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ABSTRACT
Generators are considered as the core application of elec-

tromagnetic machines, which require high-cost rare-earth-based
permanent magnets. The development of generators is moving
toward high efficiency and increased environmental friendliness.
Minimizing the use of rare earth materials such as magnetic ma-
terials under the premise of machine performance emerges as a
challenging task. Topology optimization has been promisingly
applied to many application areas as a powerful generative de-
sign tool. It can identify the optimal distribution of magnetic
material in the defined design space. This paper employs the
level-set-based topology optimization method to design the per-
manent magnet for generators. The machine under study is a
simplified 2D outer rotor direct-drive wind power generator. The
dynamic and static models of this generator are studied, and the
magnetostatic system is adopted to conduct the topology opti-
mization. The optimization goals in this study mainly focused
on two aspects, namely the maximization of the system magnetic
energy and the generation of a target magnetic field in the re-
gion of the air gap. The continuum shape sensitivity analysis is
derived by using the material time derivative, the Lagrange mul-
tiplier method, and the adjoint variable method. Two numerical
examples are investigated, and the effectiveness of the proposed
design framework is validated by comparing the performance of

∗Address all correspondence to this author.

the original design against the optimized design.

1 Introduction
Electromagnetic machines have become more and more

popular in the last few decades, and their applications include but
are not limited to generators [1], actuators [2], electric and hybrid
vehicles [3], NMR equipment [4] and Maglev trains [5]. A typi-
cal system composed of permanent magnets (PM) and iron is the
core element of these applications [6]. Since the permanent mag-
net (PM) is made from expensive rare earth such as neodymium
and dysprosium, the manufacturing cost of the generators in-
creases considerably [7]. Therefore, an urgent challenge that
needs to be addressed is to reduce the use of the high-cost rare
earth material such as magnetic materials without penalizing the
machine’s performance.

Topology optimization (TO) can optimally distribute mate-
rials within a design domain to achieve the desired performance.
The past decades have witnessed a rapid development of topol-
ogy optimization, which has extended its capability from dealing
with load-carrying problems to various applications with multi-
physics characteristics [8, 9]. Meanwhile, with the rapid devel-
opment of additive technology, the manufacturing of complex
designs achieved with TO has become possible. Topology opti-
mization has thus been considered as a systematic and promising
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approach to the automatic design of magnetic structures for elec-
tromagnetic machines.

Topology optimization of magnetic structures has been stud-
ied over the past decade. Magnetics-based topology optimization
has already generated some interesting designs that can achieve
the desired electromagnetic performance. In [10], TO based on
the On-Off approach and level set method is used to find the
optimal distribution of a magnetic shielding system and the ro-
tor of an interior permanent magnet motor. The level-set-based
TO [11] was adopted to find the optimal distribution of the mag-
net actuators [12, 13, 14, 15, 16]. MMA-based TO method op-
timized the layout of a rotor core to enhance the torques of the
synchronous reluctance motor [17]. In [18], TO is applied to the
design of a permanent magnet to generate a predefined magnetic
field. Insinga et al. [19] used topology optimization to design the
permanent magnet structures consisting of the permanent mag-
net, iron, and air, and the optimized designs can achieve higher
magnetic efficiency and increase the magnitude of the magnetic
field. An isogeometric shape optimization method is used to de-
sign the linear and rotating magnetic actuators, which yield the
magnetic force and torques, respectively [20]. It is well recog-
nized that iron can guide and improve the flux created by the
continuous magnetic field in a magnetic system. Many magnetic
systems consisting of permanent magnets and iron have there-
fore been designed. Putek et al. [21] simultaneously optimized
the shape of iron and a permanent magnet to reduce the cogging
torque of a permanent-magnet machine. In [22, 23], the shapes
of the permanent magnet, ferromagnetic material and coils were
designed simultaneously using topology optimization to maxi-
mize the average magnetic force. Moreover, magnetization, in-
cluding direction and magnitude, was taken as a design variable
in these magnetic systems [6, 24, 25]. Recently, metamaterials
have received growing attention in the field of design engineer-
ing. To this end, topology optimization has also been used to
find an optimal layout of the unit cell to satisfy the target ho-
mogenized properties. In [26], by using the density-based TO
method, a microstructure consisting of air, iron, and permanent
magnet materials was designed to construct a macroscopic per-
manent magnet.

