
Constrained Gradient Descent:
A Powerful and Principled Evasion Attack Against Neural Networks

Weiran Lin 1 2 Keane Lucas 1 2 Lujo Bauer 1 2 3 Michael K. Reiter 4 Mahmood Sharif 5

Abstract

We propose new, more efficient targeted white-

box attacks against deep neural networks. Our

attacks better align with the attacker’s goal: (1)

tricking a model to assign higher probability to

the target class than to any other class, while (2)

staying within an ε-distance of the attacked in-

put. First, we demonstrate a loss function that

explicitly encodes (1) and show that Auto-PGD

finds more attacks with it. Second, we propose

a new attack method, Constrained Gradient De-

scent (CGD), using a refinement of our loss func-

tion that captures both (1) and (2). CGD seeks to

satisfy both attacker objectives—misclassification

and bounded �p-norm—in a principled manner, as

part of the optimization, instead of via ad hoc post-

processing techniques (e.g., projection or clip-

ping). We show that CGD is more successful on

CIFAR10 (0.9–4.2%) and ImageNet (8.6–13.6%)

than state-of-the-art attacks while consuming less

time (11.4–18.8%). Statistical tests confirm that

our attack outperforms others against leading de-

fenses on different datasets and values of ε.

1. Introduction
With the prevalence of machine learning (ML), adversar-

ial ML techniques that slightly manipulate the inputs of

an ML model to influence its functionality have also been

1Department of Electrical & Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA, US 2Cylab, Carnegie Mellon
University, Pittsburgh, PA, US 3Institute for Software Research,
Carnegie Mellon University, Pittsburgh, PA, US 4Departments
of Computer Science and Electrical & Computer Engineering,
Duke University, Durham, NC, US 5School of Computer Sci-
ence, Tel Aviv University, Tel Aviv, Israel. Correspondence
to: Weiran Lin <weiranl@andrew.cmu.edu>, Keane Lucas
<kjlucas@andrew.cmu.edu>, Lujo Bauer <lbauer@cmu.edu>,
Michael K. Reiter <michael.reiter@duke.edu>, Mahmood Sharif
<mahmoods@cs.tau.ac.il>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

developed (Croce & Hein, 2020b). One type of attack on

classification models is the evasion attack, which applies a

small perturbation, within a distance limit, to a classifier’s

input to induce misclassification during inference. The �∞
distance is commonly used for specifying distance limits

via ε boundaries, which define the maximum change ac-

ceptable in each element of the input. In previous work it

is also common for attackers to have access to all weights

of the model, known as the white-box scenario, and the at-

tackers aim to force a specific misclassification, performing

targeted attacks. Previous work proposes an attack method

that iteratively perturbs an input in the direction of the gra-

dients of a loss function, which is not necessarily the same

loss function used by the model, and automatically truncates

the attack in each iteration to stay within the distance lim-

its. Researchers have shown that such attacks are effective

against state-of-the-art neural networks (Moosavi-Dezfooli

et al., 2016; Szegedy et al., 2014).

Croce et al. show that well-tuned parameters and carefully

designed loss functions can boost the performance of at-

tacks (Croce & Hein, 2020b). For example, varying the loss

function of Auto Projected Gradient Descent (Auto-PGD),

a state-of-the-art attack, between the cross-entropy, Carlini

and Wagner (CW), and Difference of Logits Ratio (DLR)

losses has a substantial impact on the attack’s performance.

Guided by this observation, we define a new loss function,

the Minimal Difference loss (MD loss), that better aligns

with the goal of a targeted attack: MD loss aims to (mis)lead

the model to assign higher confidence to the target class than

to any other class, even if by just a tiny amount. We em-

pirically show that Auto-PGD with the MD loss finds on

average 0.5–12.3% more adversarial examples, depending

on the dataset and model, than Auto-PGD with other loss

functions.

Although MD loss substantially improves Auto-PGD’s per-

formance, we still notice limitations that hinder the attack’s

effectiveness. In particular, like other attacks in the PGD

family, Auto-PGD uses projection at the end of each iter-

ation to satisfy the norm constraints, eliminating changes

that fall outside a predefined �p ball. However, projecting

adversarial examples back into the �p ball may work against

the attacker’s misclassification objective, thus harming the



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

attack’s success. Moreover, because projection is imple-

mented by clipping, an ad hoc operation to eliminate any

changes made outside the �p ball, balancing the attack’s

two objectives (i.e., misclassification and not leaving the

�p ball) remains a challenge for Auto-PGD. To address this

shortcoming, we propose the Constrained Gradient Descent
(CGD) attack. CGD enables the attacker to balance the two

attack objectives—it allows adversarial examples to lie out-

side the �p ball during the attack process and models the

violation of the norm constraints as part of its loss function

to gradually learn to stay within the �p ball while achieving

misclassification. We find that, with the same �∞ distance

limit, CGD finds on average 0.3–1.3% more adversarial ex-

amples than Auto-PGD using the MD loss, while consuming

less time (11.41–18.76%). Furthermore, we show that CGD

outperforms Auto-PGD with three previously established

loss functions on the CIFAR10 and ImageNet datasets, with

statistical significance.

As an example of using CGD as a framework to find other

types of attacks, we also define a variant of CGD for white-

box untargeted attacks. Similar to its targeted attack counter-

part, this variant also gradually learns to stay within the �p
ball while achieving misclassification, due to modeling the

violation of the norm constraints as part of its loss function.

This variant outperforms the previous best attack by 0.3–2%

on the CIFAR10 dataset, on average.

In a nutshell, our contributions are:

• We improve an established targeted attack method by

offering a new loss function that better captures the

goal of targeted attacks (§3).

• We invent a new attack that learns to stay within the �∞
distance limit rather than using simple clipping (§4),

and we empirically demonstrate that it outperforms

previously established ones (§5–6).

• We demonstrate how the proposed method can be used

as a framework for attacks by instantiating it to define

a stronger untargeted attack (§7).

2. Background
2.1. Threat Model

Adversary goals We consider a supervised classification

setting in which an ML model F is trained to map a sample

x to the correct label y by minimizing a loss function L(x, y)
such as the cross-entropy loss (LCE). At inference time, a

sample x is assigned the class i with the highest logit Zi

or highest confidence Pi. To find an adversarial example

x′, the adversary could either launch an untargeted attack,

avoiding correct classification by maximizing L(x′, y), or

launch a targeted attack, forcing specific classification to

class t by minimizing L(x′, t) (Papernot et al., 2016). We

permit the attacker white-box access to F , i.e., so that the

attacker knows the internal weights of F .

Evaluation metrics Given a specific �p distance limit ε,
the success rate of an untargeted attack is computed as the

percentage of benign inputs x from which the attack finds

x′ ∈ {x̃ | F (x̃) �= y ∧ �p(x̃, x) ≤ ε}, whereas the success

rate of a targeted attack is defined as the percentage of

benign inputs x where the attack finds x′ ∈ {x̃ | F (x̃) =
t∧ �p(x̃, x) ≤ ε}. In this paper, we primarily study targeted

attacks for �∞(x, x′) = maxi,j,k

∣∣∣xi,j,k − x′
i,j,k

∣∣∣, i.e., �∞
measures the maximum change made across all pixels and

channels, where i and j are pixel coordinates, and k is the

channel index.

Successful adversarial examples should also be in the same

format as benign samples. Images are normally in 8-bit

RGB format: every pixel consists of three bytes, three inte-

gers ∈ [0, 255] normalized to floats ∈ [0, 1]. The value of

every channel (of every pixel) should be a multiple of 1/255.

We picked ε values that are multiples of 1/255 so that the

�∞ distance limit is in 8-bit RGB format. We noticed that

certain attacks (e.g., PGD) could perturb an adversarial ex-

amples into failed ones after quantization. Hence, in each

attack iteration i from starting sample x, we produced an

8-bit RGB format copy of the current adversarial example

x′
i using the formula

xtest = round(x′
i ∗ 255)/255

and clipped xtest to be within both [0, 1] and [x− ε, x+ ε]
(we denote this operation by clip(xtest)), projecting it onto

the �∞ ball that is also bounded by the range of values

of valid images. We then classified clip(xtest) using the

model and compared the output with the target class. If they

matched, we stopped perturbing this example and counted

the attack as successful. Otherwise, the attack continued

normally, with x′
i remaining in the continuous domain.

2.2. Attack Methods

We now introduce prominent established attacks.

PGD An improved version of fast gradient-sign

method (Goodfellow et al., 2015), the projected gradient

descent (PGD) attack (Madry et al., 2018), which iteratively

calculates a projection on the imperfect ε ball around the

benign source image so that the adversarial example is a

valid image and within the max distance limit:

x′
i+1 = clip(x′

i − α · sign(∂L(x
′
i, t)

∂x′
i

)) (1)

where α controls how much perturbation would be applied

in each iteration and loosens the linear assumption of mod-

els for PGD. By default, PGD is configured to run for 40



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

iterations, and the step size of each iteration, α, is set to

.01, where the values of each channel (of each pixel) in the

images are normalized to [0, 1]. The default loss function

used in PGD is the CE loss.

