN, FL also
provides some level of data privacy [4]. A classical distributed optimization problem that X WNs
aim to solve:

K K
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min {f(:c) =2 2 P @) = 2 Y B upm [FP (2:6M)] . (1)
k=1 k=1

where f(*) : R? — R denotes the smooth (possibly non-convex) objective function and £*) ~ D(¥)

represents the sample/s drawn from distribution D*) at the £ WN with & € [K]. When the

distributions D*) are different across the WNis, it is referred to as the heterogeneous data setting.

The optimization performance of non-convex FL algorithms is typically measured by the total number
of samples accessed (cf. Definition and the total rounds of communication (cf. Definition
2.3) required by each WN to achieve an e-stationary solution (cf. Definition[2.T). To minimize the
sample and the communication complexities, FL algorithms rely on the following four key design
elements: (i) the WNs’ local model update directions, (ii) Minibatch size to compute each local
direction, (iii) the number of local updates before WNs share their parameters, and (iv) the SN’s
update direction. How to find effective FL algorithms by (optimally) designing these parameters has
received significant research interest recently.

Contributions. The main contributions of this work are listed below:

1) We propose the Stochastic Two-Sided Momentum (STEM) algorithm, that utilizes certain
momentum-assisted stochastic gradient directions for both the WNs and SN updates. We show
that there exists an optimal trade off between the minibatch sizes and number of local updates, such
that on the trade-off curve STEM requires O (e 3/ 2) samples and O(e~!) communication rounds to
reach an e-stationary solution; see Figure[I]for an illustration. These complexity results are the best
achievable for first-order stochastic FL algorithms (under certain assumptions, cf. Assumption|T);
see [5H8]] and [9.[10], as well as Remark [T] of this paper for discussions regarding optimality. To the
best of our knowledge, STEM is the first algorithm which — (i) simultaneously achieves the optimal
sample and communication complexities for FL and (ii) can optimally trade off the minibatch sizes
and the number of local updates.

2) A momentum-less special case of our STEM result further reveals some interesting insights of the
classical FedAvg algorithm (a.k.a. the Local SGD) [11H13]]. Specifically, we show that for FedAvg,
there also exists a trade-off between the minibatch sizes and the number of local updates, such that it
requires O(¢~2) samples and O(e~3/2) communication rounds to achieve an e-stationary solution.

>The notation O(-) hides the logarithmic factors.



Algorithm Work Sample Comm.  Minibatch (b) Local Updates (I) /round

2] /[14j O(e*?) o(1) O(e='7?)
FedAvg® (a6 O(e?) O(e™?) o(1) O(1)
_2(1-v) _ 3y
this work O(e3/%) O(e” @) O(e 2G-)
SCAFFOLD* (15l O(e™?) O(e™?) 0(1) 0(1)
FedPD/FedProx* 9]/ [i10] O(e™?) O™ o(1) O™
MIME'/FedGLOMO  [171/[18] O(e3/?) 0O(e3/?) o(1) o(1)
STEM® O(c 259 O(c =)
Fed STEM thiswork ~ O(e™%/%)  O(e™!) o(1) O(e/?)
Minibatch STEM* O(e1/?) 0(1)

Table 1: Comparison of FedAvg and STEM with different FL algorithms for various choices of the minibatch
sizes (b) and the number of per node local updates between two rounds of communication (I).

°v € [0,1] trades off b and I; v = 1 (resp. v = 0) uses multiple (resp. O(1)) local updates and O(1) (resp.
multiple) samples. Fed STEM and Minibatch STEM are two variants of the proposed STEM.

*The data heterogeneity assumption is weaker than Assumption(please see [9] for details).

TRequires bounded Hessian dissimilarity to model data heterogeneity across WNs.

*Guarantees for Minibatch STEM with I = 1 and SCAFFOLD are independent of the data heterogeneity.

