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Abstract: In this paper we analyze common solutions that students often produce to isomorphic 

tasks involving proportional situations. We highlight some key distinctions across the tasks and 

between the different equations students write within each task to help elaborate the different 

interpretations of equivalence at play: numerical, transformational, and descriptive. We use this 

opportunity to further explore the value of operationalizing these interpretations in both research 

and instruction.  

 

“The literature abounds in such phrases as ‘A is equivalent to B,’ which, unless properly defined, 

are often meaningless or misleading” (Burington, 1948, p. 1). 

 

We have come across an odd distinction in students’ reasoning about proportional situations. 

Consider the following responses students might propose to isomorphic proportionality tasks: 

 

Task A: In Glenn Junior High School, there 

are 28 students for every 1 teacher. Determine 

the number of students if there are 37 

teachers. Then write an equation that 

generally relates the number of teachers, T, to 

the number of students, S, in Glenn Junior 

High. 

 

Solution (lines numbered for convenience):  

1) 28 students = 1 teacher 

2) S = 28 * 37 = 1036 students 

3) S = 28 * T  

Task B: There are 28 days in a lunar cycle. 

Determine the number of days that pass in 37 

lunar cycles. Then write an equation that 

generally relates a number of lunar cycles, L, 

and the number of days that pass during those 

lunar cycles, D. 

 

 

Solution: 

1) 28 days = 1 lunar cycle 

2) D = 28 * 37 = 1036 days 

3) D = 28 * L  

 

Task A is a version of the oft-studied Student/Teachers problem. Much of the research on this 

scenario has investigated issues related to students’ attempts to devise the correct formula in line 

3. Instead, our discussion in this paper centers on three questions involving nuanced uses of 

equivalence that are representative of those asked by students1 we interact with:   

 

 
1 The students we refer to in this article are epistemic – that is, they are theoretical images of real students we adopt in order to 
explain their mathematical activity and render it sensible in some way (Thompson, 2002). Though our primary experiences in this 
regard are with undergraduate students, these tasks are commonly presented to middle school and high school algebra students as 
well; we anticipate those students exhibit similar lines of reasoning. 



(1) In line 1, given that these are isomorphic tasks, how can it be valid that ‘28 days = 1 lunar 

cycle’ but not valid that ‘28 students = 1 teacher’? 

 

(2) How can it be that ‘28 students =1 teacher’ is not valid, but reasoning with this equation 

leads to the correct answer in line 2? 

 

(3) Given that line 1 might be abbreviated as 28D = L or 28S = T, how are we to resolve the 

apparent contradiction with D = 28L and S=28T, the (correct) equations in line 3? 

 

In this article, we answer these questions through the lens of a conceptual analysis (Thompson, 

2002) that explicates three interpretations of equivalence, revealing more nuance pertaining to 

the notions of equivalence at play than might be expected. We use the key ideas that emerge to 

call attention to the value for both educators and students in explicitly attending to and 

facilitating reflection on these interpretations. 

 

Three interpretations of equivalence 

Some classic and insightful research on how students think about the equal sign distinguishes 

between students treating it as a connector between steps in a computational process (operational 

view) and as an indication that the objects it links are equivalent and are thus in some way the 

same (relational view) (e.g. Knuth et al, 2006). This fundamental distinction helps to explain 

why some students are able to correctly solve algebraic equations and develop a capacity for 

algebraic thinking while others experience considerable difficulties in their attempts to do so. To 

answer the questions we have posed, however, we argue that it is useful to further refine the 

notion of a relational view of the equal sign.  

We begin by explicating a common interpretation of equivalence for two common algebraic 

objects: expressions that are numerical (no variables) and algebraic (may have a variable2).  

Numerical expressions are equivalent when they have the same numerical value, and, similarly, 

algebraic expressions are equivalent when “for any admissible number that replaces [the 

variable], each of the expressions gives the same value” (Saldanha & Kieran, 2005, p. 3). Notice 

that both of these characterizations center on the numerical3 value(s) of the relevant expressions. 

This is a common interpretation of equivalence that is indispensable for productive algebraic 

reasoning – indeed, part of what makes algebraic manipulation so powerful is the realization that 

certain manipulations preserve the numerical value of the expression so that the expressions that 

are generated are interchangeable. Additionally, a numerical interpretation is key to what Iszak 

and Beckmann (2019) proposed as a coherent view of multiplication: the number of base units in 

one group times the number of groups equals the number of base units in the product (p. 91). We 

observe, however, that it has some limitations (and thus by itself is insufficient) in measurement 

contexts. Vergnaud (1994), for example, pointed out that “many ways of reasoning concern 

relationships between magnitudes or quantities, rather than pure numbers” (p. 45). Consider an 

task posed by Vergnaud (1983) himself: given that one cake costs 15 cents, you must determine 