Auto-PGD Croce and Hein (2020b) were able to boost

PGD’s performance by intelligently setting its parameters

(e.g., the step size α). Except for the number of iterations,

the algorithm they proposed, Auto-PGD, does not require

parameter tuning. Croce and Hein also showed that the

loss function in PGD can markedly influence the attack’s

success rate. By default, Auto-PGD runs with the Difference

of Logits Ratio (DLR) loss:

LDLR =
Zt − Zy

Zπ1 − 0.5Zπ3 − 0.5Zπ4
(2)

where Zπs are logits sorted from largest to smallest. Another

commonly used loss function is the Carlini-Wagner (CW)

loss (Carlini & Wagner, 2017a):

LCW = −Zt +maxi �=tZi (3)

LCW and LDLR both try to make the logit of the target

class larger than other logits, which would cause the model

to assign the highest probability to the target class.

2.3. Defenses

Researchers have proposed a variety of defenses to miti-

gate adversarial examples. Regarded as one of the strongest

defenses (Akhtar et al., 2021), adversarial training aug-

ments the training process with correctly labeled adversar-

ial examples to enhance models’ robustness against them

(e.g., (Goodfellow et al., 2015; Kurakin et al., 2017b; Madry

et al., 2018; Shafahi et al., 2019; Wang et al., 2020)). As is

common in related work (Croce & Hein, 2020b; Dong et al.,

2018; Madry et al., 2018; Uesato et al., 2018; Xiao et al.,

2018), we evaluate our proposed attacks against adversari-

ally trained neural networks (see §5).

3. A Stronger Loss Function
In this section, we describe how we enhanced Auto-PGD’s

performance by improving its loss function. We first present

an example scenario where a previous best-performing loss

function falls short (§3.1). Then we describe a new loss

function that mitigates the previous loss function’s weak-

nesses (§3.2). We report on the performance of the new loss

function in §6.

3.1. Investigating Established Loss Functions

To produce a baseline for comparison, we ran Auto-PGD

for 100 iterations, as it is used in previous work (Croce &

Hein, 2020b), with three loss functions: CW, DLR, and CE.

Figure 1: Confidence scores of three classes throughout 40

iterations of the Auto-PGD attack using CW loss to perturb

a CIFAR10 image to class 7. Classes 8 and 9 took turns to

have the highest confidence score, and the attack ultimately

failed to produce a successful targeted adversarial example.

We found that CW loss performed the best against six out

of seven CIFAR10 models as well as the ImageNet model

we used. Still, we identified specific instances in which

Auto-PGD with CW loss failed to find adversarial examples.

One of them is demonstrated in Fig. 1. We identified that

these failures can be often explained by the definition of

CW loss. CW loss tries to increase the difference between

the logit of the target class and the highest among the logits

of the non-target classes; however, which non-target class

has the highest logit may change from iteration to iteration.

Namely, decreasing the value of the logit of the highest

non-target class might simply cause the logit of another
non-target class to increase and become the highest in the

next iteration. Thus, the target class might never have a

chance to have the highest logit and the attack might never

succeed, as illustrated in Fig. 1.

We noticed that such failures can also happen with more

than two non-target classes taking turns having the highest

confidence scores. We used the maximum number of times

that the prediction was changed to a certain class before the

perturbation first succeeds or the attack reaches the maxi-

mum number of iterations as a metric to capture how often

the behavior in Fig. 1 occurs. For 226 of 512 images sam-

pled from CIFAR10, there is some ε at which the prediction

was changed to the same class at least 10 times when Auto-

PGD with CW loss attacked the DSL+20 (Ding et al., 2020)

defense. We observed the same phenomenon with 265 of

512 samples on the WRK20 (Wong et al., 2020) defense.

More details could be found in App. C.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

3.2. A New Loss Function

The example in Fig. 1 shows how a loss function that does

not completely align with the attack’s intent can sometimes

fail to produce successful adversarial examples. Intuitively,

the attacker’s goal is to produce a perturbation for which the

target class’ logits and probabilities are higher than those

of all other classes, even if by only a miniscule amount, so

that the target class would be selected as the prediction.

We capture this intuition by designing a new loss function

containing terms representing each logit. More precisely,

the loss function is the sum over all such terms (each repre-

senting a logit), where each term’s value is determined as

follows. The term is zero if the logit is smaller than the logit

of the target class, as the adversary has no interest in directly

decreasing small logits that do not influence the model’s

prediction. Alternately, the term is positive if the logit does

not belong to the target class and is larger than or equal to

the target class’s logit, as the adversary has to decrease all

non-target logits to make a successful perturbation. By min-

imizing this loss function, the adversary aims to decrease

all the positive terms simultaneously and consequentially

decrease all the logits that are higher than the logit of the

target class in the same iteration.

We define this loss function, the Minimal Difference (MD)

loss, as: ∑

i

ReLU(Zi + δ − Zt) (4)

where ReLU is the rectified linear unit function, Zt is the

logit of the target class, and Zi are the logits of each class

(as described in §2.1). δ is a minimal value introduced

to mitigate the cases where non-target classes have equal

logits with the logit of the target class. We set δ to 1e−15
in our implementation, because 1.0 − (1e−16) = 1.0 in

Python due to finite arithmetic. Zt is not excluded from Zi

as ReLU(Zt + δ − Zt) = δ is always a constant and has

no effect on the back-propagation gradients.

In contrast to CW loss, MD loss aims to decrease all logits

that do not belong to the target class and are higher than the

logit of the target class, rather than only the largest of the

non-target-class logits. Logits that meet the following three

requirements are more likely to decrease between iterations

if the attacker is using MD loss instead of CW loss: (1) they

do not belong to the target class; (2) are higher than the logit

of the target class; and (3) are not the largest logit. Hence,

with MD loss the behavior demonstrated in Fig. 1 (i.e., non-

target logits alternating at being the highest logit) is unlikely

to occur and, intuitively, the attacker is more likely to suc-

ceed. We found that MD loss reduced the maximum number

of times that the prediction was changed to a different class

at every value of ε (see App. C) and confirmed the statistical

significance of this result with a Wilcoxon signed-rank test

(Wilcoxon, 1945) (details in App. B). We show in §6 that

using MD loss instead of CW loss consequently improves

Auto-PGD’s ability to find adversarial examples.

4. A Stronger Attack Method
In this section, we describe our new attack method, Con-

strained Gradient Descent (CGD). We start by explaining

the intuition that drives the design and an enhancement

(§4.1–4.2), and then detail our algorithm (§4.3). We report

on the performance of the new attack in §6.

4.1. Learning to Stay Within the Distance Limit

PGD attacks, including Auto-PGD, enforce the �∞ distance

limit by executing a clip(·) computation in each iteration,

eliminating any perturbations made outside the limit. How-

ever, the loss function used in PGD attacks does not take into

account that clip(·) will be used. Hence, in PGD attacks,

gradients, which are derivatives of loss functions against the

current perturbation, may not accurately direct the perturba-

tion. The gradients may push the attack toward perturbations

outside the �∞ distance limit, while successful perturbations

within the �∞ distance limit may lie in other directions. Pre-

vious work has shown that attacks could learn to minimize
their distance limit from the original benign image (Carlini

& Wagner, 2017a; Szegedy et al., 2014). We propose a

new loss function that helps attacks learn to stay within a

fixed �∞ distance limit, and then propose a new attack that

utilizes this loss function. We next describe how we include

the �∞ distance limit as part of the new loss function.

Defining boundaries Before starting to create a pertur-

bation x, we know that for an attack to be valid the upper

and lower boundaries of each channel k ∈ {0, 1, 2} of pixel

(i, j) in the final perturbation are

bndupper
i,j ,k (x ) = min(xi,j,k + ε, 1) (5)

and

bnd lower
i,j ,k (x ) = max(xi,j,k − ε, 0) (6)

These two boundaries are fixed throughout the attack pro-

cess. As xi,j,k ∈ [0, 1], in each channel (of each pixel), in

any iteration of an attack the updated perturbation could po-

tentially exceed at most one boundary at a time (for any one

channel of any pixel). Thus, we can compute the distance,

for each channel (of each pixel), by which the current per-

turbation x′ goes over the boundary. We call this distance

Overruni,j,k(x
′) and define it as:

ReLU (x′
i,j,k−bndupper

i,j ,k (x ))+ReLU (bnd lower
i,j ,k (x )−x′

i,j,k)
(7)

Overruni,j,k(x
′) is 0 if x′ stays within the ε-boundary for

channel k of pixel (i, j).



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Penalizing exceeding boundaries We next add to the loss

function the following term.

Lbnd =
∑

i,j,k

(Overruni,j,k(x
′)2) (8)

Overruni,j,k(x
′) is squared because when taking the deriva-

tive, ∂Lbnd

∂x′
i,j,k

is proportional to Overruni,j,k(x
′) and could

direct the attack to learn to stay within the boundary. Our

new loss function is now:

w ∗ Lcls + (1− w) ∗ Lbnd (9)

where Lcls is MD-loss (as described in §3) and w ∈ [0, 1]
is a weighting parameter. By decreasing w and weighting

Lbnd more heavily, we guide the attack to gradually move

the perturbation in a direction that leads to the target class

while not crossing the boundary, ultimately creating a valid

adversarial example after rounding and clipping.

Leveraging magnitude of gradients We also change the

way that the attack iteratively updates the perturbation. To

the best of our knowledge, previous �∞ attacks that use gra-

dients, ∂Loss
∂x′

i,j,k
, only use the sign of these gradients to gen-

erate adversarial examples (e.g., (Goodfellow et al., 2015;

Kurakin et al., 2017a; Madry et al., 2018)), although some

use momentum along with the sign (Croce & Hein, 2020b;

Gowal et al., 2019). However, the magnitude of the gradi-

ents also conveys information about the amount by which

it is helpful to change a channel (of a pixel). Leveraging

the magnitude of the gradients also helps avoid artificially

(and unhelpfully) large step sizes that would make the per-

turbations step over the boundary, which we observed in,

e.g., PGD attacks. Auto-PGD uses an explicit momentum

term as well as gradients when computing the changes to

be made to the candidate adversarial example in each itera-

tion. In contrast, we compute these changes via an Adam

optimizer (Kingma & Ba, 2015), which internally uses mo-

mentum; other optimizers may also be adequate.