Collectively, our insights on the trade-offs provide practical guidelines for choosing different design
elements for FL algorithms.

Related Works. FL algorithms were first proposed in the form of FedAvg [11], where the local update
directions at each WN were chosen to be the SGD updates. Earlier works analyzed these algorithms
in the homogeneous data setting [19H25]], while many recent studies have focused on designing new
algorithms to deal with heterogeneous data settings, as well as problems where the local loss functions
are non-convex [9} 10, [12H16, |18, 26H32]]. In [[12], the authors showed that Parallel Restarted SGD
(Local SGD or FedAvg [11]]) achieves linear speed up while requiring O(¢~2) samples and O(e~3/2)
rounds of communication to reach an e-stationary solution. In [14], a Momentum SGD was proposed,
which achieved the same sample and communication complexities as Parallel Restarted SGD [[12]],
without requiring that the second moments of the gradients be bounded. Further, it was shown that
under the homogeneous data setting, the communication complexity can be improved to O(e 1)
while maintaining the same sample complexity. The works in [[15}[16] conducted tighter analysis for
FedAvg with partial WN participation with O(1) local updates and batch sizes. Their analysis showed
that FedAvg’s sample and communication complexities are both O(e~?). Additionally, SCAFFOLD
was proposed in [15], which utilized variance reduction based local update directions [33]] to achieve
the same sample and communication complexities as FedAvg. Similarly, VRL-SGD proposed in
[29] also utilized variance reduction and showed improved communication complexity of O(e~1),
while requiring the same computations as FedAvg. Importantly, both SCAFFOLD and VRL-SGD’s
guarantees were independent of the data heterogeneity. The FedProx proposed in [[10] used a penalty
based method to improve the communication complexity of FedAvg (i.e., the Parallel Restarted and
Momentum SGD [[14},[12]) to O(e~!). FedProx used a gradient similarity assumption to model data
heterogeneity which can be stringent for many practical applications. This assumption was relaxed
by FedPD proposed in [9]].

Recently, the works [17, 18] proposed to utilize hybrid momentum gradient estimators [[7,8]]. The
MIME algorithm [17] matched the optimal sample complexity (under certain smoothness assump-
tions) of 0(6’3/ 2) of the centralized non-convex stochastic optimization algorithms [5-8]]. Similarly,
Fed-GLOMO [18] achieved the same sample complexity while employing compression to further
reduce communication. Both MIME and Fed-GLOMO required O(e~3/2) communication rounds to
achieve an e-stationary solution. Please see Table[I]for a summary of the above discussion.

The comparison of Local SGD (FedAvg) to Minibatch SGD for convex and strongly convex problems
with homogeneous data setting was first conducted in [[19] and later extended to heterogeneous setting
in [13]. It was shown that Minibatch SGD almost always dominates the Local SGD. In contrast, it
was shown in [24] that Local SGD dominates Minibatch SGD in terms of generalization performance.
Although existing FL results are rich, but they are somehow ad hoc and there is a lack of principled



understanding of the algorithms. We note that the proposed STEM algorithmic framework provides a
theoretical framework that unifies all existing FL results on sample and communication complexities.

Notations. The expected value of a random variable X is denoted by E[X] and its expectation
conditioned on an Event A is denoted as E[X [Event A]. We denote by R (and R?) the real line
(and the d-dimensional Euclidean space). The set of natural numbers is denoted by N. Given a

positive integer K € N, we denote [K] £ {1,2,..., K}. Notation || - || denotes the £o-norm and
(-, -) the Euclidean inner product. For a discrete set B, |B| denotes the cardinality of the set. Uniform
distribution over a discrete set {1,...,T'} is denoted as U{1,...,T}.

2 Preliminaries

Before we proceed to the algorithms, we make the following assumptions about problem (T).

