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Abstract: In this paper we analyze common solutions that students often produce to isomorphic
tasks involving proportional situations. We highlight some key distinctions across the tasks and
between the different equations students write within each task to help elaborate the different
interpretations of equivalence at play: numerical, transformational, and descriptive. We use this
opportunity to further explore the value of operationalizing these interpretations in both research
and instruction.

“The literature abounds in such phrases as ‘A is equivalent to B,” which, unless properly defined,
are often meaningless or misleading” (Burington, 1948, p. 1).

We have come across an odd distinction in students’ reasoning about proportional situations.
Consider the following responses students might propose to isomorphic proportionality tasks:

Task A: In Glenn Junior High School, there Task B: There are 28 days in a lunar cycle.
are 28 students for every 1 teacher. Determine | Determine the number of days that pass in 37
the number of students if there are 37 lunar cycles. Then write an equation that
teachers. Then write an equation that generally relates a number of lunar cycles, L,
generally relates the number of teachers, 7, to | and the number of days that pass during those
the number of students, S, in Glenn Junior lunar cycles, D.
High.
Solution (lines numbered for convenience): Solution:

1) 28 students = 1 teacher 1) 28 days =1 lunar cycle

2) §=128*37=1036 students 2) D=28*37=1036 days

3) §=28*T 3) D=28*L

Task A is a version of the oft-studied Student/Teachers problem. Much of the research on this
scenario has investigated issues related to students’ attempts to devise the correct formula in line
3. Instead, our discussion in this paper centers on three questions involving nuanced uses of
equivalence that are representative of those asked by students' we interact with:

! The students we refer to in this article are epistemic — that is, they are theoretical images of real students we adopt in order to
explain their mathematical activity and render it sensible in some way (Thompson, 2002). Though our primary experiences in this
regard are with undergraduate students, these tasks are commonly presented to middle school and high school algebra students as
well; we anticipate those students exhibit similar lines of reasoning.



(1) In line 1, given that these are isomorphic tasks, how can it be valid that ‘28 days = 1 lunar
cycle’ but not valid that ‘28 students = 1 teacher’?

(2) How can it be that ‘28 students =1 teacher’ is not valid, but reasoning with this equation
leads to the correct answer in line 2?

(3) Given that line 1 might be abbreviated as 28D = L or 285 = T, how are we to resolve the
apparent contradiction with D = 28L and S=287, the (correct) equations in line 3?

In this article, we answer these questions through the lens of a conceptual analysis (Thompson,
2002) that explicates three interpretations of equivalence, revealing more nuance pertaining to
the notions of equivalence at play than might be expected. We use the key ideas that emerge to
call attention to the value for both educators and students in explicitly attending to and
facilitating reflection on these interpretations.

Three interpretations of equivalence

Some classic and insightful research on how students think about the equal sign distinguishes
between students treating it as a connector between steps in a computational process (operational
view) and as an indication that the objects it links are equivalent and are thus in some way the
same (relational view) (e.g. Knuth et al, 2006). This fundamental distinction helps to explain
why some students are able to correctly solve algebraic equations and develop a capacity for
algebraic thinking while others experience considerable difficulties in their attempts to do so. To
answer the questions we have posed, however, we argue that it is useful to further refine the
notion of a relational view of the equal sign.

We begin by explicating a common interpretation of equivalence for two common algebraic
objects: expressions that are numerical (no variables) and algebraic (may have a variable?).
Numerical expressions are equivalent when they have the same numerical value, and, similarly,
algebraic expressions are equivalent when “for any admissible number that replaces [the
variable], each of the expressions gives the same value” (Saldanha & Kieran, 2005, p. 3). Notice
that both of these characterizations center on the numerical® value(s) of the relevant expressions.
This is a common interpretation of equivalence that is indispensable for productive algebraic
reasoning — indeed, part of what makes algebraic manipulation so powerful is the realization that
certain manipulations preserve the numerical value of the expression so that the expressions that
are generated are interchangeable. Additionally, a numerical interpretation is key to what Iszak
and Beckmann (2019) proposed as a coherent view of multiplication: the number of base units in
one group times the number of groups equals the number of base units in the product (p.91). We
observe, however, that it has some limitations (and thus by itself is insufficient) in measurement
contexts. Vergnaud (1994), for example, pointed out that “many ways of reasoning concern
relationships between magnitudes or quantities, rather than pure numbers” (p. 45). Consider an
task posed by Vergnaud (1983) himself: given that one cake costs 15 cents, you must determine