4.2. Driving out of Local Minima

While Lbnd accounts for any channel (of any pixel) po-

tentially crossing the ε-boundary, we observed that attacks

could become trapped in local minima of Lbnd that occur

when most channels are within the boundary but a small

number is far beyond the boundary. To prevent this, we set

a threshold distance outside the upper and lower ε bound-

aries, and we decay this threshold gradually as the attack

progresses. As Lcls decreases, we desire the attack to also

reduce Overrun , ultimately to zero. The decreasing thresh-

old encourages this by increasing the relative weight of

Lbnd . Model-specific constants, namely pre-defined fixed

ratios and checkpoints, control where the threshold starts

and how fast it decays. If the current perturbation is outside

Figure 2: This is an example path of a CGD attack with a

�∞ distance limit. We start with a random initial perturba-

tion. In stage 1, we push the current perturbation to the ε
boundary. In stage 2, the current perturbation moves beyond

the threshold and Lbnd > 0. In stage 3, the current perturba-

tion is pushed inside the threshold as Lbnd is more heavily

weighted. In stage 4, the current perturbation moves closer

to the ε boundary, as does the threshold.

the threshold, we halve the weight w of Lcls (in Eqn. 9) to

increasingly urge the attack to stay within the boundary.

We ran grid searches to choose the starting threshold and de-

cay interval for each defense. We examined starting thresh-

olds ∈ [.5ε, 9ε], starting the weighting parameter of the loss

function w ∈ [0.01, 0.5], and decay intervals ∈ [5, 30]. For

all defenses, the optimal starting weighting parameter w was

0.1 and the optimal decay interval was every 15 iterations.

The optimal starting threshold was 8ε for SIE+20, 5ε for

DSL+20, and 1.5ε for all other defenses (see §5).

4.3. The Constrained Gradient Descent Algorithm

Combining all the above, we define a new attack: Con-
strained Gradient Descent (CGD). Fig. 2 illustrates an ex-

ample path of CGD where the attack seeks to satisfy the �∞
distance limit.

We start the attack with a random initial perturbation to

better explore the space of possible adversarial examples, as

this was shown to be helpful in prior work (Croce & Hein,

2020a; Madry et al., 2018; Mosbach et al., 2018). The attack

has four stages. In stage 1, we move each channel (of each

pixel) by ε in the direction of the gradients. This is a quick

way to take a substantial step in the direction of the target

class. In stage 2, the candidate perturbation continues to

move toward the target class, and potentially moves outside



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

the threshold, as the loss function is dominated by Lcls . If

the candidate perturbation moves beyond the threshold, the

algorithm moves to stage 3: since the candidate perturbation

is outside the threshold, Lbnd is more heavily weighted,

which pushes the candidate perturbation back inside the

threshold. After a fixed number of iterations, the algorithm

enters stage 4, in which the threshold itself moves toward

the ε boundary, thus forcing the candidate perturbation to

move closer to the ε boundary. The attack could succeed in

any stage. Pseudocode with line-by-line descriptions can be

found in App. A.

5. Evaluation Setup
Factors other than the algorithm, such as the random initial-

ization chosen (Tashiro et al., 2020) and which classes are

targeted, can also influence attacks’ performance. Here we

summarize how we set up experiments to enable meaningful

and fair comparisons; more details can be found in App. D.

Benchmarks Because adversarial training is regarded

as a strong defense, we evaluated attacks against ad-

versarially trained models, in line with prior work (see

§2.3). Specifically, we used seven pre-established ad-

versarially trained models for CIFAR10: CRS+19 (Car-

mon et al., 2019), DSL+20 (Ding et al., 2020),

HLM19 (Hendrycks et al., 2019), SWM+20 (Sehwag et al.,

2020), WRK20 (Wong et al., 2020), WXW20 (Wu et al.,

2020) and WZY+20 (Wang et al., 2020); and two versions of

SIE+20 (Salman et al., 2020), pre-established and publicly

available adversarially trained models on ImageNet.

Experiment setup Croce et al. found that PGD attacks

find more adversarial examples the more iterations they

run (Croce & Hein, 2020b). Auto-PGD declares the number

of iterations as its only parameter. In this work, we ran

all attacks for 100 iterations—the default configuration of

Auto-PGD (Croce & Hein, 2020b)—to fairly compare the

attack methods. For CIFAR10, we measured the success

rate against seven defenses, using the same target, 20 ran-

dom initial perturbations, and two ε values per image, for a

total of 280 sets of 10,000 attack attempts. For ImageNet,

we used five random initializations, five targets, and two ε
values per image, thus resulting in 50 sets of 50,000 attack

attempts.

6. Evaluation Results
In this section, following the setup described in §5, we

compare Auto-PGD using our MD loss with Auto-PGD

using previously established loss functions and also our

CGD attack with Auto-PGD. We first report on raw results

(§6.1) and then on the statistical tests we performed (§6.2)

to demonstrate that CGD outperformed the previously best

Auto-PGD with statistical significance. We also compare

the time cost of attacks (§6.3) and discuss the uniqueness of

the adversarial examples generated (§6.4).

6.1. Raw Results

Figure 3: The relative improvement in the number of adver-

sarial examples found by attacks on different defenses com-

pared to the worst-performing attack. Experiments were per-

formed using 10,000 images from the test set of CIFAR10,

ε = 16/255, 20 different random initial perturbations, and

a fixed random target offset. The worst-performing attack

for each defense (with a median of 0) was selected as the

baseline. The y-axis denotes the improvement compared

to the average performance of the baseline. For example,

0.08 on the y-axis indicates 8% more adversarial examples

found compared to the baseline. The number in parentheses

under each defense is the average number of times which

the baseline succeeded out of 10,000 attempts.

As described in §5, we made 280 sets of 10,000 attack

attempts on CIFAR10 and 50 sets of 50,000 attack attempts

on ImageNet. We compared our two improvements, Auto-

PGD using our MD loss (§3) and CGD (§4), to Auto-PGD

using three pre-established loss functions: CE loss, DLR

loss, CW loss. Implementations of Auto-PGD with CE loss

and DLR loss are the ones published by the authors (Croce

& Hein, 2020b). We performed this comparison on two

datasets and multiple defenses and values of ε (see §5).

On average, Auto-PGD with MD loss found more adversar-

ial examples than Auto-PGD with any of the three other loss

functions , thus demonstrating the benefits of the MD loss

compared to previous conventional loss functions. Addition-

ally, CGD performed better than Auto-PGD with MD loss,

further demonstrating the advantages of the CGD attack

strategy to satisfy the �p-bound constraints compared to ad



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

hoc clipping. The ranking of attacks other than Auto-PGD

with MD loss and CGD varied slightly depending on the

defense.

Fig. 3 shows the relative number of adversarial examples

these attack methods found on CIFAR10 with ε = 16/255.

Among the previously proposed attacks (Auto-PGD with

one of CE, DLR, or CW loss), which performed least well

and which performed best varied by defense. The best

attacks were on average 1.6–6.0% better than the baseline

attacks. Auto-PGD with MD loss was on average 0.6–4.5%

better than the best performing Auto-PGD that did not use

MD loss; and CGD was on average 1.2–5.1% better than

the best performing Auto-PGD that did not use MD loss.

CGD outperformed Auto-PGD with MD loss in 139 out of

140 sets of attempts and outperformed Auto-PGD (with any

other loss function) in all of the sets of attempts. Depending

on the defense, the ranking of the other attack methods

changed, but CGD and Auto-PGD with MD loss always

performed better than other attack methods. We observed

similar results with different values of ε and when using

the ImageNet dataset, as shown in App. E. When evaluated

against SIE+20 on the ImageNet dataset with ε = 4/255,

CGD was 11.0% better than Auto-PGD with CW loss (the

previous best Auto-PGD). When using ε = 8/255, CGD

was 13.6% better than Auto-PGD with CW loss against

SIE+20 on ImageNet.

6.2. Statistical Analysis

We also performed statistical analysis to compare the per-

formances of different attack methods. We defined a

variable ConditionalSuccessi for an image i as the to-

tal number of successful perturbations made by an at-

tack with all random initial perturbations, and all the ran-

dom target offsets we tried given the specific dataset,

defense, and ε. ConditionalSuccessi ∈ [0, 20] on CI-

FAR10 while ConditionalSuccessi ∈ [0, 25] on ImageNet.

Each ConditionalSuccessi is independent. We used the

Wilcoxon signed rank test to compare ConditionalSuccessi
of CGD and Auto-PGD with MD loss.

We performed the one-sided Wilcoxon signed rank test

(Wilcoxon, 1945) with the null hypotheses that Auto-PGD

with MD loss had equal or better performance than CGD

for each combination of ε, dataset, and defense that we tried.

Overall, we conducted 16 statistical tests, for the 16 differ-

ent combinations we had. To account for the multiple tests,

we used Bonferroni correction to adjust the confidence level

α to .05/16 = 0.003125. We found the p-values are below

α in 11 out of 16 tests. Namely, CGD performed statistically

significantly better than Auto-PGD with MD loss across 11

combinations of ε, dataset, and defense that we tried.