Despite numerous studies on topology optimization for
magnetic structures, there is room for improvement. The inter-
mediate value usually accompanies the generative designs using
the density-based method, whereas the On-Off approach usually
generates the checkerboard patterns [27]. This study applies the
level-set-based topology optimization method to design the per-
manent magnet for an electric generator. Owing to the irreg-
ular shape of the design domain, the conformal mapping the-
ory [28, 29] are employed to map it onto a rectangular design
domain, and the topology optimization of the permanent magnet
is carried out subsequently.

The rest of the paper is organized as follows: Section 2 con-
ducts the time-dependent simulation of the electric generator and

introduces the modeling of the magnetostatic system. Section 3
presents the details on topology optimization of permanent mag-
net for generator, including the conventional level set method,
problem formulation, and the shape sensitivity analysis, followed
by two design examples given in Section 4. Section 5 concludes
the paper and outlines future work.

2 Modeling of an Electric Generator
2.1 Model Definition

FIGURE 1: CAD model of a direct-drive synchronous wind gen-
erator.

This section will illustrate how to model an electric genera-
tor. The machine being studied in this paper is a simplified 2D
outer rotor direct-drive wind generator [30]. The 2D geometry of
the generator is illustrated in Fig. 1. The length of the generator
is set as 0.4m. The generator rotates with a rotational velocity
of 7.56 rpm, and this time-dependent model is solved in the time
period ranging from 0 s to 10 s. For the material properties, the
rotor magnets comprise sintered NdFeB magnets with a remnant
flux density of 1.28 tesla (T ) and relative permeability of 1. The
material of the rotor rim, rotor yoke, stator tooth, and stator rim
are all soft iron with a relative permeability of 500. The diameter
of the wire and the number of turns in the winding are 3mm and
100, respectively.

Rotation is modeled using the embedded physics interface
for rotating machinery in COMSOL Multiphysics. In Fig. 1, the
outer part of the geometry, including the rotor rim, yoke, perma-
nent magnet, and part of the air gap, rotates relative to the stator.
The rotor and the stator are separated by the sliding mesh in-
terface. Due to the symmetry, the generator geometry shown in
Fig. 1 can be reduced to a sector-like geometry shown in Fig. 2.
Therefore, the periodic boundary conditions need to be applied
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on both sides of geometry. Since the remanent flux density of
the permanent magnets alters signs in the adjacent sectors, the
type of the periodic boundary condition is selected to be anti-
periodicity.

FIGURE 2: Boundary conditions considering the model symme-
try.

FIGURE 3: The norm and field lines of the magnetic flux at time
10 s of rotation.

The norm of the magnetic flux |B| and the B field lines are
given in Fig. 3 at time 10 s. In addition, the generated voltage in
the windings has an amplitude of 100V in total, shown in Fig. 4.

FIGURE 4: The generated voltage.

2.2 Numerical Modeling of Magnetostatic System
Although the solver for the outer rotor direct-drive wind gen-

erator is a time-dependent study, a stationary study is considered
to conduct the topology optimization for simplicity. Thus, the
generator can be modeled as a magnetostatic system, where the
general boundary condition is illustrated in Fig.5. The whole
domain can be divided into two sub-domains Ω1 and Ω2 with
the interface of γ . The domain Ω1 and Ω2 have a distribution
of ν1, J1, M1 and ν2, J2, M2, respectively. Various cases of the
interfaces between Ω1 and Ω2 are listed in Table.1. The outer
boundary is set as a non-design boundary, so it is not taken as a
design variable.

FIGURE 5: A schematic of general boundary condition of a mag-
netostatic system.

In this work, the studied domain mainly focused on the ar-
eas where there are no induced current. Thus, only Maxwell’s
equations and governing equations related to the magnetostatic
system are presented here. The magnetostatic system can be rep-
resented by the following two Maxwell equations and one linear
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TABLE 1: The interface problems of a magnetostatic system.

Ω1 Ω2

air and iron air iron

PM and iron iron PM

iron and current region iron current region

PM and air PM air

constitutive relation:

∇×H = J, (1a)
∇ ·B = 0, (1b)
B = µ (H+M) . (1c)

where H is the magnetic field intensity, and B is the magnetic
flux density. The volume current density J is applied here to
constitute the source term. µ is the magnetic permeability and M
is the permanent magnetization.

The magnetic flux density B can also be written as

B = ∇×A, (2)

where A is the magnetic vector potential.
Based on the above equations, the partial differential form

of the governing equation for the magnetostatic system can be
obtained as:

∇×ν∇×A = ∇×M+J, (3)

where ν is the magnetic reluctivity.
For conciseness, the variation form of the governing equa-

tion for the magnetostatic system is directly given here.