2 For simplicity, we consider expressions with at most one variable.

3 There is ambiguity with respect to some of these terms. First, we shall use ‘numerical interpretation’ to refer to the
interpretation of equivalence and ‘numerical expression’ to refer to the algebraic object. Second, the interpretations of
equivalence we describe appear under different names in the literature. Numerical equivalence has been called insertion (Prediger
& Zwetzschler, 2013) or substitution (e.g. Bishop, Lamb, Philipp, Whitacre, & Schapelle, 2016) equivalence, transformational
equivalence has been called syntactic equivalence (e.g. Solares & Kieran, 2013), and descriptive equivalence has been called
description equivalence (e.g. Prediger & Zwetzschler, 2013).



how much 4 cakes cost. He pointed out that, even though it might be clear that the answer is 60
cents (the numerical value of 4 * 15 coupled with the relevant monetary unit), it might not be
obvious “why 4 cakes * 15 cents yields cents and not cakes” (p. 129). Notice that this scenario
centers on the fact that the numerical equality is indeed preserved but does not directly account
for the structure of the underlying measurement scenario (the units of the answer). Our
introductory examples illuminate another limitation of numerical equivalence in such contexts,
but in a different way: the expressions in Task B, line 1 are not numerically equivalent — after all,
28 is not equal to 1 — yet we would all agree that (1) 28 days is, in fact, equivalent to 1 lunar
cycle, and (2) the reason involves the structure of the underlying measurement scenario. Our
point here is not that a numerical interpretation of equivalence is undesirable — far from it — but
simply that additional interpretations are needed to reason about measurement contexts. The
literature appropriately supplies two others.

A transformational (e.g. Solares & Kieran, 2013; Prediger & Zwetzschler, 2013)
interpretation of equivalence involves viewing the relationship between objects primarily in
terms of the sequence of actions by which one can be changed into another using some set of
acceptable properties. This can involve, for example, viewing an equation in terms of the
operations and properties by which the expression on one side is changed into the expression on
the other (what we will call expression to expression), or viewing the entire equation itself as an
object to be operated on and changed (equation to equation). Transformational reasoning plays a
critical role in algebra because it helps students “develop a sense of the actions needed in order
to reach a desired algebraic form” (Harel, 2008, p. 15), which plays a key role in, for example,
the equation solving algorithm. A key component of transformational reasoning in measurement
contexts centers on how one views the behavior of units under (expression to expression)
transformations. Vergnaud (1983) detailed two such views that are particularly relevant for our
purposes here. First, continuing the cakes scenario from above, one might attempt to resolve the
apparent discrepancy in units by reasoning that, since 4 - 1 cake = 4 cakes, then the total cost is
4 * 15 cents = 60 cents . This scalar transformation actually preserves the units. Alternatively,
one might reason that (4 cakes) * (15 cents per cake) = 60 cents. Here, the units of each factor
are combined via multiplication to create a new kind of unit: the units of the cost of 1 cake is
viewed as a quotient of the original units in order to facilitate the transformation of ‘cakes’ into
‘cents’. This approach can be (and, in our experience, often is) regarded in terms of the

cancellation of units — that is, (4 cakes) - (15 i;%f) = 4-15 cents = 60 cents.

Lastly, a descriptive (e.g. Prediger & Zwetzschler, 2013) interpretation of equivalence treats
two objects as equivalent if they describe, represent, or model the same quantity or situation.
Though descriptive equivalence has many possible uses, we use it here to explore measurements
of the same magnitude with different units (Thompson, et al., 2014). The magnitude of a
quantity A is the size of that quantity measured with respect to a unit u — symbolically, |Al=
m,(A) * lul, where |Al is the magnitude, m,(A) is the measure of A in unit u, and lul is the
magnitude of the unit. This characterization of magnitude is helpful for two reasons. First, it
gives us language to distinguish and relate a magnitude (the amount of a quantity) and its
measure relative to a given unit. This can be understood as a multiplicative comparison between
the magnitude measured and the magnitude of the unit. Second, by decoupling magnitude and
measure we can relate different measures of the same magnitude. Doing so “makes explicit the
fact that the magnitude of a quantity is invariant with respect to a change of unit” (Thompson et
al., 2014, p. 5). That is, a magnitude is the same regardless of the unit used to measure it.