 
2 For simplicity, we consider expressions with at most one variable. 
3 There is ambiguity with respect to some of these terms.  First, we shall use ‘numerical interpretation’ to refer to the 
interpretation of equivalence and ‘numerical expression’ to refer to the algebraic object. Second, the interpretations of 

equivalence we describe appear under different names in the literature. Numerical equivalence has been called insertion (Prediger 
& Zwetzschler, 2013) or substitution (e.g. Bishop, Lamb, Philipp, Whitacre, & Schapelle, 2016) equivalence, transformational 
equivalence has been called syntactic equivalence (e.g. Solares & Kieran, 2013), and descriptive equivalence has been called 
description equivalence (e.g. Prediger & Zwetzschler, 2013).  



how much 4 cakes cost.  He pointed out that, even though it might be clear that the answer is 60 

cents (the numerical value of 4 * 15 coupled with the relevant monetary unit), it might not be 

obvious “why 4 cakes * 15 cents yields cents and not cakes” (p. 129).  Notice that this scenario 

centers on the fact that the numerical equality is indeed preserved but does not directly account 

for the structure of the underlying measurement scenario (the units of the answer). Our 

introductory examples illuminate another limitation of numerical equivalence in such contexts, 

but in a different way: the expressions in Task B, line 1 are not numerically equivalent – after all, 

28 is not equal to 1 – yet we would all agree that (1) 28 days is, in fact, equivalent to 1 lunar 

cycle, and (2) the reason involves the structure of the underlying measurement scenario.  Our 

point here is not that a numerical interpretation of equivalence is undesirable – far from it – but 

simply that additional interpretations are needed to reason about measurement contexts. The 

literature appropriately supplies two others.  

A transformational (e.g. Solares & Kieran, 2013; Prediger & Zwetzschler, 2013) 

interpretation of equivalence involves viewing the relationship between objects primarily in 

terms of the sequence of actions by which one can be changed into another using some set of 

acceptable properties. This can involve, for example, viewing an equation in terms of the 

operations and properties by which the expression on one side is changed into the expression on 

the other (what we will call expression to expression), or viewing the entire equation itself as an 

object to be operated on and changed (equation to equation). Transformational reasoning plays a 

critical role in algebra because it helps students “develop a sense of the actions needed in order 

to reach a desired algebraic form” (Harel, 2008, p. 15), which plays a key role in, for example, 

the equation solving algorithm. A key component of transformational reasoning in measurement 

contexts centers on how one views the behavior of units under (expression to expression) 

transformations. Vergnaud (1983) detailed two such views that are particularly relevant for our 

purposes here. First, continuing the cakes scenario from above, one might attempt to resolve the 

apparent discrepancy in units by reasoning that, since 4 ⋅ 1	cake = 4	cakes, then the total cost is 

4 * 15 cents = 60 cents . This scalar transformation actually preserves the units. Alternatively, 

one might reason that (4 cakes) * (15 cents per cake) = 60 cents. Here, the units of each factor 

are combined via multiplication to create a new kind of unit: the units of the cost of 1 cake is 

viewed as a quotient of the original units in order to facilitate the transformation of ‘cakes’ into 

‘cents’. This approach can be (and, in our experience, often is) regarded in terms of the 

cancellation of units – that is, (4	cakes) ⋅ .15 !"#$%
!&'"

0 = 4 ⋅ 15	cents = 	60	cents. 
Lastly, a descriptive (e.g. Prediger & Zwetzschler, 2013) interpretation of equivalence treats 

two objects as equivalent if they describe, represent, or model the same quantity or situation. 

Though descriptive equivalence has many possible uses, we use it here to explore measurements 

of the same magnitude with different units (Thompson, et al., 2014).  The magnitude of a 

quantity 𝐴 is the size of that quantity measured with respect to a unit 𝑢 – symbolically, |A|= 

mu(A) * |u|, where |A| is the magnitude, mu(A) is the measure of 𝐴 in unit u, and |u| is the 

magnitude of the unit. This characterization of magnitude is helpful for two reasons. First, it 

gives us language to distinguish and relate a magnitude (the amount of a quantity) and its 

measure relative to a given unit. This can be understood as a multiplicative comparison between 

the magnitude measured and the magnitude of the unit. Second, by decoupling magnitude and 

measure we can relate different measures of the same magnitude. Doing so “makes explicit the 

fact that the magnitude of a quantity is invariant with respect to a change of unit” (Thompson et 

al., 2014, p. 5). That is, a magnitude is the same regardless of the unit used to measure it.  