Assumption 1 (Sample Gradient Lipschitz Smoothness). The stochastic functions f(*) (¢ (k)) with
¢ ~ D) for all k € [K], satisfy the mean squared smoothness property, i.e, we have

E(Vf® (2;6®) = V) (y; )2 < L[|z — y||* forall z,y € R™

Assumption 2 (Unbiased gradient and Variance Bounds). (i) Unbiased Gradient. The stochastic
gradients computed at each WN are unbiased

E[VS® ;60 = VP (@), vV ~ D, v € [K].
(ii) Intra- and inter- node Variance Bound. The following bounds hold:

E[Vf® (2;6™) = VB ()2 < 02, |V F (2) - VO ()] < ¢%, VEW ~ DP) vk, 0 € [K].

Note that AssumptionlIis stronger than directly assuming f(*)’s are Lipschitz smooth (which we
will refer to as the averaged gradient Lipschitz smooth condition), but it is still a rather standard
assumption in SGD analysis. For example it has been used in analyzing centralized SGD algorithms
such as SPIDER [5], SNVRG [6], STORM [7] (and many others) as well as in FL algorithms such
as MIME [17] and Fed-GLOMO [18]. The second relation in Assumption E—(ii) quantifies the data
heterogeneity, and we call ( > 0 as the heterogeneity parameter. This is a typical assumption
required to evaluate the performance of FL algorithms. If data distributions across individual WNs
are identical, i.e., D*) = DO forall k, ¢ [K] then we have ¢ = 0.

Next, we define the e-stationary solution for non-convex optimization problems, as well as quantify
the computation and communication complexities to achieve an e-stationary point.

Definition 2.1 (e-Stationary Point). A point z is called e-stationary if |V f(z)||? < e. Moreover,
a stochastic algorithm is said to achieve an e-stationary point in ¢ iterations if E[||V f(z;)]|?] < e,

where the expectation is over the stochasticity of the algorithm until time instant ¢.

Definition 2.2 (Sample complexity). We assume an Incremental First-order Oracle (IFO) frame-
work [34], where, given a sample ¢ (k) ~ D& at the k™ node and iterate x, the oracle returns
(f) (25 €)Y, W fF) (25 €(F))). Each access to the oracle is counted as a single IFO operation. We
measure the sample (and computational) complexity in terms of the total number of calls to the IFO
by all WNs to achieve an e-stationary point given in Definition [2.]

Definition 2.3 (Communication complexity). We define a communication round as a one back-and-
forth sharing of parameters between the WNs and the SN. Then the communication complexity is
defined to be the total number of communication rounds between any WN and the SN required to
achieve an e-stationary point given in Definition [2.1]

3 The STEM algorithm and the trade-off analysis

In this section, we discuss the proposed algorithm and present the main results. The key in the
algorithm design is to carefully balance all the four design elements mentioned in Sec. [T} so that
sufficient and useful progress can be made between two rounds of communication.

Let us discuss the key steps of STEM, listed in Algorithm|[l, In Step 10, each node locally updates
its model parameters using the local direction d, computed by using b stochastic gradients at two



Algorithm 1 The Stochastic Two-Sided Momemtum (STEM) Algorithm

1: Input: Parameters: ¢ > 0, the number of local updates I, batch size b, stepsizes {n; }.

2: Initialize: Iterate x( )=z = e Zk 1 :vg ), descent direction dgk) =d = + 25:1 dgk)
with d\*) = L ZE%BW V® (27 ")) and BM| = B for k € [K].

3: Perform: xé ) = =af—m d(k) VkeK]

4: fort =1to T do

5: fork =1 to K do #at the WN

k k k k
6: =1 > VIPEE )+ (- am) (4 - LS (g (=”5¢8)
52?16@?1 5£i)166ii)1
where we choose \Bt+1| =b,and a;11 = ¢ nZ;
7: ift %?d I1=0 then *) #at the SN
8: dt+1 = dt+1 =% Zk 1 dt+1
k _ k 7 .