Using the 3 interpretations of equivalence to gain insight into Tasks A and B

We now turn our attention to using these three interpretations to answer the 3 questions we
posed in the introduction. We note that our intention is not to outline all possible insights
afforded by these three interpretations but rather to use them as a lens through which to (1)
provide a rational frame of reference for the responses of the (epistemic) students we described
in the introduction, and (2) provide plausible answers to the associated questions we posed.

Answering questions 1 and 2

We again note that a numerical interpretation affords little insight into line 1 because 28 is not
equal to 1. Reasoning descriptively, however, ‘28 days’ is immediately seen to be equivalent to
‘1 lunar cycle’ because it expresses one magnitude (the duration of one lunar cycle, |lunar cycle|)
using the other (the duration of one day, |day|) as a unit, yielding |lunar cycle| = 28 * |day|). This
interpretation is less clear, however, for the student-teacher scenario in Task B, as ‘student’ and
‘teacher’ are not readily seen as compatible units with which to measure either each other or some
other magnitude. This explains why ‘28 days = 1 lunar cycle’ is conventionally regarded as valid
but ‘28 students = 1 teacher’ is not (question 1 above).

We propose that it is enlightening — both pedagogically and mathematically — to instead
express ‘28 students = 1 teacher’ using a colon, indicating a proportional relationship.
Pedagogically, being clear and intentional about expressing certain proportional relationships
with a colon and some with an equal sign calls attention to the fact that there is something to be
distinguished at all. Mathematically, the ratio maintains the structure that is needed to answer the
question at hand. Indeed, one reason these kinds of equations appear and persist is because some
actions on equations are also valid transformations on a proportional pair. Similar to how
transforming an equation by multiplying both of its sides by the same scalar will produce another
true equation, multiplying both entries in a proportional pair (whether expressed as an equation
or ratio) by the same scalar will produce another proportional pair maintaining the same ratio.
This is an example of Vergnaud’s (1983) scalar transformation that preserves (rather than
changes) units. For example, since 28 students : 1 teacher, then 37 * 28 students : 37 * 1 teacher;
one also achieves the same correct answer when starting from the premise that 28 students = 1
teacher. This is the key to our response to question 2: the invalid equation ‘28 students = 1
teacher’ can be used productively because it preserves the same proportional relationship when
multiplicatively transformed. This transformation is appropriate on equations like ‘28 days =1
lunar cycle’ and ratios like ‘28 students : 1 teacher.’

Table 1. Insights into line 1 afforded by the three interpretations of equivalence

numerical transformational descriptive
Not immediately Enables transforming both sides by | Uses measurements and
useful in either task | the same scalar (e.g. 37 * 28 magnitudes as a coherent way
because 28 is not students corresponds to 37 * 1 to interpret and classify certain
equal to 1. teachers), regardless of whether the | proportional relationships as

student attends to the nuances of 28 | equalities (e.g. 28 days=1 lunar
students = 1 teacher vs. 28 students : | cycle) and others as

1 teacher. correspondences (i.e. 28
students = 1 teacher)




Answering question 3

We focus our response to question 3 on Task B. We first note that the equation ‘D = 28L’ in
line 3 can be easily interpreted from the numerical perspective: if you consider any
corresponding number of days (D) and number of lunar cycles (L) and substitute them into this
equation, both sides of the equation will be numerically equal. This interpretation could also
underlie the reasoning in line 2: as the number of lunar cycles times 28 is the same as the number
of days, then the number of days in 37 lunar cycles is 37 * 28 days. However, as line 1 did not
immediately lend itself to a meaningful numerical interpretation, we find it useful to consult the
other two interpretations to identify coherence between lines 1 and 3.

Recall our descriptive interpretation of line 1: the duration of one lunar cycle is 28 times as
long as the duration of one day, or |lunar cycle| = 28 * |day|. From this perspective it is easy to
see that in line 1 the letters L and D are abbreviations representing the magnitudes |lunar cycle|
and |day|. More generally, in line 3 L and D are variables representing the number of lunar
cycles and the number of days. Thus, measuring a more general duration of time (denoted by |¢|)
using the duration of one day as a unit involves iterating by the number of days — that is, |f{ =D *
|day|. Measuring that same duration with the duration of one lunar cycle as a unit will yield a
measurement of L — that is, |¢{| = L * [lunar cycle|. Thus, D and L are both the results of a
multiplicative comparison (Thompson et al., 2014) of |¢| to |day| and |lunar cycle|. This shows
how line 3 can also be understood descriptively: D * |day| and L * |lunar cycle| represent the
same duration of time via two different measurement processes and are thus equal. It also
underscores that the variables L and D are the measurements resulting from these multiplicative
comparisons. Thus, one way in which we can coherently view lines 1 and 3 is by interpreting the
roles of the letters D and L as different yet interconnected components of the same measurement
process: they represent magnitudes in line 1 and measurements resulting from multiplicative
comparisons using those magnitudes in line 3.

