
ResNEsts and DenseNEsts: Block-based DNN Models

with Improved Representation Guarantees

Kuan-Lin Chen
1
, Ching-Hua Lee

1
, Harinath Garudadri

2
, and Bhaskar D. Rao

1

1Department of Electrical and Computer Engineering, 2Qualcomm Institute
University of California, San Diego

La Jolla, CA 92093, USA
{kuc029,chl438,hgarudadri,brao}@ucsd.edu

Abstract

Models recently used in the literature proving residual networks (ResNets) are
better than linear predictors are actually different from standard ResNets that have
been widely used in computer vision. In addition to the assumptions such as
scalar-valued output or single residual block, the models fundamentally considered
in the literature have no nonlinearities at the final residual representation that
feeds into the final affine layer. To codify such a difference in nonlinearities and
reveal a linear estimation property, we define ResNEsts, i.e., Residual Nonlinear
Estimators, by simply dropping nonlinearities at the last residual representation
from standard ResNets. We show that wide ResNEsts with bottleneck blocks can
always guarantee a very desirable training property that standard ResNets aim to
achieve, i.e., adding more blocks does not decrease performance given the same
set of basis elements. To prove that, we first recognize ResNEsts are basis function
models that are limited by a coupling problem in basis learning and linear prediction.
Then, to decouple prediction weights from basis learning, we construct a special
architecture termed augmented ResNEst (A-ResNEst) that always guarantees no
worse performance with the addition of a block. As a result, such an A-ResNEst
establishes empirical risk lower bounds for a ResNEst using corresponding bases.
Our results demonstrate ResNEsts indeed have a problem of diminishing feature
reuse; however, it can be avoided by sufficiently expanding or widening the input
space, leading to the above-mentioned desirable property. Inspired by the densely
connected networks (DenseNets) that have been shown to outperform ResNets,
we also propose a corresponding new model called Densely connected Nonlinear
Estimator (DenseNEst). We show that any DenseNEst can be represented as a
wide ResNEst with bottleneck blocks. Unlike ResNEsts, DenseNEsts exhibit the
desirable property without any special architectural re-design.

1 Introduction

Constructing deep neural network (DNN) models by stacking layers unlocks the field of deep learning,
leading to the early success in computer vision, such as AlexNet [Krizhevsky et al., 2012], ZFNet
[Zeiler and Fergus, 2014], and VGG [Simonyan and Zisserman, 2015]. However, stacking more
and more layers can suffer from worse performance [He and Sun, 2015, Srivastava et al., 2015, He
et al., 2016a]; thus, it is no longer a valid option to further improve DNN models. In fact, such a
degradation problem is not caused by overfitting, but worse training performance [He et al., 2016a].
When neural networks become sufficiently deep, optimization landscapes quickly transition from
being nearly convex to being highly chaotic [Li et al., 2018]. As a result, stacking more and more
layers in DNN models can easily converge to poor local minima (see Figure 1 in [He et al., 2016a]).

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

x W0 +

G1 W1

+

G2 W2

· · · +

GL�1 WL�1

GLv0 x0

v1

x1

v2

xL�2

vL�1

H0 HLH1 H2 HL�1

+ + + + + ŷ· · ·

xL�1

vL

Figure 1: The proposed augmented ResNEst or A-ResNEst. A set of new prediction weights
H0,H1, · · · ,HL are introduced on top of the features in the ResNEst (see Figure 2). The A-ResNEst
is always better than the ResNEst in terms of empirical risk minimization (see Proposition 2).
Empirical results of the A-ResNEst model are deferred to Appendix B in the supplementary material.

To address the issue above, the modern deep learning paradigm has shifted to designing DNN models
based on blocks or modules of the same kind in cascade. A block or module comprises specific
operations on a stack of layers to avoid the degradation problem and learn better representations.
For example, Inception modules in the GoogLeNet [Szegedy et al., 2015], residual blocks in the
ResNet [He et al., 2016a,b, Zagoruyko and Komodakis, 2016, Kim et al., 2016, Xie et al., 2017,
Xiong et al., 2018], dense blocks in the DenseNet [Huang et al., 2017], attention modules in the
Transformer [Vaswani et al., 2017], Squeeze-and-Excitation (SE) blocks in the SE network (SENet)
[Hu et al., 2018], and residual U-blocks [Qin et al., 2020] in U2-Net. Among the above examples, the
most popular block design is the residual block which merely adds a skip connection (or a residual
connection) between the input and output of a stack of layers. This modification has led to a huge
success in deep learning. Many modern DNN models in different applications also adopt residual
blocks in their architectures, e.g., V-Net in medical image segmentation [Milletari et al., 2016],
Transformer in machine translation [Vaswani et al., 2017], and residual LSTM in speech recognition
[Kim et al., 2017]. Empirical results have shown that ResNets can be even scaled up to 1001 layers
or 333 bottleneck residual blocks, and still improve performance [He et al., 2016b].

Despite the huge success, our understanding of ResNets is very limited. To the best of our knowledge,
no theoretical results have addressed the following question: Is learning better ResNets as easy

as stacking more blocks? The most recognized intuitive answer for the above question is that a
particular stack of layers can focus on fitting the residual between the target and the representation
generated in the previous residual block; thus, adding more blocks always leads to no worse training
performance. Such an intuition is indeed true for a constructively blockwise training procedure; but
not clear when the weights in a ResNet are optimized as a whole. Perhaps the theoretical works in
the literature closest to the above question are recent results in an albeit modified and constrained
ResNet model that every local minimum is less than or equal to the empirical risk provided by the
best linear predictor [Shamir, 2018, Kawaguchi and Bengio, 2019, Yun et al., 2019]. Although the
aims of these works are different from our question, they actually prove a special case under these
simplified models in which the final residual representation is better than the input representation
for linear prediction. We notice that the models considered in these works are very different from
standard ResNets using pre-activation residual blocks [He et al., 2016b] due to the absence of the
nonlinearities at the final residual representation that feeds into the final affine layer. Other noticeable
simplifications include scalar-valued output [Shamir, 2018, Yun et al., 2019] and single residual block
[Shamir, 2018, Kawaguchi and Bengio, 2019]. In particular, Yun et al. [2019] additionally showed
that residual representations do not necessarily improve monotonically over subsequent blocks, which
highlights a fundamental difficulty in analyzing their simplified ResNet models.

In this paper, we take a step towards answering the above-mentioned question by constructing
practical and analyzable block-based DNN models. Main contributions of our paper are as follows:

Improved representation guarantees for wide ResNEsts with bottleneck residual blocks. We
define a ResNEst as a standard single-stage ResNet that simply drops the nonlinearities at the last
residual representation (see Figure 2). We prove that sufficiently wide ResNEsts with bottleneck
residual blocks under practical assumptions can always guarantee a desirable training property that
ResNets with bottleneck residual blocks empirically achieve (but theoretically difficult to prove),
i.e., adding more blocks does not decrease performance given the same arbitrarily selected basis.

2

To be more specific, any local minimum obtained from ResNEsts has an improved representation
guarantee under practical assumptions (see Remark 2 (a) and Corollary 1). Our results apply to loss
functions that are differentiable and convex; and do not rely on any assumptions regarding datasets,
or convexity/differentiability of the residual functions.

Basic vs. bottleneck. In the original ResNet paper, He et al. [2016a] empirically pointed out
that ResNets with basic residual blocks indeed gain accuracy from increased depth, but are not
as economical as the ResNets with bottleneck residual blocks (see Figure 1 in [Zagoruyko and
Komodakis, 2016] for different block types). Our Theorem 1 supports such empirical findings.

Generalized and analyzable DNN models. ResNEsts are more general than the models considered
in [Hardt and Ma, 2017, Shamir, 2018, Kawaguchi and Bengio, 2019, Yun et al., 2019] due to
the removal of their simplified ResNet settings. In addition, the ResNEst modifies the input by
an expansion layer that expands the input space. Such an expansion turns out to be crucial in
deriving theoretical guarantees for improved residual representations. We find that the importance
on expanding the input space in standard ResNets with bottleneck residual blocks has not been well
recognized in existing theoretical results in the literature.

Restricted basis function models. We reveal a linear relationship between the output of the
ResNEst and the input feature as well as the feature vector going into the last affine layer in each of
residual functions. By treating each of feature vectors as a basis element, we find that ResNEsts are
basis function models handicapped by a coupling problem in basis learning and linear prediction that
can limit performance.

Augmented ResNEsts. As shown in Figure 1, we present a special architecture called augmented

ResNEst or A-ResNEst that introduces a new weight matrix on each of feature vectors to solve the
coupling problem that exists in ResNEsts. Due to such a decoupling, every local minimum obtained
from an A-ResNEst bounds the empirical risk of the associated ResNEst from below. A-ResNEsts
also directly enable us to see how features are supposed to be learned. It is necessary for features to
be linearly unpredictable if residual representations are strictly improved over blocks.

Wide ResNEsts with bottleneck residual blocks do not suffer from saddle points. At every
saddle point obtained from a ResNEst, we show that there exists at least one direction with strictly
negative curvature, under the same assumptions used in the improved representation guarantee, along
with the specification of a squared loss and suitable assumptions on the last feature and dataset.

Improved representation guarantees for DenseNEsts. Although DenseNets [Huang et al., 2017]
have shown better empirical performance than ResNets, we are not aware of any theoretical support
for DenseNets. We define a DenseNEst (see Figure 4) as a simplified DenseNet model that only
utilizes the dense connectivity of the DenseNet model, i.e., direct connections from every stack
of layers to all subsequent stacks of layers. We show that any DenseNEst can be represented as
a wide ResNEst with bottleneck residual blocks equipped with orthogonalities. Unlike ResNEsts,
any DenseNEst exhibits the desirable property, i.e., adding more dense blocks does not decrease
performance, without any special architectural re-design. Compared to A-ResNEsts, the way the
features are generated in DenseNEsts makes linear predictability even more unlikely, suggesting
better feature construction.

