
Published as a conference paper at ICLR 2022

DECENTRALIZED LEARNING FOR OVERPARAMETER-
IZED PROBLEMS: A MULTI-AGENT KERNEL APPROX-
IMATION APPROACH

Prashant Khanduri†‡, Haibo Yang‡, Mingyi Hong†, Jia Liu‡, Hoi-To Wai�, Sijia Liu⇧⇤
†University of Minnesota, ‡The Ohio State University, �CUHK, ⇧Michigan State University,
⇤MIT-IBM Watson AI Lab, IBM Research
khand095@umn.edu, yang.5952@osu.edu, mhong@umn.edu
liu@ece.osu.edu, htwai@se.cuhk.edu.hk, liusijia5@msu.edu

ABSTRACT

This work develops a novel framework for communication-efficient distributed
learning where the models to be learnt are overparameterized. We focus on a
class of kernel learning problems (which includes the popular neural tangent ker-
nel (NTK) learning as a special case) and propose a novel multi-agent kernel
approximation technique that allows the agents to distributedly estimate the full
kernel function, and subsequently perform distributed learning, without directly
exchanging any local data or parameters. The proposed framework is a signifi-
cant departure from the classical consensus-based approaches, because the agents
do not exchange problem parameters, and consensus is not required. We analyze
the optimization and the generalization performance of the proposed framework
for the `2 loss. We show that with M agents and N total samples, when certain
generalized inner-product (GIP) kernels (resp. the random features (RF) kernel)
are used, each agent needs to communicate O

�
N

2
/M

�
bits (resp. O

�
N
p
N/M

�

real values) to achieve minimax optimal generalization performance. Further, we
show that the proposed algorithms can significantly reduce the communication
complexity compared with state-of-the-art algorithms, for distributedly training
models to fit UCI benchmarking datasets. Moreover, each agent needs to share
about 200N/M bits to closely match the performance of the centralized algo-
rithms, and these numbers are independent of parameter and feature dimension.

1 INTRODUCTION

Recently, decentralized optimization has become a mainstay of the optimization research. In de-
centralized optimization, multiple local agents hold small to moderately sized private datasets,
and collaborate by iteratively solving their local problems while sharing some information with
other agents. Most of the existing decentralized learning algorithms are deeply rooted in classical
consensus-based approaches (Tsitsiklis, 1984), where the agents repetitively share the local param-
eters with each other to reach an optimal consensual solution. However, the recent trend of using
learning models in the overparameterized regime with very high-dimensional parameters (He et al.,
2016; Vaswani et al., 2017; Fedus et al., 2021) poses a significant challenge to such parameter
sharing approaches, mainly because sharing model parameters iteratively becomes excessively ex-
pensive as the parameter dimension grows. If the size of local data is much smaller than that of
the parameters, perhaps a more efficient way is to directly share the local data. However, this ap-
proach raises privacy concerns, and it is rarely used in practice. Therefore, a fundamental question
of decentralized learning in the overparameterized regime is:

(Q) For overparameterized learning problems, how to design decentralized algorithms that achieve
the best optimization/generalization performance by exchanging minimum amount of information?
We partially answer (Q) in the context of distributed kernel learning (Vert et al., 2004). We depart
from the popular consensus-based algorithms and propose an optimization framework that does not
require the local agents to share model parameters or raw data. We focus on kernel learning because:
(i) kernel methods provide an elegant way to model non-linear learning problems with complex data

1

Published as a conference paper at ICLR 2022

Table 1: Comparison of the total communication required per node by different algorithms for non-
overparameterized (NOP) and overparameterized (OP) regimes. Please see Appendix B for a detailed dis-
cussion of the algorithms. Here N is entire sample size, UB on M denotes the upper bound on the number of
nodes, M , d is the data dimension, � � 2 is a constant, and T denotes the total communication (iterations)
rounds utilized by the distributed algorithms.

Algorithm Kernel UB onM
Communication (Real Values)
NOP OP

DKRR-CM (Lin et al., 2020) Any O
�
N

T+1
2(T+2)

�
O(dTN) O(dTN)

DKRR-RF-CM (Liu et al., 2021) RF O
�
N

T+1
2(T+2)

�
O(T

p
N) O(TN�)

Decentralized-RF (Richards et al., 2020) RF O(N
1
3) O(T

p
N) O(TN�)

DKLA/COKE (Xu et al., 2020) RF Any M O(T
p
N) O(TN�)

RF O
�
N

p
N

M

�
O
�
N1+�

M

�
Algorithm 2 (this work) GIP AnyM

O
�
N2

M

�
O
�
N2

M

�

dependencies as simple linear problems (Vert et al., 2004; Hofmann et al., 2008), and (ii) kernel-
based methods can be used to capture the behavior of a fully-trained deep network with large width
(Jacot et al., 2018; Arora et al., 2019; 2020).

Distributed implementation of kernel learning problems is challenging. Current state-of-the-art algo-
rithms for kernel learning either rely on sharing raw data among agents and/or imposing restrictions
on the number of agents (Zhang et al., 2015; Lin et al., 2017; Koppel et al., 2018; Lin et al., 2020;
Hu et al., 2020; Pradhan et al., 2021; Predd et al., 2006). Some recent approaches rely on specific
random feature (RF) kernels to alleviate some of the above problems. These algorithms reformulate
the (approximate) problem in the parameter domain and solve it by iteratively sharing the (poten-
tially high-dimensional) parameters (Bouboulis et al., 2017; Richards et al., 2020; Xu et al., 2020;
Liu et al., 2021). These algorithms suffer from excessive communication overhead, especially in
the overparameterized regime where the number of parameters is larger than the data size N . For
example, implementing the neural tangent kernel (NTK) with RF kernel requires at least O(N�),
� � 2, random features (parameter dimension) using ReLU activation (Arora et al., 2019; Han et al.,
2021)1. For such problems, in this work, we propose a novel algorithmic framework for decentral-
ized kernel learning. Below, we list the major contributions of our work.