We performed a similar one-sided Wilcoxon signed rank

test (Wilcoxon, 1945) with the null hypotheses that the best

performing attack among Auto-PGD using the DLR loss,

CW loss, and CE loss performed equal to or better than CGD

in each combination of value of ε, dataset, and defense that

we tried. Again, we used the adjusted normal approximation

of the test statistic and Bonferroni corrections. All the p-

values were far smaller than α = 0.003125, and so we reject

the null hypotheses in all 16 cases, hence demonstrating that

CGD significantly outperformed Auto-PGD with the losses

proposed in prior work across each combination of ε, dataset,

and defense that we tried. More details of these tests can be

found in App. F.

6.3. Time Complexity

We ran all attacks for 100 iterations, as described in §5, and

conducted 30 and 100 time measurements per attack-defense

pair for the CIFAR10 and ImageNet datasets, respectively.

The results are shown in Tab. 1.

Table 1: The average time in seconds used to perturb batches

of 512 images from CIFAR10 or 10 images from ImageNet,

using NVIDIA GeForce RTX 3090 GPUs. There are two

versions of SIE+20, trained with ε = 4/255 (SIE+20-4) and

ε = 8/255 (SIE+20-8).

attack methods Auto Auto Auto Auto CGD
-PGD -PGD -PGD -PGD

loss CE CW DLR MD
dataset defense time (seconds)

DSL+20 26.4 26.9 26.9 26.8 22.0
WRK20 17.0 17.7 17.6 17.5 14.5
HLM19 115.8 117.0 115.9 116.7 100.9

CIFAR10 WZY+20 116.5 116.6 117.1 116.2 103.3
SWM+20 115.0 115.2 115.6 114.8 100.1
CRS+19 116.2 116.7 116.7 116.3 101.5
WXW20 116.4 116.7 116.4 116.3 102.6

ImageNet SIE+20-4 7.7 7.7 7.8 7.8 6.4
SIE+20-8 7.7 7.7 7.8 7.8 6.4

We found that CGD was on average faster than all Auto-

PGD attacks against all defenses by 11.41–18.76%. We

confirmed this relationship with one-sided Wilcoxon tests

(App. B). As we have nine defenses and four baseline at-

tacks, we used Bonferroni correction to adjust the confi-

dence level α to .05/36 = 0.0014.

6.4. Uniqueness of Attacks

As we observed in §6.1–6.2 that CGD found more adversar-

ial examples than other attack methods did in most of the

sets of attempts, we wondered if the adversarial examples

other attacks found could be a subset of those CGD found.

However, we discovered that among the attack methods we

tried, each of them found a slightly different set of success-

ful adversarial examples, as shown in Fig. 4. In addition,

each attack succeeded in finding an adversarial example for



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

some specific input for which no other attack succeeded, as

shown in Fig. 5. We observed the same phenomenon across

attack methods, values of ε, defenses, and datasets. More

details can be found in App. I.

Figure 4: The average number of successful adversarial

examples found by attack A but not by attack B in each

set of 10,000 attempts on the testing set of CIFAR10 using

ε = 16/255 against the DSL+20 (Ding et al., 2020) defense,

rounded to whole numbers.

Figure 5: The average number of successful adversarial

examples found by an attack, but not by any of other attack

methods, against each defense in each set of 10,000 attempts

on the testing set of CIFAR10 using ε = 16/255, rounded

to whole numbers.

At the same time, when the same attack method is given

different random initial perturbations, the attack always

found a slightly different set of adversarial examples, within

the 20 random initial perturbations we tried (an example is

shown in Fig. 6). We observed the same phenomenon across

attack methods, values of ε, and defenses on CIFAR10.

More details can be found in App. I.

Figure 6: The image shows the number of adversarial ex-

amples each of the attacks found when using the specified

number of random initial perturbations, on all 10,000 im-

ages from the testing set of CIFAR10, with ε = 16/255,

against the DSL+20 (Ding et al., 2020) defense.

7. Discussion
Here we discuss the potential to use CGD as a framework
for attacks (§7.1), e.g., with different distance metrics and

loss functions. We demonstrate one such use, where we

instantiate CGD for untargeted attacks (§7.2).

7.1. CGD as a Framework

In §6 we showed that CGD outperformed the previous best

attack in targeted tasks, with statistical significance and sub-

stantial effect size. Similarly to how Auto-PGD is a member

of the PGD family attacks, the specific attack we explore in

this paper could be viewed as member of a broader CGD

family. Auto-PGD improves the performance of PGD at-

tacks by using alternative loss functions and wisely tuning

parameters; similar tweaking could also apply to CGD at-

tacks: using alternative loss functions and wisely tuning

parameters could yield a stronger attack within the CGD

family. Meanwhile, as the loss function of CGD can be sep-

arated into two components, Lbnd and Lcls , each of those

could be tuned. We demonstrated that CGD implemented

with specific loss functions and parameters outperformed the

previous best attack; other variants of CGD could perform

better yet. CGD might also be extended to other distance

metrics besides �∞ and also to untargeted attacks. In gen-

eral, our work opens the door for future work to find stronger

attacks using CGD as a framework.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

7.2. Applying CGD to Untargeted Attacks

We demonstrated that CGD outperformed the previous best

white-box targeted attacks in §6. Here we explore an un-

targeted variant of CGD as an example of extending CGD

to other types of attacks, and, specifically, how other loss

functions can be incorporated in the general CGD approach.

Previous works find untargeted adversarial examples by

using one of several loss functions. One example is cross en-

tropy loss, which we described in §2.1: LCE = − logPy =

−Zy+log(
∑K

j=1 e
Zj ). Other work proposed the untargeted

attack version of the Difference of Logits Ratio loss (DLR

loss):

LDLR =
Zy −maxi �=yZi

Zπ1 − Zπ3
(10)

and showed that Auto-PGD with LDLR finds more adver-

sarial examples than Auto-PGD with LCE (Croce & Hein,

2020b). Yet other work uses the untargeted version of CW

loss (Carlini & Wagner, 2017a):

LCW = −Zy +maxi �=yZi (11)

Previous works show that by iteratively maximizing these

loss functions the adversary can find untargeted adversarial

examples (Carlini & Wagner, 2017a; Croce & Hein, 2020b).

Because the concept of staying within the �∞ distance limit

is the same in targeted and untargeted attacks, the loss com-

ponent for capturing the task of staying within the �∞ dis-

tance limit, Lcls , is the same as described in §4. Lcls de-

creases to 0 if and only if the adversarial example is within

the �∞ distance limit. Hence, we design the loss component

that captures the task of forcing misclassification, such as

the MD loss, to also decrease to 0 when the adversary suc-

ceeds. The purpose of this design is to have the overall loss

function, which is a weighted sum of the two components,

decrease to 0 if and only both tasks have been successfully

completed. To create the loss component that captures the

task of avoiding correct classification, we define a variant

of the CW loss as follows:

LCW ∗ = ReLU(Zy + δ −maxi �=yZi) (12)

where δ is a minimal value, set to 1e−15 (see §3.2). We

replace MD loss in Alg. 1 with LCW ∗ as Lcls to obtain the

untargeted variant of the CGD attack, CGDuntarg.

Minimizing LCW ∗ achieves the same result as maximizing

LCW : when Zy ≥ maxi �=yZi, both loss functions mini-

mize Zy −maxi �=yZi; and when Zy < maxi �=yZi, the un-

targeted attack has already succeeded. Hence, an Auto-PGD

that minimizes LCW ∗ and an Auto-PGD that maximizes

LCW behave exactly the same on each image; we report

results only for the former.

We ran Auto-PGD with LDLR, Auto-PGD with LCW ∗ , and

CGDuntarg to compare their performance. Details of the

setup can be found in App. G. On average, CGDuntarg outper-

formed Auto-PGD with LDLR and Auto-PGD with LCW ∗ .

CGDuntarg outperformed the next best method, Auto-PGD

with LCW ∗ in 28 out of the 35 sets of attempts at ε = 4/255,

in 31 out of the 35 sets of attempts at ε = 8/255, and in

all 35 sets of attempts at ε = 16/255. More details can be

found in App. H.

8. Conclusion
In this work we improved a previously established white-

box, targeted evasion attack by using a new loss function.

We also proposed a yet stronger attack that learns to ap-

proach and explore the ε-boundary. We demonstrated the

efficacy of both the new loss function and the new attack

on two datasets (CIFAR10 and ImageNet), for multiple val-

ues of ε, and against multiple defenses; in all cases, our

methods outperformed the best of the attacks we compared

against, finding targeted adversarial examples more success-

fully while taking significantly less time to run. Finally,

we showed how to use our new attack method as a gen-

eral framework for attacks and demonstrated its utility by

instantiating it into a stronger untargeted attack.

Acknowledgments
This paper was supported in part by the Department of

Defense under contract FA8702-15-D-0002; by NSF grants

1801391, 2112562, and 2113345; by the National Security

Agency under award H9823018D0008; by the Maof prize

for excellent young faculty; and by Len Blavatnik and the

Blavatnik Family foundation.

References
Akhtar, N., Mian, A. S., Kardan, N., and Shah, M. Advances

in adversarial attacks and defenses in computer vision:

A survey. ArXiv, 2021. https://arxiv.org/abs/
2108.00401.

Athalye, A. and Carlini, N. On the robustness of the cvpr

2018 white-box adversarial example defenses. ArXiv,

abs/1804.03286, 2018.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated gra-

dients give a false sense of security: Circumventing de-

fenses to adversarial examples. In International confer-
ence on machine learning, 2018. https://arxiv.
org/abs/1802.00420.