2 ResNEsts and augmented ResNEsts

In this section, we describe the proposed DNN models. These models and their new insights are
preliminaries to our main results in Section 3. Section 2.1 recognizes the importance of the expansion
layer and defines the ResNEst model. Section 2.2 points out the basis function modeling interpretation
and the coupling problem in ResNEsts, and shows that the optimization on the set of prediction
weights is non-convex. Section 2.3 proposes the A-ResNEst to avoid the coupling problem and
shows that the minimum empirical risk obtained from a ResNEst is bounded from below by the
corresponding A-ResNEst. Section 2.4 shows that linearly unpredictable features are necessary for
strictly improved residual representations in A-ResNEsts.

3

x W0 +

G1 W1

+

G2 W2

· · · +

GL WL

WL+1

WL+1Nonlinear

ŷResNEst

ŷResNet

v0 x0

v1

x1

v2

xL�1

vL

xL

Figure 2: A generic vector-valued ResNEst that has a chain of L residual blocks (or units). Redrawing
the standard ResNet block diagram in this viewpoint gives us considerable new insight. The symbol
“+” represents the addition operation. Different from the ResNet architecture using pre-activation
residual blocks in the literature [He et al., 2016b], our ResNEst architecture drops nonlinearities at
xL so as to reveal a linear relationship between the output ŷResNEst and the features v0,v1, · · · ,vL.
Empirical results of the ResNEst model are deferred to Appendix B in the supplementary material.

2.1 Dropping nonlinearities in the final representation and expanding the input space

The importance on expanding the input space via W0 (see Figure 2) in standard ResNets has not been
well recognized in recent theoretical results ([Shamir, 2018, Kawaguchi and Bengio, 2019, Yun et al.,
2019]) although standard ResNets always have an expansion implemented by the first layer before
the first residual block. Empirical results have even shown that a standard 16-layer wide ResNet
outperforms a standard 1001-layer ResNet [Zagoruyko and Komodakis, 2016], which implies the
importance of a wide expansion of the input space.

We consider the proposed ResNEst model shown in Figure 2 whose i-th residual block employs the
following input-output relationship:

xi = xi�1 +WiGi (xi�1;✓i) (1)
for i = 1, 2, · · · , L. The term excluded the first term xi�1 on the right-hand side is a composition of
a nonlinear function Gi and a linear transformation,1 which is generally known as a residual function.
Wi 2 RM⇥Ki forms a linear transformation and we consider Gi (xi�1;✓i) : RM 7! RKi as a
function implemented by a neural network with parameters ✓i for all i 2 {1, 2, · · · , L}. We define
the expansion x0 = W0x for the input x 2 RNin to the ResNEst using a linear transformation with
a weight matrix W0 2 RM⇥K0 . The output ŷResNEst 2 RNo (or ŷL-ResNEst to indicate L blocks) of
the ResNEst is defined as ŷL-ResNEst (x) = WL+1xL where WL+1 2 RNo⇥M . M is the expansion
factor and No is the output dimension of the network. The number of blocks L is a nonnegative
integer. When L = 0, the ResNEst is a two-layer linear network ŷ0-ResNEst (x) = W1W0x.

Notice that the ResNEst we consider in this paper (Figure 2) is more general than the models in
[Hardt and Ma, 2017, Shamir, 2018, Kawaguchi and Bengio, 2019, Yun et al., 2019] because our
residual space RM (the space where the addition is performed at the end of each residual block) is
not constrained by the input dimension due to the expansion we define. Intuitively, a wider expansion
(larger M) is required for a ResNEst that has more residual blocks. This is because the information
collected in the residual representation grows after each block, and the fixed dimension M of the
residual representation must be sufficiently large to avoid any loss of information. It turns out a wider
expansion in a ResNEst is crucial in deriving performance guarantees because it assures the quality
of local minima and saddle points (see Theorem 1 and 2).

2.2 Basis function modeling and the coupling problem

The conventional input-output relationship of a standard ResNet is not often easy to interpret. We
find that redrawing the standard ResNet block diagram [He et al., 2016a,b] with a different viewpoint,
shown in Figure 2, can give us considerable new insight. As shown in Figure 2, the ResNEst now
reveals a linear relationship between the output and the features. With this observation, we can write
down a useful input-output relationship for the ResNEst:

ŷL-ResNEst (x) = WL+1

LX

i=0

Wivi (x) (2)

1For any affine function y(xraw) = Arawxraw + b, if desired, one can use y(x) =
⇥
Araw b

⇤ xraw
1

�
= Ax

where A =
⇥
Araw b

⇤
and x =


xraw
1

�
and discuss on the linear function instead. All the results derived in

this paper hold true regardless of the existence of bias parameters.

4

where vi (x) = Gi (xi�1;✓i) = Gi

⇣Pi�1
j=0 Wjvj ;✓i

⌘
for i = 1, 2, · · · , L. Note that we do

not impose any requirements for each Gi other than assuming that it is implemented by a neural
network with a set of parameters ✓i. We define v0 = v0(x) = x as the linear feature and regard
v1,v2, · · · ,vL as nonlinear features of the input x, since Gi is in general nonlinear. The benefit of
our formulation (2) is that the output of a ResNEst ŷL-ResNEst now can be viewed as a linear function
of all these features. Our point of view of ResNEsts in (2) may be useful to explain the finding that
ResNets are ensembles of relatively shallow networks [Veit et al., 2016].

As opposed to traditional nonlinear methods such as basis function modeling (chapter 3 in the book
by Bishop, 2006) where a linear function is often trained on a set of handcrafted features, the ResNEst
jointly finds features and a linear predictor function by solving the empirical risk minimization (ERM)
problem denoted as (P) on (W0, · · · ,WL+1,✓1, · · · ,✓L). We denote R as the empirical risk (will
be used later on). Indeed, one can view training a ResNEst as a basis function modeling with a

trainable (data-driven) basis by treating each of features as a basis vector (it is reasonable to assume
all features are not linearly predictable, see Section 2.4). However, unlike a basis function modeling,
the linear predictor function in the ResNEst is not entirely independent of the basis generation
process. We call such a phenomenon as a coupling problem which can handicap the performance
of ResNEsts. To see this, note that feature (basis) vectors vi+1, · · · ,vL can be different if Wi is
changed (the product WL+1Wivi is the linear predictor function for the feature vi). Therefore, the
set of parameters � = {Wi�1,✓i}Li=1 needs to be fixed to sufficiently guarantee that the basis is not
changed with different linear predictor functions. It follows that WL+1 and WL are the only weights
which can be adjusted without changing the features. We refer to WL and WL+1 as prediction
weights and � = {Wi�1,✓i}Li=1 as feature finding weights in the ResNEst. Obviously, the set of all
the weights in the ResNEst is composed of the feature finding weights and prediction weights.

Because Gi is quite general in the ResNEst, any direct characterization on the landscape of ERM
problem seems intractable. Thus, we propose to utilize the basis function modeling point of view in
the ResNEst and analyze the following ERM problem:

(P�) min
WL,WL+1

R (WL,WL+1;�) (3)

where R (WL,WL+1;�) =
1
N

PN
n=1 `

⇣
ŷ
�
L-ResNEst (x

n) ,yn
⌘

for any fixed feature finding weights

�. We have used ` and {(xn,yn)}Nn=1 to denote the loss function and training data, respectively.
ŷ
�
L-ResNEst denotes a ResNEst using a fixed feature finding weights �. Although (P�) has less

optimization variables and looks easier than (P), Proposition 1 shows that it is a non-convex problem.
Remark 1 explains why understanding (P�) is valuable.

Remark 1. Let the set of all local minimizers of (P�) using any possible features equip with the

corresponding �. Then, this set is a superset of the set of all local minimizers of the original ERM

problem (P). Any characterization of (P�) can then be translated to (P) (see Corollary 2 for example).

Assumption 1.
PN

n=1 vL (xn)ynT 6= 0 and
PN

n=1 vL (xn)vL (xn)T is full rank.

Proposition 1. If ` is the squared loss and Assumption 1 is satisfied, then (a) the objective function of

(P�) is non-convex and non-concave; (b) every critical point that is not a local minimizer is a saddle

point in (P�).

The proof of Proposition 1 is deferred to Appendix A.1 in the supplementary material. Due to the
product WL+1WL in R (WL,WL+1;�), our Assumption 1 is similar to one of the important data
assumptions used in deep linear networks [Baldi and Hornik, 1989, Kawaguchi, 2016]. Assumption 1
is easy to be satisfied as we can always perturb � if the last nonlinear feature and dataset do not fit
the assumption. Although Proposition 1 (a) examines the non-convexity for a fixed �, the result can
be extended to the original ERM problem (P) for the ResNEst. That is, if there exists at least one �
such that Assumption 1 is satisfied, then the objective function for the optimization problem (P) is
also non-convex and non-concave because there exists at least one point in the domain at which the
Hessian is indefinite. As a result, this non-convex loss landscape in (P) immediately raises issues
about suboptimal local minima in the loss landscape. This leads to an important question: Can we
guarantee the quality of local minima with respect to some reference models that are known to be
good enough?