9: x§+)2 = T4y1 — nt+1dt+1 7 Zszl x§+)1 — Me41dr41 #server-side momentum
10: else xgﬁ_é = xt_,_)l - 77t+1dt+1 #worker-side momentum
11: end if
12: end for
13: end for

14: Return: Z, where a ~ U{1,...,T}.

consecutive iterates xii)l and xgk). After every I local steps, the WNs share their current local models

{xii)l}szl and directions {dg’i)l}szl with the SN. The SN aggregates these quantities, and performs
a server-side momentum step, before returning ;1 and d;y; to all the WNs. Because both the
WNs and the SN perform momentum based updates, we call the algorithm a stochastic two-sided
momentum algorithm. The key parameters are: b the minibatch size, I the local update steps between
two communication rounds, 7, the stepsizes, and a; the momentum parameters.

One key technical innovation of our algorithm design is to identify the most suitable way to incorporate
momentum based directions in FL algorithms. Although the momentum-based gradient estimator
itself is not new and has been used in the literature before (see e.g., in [7, 18] and [17}18]] to improve the
sample complexities of centralized and decentralized stochastic optimization problems, respectively),
it is by no means clear if and how it can contribute to improve the communication complexity of FL
algorithms. We show that in the FL setting, the local directions together with the local models have to
be aggregated by the SN so to avoid being influenced too much by the local data. More importantly,
besides the WNs, the SN also needs to perform updates using the (aggregated) momentum directions.
Finally, such two-sided momentum updates have to be done carefully with the correct choice of
minibatch size b, and the number of local updates I. Overall, it is the judicious choice of all these
design elements that results in the optimal sample and communication complexities.

Next, we present the convergence guarantees of the STEM algorithm.

3.1 Main results: convergence guarantees for STEM

In this section, we analyze the performance of STEM. We first present our main result, and then
provide discussions about a few parameter choices. In the next subsection, we discuss a special case
of STEM related to the classical FedAvg and minibatch SGD algorithms.

Theorem 3.1. Under the Assumptions[I|and 2] suppose the stepsize sequence is chosen as:

R

(w; + 02)1/3’ )

=

where we define :
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- 2 2 “ e .
Further, let us set ¢ = % + ﬁ =12 % + W), and set the initial batch size as

B = bl; set the local updates I and minibatch size b as follows:
I=0((T/K*)"?), b=0((T/K*)"?*7"/?) 3)
where v satisfies v € [0, 1]. Then for STEM the following holds:

(i) For Z, chosen according to Algorithm[I| we have:
— V2 f(Z) = f* 3 o > ¢
E[[Vf(zl)l" = O(KQV/BTI—V/E}) + O<K2u/3T1—l//3 +0 K2v/371-v/3 |° S

(ii) Forany v € [0, 1], we have
Sample Complexity: The sample complexity of STEM is @(6*3/ 2). This implies that each WN
requires at most @(K 13/ %) gradient computations, thereby achieving linear speedup with
the number of WNs present in the network.
Communication Complexity: The communication complexity of STEM is O(e~1).

The proof of this result is relegated to the Supplemental Material. A few remarks are in order.

Remark 1 (Near-Optimal sample and communication complexities). Theorem [3.1]suggests that
when I and b are selected appropriately, then STEM achieves O(e~3/2) and O(e~!) sample and
communication complexities. Taking them separately, these complexity bounds are the best achievable
by the existing FL algorithms (upto logarithmic factors regardless of sample or batch Lipschitz smooth
assumption) [35]; see Table We note that the O(e~3/2) complexity is the best possible that can be
achieved by centralized SGD with the sample Lipschitz gradient assumption; see [S]]. On the other
hand, the O(e~1) complexity bound is also likely to be the optimal, since in [9] the authors showed
that even when the local steps use a class of (deterministic) first-order algorithms, O (e~ 1) is the best
achievable communication complexity. The only difference is that [9]] does not explicitly assume
the inter-node variance bound (i.e., the second relation in Assumption E—(ii)). We leave the precise
characterization of the communication lower bound with inter-node variance as future work. O