Bai Li, Shiqi Wang, S. J. and Carin, L. Towards under-

standing fast adversarial training. ArXiv, abs/2006.03089,

2020.

Bonnet, B., Furon, T., and Bas, P. What if adversarial

samples were digital images? In IH&MMSEC, 2020.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Carlini, N. and Wagner, D. Towards evaluating the robust-

ness of neural networks. In IEEE Symposium on Secu-
rity and Privacy, volume 1, pp. 39–57, 2017a. https:
//arxiv.org/abs/1608.04644.

Carlini, N. and Wagner, D. Adversarial examples are not

easily detected: Bypassing ten detection methods. In

Proceedings of the 10th ACM workshop on artificial in-
telligence and security (AISec), 2017b.

Carmon, Y., Raghunathan, A., Schmidt, L., Liang, P., and

Duchi, J. C. Unlabeled data improves adversarial robust-

ness. In Conference on Neural Information Processing
Systems, 2019. https://arxiv.org/abs/1905.
13736.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial

robustness via randomized smoothing. In International
Conference on Machine Learning, 2019.

Croce, F. and Hein, M. Minimally distorted adversarial

examples with a fast adaptive boundary attack. In In-
ternational Conference on Machine Learning, 2020a.

https://arxiv.org/abs/1907.02044.

Croce, F. and Hein, M. Reliable evaluation of adversarial

robustness with an ensemble of diverse parameter-free at-

tacks. In International Conference on Machine Learning,

2020b. https://arxiv.org/abs/2003.01690.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti,

E., Flammarion, N., Chiang, M., Mittal, P., and Hein,

M. Robustbench: a standardized adversarial robustness

benchmark. arXiv preprint 2010.09670, June 2021. URL

https://arxiv.org/abs/2010.09670.

Cureton, E. E. The normal approximation to the

signed-rank sampling distribution when zero differ-

ences are present. In Journal of the American
Statistical Association, volume 62, pp. 1068–1069,

1967. https://www.tandfonline.com/doi/
abs/10.1080/01621459.1967.10500917.

Ding, G. W., Sharma, Y., Lui, K. Y. C., and Huang, R.

Mma training: Direct input space margin maximiza-

tion through adversarial training. In International Con-
ference on Learning Representations, 2020. https:
//openreview.net/forum?id=HkeryxBtPB.

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., and

Li, J. Boosting adversarial attacks with momentum. In

Conference on Computer Vision and Pattern Recognition,

2018. https://arxiv.org/abs/1710.06081.

Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B.

Detecting adversarial samples from artifacts. arXiv
preprint arXiv:1703.00410, 2017.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining

and harnessing adversarial examples. In International
Conference on Learning Representations, 2015. https:
//arxiv.org/abs/1412.6572.

Gowal, S., Uesato, J., Qin, C., Huang, P.-S., Mann, T., and

Kohli, P. An alternative surrogate loss for PGD-based

adversarial testing. arXiv:1910.09338, 2019.

Gowal, S., Qin, C., Uesato, J., Mann, T., and Kohli, P.

Uncovering the limits of adversarial training against

norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

Guo, C., Rana, M., Cisse, M., and Van Der Maaten, L. Coun-

tering adversarial images using input transformations. In

International Conference on Learning Representations,

2018.

He, W., Wei, J., Chen, X., Carlini, N., and Song, D. Ad-

versarial example defense: Ensembles of weak defenses

are not strong. In 11th {USENIX} workshop on offensive
technologies ({WOOT} 17), 2017.

Hendrycks, D., Lee, K., and Mazeika, M. Using pre-

training can improve model robustness and uncertainty.

In International Conference on Machine Learning, 2019.

https://arxiv.org/abs/1901.09960.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. In International Conference on Learning
Representations, 2015. https://arxiv.org/abs/
1412.6980.

Kumar, A., Levine, A., Goldstein, T., and Feizi, S. Curse

of dimensionality on randomized smoothing for certifi-

able robustness. In International Conference on Machine
Learning, 2020.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial

examples in the physical world. In International Con-
ference on Learning Representations Workshop, 2017a.

https://arxiv.org/abs/1607.02533.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial

machine learning at scale. In International Conference on
Learning Representations, 2017b. https://arxiv.
org/abs/1611.01236.

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and

Jana, S. Certified robustness to adversarial examples with

differential privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), 2019.

Liao, F., Liang, M., Dong, Y., Pang, T., Zhu, J., and Hu,

X. Defense against adversarial attacks using high-level

representation guided denoiser. 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.

1778–1787, 2018.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Ma, X., Li, B., Wang, Y., Erfani, S. M., Wijewickrema, S.,

Schoenebeck, G., Song, D., Houle, M. E., and Bailey, J.

Characterizing adversarial subspaces using local intrinsic

dimensionality. In International Conference on Learning
Representations, 2018.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and

Vladu, A. Towards deep learning models resistant to ad-

versarial attacks. In International Conference on Learn-
ing Representations, 2018. https://arxiv.org/
pdf/1706.06083.

Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B.

On detecting adversarial perturbations. In International
Conference on Learning Representations, 2017. https:
//arxiv.org/abs/1702.04267.

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. Deep-

fool: a simple and accurate method to fool deep neural

networks. In Conference on Computer Vision and Pat-
tern Recognition, 2016. https://arxiv.org/abs/
1511.04599.

Mosbach, M., Andriushchenko, M., Trost, T. A., Hein, M.,

and Klakow, D. Logit pairing methods can fool gradient-

based attacks. In NeurIPS 2018 Workshop on Security
in Machine Learning, 2018. https://arxiv.org/
abs/1810.12042.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,

Z. B., and Swami, A. The limitations of deep learning in

adversarial settings. In 2016 IEEE European Symposium
on Security and Privacy (EuroS P), pp. 372–387, 2016.

doi: 10.1109/EuroSP.2016.36.

Pratt, J. W. Remarks on zeros and ties in the wilcoxon signed

rank procedures. Journal of the American Statistical
Association, 54, 1959.

Raghunathan, A., Steinhardt, J., and Liang, P. Certified

defenses against adversarial examples. In International
Conference on Learning Representations, 2018. https:
//arxiv.org/abs/1801.09344.

Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F., Wiles,

O., and Mann, T. Fixing data augmentation to improve

adversarial robustness. arXiv preprint arXiv:2103.01946,

2021.

Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., and Madry,

A. Do adversarially robust imagenet models transfer

better? In Conference on Neural Information Processing
Systems, 2020. https://arxiv.org/abs/2007.
08489.

Samangouei, P., Kabkab, M., and Chellappa, R. Defense-

GAN: Protecting classifiers against adversarial attacks

using generative models. In International Conference on
Learning Representations, 2018.

Sehwag, V., Wang, S., Mittal, P., and Jana, S. Hydra:

Pruning adversarially robust neural networks. In Confer-
ence on Neural Information Processing Systems, 2020.

https://arxiv.org/abs/2002.10509.

Shafahi, A., Najibi, M., Ghiasi, A., Xu, Z., Dickerson,

J., Studer, C., Davis, L. S., Taylor, G., and Goldstein,

T. Adversarial training for free! In Conference on
Neural Information Processing Systems, 2019. https:
//arxiv.org/abs/1904.12843.

Song, Y., Kim, T., Nowozin, S., Ermon, S., and Kushman, N.

Pixeldefend: Leveraging generative models to understand

and defend against adversarial examples. In International
Conference on Learning Representations, 2018. https:
//arxiv.org/abs/1710.10766.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-

han, D., Goodfellow, I., and Fergus, R. Intriguing

properties of neural networks. In International Con-
ference on Learning Representations, 2014. https:
//arxiv.org/abs/1312.6199.

Tashiro, Y., Song, Y., and Ermon, S. Diversity can be trans-

ferred: Output diversification for white-and black-box

attacks. In Conference on Neural Information Processing
Systems, 2020. .

Uesato, J., O’Donoghue, B., van den Oord, A., and Kohli, P.

Adversarial risk and the dangers of evaluating against

weak attacks. International Conference on Machine
Learning, 2018. https://arxiv.org/abs/1802.
05666.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. Im-

proving adversarial robustness requires revisiting misclas-

sified examples. In International Conference on Learn-
ing Representations, 2020. https://openreview.
net/forum?id=rklOg6EFwS.

Wilcoxon, F. Individual comparisons by ranking methods.

Biometrics Bulletin, 1, 1945.

Wong, E. and Kolter, Z. Provable defenses against adver-

sarial examples via the convex outer adversarial polytope.

In International Conference on Machine Learning, 2018.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than

free: Revisiting adversarial training. In International
Conference on Learning Representations, 2020. https:
//arxiv.org/abs/2001.03994.

Wu, D., tao Xia, S., and Wang, Y. Adversarial weight

perturbation helps robust generalization. In Confer-
ence on Neural Information Processing Systems, 2020.

https://arxiv.org/abs/2004.05884.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., and Song,

D. X. Generating adversarial examples with adversarial

networks, 2018.

Xu, W., Evans, D., and Qi, Y. Feature squeezing: Detect-

ing adversarial examples in deep neural networks. In

The Network and Distributed System Security Symposium
(NDSS), 2018. https://arxiv.org/abs/1704.
01155.

Zhang, H., Chen, H., Xiao, C., Li, B., Boning, D. S.,

and Hsieh, C.-J. Towards stable and efficient train-

ing of verifiably robust neural networks. In Interna-
tional Conference on Learning Representations, 2020.

https://arxiv.org/abs/1906.06316.