5

2.3 Finding reference models: bounding empirical risks via augmentation

To avoid the coupling problem in ResNEsts, we propose a new architecture in Figure 1 called
augmented ResNEst or A-ResNEst. An L-block A-ResNEst introduces another set of parameters
{Hi}Li=0 to replace every bilinear map on each feature in (2) with a linear map:

ŷL-A-ResNEst (x) =
LX

i=0

Hivi (x) . (4)

Now, the function ŷL-A-ResNEst is linear with respect to all the prediction weights {Hi}Li=0. Note that
the parameters {Wi}L�1

i=0 still exist and are now dedicated to feature finding. On the other hand, WL

and WL+1 are deleted since they are not used in the A-ResNEst. As a result, the corresponding ERM
problem (PA) is defined on (H0, · · · ,HL,�). We denote A as the empirical risk in A-ResNEsts.
The prediction weights are now different from the ResNEst as the A-ResNEst uses {Hi}Li=0. Because
any A-ResNEst prevents the coupling problem, it exhibits a nice property shown below.
Assumption 2. The loss function `(ŷ,y) is differentiable and convex in ŷ for any y.

Proposition 2. Let
�
H

⇤
0, · · · ,H⇤

L

�
be any local minimizer of the following optimization problem:

(PA�) min
H0,··· ,HL

A (H0, · · · ,HL;�) (5)

where A (H0, · · · ,HL;�) =
1
N

PN
n=1 `

⇣
ŷ
�
L-A-ResNEst (x

n) ,yn
⌘

. If Assumption 2 is satisfied, then

the optimization problem in (5) is convex and

✏
�
W

⇤
L,W

⇤
L+1;�

�
= R

�
W

⇤
L,W

⇤
L+1;�

�
�A (H⇤

0, · · · ,H⇤
L;�) � 0 (6)

for any local minimizer

⇣
W

⇤
L,W

⇤
L+1

⌘
of (P�) using arbitrary feature finding parameters �.

The proof of Proposition 2 is deferred to Appendix A.2 in the supplementary material. According to
Proposition 2, A-ResNEst establishes empirical risk lower bounds (ERLBs) for a ResNEst. Hence,
for the same � picked arbitrarily, an A-ResNEst is better than a ResNEst in terms of any pair of
two local minima in their loss landscapes. Assumption 2 is practical because it is satisfied for two
commonly used loss functions in regression and classification, i.e., the squared loss and cross-entropy
loss. Other losses such as the logistic loss and smoothed hinge loss also satisfy this assumption.

2.4 Necessary condition for strictly improved residual representations

What properties are fundamentally required for features to be good, i.e., able to strictly improve the
residual representation over blocks? With A-ResNEsts, we are able to straightforwardly answer this
question. A fundamental answer is they need to be at least linearly unpredictable. Note that vi must
be linearly unpredictable by v0, · · · ,vi�1 if

A
�
H

⇤
0,H

⇤
1, · · · ,H⇤

i�1,0, · · · ,0,�
⇤� > A

�
H

⇤
0,H

⇤
1, · · · ,H⇤

i ,0, · · · ,0,�
⇤� (7)

for any local minimum
�
H

⇤
0, · · · ,H⇤

L,�
⇤� in (PA). In other words, the residual representation xi is

not strictly improved from the previous representation xi�1 if the feature vi is linearly predictable by
the previous features. Fortunately, the linearly unpredictability of vi is usually satisfied when Gi is
nonlinear; and the set of features can be viewed as a basis function. This viewpoint also suggests
avenues for improving feature construction through imposition of various constraints. By Proposition
2, the relation in (7) always holds with equality, i.e., the residual representation xi is guaranteed to be
always no worse than the previous one xi�1 at any local minimizer obtained from an A-ResNEst.

3 Wide ResNEsts with bottleneck residual blocks always attain ERLBs

Assumption 3. M � No.

Assumption 4. The linear inverse problem xL�1 =
PL�1

i=0 Wivi has a unique solution.

Theorem 1. If Assumption 2 and 3 are satisfied, then the following two properties are true in (P�)

under any � such that Assumption 4 holds: (a) every critical point with full rank WL+1 is a global

minimizer; (b) ✏ = 0 for every local minimizer.

6

The proof of Theorem 1 is deferred to Appendix A.3 in the supplementary material. Theorem 1 (a)
provides a sufficient condition for a critical point to be a global minimum of (P�). Theorem 1 (b)
gives an affirmative answer for every local minimum in (P�) to attain the ERLB. To be more specific,
any pair of obtained local minima from the ResNEst and the A-ResNEst using the same arbitrary �
are equally good. In addition, the implication of Theorem 1 (b) is that every local minimum of (P�) is
also a global minimum despite its non-convex landscape (Proposition 1), which suggests there exists
no suboptimal local minimum for the optimization problem (P�). One can also establish the same
results for local minimizers of (P) under the same set of assumptions by replacing “(P�) under any �”
with just “(P)” in Theorem 1. Such a modification may gain more clarity, but is more restricted than
the original statement due to Remark 1. Note that Theorem 1 is not limited to fixing any weights
during training; and it applies to both normal training (train all the weights in a network as a whole)
and blockwise or layerwise training procedures.

3.1 Improved representation guarantees

By Remark 1 and Theorem 1 (b), we can then establish the following representational guarantee.
Remark 2. Let Assumption 2 and 3 be true. Any local minimizer of (P) such that Assumption 4 is

satisfied guarantees (a) monotonically improved (no worse) residual representations over blocks; (b)

every residual representation is better than the input representation in the linear prediction sense.

Although there may exist suboptimal local minima in the optimization problem (P), Remark 2
suggests that such minima still improve residual representations over blocks under practical conditions.
Mathematically, Remark 2 (a) and Remark 2 (b) are described by Corollary 1 and the general version
of Corollary 2, respectively. Corollary 1 compares the minimum empirical risk obtained at any two
representations among x1 to xL for any given network satisfying the assumptions; and Corollary 2
extends this comparison to the input representation.
Corollary 1. Let Assumption 2 and 3 be true. Any local minimum of (P↵) is smaller than or

equal to any local minimum of (P�) under Assumption 4 for any ↵ = {Wi�1,✓i}L↵
i=1 and � =

{Wi�1,✓i}
L�

i=1 where L↵ and L� are positive integers such that L↵ > L� .

The proof of Corollary 1 is deferred to Appendix A.4 in the supplementary material. Because
Corollary 1 holds true for any properly given weights, one can apply Corollary 1 to proper local
minimizers of (P). Corollary 2 ensures that ResNEsts are guaranteed to be no worse than the best linear
predictor under practical assumptions. This property is useful because linear estimators are widely
used in signal processing applications and they can now be confidently replaced with ResNEsts.

Corollary 2. Let

⇣
W

⇤
0, · · · ,W⇤

L+1,✓
⇤
1, · · · ,✓

⇤
L

⌘
be any local minimizer of (P)

and �⇤ = {W⇤
i�1,✓

⇤
i }Li=1. If Assumption 2, 3 and 4 are satisfied, then (a)

R
⇣
W

⇤
0, · · · ,W⇤

L+1,✓
⇤
1, · · · ,✓

⇤
L

⌘
 minA2RNo⇥Nin

1
N

PN
n=1 ` (Ax

n,yn); (b) the above

inequality is strict if A
�
H

⇤
0,0, · · · ,0,�

⇤� > A
�
H

⇤
0, · · · ,H⇤

L,�
⇤�

.

The proof of Corollary 2 is deferred to Appendix A.5 in the supplementary material. To the best of
our knowledge, Corollary 2 is the first theoretical guarantee for vector-valued ResNet-like models
that have arbitrary residual blocks to outperform any linear predictors. Corollary 2 is more general
than the results in [Shamir, 2018, Kawaguchi and Bengio, 2019, Yun et al., 2019] because it is not
limited to assumptions like scalar-valued output or single residual block. In fact, we can have a
even more general statement because any local minimum obtained from (P�) with random or any
� is better than the minimum empirical risk provided by the best linear predictor, under the same
assumptions used in Corollary 2. This general version fully describes Remark 2 (b).

Theorem 1, Corollary 1 and Corollary 2 are quite general because they are not limited to specific
loss functions, residual functions, or datasets. Note that we do not impose any assumptions such
as differentiability or convexity on the neural network Gi for i = 1, 2, · · · , L in residual functions.
Assumption 3 is practical because the expansion factor M is usually larger than the input dimension
Nin; and the output dimension No is usually not larger than the input dimension for most supervised
learning tasks using sensory input. Assumption 4 states that the features need to be uniquely invertible
from the residual representation. Although such an assumption requires a special architectural
design, we find that it is always satisfied empirically after random initialization or training when the
“bottleneck condition” is satisfied.

7

3.2 How to design architectures with representational guarantees?

Notice that one must be careful with the ResNEst architectural design so as to enjoy Theorem 1,
Corollary 1 and Corollary 2. A ResNEst needs to be wide enough such that M �

PL�1
i=0 Ki to

necessarily satisfy Assumption 4. We call such a sufficient condition on the width and feature
dimensionalities as a bottleneck condition. Because each nonlinear feature size Ki for i < L (say
L > 1) must be smaller than the dimensionality of the residual representation M , each of these
residual functions is a bottleneck design [He et al., 2016a,b, Zagoruyko and Komodakis, 2016] forming
a bottleneck residual block. We now explicitly see the importance of the expansion layer. Without
the expansion, the dimenionality of the residual representation is limited to the input dimension. As a
result, Assumption 4 cannot be satisfied for L > 1; and the analysis for the ResNEst with multiple
residual blocks remains intractable or requires additional assumptions on residual functions.

Loosely speaking, a sufficiently wide expansion or satisfaction of the bottleneck condition implies
Assumption 4. If the bottleneck condition is satisfied, then ResNEsts are equivalent to A-ResNEsts
for a given �, i.e., ✏ = 0. If not (e.g., basic blocks are used in a ResNEst), then a ResNEst can
have a problem of diminishing feature reuse or end up with poor performance even though it has
excellent features that can be fully exploited by an A-ResNEst to yield better performance, i.e.,
✏ > 0. From such a viewpoint, Theorem 1 supports the empirical findings in [He et al., 2016a] that
bottleneck blocks are more economical than basic blocks. Our results thus recommend A-ResNEsts
over ResNEsts if the bottleneck condition cannot be satisfied.