Remark 2 (Large Batch Sizes and/or Local Updates). At first glance, it may seem that the requirement
of STEM to compute large mini-batches and/or local updates (cf. Table[1) to achieve this (near)
optimal performance is a drawback, however, we note that it is in fact an advantage of STEM that it
allows the WNs to perform larger number of local updates (or compute large minibatches) without
communicating often. This follows from the fact that irrespective of the number of local updates
(or batch sizes) STEM achieves near-optimal communication complexity while attaining optimal
overall sample complexity. Moreover, note that even with b = I = O(1) (i.e., b and I are chosen as
constants), STEM achieves the same (optimal) sample and communication complexities as achieved
by FedGLOMO [18] and MIME [17]]. We further note that to the best of our knowledge the algorithms
that achieve the communication complexity of O(e~1) either require the number of local updates or
the batch-sizes that depend on the solution accuracy e. For example, FedProx [10], FedPD [9], and
FedDyn [36] rely on solving the “local problems" to achieve an e-accuracy, which implies that the
number of local updates (or the batch sizes) implicitly depends on the desired solution accuracy e, as
is the case for STEM. Similarly, as shown in [12] and [14] the communication complexity of FedAvg
and its momentum version can be improved from O(¢=2) to O(e~/?) when the number of local
updates (or batch size) is chosen as (’)(e_l/ 2) (cf. Sectionfor a more detailed discussion). [

Remark 3 (The Optimal Batch Sizes and Local Updates Trade-off). The parameter v € [0, 1] is
used to balance the local minibatch sizes b, and the number of local updates I. Egs. in (3) suggest
that when v increases from O to 1, b decreases and [ increases. Specifically, if v = 1, then b is a
constant but I = O(T"/3/K?/3). In this case, each WN chooses a small minibatch while executing
multiple local updates, and STEM resembles a FedAvg (a.k.a. Local SGD) algorithm but with
double-sided momentum update directions, and is referred to as Fed STEM. In contrast, if v = 0,
then b = O(T'/2/K) but I is a constant. In this case, each WN chooses a large batch size while
executing only a few, or even one, local updates, and STEM resembles the Minibatch SGD, but
again with different update directions, and is referred to as Minibatch STEM. Such a trade-off can
be seen in Fig. [Ib. Due to space limitation, these two special cases will be precisely stated in the
supplementary materials as corollaries of Theorem [3.1] O



Algorithm 2 The FedAvg Algorithm

1: Input: {n; ?:0; 1, the # of local updates per communication round; b, the minibatch sizes.
2: fort =1toT do
3: for k =1to K do

& A =3 Y e a0 VFO (@3 607) with 1BV = b
k k k

5: it = — i

6: ift rr}lcod I = 0 then K &

ik T = Tep1 = e Dopey Tiph

8: end if

9: end for

10: end for

11: Return: Z, where a ~ U{1,...,T}.

Remark 4 (The Sub-Optimal Batch Sizes and Local Updates Trade-off). From our proof (Theo-
rem included in the supplemental material), we can see that STEM requires (5( max {(b .
Ie~!, K~'e~3/2}) samples and O(max {e~!, (b- I)"*K~1¢~3/2}) and communication rounds.
According to the above expressions, if b - I increases beyond O(K ~'e~1/2), then the sample com-
plexity will increase from the optimal O (e~3/2); otherwise, the optimal sample complexity O(e~3/2)
is maintained. On the other hand, if b - I decreases beyond O(K —le—1/ 2), the communication
complexity increases from O(e~1). For instance, if we choose b = O(1) and I = O(1) the communi-
cation complexity becomes O(e~3/2) while the optimal sample complexity O(e~3/2) is maintained.
This trade-off is illustrated in Figure[Ta, where we maintain the optimal sample complexity, while
changing b and I to generate the trade-off surface. O

