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Abstract 

 
The mass transportation distance rank histogram (MTDRh) was developed to assess the reliability of any given 
scenario generation process for a two-stage, risk-neutral stochastic program.  Reliability is defined loosely as goodness 
of fit between the generated scenario sets and corresponding observed values over a collection of historical instances.  
This graphical tool can diagnose over- or under-dispersion and/or bias in the scenario sets and support hypothesis 
testing of scenario reliability.  If the risk-averse objective is instead to minimize CVaR of cost, the only important, or 
effective, scenarios are those that produce cost in the upper tail of the distribution at the optimal solution.  We describe 
a procedure to adapt the MTDRh for use in assessing the reliability of scenarios relative to the upper tail of the cost 
distribution.  This adaptation relies on a conditional probability distribution derived in the context of assessing the 
effectiveness of scenarios.  For a risk-averse newsvendor formulation, we conduct simulation studies to systematically 
explore the ability of the CVaR-adapted MTDRh to diagnose different ways that scenario sets may fail to capture the 
upper tail of the cost distribution near optimality.  We conjecture that, as with the MTDRh and its predecessor 
minimum spanning tree rank histogram, the nature of the mismatch between scenarios and observations can be 
observed according to the non-flat shape of the rank histogram.  On the other hand, scenario generation methods can 
be calibrated according to uniform distribution goodness of fit to the distribution of ranks. 
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1.  Introduction 
Stochastic programming is a technique for optimization under uncertainty in which the uncertain parameters of a 
mathematical program are modeled as random variables. In two-stage stochastic programs, decisions are classified 
into first-stage decisions, which must be made before the realizations of the random variables are known, and second-
stage ones that can provide recourse to the realizations observed.  To compute optimal first-stage solutions, it is usually 
necessary to generate probabilistic scenarios for the uncertain parameter values.  This task amounts to forming a 
discrete approximation of the random variables’ joint distribution.  If the resulting set of scenarios is too large, a 
subsequent step of scenario reduction may be used to find a coarser approximation.   
 
The quality of the solution found, which is ideally measured in terms of closeness of its objective value (evaluated 
according to the true joint distribution) to that of the true optimal solution, depends on how well the probabilistic 
scenarios represent the true distribution.  Under the risk-neutral objective to minimize expected cost, it is well known 
that an upper bound on the cost error is minimized by employing a set of scenarios with minimal Wasserstein (a.k.a., 
mass transportation) distance to the true distribution.  However, the true distribution is itself a model of the uncertain 
future outcomes.  Moreover, in applications of stochastic programming, researchers have observed that scenario sets 
formed by Wasserstein-based scenario reduction of large samples are outperformed by using heuristic scenario 
reduction methods that employ the cost function explicitly. The data-driven optimization philosophy also suggests 
that observational data on the uncertain parameter values should be exploited to the greatest extent possible. 
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This work is aimed at applications in which similar instances of a problem are to be solved continually and 
observational data are available for a collection of past instances. We define the reliability of a scenario generation 
process as the correspondence between the scenario probabilities and the relative frequencies of corresponding 
observations over these past instances [1]. The mass transportation distance rank histogram (MTDRh) was developed 
to assess the reliability of a scenario generation process for a two-stage, risk-neutral stochastic program.  By comparing 
the scenarios generated for a collection of historical instances with the corresponding observed values, this tool can 
diagnose bias or a dispersion mismatch in the scenario sets. If the risk-averse objective is instead to minimize 
conditional value-at-risk (CVaR) of cost, the only important scenarios are those that produce cost in the upper tail of 
the distribution at the optimal solution.  The goal of the experiments described in this paper is to test the ability of a 
CVaR-adapted MTDRh to diagnose different ways that scenario sets may fail to capture the upper tail of the cost 
distribution near optimality.  
 

2.   Problem Description 
The general problem notation is adapted from [2]. Suppose the problem is to ( )[ ]min , ,

x X
CVaR G xα ξ

∈
the expected cost 

in the upper ( )1 α− -probability tail of the cost distribution. We have a collection of m instances, for each of which 

we have generated n scenarios.  For 1, ,i m= … , let { }1 2, , ,i i i inξ ξ ξΞ =   be the set of scenarios for instance i, where 

ijξ  has probability ijP  and 
1

1
n

ijj
P

=
=∑ , and let 0iξ  be the observed value of ξ  in instance i.  