3.3 Guarantees on saddle points

In addition to guarantees for the quality of local minima, we find that ResNEsts can easily escape
from saddle points due to the nice property shown below.
Theorem 2. If ` is the squared loss, and Assumption 1 and 3 are satisfied, then the following two

properties are true at every saddle point of (P�) under any � such that Assumption 4 holds: (a)

WL+1 is rank-deficient; (b) there exists at least one direction with strictly negative curvature.

The proof of Theorem 2 is deferred to Appendix A.6 in the supplementary material. In contrast
to Theorem 1 (a), Theorem 2 (a) provides a necessary condition for a saddle point. Although (P�)
is a non-convex optimization problem according to Proposition 1 (a), Theorem 2 (b) suggests a
desirable property for saddle points in the loss landscape. Because there exists at least one direction
with strictly negative curvature at every saddle point that satisfies the bottleneck condition, the
second-order optimization methods can rapidly escape from saddle points [Dauphin et al., 2014]. If
the first-order methods are used, the randomness in stochastic gradient helps the first-order methods
to escape from the saddle points [Ge et al., 2015]. Again, we require the bottleneck condition to be
satisfied in order to guarantee such a nice property about saddle points. Note that Theorem 2 is not
limited to fixing any weights during training; and it applies to both normal training and blockwise
training procedures due to Remark 1.

4 DenseNEsts are wide ResNEsts with bottleneck residual blocks equipped

with orthogonalities

x ©

Q1

©

Q2

· · · ©

QL

WL+1 ŷDenseNEstv0

v1

x1

v2

xL�1

vL

xL

Figure 3: A generic vector-valued DenseNEst that has a chain of L dense blocks (or units). The
symbol “©” represents the concatenation operation. We intentionally draw a DenseNEst in such a
form to emphasize its relationship to a ResNEst (see Proposition 4).

Instead of adding one nonlinear feature in each block and remaining in same space RM , the DenseN-
Est model shown in Figure 3 preserves each of features in their own subspaces by a sequential
concatenation at each block. For an L-block DenseNEst, we define the i-th dense block as a function
RMi�1 7! RMi of the form

xi = xi�1©Qi (xi�1;✓i) (8)

8

x Q1 Q2 Q3 · · · QL WL+1 ŷDenseNEst

Figure 4: An equivalence to Figure 3 emphasizing the growth of the input dimension at each block.

for i = 1, 2, · · · , L where the dense function Qi is a general nonlinear function; and xi is the
output of the i-th dense block. The symbol © concatenates vector xi�1 and vector Qi (xi�1;✓i)

and produces a higher-dimensional vector
h
x
T
i�1 Qi (xi�1;✓i)

T
iT

. We define x0 = x where

x 2 RNin is the input to the DenseNEst. For all i 2 {1, 2, · · · , L}, Qi(xi�1;✓i) : RMi�1 7! RDi

is a function implemented by a neural network with parameters ✓i where Di = Mi �Mi�1 � 1
with M0 = Nin = D0. The output of a DenseNEst is defined as ŷDenseNEst = WL+1xL for
WL+1 2 RNo⇥ML , which can be written as

WL+1

�
x0©Q1 (x0;✓1)© · · ·©QL (xL�1;✓L)

�
=

LX

i=0

WL+1,ivi (x) (9)

where vi (x) = Qi(xi�1;✓i) = Qi(x0©v1©v2© · · ·©vi�1;✓i) for i = 1, 2, · · · , L are re-
garded as nonlinear features of the input x. We define v0 = x as the linear feature. WL+1 =⇥
WL+1,0 WL+1,1 · · · WL+1,L

⇤
is the prediction weight matrix in the DenseNEst as all the

weights which are responsible for the prediction is in this single matrix from the viewpoint of basis
function modeling. The ERM problem (PD) for the DenseNEst is defined on (WL+1,✓1, · · · ,✓L).
To fix the features, the set of parameters � = {✓i}Li=1 needs to be fixed. Therefore, the DenseNEst
ERM problem for any fixed features, denoted as (PD�), is fairly straightforward as it only requires to
optimize over a single weight matrix, i.e.,

(PD�) min
WL+1

D (WL+1;�) (10)

where D (WL+1;�) =
1
N

PN
n=1 `

⇣
ŷ
�
L-DenseNEst (x

n) ,yn
⌘
. Unlike ResNEsts, there is no such cou-

pling between the feature finding and linear prediction in DenseNEsts. Compared to ResNEsts or
A-ResNEsts, the way the features are generated in DenseNEsts generally makes the linear predictabil-
ity even more unlikely. To see that, note that the Qi directly applies on the concatenation of all
previous features; however, the Gi applies on the sum of all previous features.

Different from a ResNEst which requires Assumption 2, 3 and 4 to guarantee its superiority with
respect to the best linear predictor (Corollary 2), the corresponding guarantee in a DenseNEst shown
in Proposition 3 requires weaker assumptions.
Proposition 3. If Assumption 2 is satisfied, then any local minimum of (PD) is smaller than or equal

to the minimum empirical risk given by any linear predictor of the input.

The proof of Proposition 3 is deferred to Appendix A.7 in the supplementary material. Notice that no
special architectural design in a DenseNEst is required to make sure it always outperforms the best
linear predictor. Any DenseNEst is always better than any linear predictor when the loss function
is differentiable and convex (Assumption 2). Such an advantage can be explained by the WL+1

in the DenseNEst. Because WL+1 is the only prediction weight matrix which is directly applied
onto the concatenation of all the features, (PD�) is a convex optimization problem. We point out the
difference of WL+1 between the ResNEst and DenseNEst. In the ResNEst, WL+1 needs to interpret
the features from the residual representation; while the WL+1 in the DenseNEst directly accesses the
features. That is why we require Assumption 4 in the ResNEst to eliminate any ambiguity on the
feature interpretation.

Can a ResNEst and a DenseNEst be equivalent? Yes, Proposition 4 establishes a link between them.
Proposition 4. Given any DenseNEst ŷL-DenseNEst, there exists a wide ResNEst with bottleneck

residual blocks ŷ
�
L-ResNEst such that ŷ

�
L-ResNEst(x) = ŷL-DenseNEst(x) for all x 2 RNin . If , in addition,

Assumption 2 and 3 are satisfied, then ✏ = 0 for every local minimizer of (P�).

9

The proof of Proposition 4 is deferred to Appendix A.8 in the supplementary material. Because the
concatenation of two given vectors can be represented by an addition over two vectors projected onto
a higher dimensional space with disjoint supports, one straightforward construction for an equivalent
ResNEst is to sufficiently expand the input space and enforce the orthogonality of all the column
vectors in W0,W1, · · · ,WL. As a result, any DenseNEst can be viewed as a ResNEst that always
satisfies Assumption 4 and of course the bottleneck condition no matter how we train the DenseNEst
or select its hyperparameters, leading to the desirable guarantee, i.e., any local minimum obtained in
optimizing the prediction weights of the resulting ResNEst from any DenseNEst always attains the
lower bound. Thus, DenseNEsts are certified as being advantageous over ResNEsts by Proposition 4.
For example, a small M may be chosen and then the guarantee in Theorem 1 can no longer exist,
i.e., ✏ > 0. However, the corresponding ResNEst induced by a DenseNEst always achieves ✏ = 0.
Hence, Proposition 4 can be regarded as a theoretical support for why standard DenseNets [Huang
et al., 2017] are in general better than standard ResNets [He et al., 2016b].

5 Related work

In this section, we discuss ResNet works that investigate on properties of local minima and give
more details for our important references that appear in the introduction. We focus on highlighting
their results and assumptions used so as to compare to our theoretical results derived from practical
assumptions. The earliest theoretical work for ResNets can be dated back to [Hardt and Ma, 2017]
which proved a vector-valued ResNet-like model using a linear residual function in each residual
block has no spurious local minima (local minima that give larger objective values than the global
minima) under squared loss and near-identity region assumptions. There are results [Li and Yuan,
2017, Liu et al., 2019] proved that stochastic gradient descent can converge to the global minimum
in scalar-valued two-layer ResNet-like models; however, such a desirable property relies on strong
assumptions including single residual block and Gaussian input distribution. Li et al. [2018] visualized
the loss landscapes of a ResNet and its plain counterpart (without skip connections); and they showed
that the skip connections promote flat minimizers and prevent the transition to chaotic behavior.
Liang et al. [2018] showed that scalar-valued and single residual block ResNet-like models can have
zero training error at all local minima by making strong assumptions in the data distribution and
loss function for a binary classification problem. In stead of pursuing local minima are global in the
empirical risk landscape using strong assumptions, Shamir [2018] first took a different route and
proved that a scalar-valued ResNet-like model with a direct skip connection from input to output
layer (single residual block) is better than any linear predictor under mild assumptions. To be more
specific, he showed that every local minimum obtained in his model is no worse than the global
minimum in any linear predictor under more generalized residual functions and no assumptions on
the data distribution. He also pointed out that the analysis for the vector-valued case is nontrivial.
Kawaguchi and Bengio [2019] overcame such a difficulty and proved that vector-valued models
with single residual block is better than any linear predictor under weaker assumptions. Yun et al.
[2019] extended the prior work by Shamir [2018] to multiple residual blocks. Although the model
considered is closer to a standard ResNet compared to previous works, the model output is assumed
to be scalar-valued. All above-mentioned works do not take the first layer that appears before the
first residual block in standard ResNets into account. As a result, the dimensionality of the residual
representation in their simplified ResNet models is constrained to be the same size as the input.