Remark 5 (Data Heterogeneity). The term o (K%/fi;l,m) in the gradient bound (@) captures the

effect of the heterogeneity of data across WNs, where ( is the parameter characterizing the intra-node
variance and has been defined in Assumption E—(ii). Highly heterogeneous data with large ¢? can
adversely impact the performance of STEM. Note that such a dependency on ¢ also appears in other
existing FL algorithms, such as [9} [14} [18]. However, there is one special case of STEM that does
not depend on the parameter (. This is the case where I = 1, i.e., the minibatch SGD counterpart
of STEM where only a single local iteration is performed between two communication rounds. We
have the following corollary. O

Corollary 1 (Minibatch STEM). Under Assumptions|I|and[2], and choose the algorithm parameters
asin Theorem At each WN, choose I =1,b = (T/K2)1/2, and the initial batch size B =15b- 1.
Then STEM satisfies:

(i) For Z, chosen according to Algorithm we have

BVt = o({E 1) Lo( 7).

(ii) Minibatch STEM achieves O(e=3/2) sample and O(e~") communication complexity.

Next, we show that FedAvg also exhibits a trade-off similar to that of STEM but with worse sample
and communication complexities.

3.2 Special cases: The FedAvg algorithm

We briefly discuss another interesting special case of STEM, where the local momentum update
is replaced by the conventional SGD (i.e., a; = 1, V t), while the server does not perform the
momentum update (i.e., d; = 0,V t). This is essentially the classical FedAvg algorithm, just that it
balances the number of local updates I and the minibatch size b. We show that this algorithm also
exhibits a trade-off between b and I and on the trade-off curve it achieves O(e~2) sample complexity

and O(e~3/2) communication complexity.



Algorithm Training Acc. Testing Acc. Algorithm Training Acc. Testing Acc.

FedAvg 78.2 74.1 FedAvg 73.6 75.4
FedProx 79.2 74.8 FedProx 80.0 75.2
FedDyn 68.9 66.0 FedDyn 76.1 71.3
SCAFFOLD | 71.9 74.0 SCAFFOLD | 72.5 73.7
MIME 82.6 76.8 MIME 61.5 58.6
FedGLOMO | 76.1 72.8 FedGLOMO | 10.0 10.0
STEM 80.1 78.8 STEM 81.1 78.5
(a) Mild heterogeneity, b = 64, and I = 7. (b) Moderate heterogeneity, b = 8, and I = 61.

Table 2: Training and testing accuracy of different algorithms on CIFAR-10 dataset for different
batch-sizes, number of local updates, and heteregeneity settings.

Theorem 3.2 (The FedAvg Algorithm). Under Assumptions|l|and |2} suppose the stepsize is chosen

as:n = %; Let us set:

I=0((T/K*"*), b=0((T/K?3/3) (5)
where v € [0, 1] is a constant. Then for FedAvg with T > 81L?I?bK, the following holds

(i) For Z,, chosen according to Algorithm |2} we have

SN2 f(@1) = f* o’ ¢2
E[Vf(za)l —O<W)+O<W +O\ e )

(ii) For any choice of v € [0, 1] we have:
Sample Complexity: The sample complexity of FedAvg is O(e~?2). This implies that each WN
requires at most O(K ~Ye?2) gradient computations, thereby achieving linear speedup with the
number of WNs in the network.
Communication Complexity: The communication complexity of FedAvg is O(e~3/?).