Reasoning transformationally affords additional insight into the relationship between lines 1
and 3. A transformational interpretation of D = 28L involves focusing on how multiplying by 28
changes the number of lunar cycles into the number of days (an expression to expression
transformation). We view such reasoning as an instance of Vergnaud’s (1983) unit
transformation (as opposed to the preservation of units via scaling). Accordingly, we find that the

units of the number 28 can be interpreted as the units needed to transform ‘lunar cycles’ into

‘ , . . days
h llation — f le, 28 ————- 37 = 28-
days,’ perhaps via cancellation — for example, lunareyeles

37 lunar cycles. There is, however, another useful view of the number 28 that uses
transformations to build upon the descriptive interpretation set forth in the previous paragraph.
Specifically, we call attention to the (equation to equation) transformation in which both sides of
D *|day| = L * |lunar cycle| are divided by the (nonzero) magnitude |day|. This yields D =

% - L. As we know that |lunar cycle| = 28 * |day| from our descriptive interpretation of
line 1, this yields D = 28L, the equation in line 3. These various interpretations of D = 28L are

summarized in Table 2.

Table 2. Using the 3 interpretations to parse D = 28L.
| | Interpretation of D = 28 L




Numerical
— - L

Arithmetic
multiplication
(ignores units)

Number of Scalar constant Number of
days lunar cycles

“The number of days is the same as 28
times the number of lunar cycles”

Transformational 2 8
— . L

Multiplication
accomplishes unit
“cancellation”

Conversion factor standing Number of
for 28 days/1 lunar cycle lunar cycles

Number of
days

“Multiplying the number lunar cycles by the conversion factor
changes the unit from lunar cycles to days and L into D.”

Descriptive D . |day| — L . |lunar CYClel

|

Multiplicative Multiplic.ative
comparison comparison
Measurement

Unit of measure;
Duration of one day
Measurement in

units of |day|

Unit of measure; Duration
of one lunar cycle

in units of
|lunar cycle|

—> where 28 - |day| = |lunar cycle| «—

“A duration of time measured in units of the duration of one day is the same
as that duration of time measured in units of the duration 1 lunar cycle.”

The fruitfulness of explicating and coordinating interpretations of equivalence

The framework we have outlined is an example of a conceptual analysis (Thompson, 2002)
of the concept of equivalence because it explicates “what it is students might understand when
they know a particular idea” (p. 196). Here we discuss the potential uses for this conceptual
analysis and outline the various contributions it makes to the literature.

Conceptually-grounded conversations with students

Thompson (2002) pointed out that a conceptual analysis is necessarily grounded in students’
experience and therefore “entails imagining students thinking about something in the context of
discussing it” (p. 196, emphasis in original). Accordingly, here we identify several points we



raised in the previous section that could serve as the starting point for such conceptually-
grounded discussions with students.

One of our key points in our response to question 1 was the distinction that ‘28 days = 1
lunar cycle’ represented two measurements of the same magnitude using different units while
‘28 students = 1 teacher’ could not readily be interpreted in this way. The descriptive
interpretation thus renders the former valid, but not the latter. We propose that rendering binary
judgements about the validity of such equations potentially misses an opportunity for rich
discussion. Changing the question from “is it valid or invalid?” to “what is the essential
relationship the students and teacher ‘equation’ expresses?”” could foster a productive discussion.
We hypothesize that such an activity could reinforce a greater awareness of why it is normative
and conventional in the mathematical community to distinguish between proportional
relationships that are best represented using equations (e.g. 28 days = 1 lunar cycle) and those
that are best represented using ratios (e.g. 28 students : 1 teacher).

More generally, in our experience students often recognize the apparent paradoxes that
manifest in the various equations they write (though sometimes we have to juxtapose examples
of student work and invite some reflection). Most of the time the equations are not invalid if
understood in the manner intended: students know what they mean by and can reason
productively with ‘28 students = 1 teacher,” even if we could improve the notation. This is a
great opportunity for us as educators to look for the coherent meaning in what is written before
applying conventions to correct someone’s work. Learners use equations first to express a
thought process, and we hope educators attend to that thought process. Therein lies the power of
conceptual analysis: it provides a theoretical tool by which we can avoid surface-level judgments
about ‘misconceptions’ and ‘errors,” enabling us instead to identify and explicate productive
lines of reasoning.