 
For simplicity of solution, we focus on a newsvendor model, where the goal is to maximize the CVaR of profit.  We 
reformulate the model of [3], simplified by removing the price-dependence of demand, as a risk-averse cost 
minimization where x is the order quantity and ξ  is the uncertain demand for the product.  Denoting the parameters 
as c = unit ordering cost, s = salvage value, and p = selling price (p > 0c s> ≥ ), the cost is given by: 
 
 ( ) { } ( ) ( )( ) ( ), min ,G x cx p x s x p s x p c xξ ξ ξ ξ+ +

= − − − = − − − −  ,  (1) 

where { }max 0,z z+ = . The authors of [3] show that ( )( ) ( )( )* 1 1x F p c p sα−= − − − , where ( )F ⋅  is the 

demand distribution function; i.e., the critical fractile of demand is simply multiplied by 1 α−  to minimize CVaR 
rather than expectation of cost (note that if α  = 0 the CVaR is equivalent to expectation). We assume the objective 
function parameters are fixed, while each instance has a different set of scenarios.  That is, each day the newsvendor 
confronts the same economic situation but generates a new set of scenarios to approximate the demand distribution, 
and records the observed demand after the fact. 
 
3.  Background 
The MTDRh was introduced in [4, 5] to assess wind power scenario reliability and its relationship to the quality of 
solutions to a stochastic unit commitment formulation for short term power system planning.  The R package [6], 
coupled with a discrete goodness-of-fit test for uniformity of the ranks, has been employed to tune parameter 
estimation methods for simulating returns of stock indices to generate scenarios for financial asset allocation [7, 8].  
  
In these and many other applications, risk-neutral objectives have been replaced or combined with CVaR as a coherent 
and tractable risk measure for stochastic programming (see, for example, [9]).  However, some pitfalls of scenario 
generation for use in CVaR formulations have been noted.  Because the tail of the cost distribution is difficult to 
represent accurately, large numbers of scenarios may be required [10, 11] to avoid “fragile” solutions [12], and 
standard scenario generation methods may fail to represent risk accurately [13].  A recently developed scenario 
reduction approach for risk-averse stochastic programming [2] that uses the concept of effective scenarios; i.e., those 
whose removal from the problem lead to changes in the optimal objective value, forms the basis for the reliability 
assessment method in this paper. 
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4.  Approach  
For each instance, i, we use iΞ  and its distribution iP

⋅
 to solve the problem and obtain an optimal solution, *

ix . The 
corresponding set of effective scenarios is defined as: 
 
 ( ) ( ){ }* * *: , ,i i i iD G x VaR G xαξ ξ= ∈Ξ ≥ ⋅   . (2) 

The effective scenarios are the subset that that determine the CVaR at optimality. We also partition the scenarios: 
( ) ( ){ }* * *: , ,i i i iD G x VaR G xαξ ξ= ∈Ξ < ⋅   , ( ) ( ){ }* * *: , ,i i i iE G x VaR G xαξ ξ= ∈Ξ = ⋅   , ( )* * *\i i i iF D E= Ξ ∪ . 

Then we revise the scenario probabilities to *ˆ 0,ij iP j D= ∈ ; ( ) *ˆ 1 ,ij ij iP P j Fα= − ∈ ; and

( ) ( )( )*

* *
,ˆ 1 1

i
ij ij i ij F

P P E j Eα α
∈

= − − − ∈∑ . (Note this last expression is a special case of the third line of (4.10) 

in [2]).  We use the revised probabilities to construct the MTDRh. The scenario set for instance i is replaced by the 
corresponding set of values of ( )* , , 1,i ijG x j nξ =  , and the observation for instance i is replaced by ( )*

0,i iG x ξ . 
 
In our numerical experiment, we simulated m = 200 instances, with n = 200 scenarios randomly generated for each; 
all from Normal distributions. We fixed the values of selling price, purchase cost and salvage cost for each instance 
equal to p = 15, c = 5, and s = 1, respectively. We performed the numerical studies considering values for α  of 0.5, 
0.75, and 0.9. To test the ability of the MTDrh to identify whether the scenarios represented the tail of the cost 
distribution accurately, we generated all observations from the same standard normal distribution but systematically 
varied the parameters of the simulated scenario distribution. The steps of the simulation algorithm are summarized as:  
 
Repeat steps 1 and 2 for { }0.5,  0.75, 0.9α ∈ , { }0,  0.5, 1A∈ , and { }0.3,  0.5, 0.8, 1, 2, 5B∈ : 

1. For i = 1, …, m: 
Simulate n scenarios for demand from ( ),N A Bµ σ= = ; 

Simulate observed demand from ( )0,1N ; 

Solve for *

ix  and modify probabilities as explained in Section 4. 
2. Construct the MTDrh, and compute p-values for a Cramér-von Mises test of uniformity. 