Note that the requirement on 7" being lower bounded is only relevant for theoretical purposes, a
similar requirement was also imposed in [[14] to prove convergence. Again, the parameter v € [0, 1] in
the statement of Theorem [3.2 balances I and b at each WN while maintaining state-of-the-art sample
and communication complexities; please see Table[I]for a comparison of those bounds with existing
FedAvg bounds. For v = 1, FedAvg (cf. Theorem reduces to FedAvg proposed in [12} [14]]
and for v = 0, the algorithm can be viewed as a large batch FedAvg with constant local updates
[15,[16]. Note that similar to STEM, it is known that for I = 1, the Minibatch SGD’s performance
is independent of the heterogeneity parameter, ¢ [13]. We also point out that if Algorithm |l uses
Nesterov’s or Polyak’s momentum [[14]] at local WNs instead of the recursive momentum estimator
we get the same guarantees as in Theorem 3.2]

In summary, this section established that once the WN’s and the SN’s update directions (SGD in
FedAvg and momentum based directions in STEM) are fixed, there exists a sequence of optimal
choices of the number of local updates I, and the batch sizes b, which guarantees the best possible
sample and communication complexities for the particular algorithm. The trade-off analysis presented
in this section provides some useful guidelines for how to best select b and [ in practice. Our
subsequent numerical results will also verify that if b or I are not chosen judiciously, then the
practical performance of the algorithms can degrade significantly.

4 Numerical results

In this section, we validate the proposed STEM algorithm and compare its performance with the
de facto standard FedAvg [11]], and the algorithms stated in Table[I. Note that instead of FedPD
we include the performance comparison with FedDyn [36] since they are known to be very closely



Algorithm Training Acc. Testing Acc. Algorithm Training Acc. Testing Acc.

FedAvg 57.6 57.1 FedAvg 40.1 39.2
FedProx 59.1 58.5 FedProx 43.5 43.2
FedDyn 51.2 51.3 FedDyn 43.7 43.2
SCAFFOLD | 53.1 54.7 SCAFFOLD | 40.3 41.3
MIME 56.1 55.1 MIME 32.1 32.1
FedGLOMO | 56.8 56.1 FedGLOMO | 40.3 40.1
STEM 58.5 57.4 STEM 44.5 43.8

Table 3: Training and testing accuracy on Table 4: Training and testing accuracy on

CIFAR-10 dataset for high heterogeneity, b = Shakespeare dataset.

128 and I = 6.
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Figure 2: Training loss and the testing accuracy for classification on MNIST data set against the
number of samples accessed at each WN for moderate heterogeneity setting with b = 8.

related. The goal of our experiments are three-fold: (1) To show that STEM performs on par, if not
better, compared to other algorithms in different heterogeneity settings, (2) there are multiple ways
to reach the desired solution accuracy, one can either choose a large batch size and perform only a
few local updates or select a smaller batch size and perform multiple local updates, and finally, (3) if
the local updates and the batch sizes are not chosen appropriately, the WNs might need to perform
excessive computations to achieve the desired solution accuracy, thereby slowing down convergence.

Data and Parameter Settings: We compare the algorithms for image classification tasks on CIFAR-
10 and MNIST data sets with 100 WNs, and for next character prediction task on Shakespeare
dataset [37]] with 143 WNs in the network. For both CIFAR-10 and MNIST, each WN implements a
two-hidden-layer convolutional neural network (CNN) architecture followed by three linear layers for
CIFAR-10 and two for MNIST. For CIFAR-10 (and MNIST) datset, we consider three settings with
mild, moderate and high heterogeneity. For all the three settings, the data is partitioned into disjoint
sets among the WNs. In the mild heterogeneity setting, the WNs have access to partitioned data from
all the classes. In the moderate (resp. high) heterogeneity setting the data is partitioned such that
each WN can access data from only 5 (resp. 2) out of 10 classes. For CIFAR-10 (resp. MNIST), each
WN has access to 490 (resp. 540) samples for training and 90 (resp. 80) samples for testing purposes.