[GIP Kernel for Distributed Approximation] We define a new class of kernels suitable for dis-
tributed implementation, Generalized inner-product (GIP) kernel, that is fully characterized by the
angle between a pair of feature vectors and their respective norms. Many kernels of practical impor-
tance including the NTK can be represented as GIP kernel. Further, we propose a multi-agent kernel
approximation method for estimating the GIP and the popular RF kernels at individual agents.

[One-shot and Iterative Scheme] Based on the proposed kernel approximation, we develop two
optimization algorithms, where the first one only needs one-shot information exchange, but requires
sharing data labels among the agents; the second one needs iterative information exchange, but does
not need to share the data labels. A key feature of these algorithms is that neither the raw data
features nor the (high-dimensional) parameters are exchanged among agents.

[Performance of the Approximation Framework] We analyze the optimization and the general-
ization performance of the proposed approximation algorithms for `2 loss. We show that GIP kernel
requires communicating O(N2

/M) bits and the RF kernel requires communicating O(N
p
N/M)

real values per agent to achieve minimax optimal generalization performance. Importantly, the re-
quired communication is independent of the function class and the optimization algorithm. We
validate the performance of our approximation algorithms on UCI benchmarking datasets.

In Table 1, we compare the communication requirements of the proposed approach to popular dis-
tributed kernel learning algorithms. Specifically, DKRR-CM (Lin et al., 2020) relies on sharing data
and is therefore not preferred in practical settings. For the RF kernel, the proposed algorithm out-
performs other algorithms in both non-overparameterized and the overparameterized regimes when
T > N/M . In the overparameterized regime, the GIP kernel is more communication efficient
compared to other algorithms. Finally, note that since our analysis is developed using the multi-
agent-kernel-approximation, it does not impose any upper bound on the number of agents in the
network.

1To achieve approximation error ✏ = O(1/
p
N).

2

Published as a conference paper at ICLR 2022

Notations: We use R, Rd, and Rn⇥m to denote the sets of real numbers, d-dimensional Euclidean
space, and real matrices of size n⇥m, respectively. We use N to denote the set of natural numbers.
N (0,⌃) is multivariate normal distribution with zero mean and covariance ⌃. Uniform distribution
with support [a, b] is denoted by U [a, b]. ha, bi (resp. ha, biH) denotes the inner-product in Euclidean
space (resp. Hilbert space H). The inner-product defines the usual norms in corresponding spaces.
Norm kAk of matrix A denotes the operator norm induced by `2 vector norm. We denote by [a]i or
[a](i) the ith element of a vector a. [A · a](i)

j
denotes the (i · j)th element of vector A · a. Moreover,

A
(:,i) is the i

th column of A and [A]mk is the element corresponding to m
th row and k

th column.
Notation m 2 [M] denotesm 2 {1, ..,M}. Finally, [E] is the indicator function of event E.

2 PROBLEM STATEMENT

Given a probability distribution ⇡(x, y) over X ⇥ R, we want to minimize the population loss

L(f) = Ex,y⇠⇡(x,y)[`(f(x), y)], (1)

where x 2 X ⇢ Rd and y 2 R denote the features and the labels, respectively. Here, f : X ! R
is an estimate of the true label y. We consider a distributed system of M agents, with each agent
m 2 [M] having access to a locally available independently and identically distributed (i.i.d) dataset
Nm = {x(i)

m , y
(i)
m }n

i=1 with2 (x(i)
m , y

(i)
m) ⇠ ⇡(x, y). The total number of samples is N = nM . The

goal of kernel learning with kernel function, k(·, ·) : X ⇥ X ! R, is to find a function f 2 H
(whereH is the reproducing kernel Hilbert space (RKHS) associated with k (Vert et al., 2004)) that
minimizes (1). We aim to solve the following (decentralized) empirical risk minimization problem

min
f2H

⇢
R̂(f) = L̂(f) + �

2
kfk2

H
=

1

M

MX

m=1

L̂m(f) +
�

2
kfk2

H

�
, (2)

where � > 0 is the regularization parameter and L̂m(f) = 1
n

P
i2Nm

`(f(x(i)
m), y(i)m) is the local

loss at each m 2 [M]. Problem (2) can be reformulated using the Representer theorem (Schölkopf
et al., 2002) with L̂m(↵) = 1

n

P
i2Nm

`
�⇥
K↵

⇤(i)
m
, y

(i)
m

�
, 8m 2 [M], as

min
↵2RN

⇢
R̂(↵) = L̂(↵) + �

2
k↵k2K =

1

M

MX

m=1

L̂m(↵) +
�

2
k↵k2K

�
, (3)

where K 2 RN⇥N is the kernel matrix with elements k(x(i)
m , x

(j)
m̄), 8m, m̄ 2 [M], 8i 2 Nm

and 8j 2 Nm̄. The supervised (centralized) learning problem (3) is a classical problem in sta-
tistical learning (Caponnetto & De Vito, 2007) and has been popularized recently due to con-
nections with overparameterized neural network training (Jacot et al., 2018; Arora et al., 2019).
An alternate way to solve problem (2) (and (3)) is by parameterizing f in (2) by ✓ 2 RD as
fD(x; ✓) = h✓,�D(x)i where �D : X ! RD is a finite dimensional feature map. Here, �D(·)
is designed to approximate k(·, ·) with kD(x, x0) = h�D(x),�D(x0)i (Rahimi & Recht, 2008).
Using this approximation, problem (2) (and (3)) can be written in the parameter domain with
L̂m,D(✓) = 1

n

P
i2Nm

`
�
h✓,�D(x(i)

m)i, y(i)m

�
, 8m 2 [M], as

min
✓2RD

⇢
R̂D(✓) = L̂D(✓) +

�

2
k✓k2 =

1

M

MX

m=1

L̂m,D(✓) +
�

2
k✓k2

�
. (4)

Note that (4) is a D-dimensional problem, whereas (3) is an N -dimensional problem. Since (4) is
in the standard finite-sum form, it can be solved using the standard parameter sharing decentralized
optimization algorithms (e.g., DGD (Richards et al., 2020) or ADMM (Xu et al., 2020)), which
share D-dimensional vectors iteratively. However, when (4) is overparameterized with very large
D (e.g., D = O(N�) with � � 2 for the NTK), such parameter sharing approaches are no longer
feasible because of the increased communication complexity. An intuitive solution to avoid sharing
these high-dimensional parameters is to directly solve (3). However, it is by no means clear if and
how one can efficiently solve (3) in a decentralized manner. The key challenge is that, unlike the

2The techniques presented in this work can be easily extended to unbalanced datasets, i.e., when each agent
has a dataset of different size.