Broader impact

One of the mysteries in ResNets and DenseNets is that learning better DNN models seems to be
as easy as stacking more blocks. In this paper, we define three generalized and analyzable DNN
architectures, i.e., ResNEsts, A-ResNEsts, and DenseNEsts, to answer this question. Our results not
only establish guarantees for monotonically improved representations over blocks, but also assure
that all linear (affine) estimators can be replaced by our architectures without harming performance.
We anticipate these models can be friendly options for researchers or engineers who value or mostly
rely on linear estimators or performance guarantees in their problems. In fact, these models should
yield much better performance as they can be viewed as basis function models with data-driven
bases that guarantee to be always better than the best linear estimator. Our contributions advance
the fundamental understanding of ResNets and DenseNets, and promote their use cases through a
certificate of attractive guarantees.

10

Acknowledgments and disclosure of funding

We would like to thank the anonymous reviewers for their constructive comments. This work was
supported in part by NSF under Grant CCF-2124929 and Grant IIS-1838830, in part by NIH/NIDCD
under Grant R01DC015436, Grant R21DC015046, and Grant R33DC015046, in part by Halıcıoğlu
Data Science Institute, and in part by Wrethinking, the Foundation.

References

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural Networks, 2(1):53–58, 1989.

C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and attacking
the saddle point problem in high-dimensional non-convex optimization. In Advances in Neural

Information Processing Systems, pages 2933–2941, 2014.

R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points—online stochastic gradient for
tensor decomposition. In Conference on Learning Theory, pages 797–842, 2015.

M. Hardt and T. Ma. Identity matters in deep learning. In International Conference on Learning

Representations, 2017.

K. He and J. Sun. Convolutional neural networks at constrained time cost. In Conference on Computer

Vision and Pattern Recognition, pages 5353–5360. IEEE, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Conference on

Computer Vision and Pattern Recognition, pages 770–778. IEEE, 2016a.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European

Conference on Computer Vision, pages 630–645. Springer, 2016b.

J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Conference on Computer Vision

and Pattern Recognition, pages 7132–7141. IEEE, 2018.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In Conference on Computer Vision and Pattern Recognition, pages 4700–4708. IEEE,
2017.

K. Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information

Processing Systems, pages 586–594, 2016.

K. Kawaguchi and Y. Bengio. Depth with nonlinearity creates no bad local minima in resnets. Neural

Networks, 118:167–174, 2019.

J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-resolution using very deep convolutional
networks. In Conference on Computer Vision and Pattern Recognition, pages 1646–1654. IEEE,
2016.

J. Kim, M. El-Khamy, and J. Lee. Residual LSTM: Design of a deep recurrent architecture for distant
speech recognition. arXiv preprint arXiv:1701.03360, 2017.

A. Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets. In
Advances in Neural Information Processing Systems, pages 6389–6399, 2018.

Y. Li and Y. Yuan. Convergence analysis of two-layer neural networks with relu activation. In
Advances in Neural Information Processing Systems, volume 30, pages 597–607, 2017.

11

S. Liang, R. Sun, Y. Li, and R. Srikant. Understanding the loss surface of neural networks for binary
classification. In International Conference on Machine Learning, pages 2835–2843, 2018.

T. L. Liu, M. Chen, M. Zhou, S. Du, E. Zhou, and T. Zhao. Towards understanding the importance of
shortcut connections in residual networks. In Advances in Neural Information Processing Systems,
2019.

F. Milletari, N. Navab, and S.-A. Ahmadi. V-Net: Fully convolutional neural networks for volumetric
medical image segmentation. In International Conference on 3D Vision, pages 565–571. IEEE,
2016.

X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand. U2-Net: Going deeper
with nested U-structure for salient object detection. Pattern Recognition, 106:107404, 2020.

O. Shamir. Are ResNets provably better than linear predictors? In Advances in Neural Information

Processing Systems, pages 507–516, 2018.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In International Conference on Learning Representations, 2015.

R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. arXiv preprint arXiv:1505.00387,
2015.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision and Pattern

Recognition, pages 1–9. IEEE, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008,
2017.

A. Veit, M. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shallow
networks. In Advances in Neural Information Processing Systems, pages 550–558, 2016.

S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural
networks. In Conference on Computer Vision and Pattern Recognition, pages 1492–1500. IEEE,
2017.

W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke. The Microsoft 2017 conversational
speech recognition system. In International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 5934–5938. IEEE, 2018.

C. Yun, S. Sra, and A. Jadbabaie. Are deep ResNets provably better than linear predictors? In
Advances in Neural Information Processing Systems, pages 15686–15695, 2019.

S. Zagoruyko and N. Komodakis. Wide residual networks. In British Machine Vision Conference

(BMVC), pages 87.1–87.12. BMVA Press, 2016.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European

Conference on Computer Vision, pages 818–833. Springer, 2014.

12

A Proofs

A.1 Proof of Proposition 1

Proof. Let
Vi =

⇥
vi(x1) vi(x2) · · · vi(xN)

⇤
(11)

for i = 0, 1, · · · , L and

� =

0

@WL+1

LX

i=0

WiVi �Y

1

A
T

=
⇣
Ŷ �Y

⌘T
=
⇥
�1 �2 · · · �No

⇤
(12)

where Y =
⇥
y
1

y
2 · · · y

N
⇤
. The Hessian of R (WL,WL+1;�) in (P�) is given by

r2R =

2

64
@2R

@vec(WT
L)

2
@2R

@vec(WT
L+1)@vec(WT

L)
@2R

@vec(WT
L)@vec(WT

L+1)
@2R

@vec(WT
L+1)

2

3

75

=
2

N

2

4
W

T
L+1WL+1 ⌦VLV

T
L W

T
L+1 ⌦VL

PL
i=0 V

T
i W

T
i +E

WL+1 ⌦
PL

i=0 WiViV
T
L +E

T
INo ⌦

PL
i=0 WiVi

⇣PL
i=0 WiVi

⌘T

3

5

(13)

where
E =

⇥
IM ⌦VL�1 · · · IM ⌦VL�No

⇤
. (14)

We have used ⌦ to denote the Kronecker product. See Appendix A.9 for the derivation of the Hessian.
By the generalized Schur complement,

r2R ⌫ 0 =) range

0

B@
@2R

@vec
⇣
W

T
L+1

⌘
@vec

�
W

T
L

�

1

CA ✓ range

0

@ @2R
@vec

�
W

T
L

�2

1

A (15)

which implies the projection of @2R
@vec(WT

L+1)@vec(WT
L)

onto the range of @2R
@vec(WT

L)
2 is itself. As a

result,
0

@IMKL � @2R
@2vec

�
W

T
L

�

@2R
@2vec

�
W

T
L

�
!†
1

A @2R
@vec

⇣
W

T
L+1

⌘
@vec

�
W

T
L

� = 0 (16)

where † denotes the Moore-Penrose pseudoinverse. Substituting the submatrices in (13) to the above
equation, we obtain

2

N

2

6666664

✓
IM �W

T
L+1WL+1

⇣
W

T
L+1WL+1

⌘†◆T

⌦ �T1 VT
L

...✓
IM �W

T
L+1WL+1

⇣
W

T
L+1WL+1

⌘†◆T

⌦ �TNo
V

T
L

3

7777775

T

= 0 (17)

which implies

W
T
L+1WL+1

⇣
W

T
L+1WL+1

⌘†
= IM or VL� = 0. (18)

On the other hand, the above condition is also necessary for the Hessian to be negative semidefinite
because r2R � 0 =) �r2R ⌫ 0 which implies (16).

Now, using the assumption
PN

n=1 vL (xn)ynT 6= 0, notice that the condition in (18) is not satisfied
for any point in the set

S =
n
(WL,WL+1)

��WL 2 RM⇥KL ,WL+1 = 0

o
. (19)

13

Hence, there exist some points in the domain at which the Hessian is indefinite. The objective function
R (WL,WL+1;�) in (P�) is non-convex and non-concave. We have proved the statement (a).

By the generalized Schur complement and the assumption that
PN

n=1 vL (xn)vL (xn)T is full rank,
we have

r2R � 0 =) @2R
@vec

�
W

T
L

�2 � 0 =) WL+1 = 0 (20)

where we have used the spectrum property of the Kronecker product and the positive definiteness
of VLV

T
L . Notice that this is a contradiction because any point with WL+1 = 0 is in the set S.

Hence, there exists no point at which the Hessian is negative semidefinite. Because the negative
semidefiniteness is a necessary condition for a local maximum, every critical point is then either a
local minimum or a saddle point. We have proved the statement (b).

A.2 Proof of Proposition 2

Proof. A (H0, · · · ,HL;�) is convex in
⇥
H0 H1 · · · HL

⇤
because it is a nonnegative weighted

sum of convex functions composited with affine mappings. Thus, (PA�) is a convex optimization prob-
lem and

�
H

⇤
0, · · · ,H⇤

L

�
is the best linear fit using �. That is, for any local minimizer

�
H

⇤
0, · · · ,H⇤

L

�
,

it is always true that

1

N

NX

n=1

`

0

@
LX

i=0

H
⇤
ivi(x

n),yn

1

A  1

N

NX

n=1

`

0

@
LX

i=0

Aivi(x
n),yn

1

A (21)

for arbitrary Ai 2 RNo⇥Ki , i = 0, 1, · · · , L.