Another rich point of discussion involves encouraging students to reflect on and recognize
the inherent nuance in uses of equivalence that otherwise might seem trivial and overly familiar.
Productively reasoning about such fundamental tasks as those featured in this article requires
subtle shifts between equations that express multiplicative comparisons of units (e.g. 28 days = 1
lunar cycle) and equations that express the relationship between measurements in these units
(e.g. D = 28L) — indeed, distinguishing between D and |day| is at the core of our answer to
question 3 above. We find that many of our own students (at universities in the United States of
modest selectivity) are not accustomed to thinking about these subtleties, even when implicitly
present in their work. We propose that engaging students in guided reflections on these kinds of
paired tasks through the lens of the interpretations of equivalence can serve as an excellent
means by which to encourage students to attend to these ideas.

Contributions to the literature

In addition to facilitating productive conversations with students, we believe the conceptual
analysis set forth in this article contributes to the literature in three key ways. First, the three
interpretations contribute to the literature on equivalence by providing an answer to the question:
what exactly does a relational understanding of the equal sign entail? While the three
interpretations of equivalence we leverage here are all set forth in some form in prior literature,
our analysis extends this work by explicitly operationalizing these interpretations through the
lens of research on measurement and multiplicative reasoning (e.g. Iszak & Beckmann, 2019;
Thompson, et al., 2014; Vergnaud, 1983). More generally, we see this framework as a powerful



theoretical tool that could inform (and be refined by) subsequent studies of students’ cognition
and instructional design.

Second, our analysis contributes to the literature on multiplicative reasoning. Vergnaud
(1988), for example, defined the multiplicative conceptual field to be the set of “all situations
that can be analysed as simple and multiple proportion problems and for which one usually needs
to multiply or divide” (p. 141). We observe that such measurement equations as ‘28 days = 1
lunar cycle’ are a facet of the multiplicative conceptual field that has not received clear attention
in the literature. Our analysis reveals that understanding and flexibly reasoning with such
equations — and how they relate to their algebraic counterparts like ‘D = 28L’ — to be surprisingly
nuanced and complex. This paper thus focuses on sensitizing both mathematics educators and the
students we teach to this recurrent challenge while also providing a means of addressing it.

Lastly, our analysis underscores a need for more explicit attention to descriptive equivalence,
an interpretation which afforded critical insights in our analysis but has generally received the
least explicit attention in the literature. Consider the following topics across the K-16 spectrum
that could be explored from an explicit descriptive focus:

= Atthe elementary level, for example, descriptive equivalence allows us to warrant
equations like the distributive property in ways that complement the conventional
transformational approach (see Figure 1).

= At the middle and secondary levels, descriptive equivalence can productively justify
exponential laws. For instance, if a population is doubling every minute, then it is
quadrupling every two minutes. By expressing the population after 2 minutes in these
two ways, we can conclude P * 2/ = P * 4'/2, Recognizing how the growth of the same
population can be alternatively modeled in terms of doubling, tripling, quadrupling,
etc. while keeping the correspondence between time and population invariant is
quantitatively meaningful and productive.

= At the undergraduate level, Lockwood, Caughman, and Weber (2020) have explored
how combinatorial proofs differ fundamentally from other types of proof by virtue of
the fact that they often warrant equivalence based on different counting processes for
the same set of objects. This suggests that descriptive interpretations could be
important beyond measurement contexts.

b C

a Area=ab Area=ac

width times length = sum of areas of interior rectangles
a(b+c)=ab +ac

Figure 1. Warranting the distributive property using a descriptive interpretation of equivalence.

Our point is not that descriptive equivalence is underutilized but that it is underemphasized. The
above examples spanning key topics across the K-16 mathematical spectrum provide some
indication of the scope and importance of descriptive equivalence and, accordingly, the need for



researchers and educators to attend to it more explicitly. We hope that future work will continue
to explore how students coordinate these various notions of equivalence in practice and how they
can be harnessed and juxtaposed for rich sensemaking. Indeed, we would love if more of our
preservice teachers’ work with equations was less guided by “what is allowed” and more guided
by “what makes sense.”
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