3

Published as a conference paper at ICLR 2022

conventional decentralized learning problems, here each loss term `([K↵](i)m , y
(i)
m) is not separable

over the agents. Instead, each agent m’s local problem is dependent on k(x(i)
m , x

(j)
m̄) with m 6= m̄.

Importantly, without directly transmitting the data itself (as has been done in Predd et al. (2006);
Koppel et al. (2018); Lin et al. (2020)), it is not clear how one can obtain the required (m·i)th element
ofK↵. Therefore, to develop algorithms that avoid sharing high-dimensional parameters by directly
(approximately) solving (3), it is important to identify kernels that are suitable for decentralized
implementation and propose efficient algorithms for learning with such kernels.

3 THE PROPOSED ALGORITHMS

In this section, we define a general class of kernels referred to as the generalized inner product
(GIP) kernels that are suitable for decentralized overparameterized learning. By focusing on GIP
kernels, we aim to understand the best possible decentralized optimization/generalization perfor-
mance that can be achieved for solving (3). Surprisingly, one of our proposed algorithm only shares
O(nN) = O(N2

/M) bits of information per node, while achieving the minimax optimal gener-
alization performance. Such an algorithm only requires one round of communication, where the
messages transmitted are independent of the actual parameter dimension (i.e., D in problem (4));
further, there is no requirement for achieving consensus among the agents. The proposed algo-
rithm represents a significant departure from the classical consensus-based decentralized learning
algorithms. We first define a class of kernels that we will focus on in this work.
Definition 3.1. [Generalized inner-product (GIP) kernel]We define a GIP kernel as:

k(x, x0) = g((x, x0), kxk, kx0k), (5)

where (x, x0) = arccos(xT
x
0
/(kxkkx0k)) 2 [0,⇡] denotes the angle between the feature vectors

x and x
0; and g(·, kxk, kx0k) is assumed to be Lipschitz continuous (cf. Assumption 2).

Remark 1. Note that the GIP kernel is a generalization of the inner-product kernels (Schölkopf
et al., 2002), i.e., kernels of the form k(x, x0) = k(hx, x0i). Clearly, k(hx, x0i) can be represented
as k(hx, x0i) = g((x, x0), kxk, kx0k) for some function g(·). Moreover, many kernels of practical
interest can be represented as GIP kernels, some examples include NTK (Jacot et al., 2018; Chizat
et al., 2019; Arora et al., 2019), arccosine (Cho & Saul, 2009), polynimal, Gaussian, Laplacian,
sigmoid, and inner-product kernels (Schölkopf et al., 2002).

The main reason we focus on the GIP kernels for decentralized implementation is that, this class of
kernels can be fully specified at each agent if the norms of all the feature vectors and the pairwise
angles between them are known at each agent. For example, consider an NTK of a single hidden-
layer ReLU neural network: k(x, x0) = x

T
x
0(⇡� (x, x0))/2⇡ (Chizat et al., 2019). This kernel can

be fully learned with just the knowledge of norms and the pairwise angles of the feature vectors. For
many applications of interest (Bietti & Mairal, 2019; Geifman et al., 2020; Pedregosa et al., 2011),
normalized feature vectors are used, and for such problems, the GIP kernel at each agent can be
computed only by using the knowledge of the pairwise angles between the feature vectors. We show
in Sec. 3.1 that such kernels can be efficiently estimated by each agent while sharing only a few bits
of information. Importantly, the communication requirement for such a kernel estimation procedure
is independent of the problem’s parameter dimension (i.e., D in (4)), making them suitable for
decentralized learning in overparameterized regime. Next, we define the RF kernel.
Definition 3.2. [Random features (RF) kernel] RF kernel is defined as (Rahimi & Recht, 2008;
Rudi & Rosasco, 2017; Li et al., 2019):

k(x, x0) =

Z

!2⌦
⇣̄(x,!) · ⇣̄(x0

,!)dq(!) (6)

with (⌦, q) being the probability space and ⇣̄ : X ⇥ ⌦ ! R.
Remark 2. The RF kernel can be approximated as: k(·, ·) ⇡ kP (x, x0) = h�P (x),�P (x0)i,
with �P (x) = 1

p
P
[⇣̄(x,!1), . . . , ⇣̄(x,!P)]T 2 RP and {!i}Pi=1 drawn i.i.d. from distribution

q(!). A popular example of the RF kernels is the shift-invariant kernels, i.e., kernels of the form
k(x, x0) = k(x � x

0) (Rahimi & Recht, 2008). The RF kernels generalize the random Fourier
features construction (Rudin, 2017) for shift-invariant kernels to general kernels. Besides the shift-
invariant kernels, important examples of the RF kernels include the inner-product (Kar & Karnick,
2012), and the homogeneous additive kernels (Vedaldi & Zisserman, 2012).