A. The CGD algorithm

Algorithm 1 CGD

Input: x, model(·), niterations, ε, threshold,

checkpoints, target

1: x′ ← clip(x+ 2 ∗ rand(x.shape)− 1)
2: w ← 0.1
3: bndupper

i,j ,k (x ) ← min(1, xi,j,k + ε)

4: bnd lower
i,j ,k (x ) ← max(0, xi,j,k − ε)

5: for iteration ← 1 to niterations do
6: if iteration ∈ checkpoints then
7: threshold ← threshold/2
8: end if
9: Z ← model(x′)

10: Lcls ← ∑
i ReLU(Zi + δ − Zt)

11: Overruni,j,k(x
′) ← ReLU(x′

i,j,k−bndupper
i,j ,k (x ))+

ReLU(bnd lower
i,j ,k (x )− x′

i,j,k)

12: Lbnd ← ∑
i,j,k(Overruni,j,k(x

′)2)
13: if ∃i, j, k ∈ Overruni,j,k(x

′) > threshold then
14: w ← w/2
15: end if
16: loss ← w ∗ Lcls + (1− w) ∗ Lbnd

17: gradients ← ∂loss
∂x′

18: if iteration == 1 then
19: x′ ← clip(x′ − ε ∗ sign(gradients))
20: else
21: changes ← Adamoptimizer(gradients)
22: x′ ← x′ − changes
23: end if
24: xtest ← clip(round(x′ ∗ 255)/255)
25: if argmax(model(xtest)) == target then
26: Returnxtest

27: end if
28: end for

Return failed attack

Alg. 1 shows the pseudocode of the Constrained Gradient
Descent (CGD) algorithm. The inputs to the algorithm are:

the benign example x; the model(·) function that emits the

logits for given inputs; the number of iterations niterations;

the ε distance; a set of constants tuned per model, threshold
and checkpoints; and the target class target. We allow the

tuning of threshold and checkpoints per model because

we are running white-box attacks and hence the adversary

has the freedom to choose the attack’s parameters per model.

All other parameters do not require tuning per model. In

line 1, we add a random initial perturbation to the benign

sample, moving it to the ε boundary. In lines 3 and 4 of

the algorithm, before we start the iterations, we compute

bndupper (x ) and bnd lower (x ). From line 6 to 8, we adjust

the threshold based on pre-set constants. We compute the

logits Z of the model regarding the current perturbation

x′ in line 9 and compute the MD loss in line 10. Then



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

we compute the Overrun in line 11 and the Lbnd in line

12, which motivates the adversarial example to move to be

within the �∞ distance limit. From line 13 to line 15, we

adjust the weight w, and then use this weight to compute

the total loss as a weighted sum in line 16. We compute

the gradients from the loss function in line 17 and apply

changes from line 18 to line 23. In the first iteration, the

candidate perturbation is pushed by a distance of ε to more

quickly reach the boundary. In later iterations, the Adam

optimizer is used to reduce fluctuation. From line 24 to 27

(highlighted in pink), we perform a normal rounding check.

This rounding check enforces the successful adversarial

example to be both inside the �∞ distance limit and in 8-bit

RGB format. When the candidate perturbation is very close

to the ε boundary, clipping has minimal effects on the logits,

Lcls , and probabilities assigned to classes, meaning that an

image just outside the ε boundry is rounded to become both

within the ε boundary and potentially a successful attack.

B. Wilcoxon Signed-Rank Test
The Wilcoxon signed-rank test (Wilcoxon, 1945), is a non-

parametric test to examine the relationship between two

related paired samples. In our experiements, we ran one-

sided Wilcoxon signed-rank tests to verify if one set of

samples is greater than another with statistical significance.

While the Wilcoxon signed-rank test assumes that the two

sets differ on each pair of samples, in our case, the samples

are equal in some pairs. Previous work suggests a mitigation

to enable using the Wilcoxon signed-rank test in such cases:

using an adjusted normal approximation of the test statistic

of the Wilcoxon signed-rank test instead of using the stan-

dard test statistic to compute the p-value (Cureton, 1967),

and using the pairs that are equal to produce the rankings

but excluding them afterwards (Pratt, 1959). This approach

requires more than 25 independent trials; our data satisfiy

this requirement. In addition, to account for the multiple

tests, we always used Bonferroni correction to adjust the

confidence level α.

C. Measurement of Changes in Predictions
As we described in §3, we used the number of times that

the prediction was changed to a certain class before the per-

turbation first succeeds as a metric to capture how often the

undesirable behavior (mentioned in §3.1) of the CW loss

occurs. We used 512 images pertaining to a diversity of

classes from CIFAR10, and perturbed them while targeting

randomly picked classes. We ran Auto-PGD with ε values

from 0.1/255 to 32/255 by every 0.1/255. The results for

Auto-PGD with the CW loss are shown in Figs. 7–8, while

the results for Auto-PGD with the MD loss are shown in

Figs. 9–10. Against both DSL+20 (Ding et al., 2020) and

WRK20 (Wong et al., 2020), the MD loss reduced the maxi-

mum number of times that the prediction was changed to a

class. We also ran a Wilcoxon signed-rank test (see App. B)

to determine whether the differences between the losses

are statistically significant. Specifically, we conducted 320

statistical tests on each defense, for the 320 different values

of ε we used. To account for the multiple tests, we used

Bonferroni correction to adjust the confidence level α to

.05/320 = 0.00015625. We found that for 203 out of 320

values of ε against DSL+20 and for 309 out of 320 values

of ε against WRK20, the maximum number of times that

the prediction was changed to a class is statistical signif-

icantly smaller when using the MD loss compared to the

CW loss. Notably, this maximum number of changes is

smaller when using the MD loss for every value of ε in

[0.8/255, 16.3/255] against DSL+20, and for every value

of ε in [0.7/255, 27.3/255] against WRK20. Both ranges

include values of ε commonly used in �∞ attacks.

Figure 7: The maximum number of times that the prediction

was changed to a class, throughout the process of perturbing

each of the 512 image before success using Auto-PGD with

CW loss against DSL+20.

D. More Evaluation Setup for Targeted
Attacks

In this section, we provide more detail about how we ex-

ecuted reproducible attacks to enable meaningful and fair

comparisons.

D.1. Datasets

In this work, we used the CIFAR10 and ImageNet datasets—

two standard datasets that are commonly used for classifica-

tion tasks. Both datasets contain colored images of objects

in 8-bit RGB format as described in §2.1. Each image in



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 8: The maximum number of times that the prediction

was changed to a class, throughout the process of perturbing

each of the 512 image before success using Auto-PGD with

CW loss against WRK20.

Figure 9: The maximum number of times that the prediction

was changed to a class, throughout the process of perturbing

each of the 512 image before success using Auto-PGD with

MD loss against DSL+20.

CIFAR10 has 32× 32 pixels, whereas we resized each im-

age in ImageNet to have 224 × 224 pixels. We evaluated

attacks on the test set of the datasets. CIFAR10 has 10,000

images in its test set and ImageNet has 50,000.

Figure 10: The maximum number of times that the pre-

diction was changed to a class, throughout the process of

perturbing each of the 512 image before success using Auto-

PGD with MD loss against WRK20.

D.2. Benchmarks

Many defense strategies have been explored. For example,

different input transformations have been proposed to re-

move adversarial perturbations from inputs prior to classifi-

cation (e.g., (Guo et al., 2018; Liao et al., 2018; Samangouei

et al., 2018; Xu et al., 2018)). Unfortunately, the majority

of these defenses can be evaded by adaptive attacks that

craft adversarial perturbations that survive the transforma-

tions (Athalye & Carlini, 2018; Athalye et al., 2018; He

et al., 2017). Certain defenses attempt to detect adversar-

ial examples (e.g., (Feinman et al., 2017; Ma et al., 2018;

Metzen et al., 2017)). The majority of these defenses are

unable to classify adversarial examples correctly, when de-

tected. Moreover, researchers have also found that detection

methods can often be evaded by adaptive attacks (Athalye

et al., 2018; Carlini & Wagner, 2017b). Finally, certified de-

fenses provide provable accuracy guarantees on adversarial

examples (e.g., (Cohen et al., 2019; Lecuyer et al., 2019;

Raghunathan et al., 2018; Wong & Kolter, 2018; Zhang

et al., 2020)). However, these defenses are often effective

for perturbations of smaller norms than adversarial train-

ing (Lecuyer et al., 2019), or are ineffective against the threat

models we study (e.g., high-dimensional perturbations with

bounded �∞-norms) (Bai Li & Carin, 2020; Kumar et al.,

2020).