∫
Ω

νB(A) ·B(A)dΩ =
∫

Ω

(
M ·B(A)+J ·A

)
dΩ, (4)

where A is the arbitrary virtual vector potential and it belongs to
the space of admissible vector potential U:

U =
{

A ∈
[
H1(Ω)

]
| A = 0 on x ∈ Γ

}
, (5)

where Γ denotes the Dirichlet essential boundary and H1(Ω) rep-
resents the Sobolev space of first-order [31].

Similar to the governing equation of the linear elastic prob-
lem, the governing equation (4) can be also written as the energy
bilinear form a(A,A) and the source form l(A):

a(A,A) =
∫

Ω

νB(A) ·B(A)dΩ, (6a)

l(A) =
∫

Ω

(
M ·B(A)+J ·A

)
dΩ. (6b)

3 Topology Optimization of Permanent Magnet for
Generator

3.1 Conventional Level Set Method

FIGURE 6: A schematic of level set representation.

Conventionally, the level set function Φ is a Lipschitz con-
tinuous real-valued function defined in R2 or R3 [32]. The
boundary of the design ∂Ω is implicitly represented as the zero
level set of the function Φ, as illustrated in Fig. 6. According to
the sign of the level set function, the design domain can be di-
vided into three parts, indicating the material, the interface, and
the void, respectively. The level-set representation can be formu-
lated as equation (7):

{ Φ(x,t)> 0, x ∈ Ω, material
Φ(x,t) = 0, x ∈ ∂Ω, boundary
Φ(x,t)< 0, x ∈ D/Ω, void

(7)
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where D represents the design domain. The dynamics of the
boundary evolution is governed by the Hamilton-Jacobi equa-
tion:

∂Φ(x, t)
∂ t

−Vn|∇Φ(x, t)|= 0, (8)

where Vn is the normal velocity field.

3.2 Problem Formulation
The first design objective J1 is to obtain a uniform target

field B0 along the y-direction in the air gap region. Thus, the
objective function to be minimized is defined as the integral of
the field square error in the air gap region:

Minimize: J1 =
∫

Ω

k(B(A)−B∗)2 dΩ.

Subject to: a(A,A) = l(A), ∀A ∈ U

V(Ω) = V*,

(9)

where k is the localizing factor, which is used to select the air
gap region for objective function, where it is equal to 1. Except
in this area, the localizing factor k is zero. Here, a(A,A) = l(A)
is the weak form of governing equation of magnetostatic system,
which is defined in equation(6). V(Ω) is the volume of the per-
manent magnet, and V∗ is the target volume. The target magnetic
field B∗ and the volume V(Ω) are defined as

B∗ = B∗j, (10a)

B∗ =

∫
Ω

k|Bre f (A)|dΩ∫
Ω

kdΩ
, (10b)

V(Ω) =
∫

Ω

H(Φ)dΩ, (10c)

where H(Φ) represents the Heaviside function. B∗ is selected as
the average value of the reference magnetic flux density Bre f (A),
which is generated by the red region ( Fig. 2) fully occupied with
permanent magnet.

For saving rare earth material with the premise of the gener-
ator performance, maximizing the magnetic energy of the mag-
netostatic system is chosen as the second objective function J2,
which can be formulated as

Maximize: J2 =
∫

Ω

1
2

νB(A) ·B(A)dΩ.

Subject to: a(A,A) = l(A), ∀A ∈ U

V(Ω) = V*,

(11)

3.3 Shape Sensitivity Analysis
This section describes how to construct the design velocity

field using the material time derivative. The shape sensitivity of
this optimization problem is derived using the adjoint method.
The objective function is hooked with the governing equation
using the Lagrange multiplier method as follows:

L(A,A) = J+λ
(
a(A,A)− l(A)

)
, (12)

where the λ is a Lagrange multiplier. The material time deriva-
tive is utilized to derive the shape sensitivity [32, 33, 34]:

DL(A,A)
Dt

=
DJ
Dt

+
Da(A,A)

Dt
− Dl(A)

Dt
. (13)

The material time derivative of the objective function J1 and
J2 are given by

DJ1

Dt
= 2

∫
Ω

k(B(A)−B∗) ·B(A′)dΩ

+
∫

ΓN

k(B(A)−B∗)2 Vnds.
(14)