4

Published as a conference paper at ICLR 2022

Algorithm 1 Approximation: Local Kernel Estimation

1: Initialize: Distribution p(!) over space (⌦, p) and mapping ⇣ : X ⇥ ⌦ ! R (see Section 3.1)
2: for m 2 [M] do
3: Draw P i.i.d. random variables !i 2 Rd with !i ⇠ p(!) for i = 1, . . . , P

4: Compute ⇣(x(i)
m ,!j) 8i 2 Nm and j 2 [P]

5: Construct the matrix Am 2 RP⇥n with the (i, j)th element as ⇣(x(i)
m ,!j)

6: Communicate Am to every other agent and receive Am̄ with m̄ 6= m from other agents
7: If GIP is used, and data is not normalized, then communicate kx(i)

m k, 8 i 2 Nm

8: Estimate the kernel matrixKP locally using (7) for the GIP and (9) for the RF kernel
9: end for

Next, we propose a multi-agent approximation algorithm to effectively learn the GIP and the RF
kernels at each agent, as well as the optimization algorithms to efficiently solve the learning problem.
Our proposed algorithms will follow an approximation – optimization strategy, where the agents first
exchange some information so that they can locally approximate the full kernel matrixK; then they
can independently optimize the resulting approximated local problems. Below we list a number of
key design issues arising from implementing such an approximation – optimization strategy:

[Kernel approximation] How to accurately approximate the kernel K, locally at each agent? For
example, for the GIP kernels, how to accurately estimate the angles (x(i)

m , x
(j)
m̄) at a given agentm,

where j 2 Nm̄ and m̄ 6= m? This is challenging, especially when raw data sharing is not allowed.

[Effective exchange of local information] How shall we design appropriate messages to be ex-
changed among the agents? The type of messages that gets exchanged will be dependent on the
underlying kernel approximation schemes. Therefore, it is critical that proposed approximation
methods are able to utilize as little information from other agents as possible.

[Iterative or one-shot scheme] It is not clear if such an approximation – optimization scheme should
be one-shot or iterative – that is, whether it is favourable that the agents iteratively share information
and perform local optimization (similar to classical consensus-based algorithms), or they should do
it just once. Again, this will be dependent on the underlying information sharing schemes.

Next, we will formally introduce the proposed algorithms. Our presentation follows the approxi-
mation – optimization strategy outlined above. We first discuss the proposed decentralized kernel
approximation algorithm, followed by two different ways of performing decentralized optimization.

3.1 MULTI-AGENT KERNEL APPROXIMATION

The kernel K is approximated locally at each agent using Algorithm 1. Note that in Step 3, each
agent randomly samples {!i}Pi=1 from distribution p(!). This can be easily established via random
seed sharing as in Xu et al. (2020); Richards et al. (2020). In Step 6, each agent shares a locally
constructed matrix Am of size P ⇥ n, whose elements ⇣(x(i)

m ,!i) will be defined shortly. The
choices of p(!) and ⇣(·, ·) in Step 1 depend on the choice of kernel. Specifically, we have:

[Approximation for GIP kernel] For the GIP kernel, we first assume that the feature vectors are
normalized (Pedregosa et al., 2011). We then choose p(!) to be any circularly symmetric distribu-
tion, for simplicity we choose p(!) asN (0, Id). Moreover, we use ⇣(x,!) = [!T

x � 0] such that
Am is a binary matrix with entries {0, 1}. Note that such matrices are easy to communicate. Next,
we approximate the kernel K withKP as

k(x(i)
m
, x

(j)
m̄) ⇡ kP (x

(i)
m
, x

(j)
m̄) = g(P (x

(i)
m
, x

(j)
m̄), kx(i)

m
k, kx(j)

m̄ k), (7)

where k(x(i)
m , x

(j)
m̄) and kP (x

(i)
m , x

(j)
m̄) 8i 2 Nm, 8m 2 [M] and 8j 2 Nm̄ and 8m̄ 2 [M] are

the individual elements of K and KP , resp., and P (x
(i)
m , x

(j)
m̄) is an approximation of the angle

 (x(i)
m , x

(j)
m̄) evaluated using Am, Am̄ as

 (x(i)
m
, x

(j)
m̄) ⇡ P (x

(i)
m
, x

(j)
m̄) =

���⇡ � 2⇡[A(:,i)
m

]T [A(:,j)
m̄]/P

��� , (8)

5

Published as a conference paper at ICLR 2022

Algorithm 2 Optimization: One-Shot Communication for Kernel Learning

1: Initialize: ↵1
m

2 RN , step-sizes {⌘t
m
}Tm
t=1 at each agentm 2 [M]

2: for m 2 [M] do
3: Using Algorithm 1 constructKP

4: Communicate ȳm = [y(1)m , . . . , y
(n)
m]T 2 Rn

5: Using KP and ȳm construct L̂P (↵) (cf. (10)) locally using L̂m,P (↵)
6: Option I: Solve (10) exactly at each agent
7: Option II: Solve (10) inexactly using GD at each agent
8: for t = 1 to Tm

9: GD Update: ↵t+1
m

= ↵
t

m
� ⌘

t

m
rR̂P (↵t

m
)

10: end for
11: end for
12: Return: ↵T+1

m
for allm 2 [M]

This implies that K can be approximated for the GIP kernel by communicating only nP bits of
information per agent. Note that in the general case if the feature vectors are not normalized, then
(7) can be evaluated by communicating additional n real values of the norms of the feature vectors
by each agent; see Step 7 in Algorithm 1.

[Approximation for RF kernel] For the RF kernel, we choose ⇣(·, ·) = ⇣̄(·, ·) and p(!) = q(!) as
defined in (6) and approximate K withKP as

k(x(i)
m
, x

(j)
m̄) ⇡ kP (x

(i)
m
, x

(j)
m̄) = h�P (x

(i)
m
),�P (x

(j)
m̄)i, (9)

where k(x(i)
m , x

(j)
m̄) and kP (x

(i)
m , x

(j)
m̄) are elements of K and KP , resp., �P (x

(i)
m) = 1/

p
P [A(:,i)

m]

and �P (x
(j)
m̄) = 1/

p
P [A(:,j)

m̄]. Note that K can be approximated for the RF kernel by sharing only
nP real values per agent. Further, the distribution q(!) and the mapping ⇣̄(·, ·) depend on the type
of RF kernel used. For example, for shift-invariant kernels with random Fourier features, we can
choose ⇣̄(x,!) =

p
2 cos(!T

x+ b) with ! ⇠ q(!) and b ⇠ U [0, 2⇡] (Rahimi & Recht, 2008).