 
5.  Results 
Figures 1-3 depict panels of histograms for each value of α. All scenarios and observations are generated from Normal 
distributions. Observations are generated from a standard Normal distribution throughout, but scenarios are generated 
from Normal distributions with the 18 combinations of A and B. The rows represent the three mean values of the 
scenario distributions, which also quantify their bias, and the columns correspond to the various values of the scenario 
standard deviation or, equivalently, its ratio to the observation standard deviation.  
 
When the scenario distributions match that of the observations (i.e., A = 0, B = 1 in the first row, fourth column), the 
histogram appears to be flat, as expected.  For biased scenarios, a mild upward slope is seen in the second and third 
rows of the fourth column. In the first three columns, the histograms slope downward from left to right, reflecting 
overpopulation in the low ranks because the scenarios are underdispersed relative to the observations.  In the fifth and 
sixth columns, we expect from the development in [5] that the histograms would slope upward from left to right, 
because overdispersed scenarios should result in the high ranks being overpopulated. However, we instead observe 
hill-shaped histograms, which were observed in [5] to occur when time series scenarios differed from observations in 
terms of their autocorrelations.  This effect grows more pronounced with larger values of α; i.e., when the CVaR is 
defined on a more extreme tail of the cost distribution. 
 
The p-values of Cramér-von Mises hypothesis tests of the uniformity of ranks are provided in Table 1. As expected, 
the p-values for the instances having scenarios generated from a standard Normal distribution (the same distribution 
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as observations) are large for all values of α.  However, we also fail to reject the null hypothesis in some trials where 
the variance of scenarios is only somewhat smaller than that of the observations. 
 

 
Figure 1: MTDrh simulation results for α = 0.5. Each row has a constant value of A, shown as a horizontal axis 
label, and each column columns has a constant value of B, labeling the vertical axis. 
 

 
Figure 2: MTDrh simulation results for α = 0.75. Each row has a constant value of A, shown as a horizontal axis 
label, and each column columns has a constant value of B, labeling the vertical axis. 
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.  
Figure 3: MTDrh simulation results for α = 0.9. Each row has a constant value of A, shown as a horizontal axis 
label, and each column columns has a constant value of B, labeling the vertical axis. 
 

Table 1: p-values of the hypothesis test for uniformity of ranks. 
 

5 2 1 0.8 0.5 0.3 
             scen obsσ σ  

scenµ  

 

≈  0 ≈  0 0.537 0.089 ≈  0 ≈  0 0 
α = 0.5 ≈  0 ≈  0 ≈  0 0.071 ≈  0 ≈  0 0.5 

≈  0 ≈  0 ≈  0 0.586 ≈  0 ≈  0 1 
≈  0 ≈  0 0.826 ≈  0 ≈  0 ≈  0 0 

α = 0.75 ≈  0 ≈  0 ≈  0 0.157 ≈  0 ≈  0 0.5 
≈  0 ≈  0 ≈  0 0.415 ≈  0 ≈  0 1 
≈  0 ≈  0 0.629 0.104 ≈  0 ≈  0 0 

α = 0.9 ≈  0 ≈  0 ≈  0 ≈  0 ≈  0 ≈  0 0.5 
≈  0 ≈  0 ≈  0 ≈  0 0.156 ≈  0 1 

 
6. Conclusions and Final Thoughts 
This paper reports the results of an initial set of simulation experiments designed to test the capability of the MTDRh 
to assess the reliability, or its lack, of probabilistic scenarios to represent the upper tail of a cost distribution at 
optimality. In our simulated newsvendor instances we notice some encouraging results. When scenario distributions 
match that of the observation, the resulting histogram is almost uniform, as detected visually and with a large p-value 
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for the hypothesis test. On the other hand, an upward sloping histogram occurs when scenarios are biased and a 
downward slope can be seen, with generally smaller or negligible p-values, when scenarios are underdispersed. 
However, instead of the upward-sloping histograms expected when scenarios are overdispersed relative to the 
observations, we observe hill shapes, especially when attention is restricted to an extreme tail of the cost distribution.  

One possible cause of the unexpected hill shapes is that scenarios with probabilities revised to zero were retained in 
the sets when computing the mass transportation distances, possibly distorting the ranks.  We are experimenting with 
discarding such scenarios and, further, only including instances in which the observed cost falls in the upper tail. We 
also plan to test more types of distributions to investigate whether mismatch according to higher-order moments such 
as skewness and kurtosis can be diagnosed with this tool. In addition, for more complicated problems, solutions that 
are only approximately optimal can be used in the procedure to revise scenario probabilities.  
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