As we described in §2.3 and §5, adversarial training is

regarded as ne of the strongest defenses (Akhtar et al.,

2021), and hence we used seven pre-established adver-

sarially trained models for CIFAR10: CRS+19 (Car-



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

mon et al., 2019), DSL+20 (Ding et al., 2020),

HLM19 (Hendrycks et al., 2019), SWM+20 (Sehwag et al.,

2020), WRK20 (Wong et al., 2020), WXW20 (Wu et al.,

2020) and WZY+20 (Wang et al., 2020). All of these mod-

els were trained with ε = 8/255 and are publicly available

via RobustBench (Croce et al., 2021), a standard library

for robustness evaluation of neural networks. We selected

the models using the following criteria: they rank highly on

robustness in the public RobustBench evaluation; they

have a PyTorch implementation; and they fit into the 11GB

memory of our NVIDIA GeForce RTX 2080 GPUs. These

models have have also been found to be robust in evaluations

other than RobustBench’s (Gowal et al., 2020; Rebuffi

et al., 2021). The seven models can be categorized into

four non-exclusive groups: some propose surrogate loss

functions (Ding et al., 2020; Wang et al., 2020; Wu et al.,

2020), some use pre-training or semi-supervised learning

techniques (Carmon et al., 2019; Hendrycks et al., 2019;

Wang et al., 2020), some try to wisely tune the training

process (Wong et al., 2020), and some apply pruning to

their models (Sehwag et al., 2020). Similarly to prior work

(e.g., (Song et al., 2018; Wong et al., 2020)), we evaluated at-

tacks against these models with ε = 8/255 and 16/255. We

also found two versions of SIE+20 (Salman et al., 2020), pre-

established and publicly available adversarially trained mod-

els on ImageNet—one adversarially trained with ε = 4/255
and another with ε = 8/255. We evaluated attacks against

each version of this model with the same ε with which it

was trained.

D.3. Experiment Setup

We observed that some PyTorch functions could

yield unreproducible results in different runs. To

keep our measurement results reproducible, we set

torch.backends.cudnn.benchmark to False
and torch.backends.cudnn.deterministic to

True. In addition, we found that PGD attacks, includ-

ing Auto-PGD, always start with a random perturbation and

this could slightly influence the result. Hence, we ran these

attacks multiple times, each time with a different random

seed. We also fixed the batch size so that with the same

random seed we got the same random initial perturbation.

We used a batch size of 512 images for CIFAR10 and a

batch size of 10 images for ImageNet. In addition to the

random initialization, we also picked a random target class

for each image in the testing sets of datasets which we used

to evaluate attacks. Due to limited computing resources, we

were not able to run attacks targeting every incorrect class,

especially for ImageNet which has 1,000 classes. The target

class was intentionally selected to be different from the la-

bel, the correct class of the image. We chose the difference

target offset between the target class and the correct class,

using the following formula:

target offset i = floor(rand()∗ (Nclasses−1))+1 (13)

where i is the index of images in the testing set, i ∈
[0, 10000) for CIFAR10 and i ∈ [0, 50000) for ImageNet,

and Nclasses is the number of classes, 10 for CIFAR10 and

1,000 for ImageNet. The rand() function generates a float

∈ [0, 1). The target class was

ti = (yi + target offset i) mod Nclasses (14)

for i ∈ [0, Nimages). We only used one random seed (specif-

ically, 0) for the target offset in CIFAR10, as on average

there are 10000/(9 ∗ 10) images in each source-target class

pair, whereas we used five random seeds (specifically, 0–4)

for the target offset of the ImageNet dataset, as 50,000

images cannot cover all the 999×1000 source-target class

pairs. We also observed that some class pairs in ImageNet

(e.g., “African crocodile” and “American alligator”) are

closer than other class pairs (e.g., “African crocodile” and

“thunder snake”), and are significantly more easy to perturb

into each other. Random numbers were generated as a vec-

tor of length 10,000 for CIFAR10 and 50,000 for ImageNet.

Hence, the target offset was the same for the same image

with the same random seed, but target offsets was not the

same across all images when we used the same random

seed.

E. Performance of Targeted Attacks
As we demonstrated in §6.1, on average, Auto-PGD with

MD loss finds more adversarial examples than Auto-PGD

with all three other loss functions, and CGD attacks per-

forms better than Auto-PGD with MD loss. We observe

similar results across datasets, values of ε, and defenses, as

we show in Figs. 11–13.

F. Statistical Tests On the Performance of
Targeted Attacks

As we described in §6.2 and App. B, we used one-sided

Wilcoxon signed-rank tests(Wilcoxon, 1945) to compare the

performance between Auto-PGD with MD loss and CGD,

whose results are shown in Tab. 2. We also compared the

performance between CGD and the best performing attack

among Auto-PGD using the DLR loss, CW loss, and CE

loss, whose results are shown in Tab. 3. We conducted 16

statistical tests in each group, for the 16 different combina-

tions we had. Thus, to account for the multiple tests, we

used Bonferroni correction to adjust the confidence level α
to .05/16 = 0.003125.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 11: This figure shows the relative improvement in

the number of adversarial examples found by attacks on

different defenses compared to the worst-performing attack.

Experiments were performed using 50,000 images from the

testing set of ImageNet. We ran attacks using ε = 8/255
against SIE+20 (Salman et al., 2020), five different random

initial perturbations with seeds 0–4, and five different ran-

dom target offsets with seeds 0–4. The result is normalized

by the mean of the worst performing method for each target

offset.

G. More Evaluation Setup for Untargeted
Attacks

We evaluated untargeted attacks on the CIFAR10 dataset.

We use the �∞ distance metric for these attacks as we did

for targeted attacks. We use three values of ε: 4/255, 8/255,

and 16/255. We use the same seven defenses (Carmon et al.,

2019; Ding et al., 2020; Hendrycks et al., 2019; Sehwag

et al., 2020; Wang et al., 2020; Wong et al., 2020; Wu et al.,

2020) as we did in App. D, again trained with ε = 8/255
from robust-bench (Croce et al., 2021), as benchmarks to

evaluate untargeted attacks. We evaluated untargeted attacks

by the number of adversarial examples they found within

the �∞ distance limit. We ran all attacks, again with 100

iterations as in its default configuration. We ran each attack

with five different random initial perturbations, using seeds

0–4, and a batch size of 512.

H. Performance of Untargeted Attacks
As we introduced in §7.2, on average, CGDuntarg performed

better than Auto-PGD with LDLR and Auto-PGD with

LCW ∗ . Figs. 14–16 show similar results when we use dif-

ferent values of ε.

Figure 12: This figure shows the relative improvement in

the number of adversarial examples found by attacks on

different defenses compared to the worst-performing attack.

Experiments were performed using 50,000 images from the

testing set of ImageNet. We ran attacks using ε = 4/255
against SIE+20 (Salman et al., 2020), five different random

initial perturbations with seeds 0–4, and five different ran-

dom target offsets with seeds 0–4. The result is normalized

by the mean of the worst performing method for each target

offset.

I. Uniqueness of Attacks
As we described §6.4, among the attack methods we tried,

each of them found a slightly different set of successful

adversarial examples, and each attack found some adversar-

ial examples which any of the other methods did not. We

observe the same phenomena across attack methods, values

of ε, defenses, and datasets, as shown in Figs. 17–33.

At the same time, when the same attack method is given

different random initial perturbations, the attack always

found a slightly different set of adversarial examples, within

the 20 random initial perturbations we tried. We observe the

same phenomena across attack methods, values of ε, and

defenses on CIFAR10, as shown in Figs. 34–46.

J. Gradient Based Quantization
Bonnet et al. proposed gradient based quantization, an ap-

proach to round the current perturbation along the sign of

the gradients (Bonnet et al., 2020). We ran experiments with

gradient-based quantization, using the formula

xtest = round(x′
i ∗255+sign(

∂L(x′
i, t)

∂x′
i

)∗ .499999)/255



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 13: This figure shows the relative improvement in

the number of adversarial examples found by attacks on

different defenses compared to the worst-performing attack.

Experiments were performed using 10,000 images from the

testing set of CIFAR10. We ran attacks using ε = 8/255,

20 different random initial perturbations with seeds 0–19,

and a fixed random target offset with seed 0. The result is

normalized by the mean of the worst performing method

against each model.

in addition to the quantization described in §2.1, and de-

clared an attack successful if either of the quantizations

produced a perturbation that caused the model to predict the

target class in any iteration. We ran all attacks at ε = 16/255
against defenses on CIFAR10, with the same setup as de-

scribed in §5. The results are shown in Fig. 47. With an

additional 8.9–13.1% time cost (measured using the same

approach as in §6.3), the attacks succeed only by an addi-

tional 0.00–0.04%; the relative relationship between success

rates of different attacks remains the same.

Table 2: This table shows the result of the Wilcoxon signed

rank test with an adjusted normal approximation for the

null hypotheses that Auto-PGD using the MD loss per-

formed equal or better than CGD in each combination

of value of ε, dataset, and defense that we tried. The

defenses we used include DSL+20 (Ding et al., 2020),

WRK20 (Wong et al., 2020), HLM19 (Hendrycks et al.,

2019), WZY+20 (Wang et al., 2020), SWM+20 (Sehwag

et al., 2020), CRS+19 (Carmon et al., 2019), WXW20 (Wu

et al., 2020), and SIE+20 (Salman et al., 2020). We follow

the common practice to include the Wilcoxon statistics along

with the p-values. Test results where p-values are smaller

than α are shown in bold. We reject the null hypothesis in

11 of the 16 tests.

dataset defense l∞ distance limit
ε = 8/255 ε = 16/255

W statistic p value W statistic p value
DSL+20 2456346.0 2e-10 5284845.5 0.09
WRK20 518476.5 1e-6 2539938.5 3e-8

CIFAR10 HLM19 259521.0 0.02 2377428.0 0.02
WZY+20 279327.0 0.07 3297549.0 2e-12
SWM+20 259521.0 4e-3 2247924.0 2e-5
CRS+19 299366.5 3e-3 2526231.0 1e-5
WXW20 249649.0 3e-3 1788273.0 2e-9