Now that using Algorithm 1 we have approximated the kernel matrix at all the agents, we are ready
to solve (3) approximately.

3.2 THE DECENTRALIZED OPTIMIZATION STEP

The approximated kernel regression problem (3) with KP obtained using Algorithm 1, and local
loss L̂m,P (↵) :=

1
n

P
i2Nm

`
�⇥
KP↵

⇤(i)
m
, y

(i)
m

�
is

min
↵2RN

⇢
R̂P (↵) = L̂P (↵) +

�

2
k↵k2KP

=
1

M

MX

m=1

L̂m,P (↵) +
�

2
k↵k2KP

�
. (10)

Remark 3. For the approximate problem (10), we would wantKP constructed using the multi-agent
kernel approximation approach to be positive semi-definite (PSD), i.e., the kernel function kP (·, ·)
is a positive definite (PD) kernel. From the definition of the approximate RF kernel (9), it is easy to
verify that it is PD. However, it is not clear if the approximated GIP kernel is PD. Certainly, for the
GIP kernel we expect that as P ! 1 we have KP ! K, i.e., asymptotically KP is PSD, since K
is PSD. In the Appendix, we introduce a sufficient condition (Assumption 6) that ensures KP to be
PSD for the GIP kernel. In the following, for simplicity we assumeKP is PSD.

Decentralized optimization based on one-shot communication: In this setting, we share the in-
formation among all the agents in one-shot, then each agent learns its corresponding minimizer
using the gathered information. We assume that each agent can communicate with every other agent
either in a decentralized manner (or via a central server) before initialization. This is a common
assumption in distributed learning with RF kernels where the agents need to share random seeds
before initialization to determine the approximate feature mapping (Richards et al., 2020; Xu et al.,
2020). Here, consensus is not enforced as each agent can learn a local minimizer which has a good
global property. The label information is also exchanged among all the agents. In Algorithm 2, we
list the steps of the algorithm. In Step 3, the agents learnKP (the local estimate of the kernel matrix)

6

Published as a conference paper at ICLR 2022

using Algorithm 1. In Step 4, the agents share the labels ȳm so that each agent can (approximately)
reconstruct the loss L̂(↵) (cf. (10)) locally. Then each agent can either choose Option I or Option
II to solve (10). A few important properties of Algorithm 2 are:

[Communication] Each agent communicates a total ofO(nP) = O(NP/M) bits (if the norms also
need to be transmitted, then with an additionalN/M real values) for the GIP kernel, andO(NP/M)
real values for the RF kernels. Importantly, for the GIP kernel the communication is independent of
the parameter dimension, making it suitable for decentralized overparameterized learning problems;
see Table 1 for a comparison with other approaches.

[No consensus needed] Each agent executes Algorithm 2 independently to learn ↵m, without need-
ing to reach any kind of consensus. They are free to choose different initializations, step-sizes, and
even regularizers (i.e., � in (10)). In contrast to the classical learning, where algorithms are designed
to guarantee consensus (Koppel et al., 2018; Richards et al., 2020; Xu et al., 2020), our algorithms
allow each agent to learn a different function.

The proposed framework relies on sharing matrices Am’s that are random functions of the local
features. Note that problem (10) can also be solved by using an iterative distributed gradient tracking
algorithm (Qu & Li, 2018), with the benefit that no label sharing is needed; see Appendix D.
Remark 4 (Optimization performance). Note that using Algorithm 2, we can solve the approximate
problem (10) to arbitrary accuracy using either Option I or Option II. However, it is by no means
clear if the solution obtained by Algorithm 2 will be close to the solution of (3). Therefore, after
problem (10) is solved, it is important to understand how close the solutions returned by Algorithm
2 are to the original kernel regression problem (3).

4 MAIN RESULTS

In this section, we analyze the performance of Algorithm 2. Specifically, we are interested in un-
derstanding the training loss and the generalization error incurred due to the kernel approximation
(cf. Algorithm 1). For this purpose, we focus on `2 loss functions for which the kernel regression
problem (10) can be solved in closed-form. Specifically, we want to minimize the loss:

L(f) = 1

2
Ex,y⇠⇡(x,y)[(f(x)� y)2]. (11)

We solve the following kernel ridge regression problem with the choice L̂(↵) = 1
2N kȳ �K↵k2,

min
↵2RN

n
R̂(↵) =

1

2N
kȳ �K↵k2 + �

2
k↵k2K

o
(12)

where we denote ȳ = [ȳT1 , . . . , ȳ
T

M
]T 2 RN with ȳm = [y(1)m , y

(2)
m , . . . , y

(n)
m]T 2 Rn. The above

problem can be solved in closed form with ↵̂⇤ = [K+N · � · I]�1
ȳ. The approximated problem at

each agent with the kernel KP and with the loss function L̂P (↵) =
1

2N kȳ �KP↵k2 is

min
↵2RN

n
R̂P (↵) =

1

2N
kȳ �KP↵k2 +

�

2
k↵k2KP

o
(13)

with the optimal solution returned by Option I in Algorithm 2 as ↵̂⇤

P
= [KP +N · � · I]�1

ȳ. The
goal is to analyze the impact of the approximation on the performance of Algorithm 2. Specifically,
we bound the difference between the optimal losses of the exact and the approximated Kernel ridge
regression. We begin with some assumptions.
Assumption 1. We assume |k(x, x0)|

2 and |kP (x, x0)|
2 for some � 1.