DJ2

Dt
=

∫
Ω

νB(A′) ·B(A)dΩ

+
∫

ΓN

1
2

B(A) ·B(A)Vnds.
(15)

The material time derivative of the energy form a(A,A) and
the source form l(A) can be expressed as Eq.16 and Eq.17, re-
spectively,

Da
Dt

=
∫

Ω

νB(A′) ·B(A)dΩ+
∫

Ω

νB(A) ·B(A′
)dΩ

+
∫

ΓN

νB(A) ·B(A)Vnds.
(16)

Dl
Dt

=
∫

Ω

M ·B(A′
)dΩ+

∫
Ω

J ·A′dΩ

+
∫

ΓN

M ·B(A)Vnds+
∫

ΓN

J ·AVnds.
(17)

The adjoint equations for the objective functions J1 and J2
are constructed by collecting all the terms containing A′ from
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equations (14, 16, 17) and equations (15, 16, 17) respectively,
which yield,

2
∫

Ω

k(B(A)−B∗) ·B(A′)dΩ+
∫

Ω

νB(A′) ·B(A)dΩ = 0, (18)

∫
Ω

νB(A′) ·B(A)dΩ+
∫

Ω

νB(A′) ·B(A)dΩ = 0. (19)

In this study, the sub-domains Ω1 and Ω2 are permanent
magnet and air. Thus, all the terms containing J can be omit-
ted. For convenience, the terms containing the A′ can be set as
zero. After eliminating the terms related to A′, we can formulate
the derivative of the Lagrangian as follows,

DL1(A,A)
Dt

=
∫

ΓN

k(B(A)−B∗)2 Vnds

+
∫

ΓN

νB(A) ·B(A)Vnds

−
∫

ΓN

M ·B(A)Vnds.

(20)

DL2(A,A)
Dt

=
∫

ΓN

1
2

νB(A) ·B(A)Vnds

+
∫

ΓN

νB(A) ·B(A)Vnds

−
∫

ΓN

M ·B(A)Vnds.

(21)

ΓN includes the outer boundary Γ (Γ1∪Γ0) and the interface
γ . In Fig. 5, the domain Ω1 has the outer boundary Γ where
the normal vector n is defined outwards, whereas the domain
Ω2 has the interface γ where the normal vector n is defined as
inwards. Since the outer boundary is retained(Vn = 0 on Γ), only
the design velocity on the interface remains. Thus, the Eq. 20
and Eq. 21 can be rewritten as:

DL1

Dt
=
∫

γ

k
(
(B(A1)−B∗)2 − (B(A2)−B∗)2

)
Vnds

+
∫

γ

(
ν1B(A1) ·B(A1)−ν2B(A2) ·B(A2)

)
Vnds

−
∫

γ

(
M1 ·B(A1)−M2 ·B(A2)

)
Vnds.

(22)

DL2

Dt
=−

∫
γ

(
1
2

B(A1) ·B(A1)−
1
2

B(A2) ·B(A2)

)
Vnds

+
∫

γ

(M1 ·B(A1)−M2 ·B(A2))Vnds.
(23)

With the steepest descent method, the normal design veloc-
ity for objective functions J1 and J2, with the mean curvature κ

and the volume constraint, can be constructed as

Vn1 =
(
M1 ·B(A1)−M2 ·B(A2)

)
−
(
ν1B(A1) ·B(A1)−ν2B(A2) ·B(A2)

)
− k

(
(B(A1)−B∗)2 − (B(A2)−B∗)2

)
+ ι1 (V−V∗)+ ι2κ,

(24)

Vn2 =

(
1
2

B(A1) ·B(A1)−
1
2

B(A2) ·B(A2)

)
− (M1 ·B(A1)−M2 ·B(A2))

+ ι1 (V−V∗)+ ι2κ,

(25)

where ι1 and ι2 are the Lagrange multipliers for the volume and
perimeter constraints; κ is the curvature of the boundary.

4 Design Examples
4.1 Generation of a Target Magnetic Field

The first example is to find the optimum design of a per-
manent magnet to generate a target magnetic field in the air gap
region. The target magnetic field is along the y-direction, which
is liable to reduce the magnetic leakage issue between the sta-
tor teeth effectively. The remanent flux density of the permanent
magnet in the rotor is set to be 1.28 tesla (T) along the radius
direction based on the cylindrical system. To avoid singularity,
a dummy material with remanent flux density Br0 = 0.0128T is
set for the void. The initial volume fraction of PM is 0.2425, and
the target volume fraction target of the PM is set to be 0.18.