A.3 Proof of Theorem 1

Proof. By the convexity in Proposition 2, every critical point in (PA�) is a global minimizer. Since
the objective function of (PA�) is differentiable, the first-order derivative is a zero row vector at any
critical point, i.e.,

@A
@vec (Hi)

=
1

N

NX

n=1

@` (ŷ,yn)

@vec (Hi)

����
ŷ=

PL
i=0 Hivi(xn)

=
1

N

NX

n=1

@` (ŷ,yn)

@ŷ

@ŷ

@vec (Hi)

����
ŷ=

PL
i=0 Hivi(xn)

=
1

N

NX

n=1

@` (ŷ,yn)

@ŷ

����
ŷ=

PL
i=0 Hivi(xn)

⇣
vi (x

n)T ⌦ INo

⌘

=
1

N

NX

n=1

0

BBBBBB@

�
vi (x

n)⌦ INo

� @` (ŷ,yn)

@ŷ

T
�����
ŷ=

PL
i=0 Hivi(xn)| {z }

ga(xn)

1

CCCCCCA

T

=
1

N

NX

n=1

vec
⇣
ga (x

n)vi (x
n)T
⌘T

= 0

(22)

for i = 0, 1, · · · , L. Again, we have used ⌦ to denote the Kronecker product. According to (22), the
point

�
H

⇤
0, · · · ,H⇤

L

�
is a global minimizer in (PA�) if and only if the sum of rank one matrices is a

zero matrix for i = 0, 1, · · · , L, i.e.,
NX

n=1

vi (x
n)ga (x

n)T = 0, i = 0, 1, · · · , L. (23)

14

Next, we show that every local minimizer
⇣
W

⇤
L,W

⇤
L+1

⌘
of (P�) establishes a corresponding global

minimizer
�
H

⇤
0, · · · ,H⇤

L

�
in (PA�) such that H⇤

i = W
⇤
L+1Wi for i = 0, 1, · · · , L.

At any local minimizer of (P�), the first-order necessary condition with respect to WL is given by

@R
@vec (WL)

=
1

N

NX

n=1

@` (ŷ,yn)

@vec (WL)

����
ŷ=WL+1

PL
i=0 Wivi(xn)

=
1

N

NX

n=1

@` (ŷ,yn)

@ŷ

@ŷ

@vec (WL)

����
ŷ=

PL
i=0 WL+1Wivi(xn)

=
1

N

NX

n=1

@` (ŷ,yn)

@ŷ

����
ŷ=WL+1

PL
i=0 Wivi(xn)

⇣
vL (xn)T ⌦WL+1

⌘

=
1

N

NX

n=1

0

BBBBBB@

⇣
vL (xn)⌦W

T
L+1

⌘ @` (ŷ,yn)

@ŷ

T
�����
ŷ=WL+1

PL
i=0 Wivi(xn)| {z }

gr(xn)

1

CCCCCCA

T

=
1

N

NX

n=1

vec
⇣
W

T
L+1gr (x

n)vL (xn)T
⌘T

= 0.

(24)

Equivalently, we can write the above first-order necessary condition into a matrix form

NX

n=1

vL (xn)gr (x
n)T WL+1 = 0. (25)

On the other hand, for the first-order necessary condition with respect to WL+1, we obtain

@R
@vec (WL+1)

=
1

N

NX

n=1

@` (ŷ,yn)

@vec (WL+1)

����
ŷ=WL+1

PL
i=0 Wivi(xn)

=
1

N

NX

n=1

@` (ŷ,yn)

@ŷ

@ŷ

@vec (WL+1)

����
ŷ=

PL
i=0 WL+1Wivi(xn)

=
1

N

NX

n=1

gr (x
n)T

0

B@

0

@
LX

i=0

Wivi (x
n)

1

A
T

⌦ INo

1

CA

=
1

N

NX

n=1

0

BB@

0

B@

0

@
LX

i=0

Wivi (x
n)

1

A⌦ INo

1

CAgr (x
n)

1

CCA

T

=
1

N

NX

n=1

vec

0

@gr (x
n)

LX

i=0

vi (x
n)T W

T
i

1

A
T

= 0.

(26)

The corresponding matrix form of the above condition is given by

LX

i=0

Wi

NX

n=1

vi (x
n)gr (x

n)T = 0. (27)

15

When WL+1 is full rank at a critical point, (25) implies
PN

n=1 vL (xn)gr (xn)T = 0 because the
null space of WT

L+1 is degenerate according to Assumption 3. Then, applying such an implication to
(27) along with Assumption 4, we obtain

L�1X

i=0

Wi

NX

n=1

vi (x
n)gr (x

n)T = 0 =)
NX

n=1

vi (x
n)gr (x

n)T = 0, i = 0, 1, · · · , L� 1. (28)

Note that all the column vectors in
⇥
W0 W1 · · · WL�1

⇤
are linearly independent if and only

if the linear inverse problem
PL�1

i=0 xi =
PL�1

i=0 Wivi has a unique solution for v0, · · · ,vL�1. We
have proved the statement (a).

On the other hand, when WL+1 is not full rank at a local minimizer, then there exists a perturbation
on WL such that the new point is still a local minimizer which has the same objective value. Let
(WL,WL+1) be any local minimizer of (P�) for which WL+1 is not full row rank. By the definition
of a local minimizer, there exists some � > 0 such that

R
�
W

0
L,W

0
L+1;�

�
� R (WL,WL+1;�) , 8

�
W

0
L,W

0
L+1

�
2 B

�
(WL,WL+1) , �

�
(29)

where B is an open ball centered at (WL,WL+1) with the radius �. Then (WL + ab
T ,WL+1)

must also be a local minimizer for any nonzero a 2 N (WL+1) and any sufficiently small nonzero
b 2 RKL such that (WL + ab

T ,WL+1) 2 B
�
(WL,WL+1) , �/2

�
. Substituting the minimizer

(WL + ab
T ,WL+1) in (27) yields

L�1X

i=0

Wi

NX

n=1

vi (x
n)gr (x

n)T +
⇣
WL + ab

T
⌘ NX

n=1

vL (xn)gr (x
n)T = 0. (30)

Subtracting (27) from the above equation, we obtain

ab
T

NX

n=1

vL (xn)gr (x
n)T = 0. (31)

Multiplying both sides by a
T /kak22, we have

b
T

NX

n=1

vL (xn)gr (x
n)T = 0 =)

NX

n=1

vL (xn)gr (x
n)T = 0 (32)

because b 6= 0 can be arbitrary as long as it is sufficiently small. As a result, (28) is also true when
WL+1 is not full row rank. We have proved the statement (b).

A.4 Proof of Corollary 1

Proof. The proof of Theorem 1 has shown that every local minimizer
⇣
W

⇤
L,W

⇤
L+1

⌘
of (P�)

establishes a corresponding global minimizer
�
H

⇤
0, · · · ,H⇤

L

�
in (PA�) such that H⇤

i = W
⇤
L+1Wi

for i = 0, 1, · · · , L. Therefore, it must be true that

R
�
W

⇤
L↵

,W⇤
L↵+1,↵

�
= A

�
H

⇤
0, · · · ,H⇤

L↵
,0, · · · ,0,�

�
. (33)

Next, by the convexity in Proposition 2, we have

R
�
W

⇤
L↵

,W⇤
L↵+1,↵

�
= A

�
H

⇤
0, · · · ,H⇤

L↵�1,H
⇤
L↵

,0, · · · ,0,�
�

a
 A

⇣
H

⇤
0, · · · ,H⇤

L�
,0, · · · ,0,�

⌘

= R
⇣
W

⇤
L�

,W⇤
L�+1,�

⌘
.

(34)

The equality a in (34) holds true by the relation L� < L↵.

16

A.5 Proof of Corollary 2

Proof. By Theorem 1 (b),

R
�
W

⇤
0, · · · ,W⇤

L+1,✓
⇤
1, · · · ,✓

⇤
L

�
= R

�
W

⇤
L,W

⇤
L+1,�

⇤� = A
�
H

⇤
0, · · · ,H⇤

L,�
⇤� (35)

for any local minimizer
�
H

⇤
0, · · · ,H⇤

L

�
of (PA�) using feature finding parameters �⇤. Then, by the

convexity in Proposition 2, every local minimizer
�
H

⇤
0, · · · ,H⇤

L,�
⇤� is a global minimzer of (PA�)

using �⇤. Hence, it must be true that

R
�
W

⇤
0, · · · ,W⇤

L+1,✓
⇤
1, · · · ,✓

⇤
L

�
= A

�
H

⇤
0, · · · ,H⇤

L,�
⇤�

 A
�
H

⇤
0,0, · · · ,0,�

⇤�

= A (H⇤
0,0, · · · ,0,)

= min
A2RNo⇥Nin

1

N

NX

n=1

` (Ax
n,yn)

(36)

for arbitrary due to the zero prediction weights for v1,v2, · · · ,vL. We have proved the statement
(a). If the inequality in (36) is strict, i.e.,

A
�
H

⇤
0, · · · ,H⇤

L,�
⇤� < A

�
H

⇤
0,0, · · · ,0,�

⇤� , (37)

then (36) implies

R
�
W

⇤
0, · · · ,W⇤

L+1,✓
⇤
1, · · · ,✓

⇤
L

�
< min

A2RNo⇥Nin

1

N

NX

n=1

` (Ax
n,yn) . (38)

We have proved the statement (b).

A.6 Proof of Theorem 2

Proof. By Theorem 1 (a), every critical point with full rank WL+1 is a global minimizer of (P�).
Therefore, WL+1 must be rank-deficient at every saddle point. We have proved the statement (a).

We argue that the Hessian is neither positive semidefinite nor negative semidefinite at every saddle
point. According to the proof of Proposition 1, there exists no point in the domain of the objective
function of (P�) at which the Hessian is negative semidefinite. If WL+1 is not full rank, then the
positive semidefiniteness of the Hessian at every critical point becomes a sufficient condition for a
local minimizer. This can be easily seen by replacing the convex loss with the squared loss in the
proof for Theorem 1 and applying (18). We conclude that the Hessian must be indefinite at every
saddle point under the assumptions; in other words, the Hessian has at least one strictly negative
eigenvalue. We have proved the statement (b).