Assumption 2. The function g(·) in (5) used to construct the GIP kernel is G-Lipschitz w.r.t. ,
i.e., 9G � 0 such that: |g(, z2, z3)� g(̂, z2, z3)| G| � ̂|, 8 , ̂ 2 [0,⇡] and 8z2, z3 2 R.
Assumption 3. We assume that the data labels |y| R almost surely for some R > 0.
Assumption 4. There exists fH 2 H such that L(fH) = infh2H L(h).

A few remarks are in order. Note that Assumptions 1, 3 and 4 are standard in the statistical learning
theory (Cucker & Zhou, 2007; Caponnetto & De Vito, 2007; Ben-Hur & Weston, 2010; Rudi &
Rosasco, 2017). Moreover, for RF kernel Assumption 1 is automatically satisfied if |⇣(x,!)|

7

Published as a conference paper at ICLR 2022

almost surely (Rudi & Rosasco, 2017) (cf. (6) and (9)). Assumption 2 is required for estimating
the kernel by approximating the pairwise angles between feature vectors. It is easy to verify that the
popular kernels including, NTK (15), Arccosine, Gaussian and Polynomial kernels satisfy Assump-
tion 2 with feature vectors belonging to a compact domain (this ensures that the Lipschitz constant
G is independent of the feature vector norms). Now we are ready to present the results.

We analyze how well Algorithm 1 approximates the exact kernel. We are interested in the approxi-
mation error as a function of the number of random samples P . We have the following lemma.
Lemma 4.1 (Kernel Approximation). For KP returned by Algorithm 1, the following holds with

probability at least 1� �: (i) For the GIP kernel, kK�KP k GN

⇣q
32⇡2

P
log 2N

�
+ 8⇡

3P log 2N
�

⌘
.

(ii) Similarly, for the RF kernel, kK�KP k
2
N

⇣q
8
P
log 2N

�
+ 4

3P log 2N
�

⌘
.

Note that as P increases KP ! K, in particular, to achieve an approximation error of ✏ > 0,
we need P = O(✏�2). Importantly, Lemma 4.1 plays a crucial role in analyzing the optimization
performance of the kernel approximation approach. Next, we state the training loss incurred as a
consequence of solving the approximate decentralized problem (13) in Algorithm 2 instead of (12).
Theorem 4.2 (Approximation: Optimal Loss). Suppose P � 2

9 log
2N
�
, then for both the GIP and

the RF kernels, the solution returned by Algorithm 2 (Option I) for solving (12) approximately (i.e,
(13)), satisfies the following with probability at least 1� �

��L̂P (↵̂⇤

P
)� L̂(↵̂⇤)

�� = O
⇣q

1
P
log 2N

�

⌘
and

��R̂P (↵̂⇤

P
)� R̂(↵̂⇤)

�� O
⇣q

1
P
log 2N

�

⌘
.

Theorem 4.2 states that as P increases, the optimal training loss achieved by solving approximate
problem (13) via Algorithm 2 (Option I) will approach the performance of the centralized system
(12) for both the GIP and the RF kernels. The proof of the above result utilizes Lemma 4.1 and the
definition of the loss functions in (12) and (13). See Appendix G for a detailed proof.

The results of Lemma 4.1 and Theorem 4.2 characterize the approximation performance of the
proposed approximation – optimization framework on fixed number of training samples. Of course,
it is of interest to analyze how the proposed approximation algorithms will perform on unseen test
data. Towards this end, it is essential to analyze the performance of the function f̂P learned from
solving (13) via Algorithm 2. We have the following result.

Theorem 4.3 (Generalization performance). Let us choose � = 1/
p
N , � 2 (0, 1), and N �

max
n

4
3kKk2 , 722

p
N log 322

p
N

�

o
, also choose P � max

n
8, 512⇡2

G
2

kKk2 , 288⇡2
G

2
N

o
log 16

�
for

the GIP kernel and P � max
n
82

,
322

kKk2 , 722
p
N

o
log 1282

p
N

�
for the RF kernel, where K is

defined in Appendix F. Then with probability at least 1� �, we have for f̂P returned by Algorithm 2
(Option I) for approximately solving (12) (i.e., (13)): L(f̂P)� infh2H L(h) = O

�
1/
p
N
�
.

The proof of Theorem 4.3 utilizes a result similar to Lemma 4.1 but for integral operator defined
using kernels k(·, ·) and kP (·, ·). Theorem 4.3 states that with appropriate choice of � (the regu-
larization parameter), N (the number of overall samples), and P (the messages communicated per
agent), the proposed algorithm achieves the minimax optimal generalization performance (Capon-
netto & De Vito, 2007). Also, note that the the requirement of P = O(

p
N) for the RF kernel

compared to P = O(N) for the GIP kernel is due to the particular structure of the RF kernel (cf.
(6)). It can be seen from Lemmas H.4 and H.5 in Appendix H, that the approximation obtained with
the RF kernel allows the derivation of tighter bounds compared to the GIP kernel. The next corollary
precisely states the total communication required per agent to achieve this optimal performance.
Corollary 1 (Communication requirements for the GIP and RF kernels). Suppose Algorithm 2 uses
the choice of parameters stated in Theorem 4.3 to approximately optimize (12). Then it requires a
total of O(N2

/M) bits (resp. O(N
p
N/M) real values) of message exchanges per node when the

GIP kernel (resp. the RF kernel) is used, to achieve minimax optimal generalization performance.
Moreover, if unnormalized feature vectors are used, then the GIP kernel requires an additional
O(N/M) real values of message exchanges per node.
Compared to DKRR-RF-CM (Liu et al., 2021), Decentralized RF (Richards et al., 2020), DKLA,
and COKE (Xu et al., 2020), the number of message exchanges required by the proposed algorithm

8

Published as a conference paper at ICLR 2022

Table 2: Total communication (in bits) per node required to achieve a fixed MSE (⇥10�3) performance.