ε = 4/255 ε = 8/255
ImageNet W statistic p value W statistic p value

SIE+20 9621163.5 7e-12 22184577.0 2e-13

Figure 14: This figure shows the relative improvement in the

number of adversarial examples found by untargeted attacks

on different defenses compared to the worst-performing

attack. Experiments were performed using 10,000 images

from the testing set of CIFAR10. We ran attacks using

ε = 4/255, and five different random initial perturbations

with seeds 0–4. The result is normalized by the mean of the

worst performing method against each model.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Table 3: This table shows the result of the Wilcoxon signed

rank tests with an adjusted normal approximation for the

null hypotheses that the best performance among Auto-

PGD using the DLR loss, CW loss and CE loss performed

equal or better than the performance of CGD on each im-

age across all values of ε, datasets, and defenses. The

defenses we used include DSL+20 (Ding et al., 2020),

WRK20 (Wong et al., 2020), HLM19 (Hendrycks et al.,

2019), WZY+20 (Wang et al., 2020), SWM+20 (Sehwag

et al., 2020), CRS+19 (Carmon et al., 2019), WXW20 (Wu

et al., 2020), and SIE+20 (Salman et al., 2020). We follow

the common practice to include the Wilcoxon statistics along

with the p-values. Test results where p-values are smaller

than α are shown in bold. We reject the null hypothesis in

all 16 tests.

dataset defense l∞ distance limit
ε = 8/255 ε = 16/255

W statistic p value W statistic p value
DSL+20 2311330.5 1e-6 6709608.5 7e-10
WRK20 657798.5 3e-8 3576641.5 7e-26

CIFAR10 HLM19 538492.0 2e-8 3271871.0 4e-14
WZY+20 508499.5 2e-5 4021878.0 9e-25
SWM+20 508657.5 1e-8 2540675.0 2e-9
CRS+19 508587.0 1e-6 2731369.5 9e-7
WXW20 498731.5 1e-8 2004237.0 1e-13

ε = 4/255 ε = 8/255
ImageNet W statistic p value W statistic p value

SIE+20 19071030.0 3e-55 54798304.5 1e-168

Figure 15: This figure shows the relative improvement in the

number of adversarial examples found by untargeted attacks

on different defenses compared to the worst-performing

attack. Experiments were performed using 10,000 images

from the testing set of CIFAR10. We ran attacks using

ε = 8/255, and five different random initial perturbations

with seeds 0–4. The result is normalized by the mean of the

worst performing method against each model.

Figure 16: This figure shows the relative improvement in the

number of adversarial examples found by untargeted attacks

on different defenses compared to the worst-performing

attack. Experiments were performed using 10,000 images

from the testing set of CIFAR10. We ran attacks using

ε = 16/255, and five different random initial perturbations

with seeds 0–4. The result is normalized by the mean of the

worst performing method against each model.

Figure 17: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set of

CIFAR10 using ε = 8/255 against the DSL+20 (Ding et al.,

2020) defense, rounded to whole numbers.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 18: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set

of CIFAR10 using ε = 8/255 against the WRK20 (Wong

et al., 2020) defense, rounded to whole numbers.

Figure 19: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set

of CIFAR10 using ε = 16/255 against the WRK20 (Wong

et al., 2020) defense, rounded to whole numbers

Figure 20: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set of

CIFAR10 using ε = 8/255 against the HLM19 (Hendrycks

et al., 2019) defense, rounded to whole numbers.

Figure 21: This image shows the average number of success-

ful adversarial examples found by attack A but not by attack

B in each set of 10,000 attempts on the testing set of CI-

FAR10 using ε = 16/255 against the HLM19 (Hendrycks

et al., 2019) defense, rounded to whole numbers.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 22: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set

of CIFAR10 using ε = 8/255 against the WZY+20 (Wang

et al., 2020) defense, rounded to whole numbers.

Figure 23: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B each set of 10,000 attempts on the testing set of

CIFAR10 using ε = 16/255 against the WZY+20 (Wang

et al., 2020) defense, rounded to whole numbers.

Figure 24: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set of

CIFAR10 using ε = 8/255 against the SWM+20 (Sehwag

et al., 2020) defense, rounded to whole numbers.

Figure 25: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set of

CIFAR10 using ε = 16/255 against the SWM+20 (Sehwag

et al., 2020) defense, rounded to whole numbers.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 26: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set of

CIFAR10 using ε = 8/255 against the CRS+19 (Carmon

et al., 2019) defense, rounded to whole numbers.

Figure 27: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set of

CIFAR10 using ε = 16/255 against the CRS+19 (Carmon

et al., 2019) defense, rounded to whole numbers.

Figure 28: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set of

CIFAR10 using ε = 8/255 against the WXW20 (Wu et al.,

2020) defense, rounded to whole numbers.

Figure 29: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 10,000 attempts on the testing set of

CIFAR10 using ε = 16/255 against the WXW20 (Wu et al.,

2020) defense, rounded to whole numbers.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 30: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 50,000 attempts on the testing set

of ImageNet using ε = 4/255 against the SIE+20 (Salman

et al., 2020) defense, rounded to whole numbers.

Figure 31: This image shows the average number of suc-

cessful adversarial examples found by attack A but not by

attack B in each set of 50,000 attempts on the testing set

of ImageNet using ε = 8/255 against the SIE+20 (Salman

et al., 2020) defense, rounded to whole numbers.

Figure 32: This is the average number of successful adver-

sarial examples found by an attack but not by any of other

attack methods, against each defense in each set of 10,000

attempts on the testing set of CIFAR10 using ε = 8/255,

rounded to whole numbers.

Figure 33: This is the average number of successful adver-

sarial examples found by an attack but not by any other

attack methods, against the SIE+20 (Salman et al., 2020)

defense in each set of 50,000 attempts on the testing set of

ImageNet, no decimals are kept.

Figure 34: The image shows the number of adversarial

examples each of the attacks found when they are allowed

to use the specified number of random initial perturbations,

on all 10,000 images from the testing set of CIFAR10, with

ε = 8/255, against the DSL+20 (Ding et al., 2020) defense.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 35: The image shows the number of adversarial

examples each of the attacks found when they are allowed to

use the specified number of random initial perturbations, on

all 10,000 images from the testing set of CIFAR10, with ε =
16/255, against the WRK20 (Wong et al., 2020) defense.

Figure 36: The image shows the number of adversarial

examples each of the attacks found when they are allowed

to use the specified number of random initial perturbations,

on all 10,000 images from the testing set of CIFAR10, with

ε = 8/255, against the WRK20 (Wong et al., 2020) defense.

Figure 37: The image shows the number of adversarial

examples each of the attacks found when they are allowed

to use the specified number of random initial perturbations,

on all 10,000 images from the testing set of CIFAR10, with

ε = 16/255, against the HLM19 (Hendrycks et al., 2019)

defense.

Figure 38: The image shows the number of adversarial

examples each of the attacks found when they are allowed

to use the specified number of random initial perturbations,

on all 10,000 images from the testing set of CIFAR10, with

ε = 8/255, against the HLM19 (Hendrycks et al., 2019)

defense.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 39: The image shows the number of adversarial

examples each of the attacks found when they are allowed to

use the specified number of random initial perturbations, on

all 10,000 images from the testing set of CIFAR10, with ε =
16/255, against the WZY+20 (Wang et al., 2020) defense.

Figure 40: The image shows the number of adversarial

examples each of the attacks found when they are allowed to

use the specified number of random initial perturbations, on

all 10,000 images from the testing set of CIFAR10, with ε =
8/255, against the WZY+20 (Wang et al., 2020) defense.

Figure 41: The image shows the number of adversarial

examples each of the attacks found when they are allowed

to use the specified number of random initial perturbations,

on all 10,000 images from the testing set of CIFAR10, with

ε = 16/255, against the SWM+20 (Sehwag et al., 2020)

defense.

Figure 42: The image shows the number of adversarial

examples each of the attacks found when they are allowed

to use the specified number of random initial perturbations,

on all 10,000 images from the testing set of CIFAR10, with

ε = 8/255, against the SWM+20 (Sehwag et al., 2020)

defense.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 43: The image shows the number of adversarial

examples each of the attacks found when they are allowed

to use the specified number of random initial perturbations,

on all 10,000 images from the testing set of CIFAR10, with

ε = 16/255, against the CRS+19 (Carmon et al., 2019)

defense.

Figure 44: The image shows the number of adversarial

examples each of the attacks found when they are allowed to

use the specified number of random initial perturbations, on

all 10,000 images from the testing set of CIFAR10, with ε =
8/255, against the CRS+19 (Carmon et al., 2019) defense.

Figure 45: The image shows the number of adversarial

examples each of the attacks found when they are allowed

to use the specified number of random initial perturbations,

on all 10,000 images from the testing set of CIFAR10, with

ε = 16/255, against the WXW20 (Wu et al., 2020) defense.

Figure 46: The image shows the number of adversarial

examples each of the attacks found when they are allowed

to use the specified number of random initial perturbations,

on all 10,000 images from the testing set of CIFAR10, with

ε = 8/255, against the WXW20 (Wu et al., 2020) defense.



Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Figure 47: This figure shows the relative improvement in

the number of adversarial examples found by attacks on

different defenses compared to the worst-performing attack,

when all attacks are allowed to perform one more forward

propagation to verify if a gradient based quantized version of

the current perturbation would lead to success. Experiments

were performed using 10,000 images from the testing set of

CIFAR10. We ran attacks using ε = 16/255, 20 different

random initial perturbations with seeds 0–19, and a fixed

random target offset with seed 0. The result is normalized

by the mean of the worst performing method against each

model.