A.7 Proof of Proposition 3

Proof. Note that (PD�) is a convex optimization problem because its objective function is a nonnega-
tive weighted sum of convex functions composited with affine mappings. Since (PD�) is a convex
optimization problem, it is true that

D
�
W

⇤
L+1;�

�
 min

A2RNo⇥Nin

D
⇣⇥

A 0 · · · 0
⇤
;�
⌘
= min

A2RNo⇥Nin

1

N

NX

n=1

` (Ax
n,yn) (39)

for any local minimizer W⇤
L+1 of (PD�) and arbitrary feature finding parameters �.

A.8 Proof of Proposition 4

Proof. Let 0m⇥n be an m-by-n zero matrix and Im⇥n be an m-by-n matrix with ones on diagonal
entries and zero elsewhere, i.e.,

[Im⇥n]ij =

(
1, i = j
0, i 6= j

. (40)

17

The superscript of every hyperparameter in this proof indicates the network type. We define
MResNEst =

PL
i=0 K

ResNEst
i = MDenseNEst

L and KResNEst
i = DDenseNEst

i for i = 1, 2, · · · , L. Let

⇧i =

2

664

0⇣Pi�1
j=0 KResNEst

j

⌘
⇥KResNEst

i

IKResNEst
i ⇥KResNEst

i

0⇣
MResNEst�

Pi
j=0 KResNEst

j

⌘
⇥KResNEst

i

3

775 (41)

for i = 0, 1, · · · , L. Let WResNEst
L+1 = W

DenseNEst
L+1 and W

ResNEst
i = ⇧i for i = 0, 1, · · · , L. We define

the function Gi in the ResNEst as

Gi (xi�1) = Qi

⇣⇥
⇧0 ⇧1 · · · ⇧i�1

⇤T
xi�1

⌘
(42)

for i = 1, · · · , L where xi 2 RMResNEst
is the residual representation in the ResNEst.

Based on such a construction, the feature finding weights � in the ResNEst satisfies Assumption 4.
Therefore, by Theorem 1 (b), the excess minimum empirical risk is zero or ✏ = 0, i.e., the minimum
value at every local minimizer of (P�) is equivalent to the global minimum value in (PA�).

A.9 Important first- and second-order derivatives

We derive the Hessian in the proof of Proposition 1. Let X =
⇥
x
1

x
2 · · · x

N
⇤
. Let Ŷ(X) =⇥

ŷ(x1) ŷ(x2) · · · ŷ(xN)
⇤

where each of column vectors is the ResNEst output given by the
function ŷ(x) = WL+1

PL
i=0 Wivi(x). The empirical risk using the squared loss (up to a scaling

factor) is defined as

R (WL,WL+1;�) =
1

2

1

N

NX

n=1

��ŷ (xn)� y
n
��2
2
. (43)

The Jacobian of R with respect to WL is given by

@R
@vec(WT

L)
=

1

2

1

N

@

@vec(WT
L)

NX

n=1

��ŷ (xn)� y
n
��2
2

=
1

2

1

N

@

@vec(WT
L)

���Ŷ(X)�Y

���
2

F

=
1

2

1

N

@

@vec(WT
L)

vec
⇣
Ŷ(X)T �Y

T
⌘T

vec
⇣
Ŷ(X)T �Y

T
⌘

=
1

N
vec
⇣
Ŷ(X)T �Y

T
⌘T @

@vec(WT
L)

vec
⇣
Ŷ(X)T �Y

T
⌘

=
1

N
vec
⇣
Ŷ(X)T �Y

T
⌘T @

@vec(WT
L)

vec

0

@
LX

i=0

V
T
i W

T
i W

T
L+1 �Y

T

1

A

=
1

N
vec
⇣
Ŷ(X)T �Y

T
⌘T @

@vec(WT
L)

vec
⇣
V

T
LW

T
LW

T
L+1

⌘

=
1

N
vec
⇣
Ŷ(X)T �Y

T
⌘T @

@vec(WT
L)

⇣
WL+1 ⌦V

T
L

⌘
vec
⇣
W

T
L

⌘

=
1

N
vec
⇣
Ŷ(X)T �Y

T
⌘T ⇣

WL+1 ⌦V
T
L

⌘
.

(44)

18

The Jacobian of R with respect to WL+1 is given by

@R
@vec(WT

L+1)
=

1

2

1

N

@

@vec(WT
L+1)

vec
⇣
Ŷ(X)T �Y

T
⌘T

vec
⇣
Ŷ(X)T �Y

T
⌘

= e
T @

@vec(WT
L+1)

vec
⇣
Ŷ(X)T �Y

T
⌘

= e
T @

@vec(WT
L+1)

vec

0

@
LX

i=0

V
T
i W

T
i W

T
L+1 �Y

T

1

A

= e
T @

@vec(WT
L+1)

vec

0

@
LX

i=0

V
T
i W

T
i W

T
L+1INo

1

A

= e
T @

@vec(WT
L+1)

0

@INo ⌦
LX

i=0

V
T
i W

T
i

1

A vec
⇣
W

T
L+1

⌘

= e
T

0

@INo ⌦
LX

i=0

V
T
i W

T
i

1

A

(45)

where we have used

e =
1

N
vec
⇣
Ŷ(X)T �Y

T
⌘
. (46)

Now, we find each of the block matrices in the Hessian.

@2R
@vec

�
W

T
L

�2 =
@

@vec
�
W

T
L

�

@R
@vec(WT

L)

!T

=
@

@vec
�
W

T
L

� 1

N

⇣
W

T
L+1 ⌦VL

⌘
vec
⇣
Ŷ(X)T �Y

T
⌘

=
1

N

⇣
W

T
L+1 ⌦VL

⌘ @

@vec
�
W

T
L

�vec

0

@
LX

i=0

V
T
i W

T
i W

T
L+1 �Y

T

1

A

=
1

N

⇣
W

T
L+1 ⌦VL

⌘ @

@vec
�
W

T
L

�vec
⇣
V

T
LW

T
LW

T
L+1

⌘

=
1

N

⇣
W

T
L+1 ⌦VL

⌘ @

@vec
�
W

T
L

�vec
⇣
V

T
LW

T
LW

T
L+1

⌘

=
1

N

⇣
W

T
L+1 ⌦VL

⌘⇣
WL+1 ⌦V

T
L

⌘

=
1

N

⇣
W

T
L+1WL+1 ⌦VLV

T
L

⌘
.

(47)

19

@2R

@vec
⇣
W

T
L+1

⌘2 =
@

@vec
⇣
W

T
L+1

⌘

0

B@
@R

@vec
⇣
W

T
L+1

⌘

1

CA

T

=
1

N

@

@vec
⇣
W

T
L+1

⌘

0

@INo ⌦
LX

i=0

WiVi

1

A vec
⇣
Ŷ(X)T �Y

T
⌘

= F
@

@vec
⇣
W

T
L+1

⌘vec

0

@
LX

i=0

V
T
i W

T
i W

T
L+1 �Y

T

1

A

= F
@

@vec
⇣
W

T
L+1

⌘vec

0

@
LX

i=0

V
T
i W

T
i W

T
L+1INo

1

A

= F

0

@INo ⌦
LX

i=0

V
T
i W

T
i

1

A

=
1

N

0

B@INo ⌦
LX

i=0

WiVi

0

@
LX

i=0

WiVi

1

A
T
1

CA

(48)

where we have used

F =
1

N

0

@INo ⌦
LX

i=0

WiVi

1

A . (49)

@2R
@vec

⇣
W

T
L+1

⌘
@vec

�
W

T
L

�

=
@

@vec
⇣
W

T
L+1

⌘

@R
@vec

�
W

T
L

�
!T

=
1

N

@

@vec
⇣
W

T
L+1

⌘
⇣
W

T
L+1 ⌦VL

⌘
vec
⇣
Ŷ(X)T �Y

T
⌘

=
1

N

0

B@
@

@vec
⇣
W

T
L+1

⌘
⇣
W

T
L+1 ⌦VL

⌘
1

CA vec
⇣
Ŷ(X)T �Y

T
⌘

+
1

N

⇣
W

T
L+1 ⌦VL

⌘ @

@vec
⇣
W

T
L+1

⌘vec
⇣
Ŷ(X)T �Y

T
⌘

(see (52))

=
1

N

⇥
IM ⌦VL�1 · · · IM ⌦VL�No

⇤
+

1

N

⇣
W

T
L+1 ⌦VL

⌘
0

@INo ⌦
LX

i=0

V
T
i W

T
i

1

A

=
1

N

⇥
IM ⌦VL�1 · · · IM ⌦VL�No

⇤
+

1

N

0

@W
T
L+1 ⌦VL

LX

i=0

V
T
i W

T
i

1

A .

(50)

20

@2R
@vec

�
W

T
L

�
@vec

⇣
W

T
L+1

⌘

=
@

@vec
�
W

T
L

�

0

B@
@R

@vec
⇣
W

T
L+1

⌘

1

CA

T

=
1

N

@

@vec
�
W

T
L

�

0

@INo ⌦
LX

i=0

WiVi

1

A vec
⇣
Ŷ(X)T �Y

T
⌘

=
1

N

0

B@
@

@vec
�
W

T
L

�

0

@INo ⌦
LX

i=0

WiVi

1

A

1

CA vec
⇣
Ŷ(X)T �Y

T
⌘

+
1

N

0

@INo ⌦
LX

i=0

WiVi

1

A @

@vec
�
W

T
L

�vec
⇣
Ŷ(X)T �Y

T
⌘

(see (53) and (54))

=
1

N

2

66664

IM ⌦ �T1 VT
L

IM ⌦ �T2 VT
L

...
IM ⌦ �TNo

V
T
L

3

77775
+

1

N
WL+1 ⌦

LX

i=0

WiViV
T
L .