Algorithm Communication (bits)
P = 100 P = 500 P = 1000

DKRR-RF-CM (Liu et al., 2021) 25, 600 640, 000 896, 000
DecentralizedRF (Richards et al., 2020) 57, 600 352, 000 576, 000
DKLA (Xu et al., 2020) 44, 800 288, 000 448, 000
Algorithm 2 (Our Paper) 22, 800 62, 800 112, 800
Target MSE (⇥10�3) 24.36 20.93 19.25

Table 3: Comparison of MSE for a fixed communication budget.

Algorithm MSE (⇥10�3)
P = 100 P = 500 P = 1000

DKRR-RF-CM (Liu et al., 2021) 35.30 50.51 67.48
DecentralizedRF (Richards et al., 2020) 39.42 43.37 45.77
DKLA (Xu et al., 2020) 35.89 43.87 44.73
Algorithm 2 (Our Paper) 24.36 20.93 19.25
Communication Budget (bits) 22, 800 62, 800 112, 800

is independent of the iteration numbers, and it is much less compared to other algorithms, especially
for the GIP kernel in the overparameterized regime; see Table 1 for detailed comparisons.

5 EXPERIMENTS

We compare the performance of the proposed algorithm to DKRR-RF-CM (Liu et al., 2021), De-
centralized RF (Richards et al., 2020), and DKLA (Xu et al., 2020). We evaluate the performance
of all the algorithms on real world datasets from the UCI repository.

Specifically, we present the results on National Advisory Committee for Aeronautics (NACA) airfoil
noise dataset (Lau & López, 2009), where the goal is to predict aircraft noise based on a few mea-
sured attributes. The dataset consists of N = 1503 samples that are split equally among M = 10
nodes. Each node utilizes 70% of its data for training and 30% for testing purposes. Each feature
vector x(i)

m 2 R5 represents the measured attributes such as, frequency, angle, etc., and each la-
bel y(i)m represents the noise level. Additional experiments on different datasets and classification
problems, as well as the detailed parameter settings, are included in the Appendix A.

We evaluate the performance of all the algorithms with the Gaussian kernel. Note that the algo-
rithms DKRR-RF-CM, Decentralized RF, and DKLA can only be implemented using the RF ap-
proach while our proposed algorithm utilizes the GIP kernel. Also, in contrast to these benchmark
algorithms that use iterative parameter exchange, the proposed Algorithm 2 uses only one-shot com-
munication. First, in Table 2, we compare the communication required by each algorithm with the
Gaussian kernel for P = 100, 500, and 1000 to achieve the same test mean squared error (MSE) for
each setting, see last row of Table 2. Note that for P = 100, the communication required by Algo-
rithm 2 is less than 50% of that required by DKLA and Decentralized RF while it is only slightly
less than that of DKRR-RF-CM. Moreover, as P increases to 500 and 1000, it can be seen that
Algorithm 2 only requires a fraction of communication compared to other algorithms, and this fact
demonstrates the utility of the proposed algorithms for over-parameterized learning problems. In
Table 3, we compare the averaged MSE achievable by different algorithms, when a fixed total com-
munication budget (in bits) is given for each setting (see the last row of Table 3 for the budget). Note
that Algorithm 2 significantly outperforms all the other methods as P increases. This is expected
since Algorithm 2 essentially solves a centralized problem (cf. Problem (10)) after the multi-agent
kernel approximation (cf. Algorithm 1), and a large P provides a better approximation of the kernel
(cf. Lemma 4.1). In contrast, for the parameter sharing based algorithms the performance deterio-
rates even though the kernel approximation improves with large P as learning a high-dimensional
parameter naturally requires more communication rounds as well as a higher communication budget
per communication round.

Please note that we also compare the performance of Algorithm 2 with the benchmarking algo-
rithms discussed above for the NTK. We further benchmark the performance of Algorithm 2 against
the centralized algorithms for the Gaussian, the Polynomial, and the NTK. However, due to space
limitations, we relegate these numerical results to the Appendix A.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable comments and suggestions. The work of
Prashant Khanduri and Mingyi Hong is supported in part by NSF grant CMMI-1727757, AFOSR
grant 19RT0424, ARO grant W911NF-19-1-0247 and Meta research award on “Mathematical mod-
eling and optimization for large-scale distributed systems”. The work of Mingyi Hong is also
supported by an IBM Faculty Research award. The work of Jia Liu is supported in part by NSF
grants CAREER CNS-2110259, CNS-2112471, CNS-2102233, CCF-2110252, ECCS-2140277,
and a Google Faculty Research Award. The work of Hoi-To Wai was supported by CUHK Direct
Grant #4055113.

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in Neural In-
formation Processing Systems, 30:1709–1720, 2017.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli Yu.
Harnessing the power of infinitely wide deep nets on small-data tasks. In International Conference
on Learning Representations, 2020.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Asa Ben-Hur and Jason Weston. A user’s guide to support vector machines. In Data mining tech-
niques for the life sciences, pp. 223–239. Springer, 2010.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d. Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Pantelis Bouboulis, Symeon Chouvardas, and Sergios Theodoridis. Online distributed learning over
networks in rkh spaces using random fourier features. IEEE Transactions on Signal Processing,
66(7):1920–1932, 2017.

Luis M Candanedo, Véronique Feldheim, and Dominique Deramaix. Data driven prediction models
of energy use of appliances in a low-energy house. Energy and buildings, 140:81–97, 2017.

Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 7(3):331–368, 2007.

Xiangyu Chang, Shaobo Lin, and Yao Wang. Divide and conquer local average regression, 2016.

Lénaı̈c Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Youngmin Cho. Kernel methods for deep learning. University of California, San Diego, 2012.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In Y. Bengio, D. Schuur-
mans, J. Lafferty, C. Williams, and A. Culotta (eds.), Advances in Neural Information Processing
Systems, volume 22. Curran Associates, Inc., 2009.

10

Published as a conference paper at ICLR 2022

Symeon Chouvardas and Moez Draief. A diffusion kernel lms algorithm for nonlinear adaptive
networks. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4164–4168. IEEE, 2016.