Owing to the irregularity of the design domain shape, shown
in Fig. 2, the conformal mapping theory [29, 35] is employed
to parameterize the 2D triangle meshed irregular design domain
onto a rectangular domain, where the level set function is de-
fined. Then, the proposed X-LSM framework [36, 37] is applied
to the design of permanent magnet in this study. In the optimiza-
tion process, the design domain is meshed with 10215 triangular
elements before conformally mapped to a 1 m × 0.2948 m rect-
angular domain, where the level set function is defined and dis-
cretized with a 401 × 118 grid. During the implementation, the
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top boundary of the permanent magnet (the blue curve in Fig. 2)
is retained by setting design velocity is zero. The design evolu-
tion on the rectangular domain and the corresponding evolution
on the irregular design domain are shown in Fig. 7. The opti-
mization curves for the objective function and volume fraction
of PM are plotted in Fig.8. The volume of the permanent magnet
is 18.13% when the optimization ends. The least-square error
with respect to the target magnetic field converges to 0.8756. We
also extrude the 2D design into a 2.5D design. The full genera-
tor can be achieved by making a circular pattern of this optimal
design, shown in Fig. 9.

To verify the effectiveness of the proposed method, we in-
vestigate the square error of the initial design and the optimized
design. As shown in Table.2, the square error (J1) of the initial
and optimized designs were compared, and it turns out that the
square error decreased about 33.3% after optimization.

TABLE 2: Comparison of the objective function J1 in the initial
and optimized designs under the same boundary condition

J1initial J1optimal
|J1initial−J1optimal|

J1initial
×100%

1.59 1.06 33.3%

4.2 Maximum System Energy
The second example is to find the optimum design of the per-

manent magnet in the magnetostatic system to achieve maximal
magnetic energy. The remanent flux density of the rotor perma-
nent magnet is still set to be 1.28 tesla (T) along the radius direc-
tion based on the cylindrical system. Similarly, to avoid singular-
ity, a dummy material with remanent flux density Br0 = 0.0128T
is set for the void. The volume fractions target of the permanent
magnet is set to be 0.2, whereas the volume ratio of PM in the
initial design is 0.2516.

The design evolution on the rectangular domain and corre-
sponding evolution on the irregular design domain are shown in
Fig.10. The volume of the PM converges at 0.1990 when the
optimization ends. The system’s magnetic energy converges to
4310.4. 2.5D design is generated by extruding the 2D optimal
design in the same way, as shown in Fig.11.

As shown in Table.3, the magnetic energies of the initial and
optimized designs were compared, and it indicates that the op-
timized designs yield higher magnetic energy. Specifically, the
system magnetic energy increases by 21.25% for the optimized
permanent magnet, whereas the usage of the magnetic material
decreases by 20.91%.

FIGURE 7: Design evolution of permanent magnet to generate a
target magnet field. (a) Design evolution in rectangular domain.
(b) Design evolution in irregular design domain with the B field
lines.

5 CONCLUSION
The permanent magnet for an outer rotor direct-drive wind

generator was designed using the level-set-based structural topol-
ogy optimization. We start from the stationary study to conduct
topology optimization, although the generator model is a time-
dependent problem. The designed permanent magnets are ex-
pected to attain a target magnetic field and to achieve the maxi-
mal system magnetic energy. The two numerical examples have
demonstrated the effectiveness of the proposed method for per-
manent magnet design.

The future effort will concentrate on the simultaneous de-
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FIGURE 8: The optimization history: optimal design of PM to
generate a target magnetic field.

FIGURE 9: 2.5D optimal design of PM to generate a target mag-
netic field. (a) partial model. (b) full model.

sign of permanent magnet and iron for generators using multi-
material topology optimization [38, 39, 40]. In addition, the op-
timized generators will be fabricated by additive manufacturing,
and the corresponding experiment will be carried out to further
validate the performance of generators.

FIGURE 10: Design evolution of permanent magnet to maximize
the system magnetic energy. (a) Design evolution in a rectangu-
lar domain. (b) Design evolution in irregular design domain with
the B field lines.

TABLE 3: Comparison of the total magnetic energy in the initial
and optimized designs under the same boundary condition.

MEinitial MEoptimal
|MEinitial−MEoptimal|

ME1initial
×100%

4090 4970 21.52%
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