(51)

Notice that we have used the following identities in (50) and (51).

0

B@
@

@vec
⇣
W

T
L+1

⌘
⇣
W

T
L+1 ⌦VL

⌘
1

CA vec
⇣
Ŷ(X)T �Y

T
⌘

=

0

B@
@

@vec
⇣
W

T
L+1

⌘
⇣
W

T
L+1 ⌦VL

⌘
1

CA vec (�)

=
NoX

j=1

NX

k=1

0

B@
@

@vec
⇣
W

T
L+1

⌘
✓⇣

W
T
L+1

⌘

j
⌦ (VL)k

◆
1

CA �k,j

=

"
PNo

j=1

PN
k=1 �k,j

@(WT
L+1)j⌦(VL)k

@(WT
L+1)1

· · ·
PNo

j=1

PN
k=1 �k,j

@(WT
L+1)j⌦(VL)k

@(WT
L+1)No

#

=

"
PN

k=1 �k,1
@vec

⇣
(VL)k(WT

L+1)
T

1

⌘

@(WT
L+1)1

· · ·
PN

k=1 �k,No

@vec
✓
(VL)k(WT

L+1)
T

No

◆

@(WT
L+1)No

#

=
hPN

k=1 �k,1IM ⌦ (VL)k · · ·
PN

k=1 �k,NoIM ⌦ (VL)k

i

=
⇥
IM ⌦VL�1 · · · IM ⌦VL�No

⇤
.

(52)

21

0

B@
@

@vec
�
W

T
L

�

0

@INo ⌦
LX

i=0

WiVi

1

A

1

CA vec
⇣
Ŷ(X)T �Y

T
⌘

=

2

666666666666666666666666664

�T1
@

@vec(WT
L)

⇣PL
i=0 V

T
i W

T
i

⌘

1
...

�T1
@

@vec(WT
L)

⇣PL
i=0 V

T
i W

T
i

⌘

M

�T2
@

@vec(WT
L)

⇣PL
i=0 V

T
i W

T
i

⌘

1
...

�T2
@

@vec(WT
L)

⇣PL
i=0 V

T
i W

T
i

⌘

M
...

�TNo

@
@vec(WT

L)

⇣PL
i=0 V

T
i W

T
i

⌘

1
...

�TNo

@
@vec(WT

L)

⇣PL
i=0 V

T
i W

T
i

⌘

M

3

777777777777777777777777775

=

2

66666666666666666666666666664

�T1 V
T
L 0 0 · · · 0

0 �T1 V
T
L 0 · · · 0

0 0 �T1 V
T
L · · · 0

...
...

...
. . .

...
0 0 0 · · · �T1 V

T
L

�T2 V
T
L 0 0 · · · 0

0 �T2 V
T
L 0 · · · 0

0 0 �T2 V
T
L · · · 0

...
...

...
. . .

...
0 0 0 · · · �T2 V

T
L

...
...

...
...

...
�TNo

V
T
L 0 0 · · · 0

...
...

...
. . .

...
0 0 0 · · · �TNo

V
T
L

3

77777777777777777777777777775

=

2

66664

IM ⌦ �T1 VT
L

IM ⌦ �T2 VT
L

...
IM ⌦ �TNo

V
T
L

3

77775
.

(53)

0

@INo ⌦
LX

i=0

WiVi

1

A @

@vec
�
W

T
L

�vec
⇣
Ŷ(X)T �Y

T
⌘

=

0

@INo ⌦
LX

i=0

WiVi

1

A
⇣
WL+1 ⌦V

T
L

⌘

= WL+1 ⌦
LX

i=0

WiViV
T
L .

(54)

22

B Empirical results

In addition to the theoretical results, we also provide empirical results on image classification tasks to
further understand our new principle-guided models. The goal of this empirical study is to answer
the following question: How do ResNEsts and A-ResNEsts perform compared to standard ResNets?

B.1 Datasets

The image classification tasks chosen in our empirical study are CIFAR-10 and CIFAR-100. The
CIFAR-10 dataset [Krizhevsky, 2009] consists of 60000 32⇥ 32 color images in 10 classes, with
6000 images per class. There are 50000 training images and 10000 test images. The CIFAR-100
dataset [Krizhevsky, 2009] is just like the CIFAR-10, except it has 100 classes containing 600 images
each. The CIFAR-10 and CIFAR-100 datasets were collected by Alex Krizhevsky, Vinod Nair, and
Geoffrey Hinton.

B.2 Models and architectures

Every ResNEst was a standard ResNet without the batch normalization and Rectified Linear Unit
(ReLU) at the final residual representation, i.e., their architectures are exactly the same before the
final residual representation. Every BN-ResNEst was a standard ResNet without the ReLU at the
final residual representation. In other words, a BN-ResNEst is a modified ResNEst because it adds a
batch normalization layer at the final residual representation in the ResNEst. Such a modification can
avoid gradient explosion during training and allow larger learning rates to be used. For A-ResNEsts,
we applied 2-dimensional average pooling on each vi going into each Hi.

The standard ResNets used in this empirical study are wide ResNet 16-8 (WRN-16-8), WRN-40-4
[Zagoruyko and Komodakis, 2016], ResNet-110, and ResNet-20 [He et al., 2016b]. All these models
use pre-activation residual blocks, i.e., they are in the pre-activation form [He et al., 2016b].

B.3 Implementation details

The training procedure is exactly the same as the wide ResNet paper by Zagoruyko and Komodakis
[2016]. The loss function was a cross-entropy loss. The batchsize was 128. All networks were
trained for 200 epochs in total. The optimizer was stochastic gradient descent (SGD) with Nesterov
momentum. The momentum was set to 0.9. The weight decay was 0.0005. The learning rate was
initially set to 0.1 (0.01 for ResNEsts to avoid gradient explosion) and decreased by a factor of 5
after training 60, 120, and 160 epochs. Learning rates 0.1 and 0.05 both led to gradient explosion in
training ResNEsts, so we used 0.01 for ResNEsts to avoid divergence. A-ResNEsts and BN-ResNEsts
do not have such an issue.

In addition, we followed the same moderate data augmentation and preprocessing techniques in the
wide ResNet paper by Zagoruyko and Komodakis [2016]. For the moderate data augmentation, a
random horizontal flip and a random crop from a image padded by 4 pixels on each side are applied
on the training set. For preprocessing, standardization is applied to every image including the training
set and the test set. The mean and the standard deviation are computed from the training set.

Code is available at https://github.com/kjason/ResNEst.

B.4 Comparison

Our empirical results are summarized in the two tables below in terms of classification accuracy and
number of parameters. The classification accuracy is an average of 7 trials with different initializations.
The number of parameters is shown in the unit of million. “1.0M” means one million parameters.

23

Table 1: CIFAR-10.

Archit.
Model Standard ResNEst BN-ResNEst A-ResNEst

WRN-16-8 95.56% (11M) 94.39% (11M) 95.48% (11M) 95.29% (8.7M)
WRN-40-4 95.45% (9.0M) 94.58% (9.0M) 95.61% (9.0M) 95.48% (8.4M)
ResNet-110 94.46% (1.7M) 92.77% (1.7M) 94.52% (1.7M) 93.97% (1.7M)
ResNet-20 92.60% (0.27M) 91.02% (0.27M) 92.56% (0.27M) 92.47% (0.24M)

Table 2: CIFAR-100.

Archit.
Model Standard ResNEst BN-ResNEst A-ResNEst

WRN-16-8 79.14% (11M) 75.43% (11M) 78.99% (11M) 78.74% (8.9M)
WRN-40-4 79.08% (9.0M) 75.16% (9.0M) 78.97% (9.0M) 78.62% (8.7M)
ResNet-110 74.08% (1.7M) 69.08% (1.7M) 73.95% (1.7M) 72.53% (1.9M)
ResNet-20 68.56% (0.28M) 64.73% (0.28M) 68.47% (0.28M) 68.16% (0.27M)

B.5 A-ResNEsts empirically exhibit competitive performance to standard ResNets

Empirical results in Section B.4 show that A-ResNEsts in general exhibit competitive classification
accuracy with fewer parameters compared to standard ResNets; and ResNEsts are not as good as
A-ResNEsts. The A-ResNets in most cases have fewer parameters than the ResNEsts and standard
ResNets because they do not have the layers WL and WL+1; and the number of prediction weights
in H0,H1, · · · ,HL is usually not larger than the number of weights in WL and WL+1 (see Figure
1 and Figure 2). Note that A-ResNEsts can have more parameters than standard ResNets when the
depth and the output dimension are very large, e.g., the A-ResNEst model under the architecture
ResNet-110 for CIFAR-100 in Table 2.

B.6 A BN-ResNEst slightly outperforms a standard ResNet when the network is very deep on

the CIFAR-10 dataset

Empirical results in Table 1 show that BN-ResNEsts slightly outperform standard ResNets and A-
ResNEsts in the architectures WRN-40-4 and ResNet-110 on the CIFAR-10 dataset. For architectures
WRN-16-8 and ResNet-20, BN-ResNEsts remain competitive performance compared to standard
ResNets. Notice that WRN-40-4 and ResNet-110 are much deeper than WRN-16-8 and ResNet-20.
Therefore, these empirical results suggest that keeping the batch normalization and simply dropping
the ReLU at the final residual representation in standard pre-activation ResNets can improve the test
accuracy on CIFAR-10 when the network is very deep. However, if the batch normalization at the
final residual representation is also dropped, then the test accuracy is noticeably lower.

24