Felipe Cucker and Ding Xuan Zhou. Learning theory: an approximation theory viewpoint, vol-
ume 24. Cambridge University Press, 2007.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hun-
dreds of classifiers to solve real world classification problems? The journal of machine learning
research, 15(1):3133–3181, 2014.

Wei Gao, Jie Chen, Cédric Richard, and Jianguo Huang. Diffusion adaptation over networks with
kernel least-mean-square. In 2015 IEEE 6th International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP), pp. 217–220, 2015. doi: 10.1109/CAMSAP.
2015.7383775.

Amnon Geifman, Abhay Yadav, Yoni Kasten, Meirav Galun, David Jacobs, and Basri Ronen. On
the similarity between the laplace and neural tangent kernels. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1451–1461. Curran Associates, Inc., 2020.

Zheng-Chu Guo, Shao-Bo Lin, and Ding-Xuan Zhou. Learning theory of distributed spectral algo-
rithms. Inverse Problems, 33(7):074009, 2017.

Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, and Jinwoo Shin. Random features for the
neural tangent kernel. arXiv preprint arXiv:2104.01351, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine learn-
ing. The annals of statistics, 36(3):1171–1220, 2008.

Ting Hu, Qiang Wu, and Ding-Xuan Zhou. Distributed kernel gradient descent algorithm for min-
imum error entropy principle. Applied and Computational Harmonic Analysis, 49(1):229–256,
2020.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Purushottam Kar and Harish Karnick. Random feature maps for dot product kernels. In Artificial
intelligence and statistics, pp. 583–591. PMLR, 2012.

Alec Koppel, Santiago Paternain, Cédric Richard, and Alejandro Ribeiro. Decentralized online
learning with kernels. IEEE Transactions on Signal Processing, 66(12):3240–3255, 2018.

Kevin Lau and Roberto López. A neural networks approach to aerofoil noise prediction. Tech.
Report, 2009.

Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a unified analysis of random
fourier features. In International Conference on Machine Learning, pp. 3905–3914. PMLR, 2019.

Shao-Bo Lin, Xin Guo, and Ding-Xuan Zhou. Distributed learning with regularized least squares.
The Journal of Machine Learning Research, 18(1):3202–3232, 2017.

Shao-Bo Lin, Di Wang, and Ding-Xuan Zhou. Distributed kernel ridge regression with communi-
cations. J. Mach. Learn. Res., 21:93–1, 2020.

11

Published as a conference paper at ICLR 2022

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches,
use local sgd, 2018.

Yong Liu, Jiankun Liu, and Shuqiang Wang. Effective distributed learning with random features:
Improved bounds and algorithms. In International Conference on Learning Representations,
2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Nicole Mücke and Gilles Blanchard. Parallelizing spectrally regularized kernel algorithms. The
Journal of Machine Learning Research, 19(1):1069–1097, 2018.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Hrusikesha Pradhan, Amrit Singh Bedi, Alec Koppel, and Ketan Rajawat. Adaptive kernel learn-
ing in heterogeneous networks. IEEE Transactions on Signal and Information Processing over
Networks, 2021.

Joel B Predd, Sanjeev R Kulkarni, and H Vincent Poor. Distributed kernel regression: An algorithm
for training collaboratively. In 2006 IEEE Information Theory Workshop-ITW’06 Punta del Este,
pp. 332–336. IEEE, 2006.

Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization. IEEE
Transactions on Control of Network Systems, 5(3):1245–1260, 2018. doi: 10.1109/TCNS.2017.
2698261.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems,
volume 20. Curran Associates, Inc., 2008.

Dominic Richards, Patrick Rebeschini, and Lorenzo Rosasco. Decentralised learning with random
features and distributed gradient descent. In International Conference on Machine Learning, pp.
8105–8115. PMLR, 2020.

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features.
In NIPS, pp. 3215–3225, 2017.

Walter Rudin. Fourier analysis on groups. Courier Dover Publications, 2017.

Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of
the International Speech Communication Association. Citeseer, 2014.

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear convergence of the admm
in decentralized consensus optimization. IEEE Transactions on Signal Processing, 62(7):1750–
1761, 2014.

Ban-Sok Shin, Henning Paul, and Armin Dekorsy. Distributed kernel least squares for nonlinear
regression applied to sensor networks. In 2016 24th European Signal Processing Conference
(EUSIPCO), pp. 1588–1592. IEEE, 2016.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

12

Published as a conference paper at ICLR 2022

Joel A Tropp. User-friendly tools for randommatrices: An introduction. Technical report, California
Institute Of Technology Pasadena Div Of Engineering and Applied Science, 2012.

John Nikolas Tsitsiklis. Problems in decentralized decision making and computation. Technical
report, Massachusetts Inst of Tech Cambridge Lab for Information and Decision Systems, 1984.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Andrea Vedaldi and Andrew Zisserman. Efficient additive kernels via explicit feature maps. IEEE
transactions on pattern analysis and machine intelligence, 34(3):480–492, 2012.

Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf. A primer on kernel methods. Kernel
methods in computational biology, 47:35–70, 2004.

Ping Xu, Yue Wang, Xiang Chen, and Tian Zhi. Coke: Communication-censored kernel learning
for decentralized non-parametric learning. arXiv preprint arXiv:2001.10133, 2020.

Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regression: A
distributed algorithm with minimax optimal rates. The Journal of Machine Learning Research,
16(1):3299–3340, 2015.

13

	Introduction
	Problem Statement
	The Proposed Algorithms
	Multi-agent kernel approximation
	The decentralized optimization step

	Main Results
	Experiments
	Additional Experiments
	Relevant Literature
	Neural tangent kernel
	An algorithm based on decentralized gradient tracking (DGT)
	Testing algorithm for decentralized kernel regression
	Notations
	Optimization performance of multi-agent kernel approximation framework: Proof of Theorem 4.2
	Generalization performance of multi-agent kernel approximation framework: Proof of Theorem 4.3
	Concentration inequalities
	Sufficient condition for positive definite GIP kernel