We also compare the performance of algorithms on a popular FL benchmarking dataset, Shakespeare
dataset [37]]. For this task, we adopt the settings from [10] and utilize a 2-Layer LSTM network with
100 hidden units and an 8-D embedding layer at each WN. Each WN has access to 3616 samples
on average, and the samples are randomly split into an 80% training set and a 20% testing set. We
randomly sample 10 nodes out of 143 for the training purpose. All the experiments are implemented
on a single NVIDIA Quadro RTX 5000 GPU. More details are provided in appendix.

For the proposed STEM algorithm, recall that the step-size is 7; = &/(w; + o>t)'/3 with momentum
parameter defined as a; = cn?. The step-size is used to update the iterates while the momentum



parameter is used to construct the stochastic gradient estimate (cf. Algorithm[Tjand Theorem[3.T). For
the experiments, we set w; = 02 = 1 and ¢ = ¢/&? and tune for & € [10~!,1072] for the CIFAR-10
dataset and for & € {10%,10°,1071, 10~2} for the Shakespeare dataset. For both the datasets we tune
for ¢ in the range [1, 10]. For FedProx [10] and FedDyn [36] we choose the regularization constant to
be 0.1. The momentum parameters for FedGLOMO [[18]] and MIME [17] are set based on the choices
given in the respective papers. Specifically, for FedGLOMO we choose the parameter 3 = 0.2 and
design the momentum gradient using a damping factor given in Appendix A.4 of FedGLOMO [18].
Moreover, for MIME we choose the momentum parameter as 0.9. For the rest of the algorithms
(including FedAvg and SCAFFOLD), the step-size is tuned from the set {10%,10°, 1071, 1072}.

Discussion: We evaluate the training and testing performance of STEM against multiple algorithms
for different heterogeneity settings, minibatch sizes, and number of local updates. In Tables [2a]
[2b/and [3, we compare the training and testing accuracy of STEM to that of other algorithms on
the CIFAR-10 dataset. Specific, heterogeneity settings, the choices of minibatches, and number of
local updates are stated along with the tables. Note that STEM performs uniformly well under all
the conditions. Moreover, note from Table@that FedGLOMO diverges once the number of local
updates are high. Also, note from Table |3|that FedProx and STEM adapt well to high heterogeneity.
Finally, with the next set of experiments we emphasize the importance of choosing b and I carefully.
In Figure |Z, we compare the training and testing performance of STEM, FedAvg and SCAFFOLD,
against the number of samples accessed at each WN for the classification task on MNIST dataset with
moderate heterogeneity. We fix b = 8 and conduct experiments under two settings, one with I = 67,
and the other with I = 536 local updates at each WN. Note that although a large number of local
updates might lead to fewer communication rounds but it can make the sample complexity extremely
high as is demonstrated by Figure [2| For example, Figure 2 shows that to reach testing accuracy
of 96 — 97% with I = 67, STEM requires approximately 5000 — 6000 samples, in contrast with
I = 536 it requires more than 25000 samples at each WN. Similar behavior can be observed if we fix
I > 1 and increase the local batch sizes. This implies not choosing the local updates and the batch
sizes judiciously might lead to increased sample complexity. Additional experiments are included in
the supplementary material to further evaluate the performance of the proposed algorithms.

Conclusion

In this work, we proposed a novel algorithm STEM, for distributed stochastic non-convex optimiza-
tion with applications to FL. We showed that STEM reaches an e-stationary point with O(e~3/2)
sample complexity while achieving linear speed-up with the number of WNs. Moreover, the algo-
rithm achieves a communication complexity of @(6_1). We established a (optimal) trade-off that
allows interpolation between varying choices of local updates and the batch sizes at each WN while
maintaining (near optimal) sample and communication complexities. We showed that FedAvg (a.k.a
LocalSGD) also exhibits a similar trade-off while achieving worse complexities. Our results provide
guidelines to carefully choose the number of local updates, update directions, and minibatch sizes to
achieve the best performance. The future directions of this work include developing lower bounds on
communication complexity that establishes the tightness of the analysis conducted in this work.
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