 

Using the 3 interpretations of equivalence to gain insight into Tasks A and B 

We now turn our attention to using these three interpretations to answer the 3 questions we 

posed in the introduction.  We note that our intention is not to outline all possible insights 

afforded by these three interpretations but rather to use them as a lens through which to (1) 

provide a rational frame of reference for the responses of the (epistemic) students we described 

in the introduction, and (2) provide plausible answers to the associated questions we posed.   

 

 

Answering questions 1 and 2 

We again note that a numerical interpretation affords little insight into line 1 because 28 is not 

equal to 1.  Reasoning descriptively, however, ‘28 days’ is immediately seen to be equivalent to 

‘1 lunar cycle’ because it expresses one magnitude (the duration of one lunar cycle, |lunar cycle|) 

using the other (the duration of one day, |day|) as a unit, yielding |lunar cycle| = 28 * |day|).  This 

interpretation is less clear, however, for the student-teacher scenario in Task B, as ‘student’ and 

‘teacher’ are not readily seen as compatible units with which to measure either each other or some 

other magnitude. This explains why ‘28 days = 1 lunar cycle’ is conventionally regarded as valid 

but ‘28 students = 1 teacher’ is not (question 1 above). 

We propose that it is enlightening – both pedagogically and mathematically – to instead 

express ‘28 students = 1 teacher’ using a colon, indicating a proportional relationship.  

Pedagogically, being clear and intentional about expressing certain proportional relationships 

with a colon and some with an equal sign calls attention to the fact that there is something to be 

distinguished at all. Mathematically, the ratio maintains the structure that is needed to answer the 

question at hand. Indeed, one reason these kinds of equations appear and persist is because some 

actions on equations are also valid transformations on a proportional pair. Similar to how 

transforming an equation by multiplying both of its sides by the same scalar will produce another 

true equation, multiplying both entries in a proportional pair (whether expressed as an equation 

or ratio) by the same scalar will produce another proportional pair maintaining the same ratio.  

This is an example of Vergnaud’s (1983) scalar transformation that preserves (rather than 

changes) units. For example, since 28 students : 1 teacher, then 37 * 28 students : 37 * 1 teacher; 

one also achieves the same correct answer when starting from the premise that 28 students = 1 

teacher.  This is the key to our response to question 2: the invalid equation ‘28 students = 1 

teacher’ can be used productively because it preserves the same proportional relationship when 

multiplicatively transformed. This transformation is appropriate on equations like ‘28 days = 1 

lunar cycle’ and ratios like ‘28 students : 1 teacher.’  

 

Table 1. Insights into line 1 afforded by the three interpretations of equivalence 

numerical transformational  descriptive 

Not immediately 

useful in either task 

because 28 is not 

equal to 1. 

Enables transforming both sides by 

the same scalar (e.g. 37 * 28 

students corresponds to 37 * 1 

teachers), regardless of whether the 

student attends to the nuances of 28 

students = 1 teacher vs. 28 students : 

1 teacher. 

Uses measurements and 

magnitudes as a coherent way 

to interpret and classify certain 

proportional relationships as 

equalities (e.g. 28 days=1 lunar 

cycle) and others as 

correspondences (i.e. 28 

students = 1 teacher) 



 

Answering question 3 

We focus our response to question 3 on Task B. We first note that the equation ‘D = 28L’ in 

line 3 can be easily interpreted from the numerical perspective: if you consider any 

corresponding number of days (D) and number of lunar cycles (L) and substitute them into this 

equation, both sides of the equation will be numerically equal. This interpretation could also 

underlie the reasoning in line 2: as the number of lunar cycles times 28 is the same as the number 

of days, then the number of days in 37 lunar cycles is 37 * 28 days. However, as line 1 did not 

immediately lend itself to a meaningful numerical interpretation, we find it useful to consult the 

other two interpretations to identify coherence between lines 1 and 3.   

Recall our descriptive interpretation of line 1: the duration of one lunar cycle is 28 times as 

long as the duration of one day, or |lunar cycle| = 28 * |day|. From this perspective it is easy to 

see that in line 1 the letters L and D are abbreviations representing the magnitudes |lunar cycle| 

and |day|.  More generally, in line 3 L and D are variables representing the number of lunar 

cycles and the number of days. Thus, measuring a more general duration of time (denoted by |t|) 

using the duration of one day as a unit involves iterating by the number of days – that is, |t| = D * 

|day|. Measuring that same duration with the duration of one lunar cycle as a unit will yield a 

measurement of 𝐿 – that is, |t| = L * |lunar cycle|.  Thus, D and L are both the results of a 

multiplicative comparison (Thompson et al., 2014) of |t| to |day| and |lunar cycle|. This shows 

how line 3 can also be understood descriptively: D * |day| and L * |lunar cycle| represent the 

same duration of time via two different measurement processes and are thus equal. It also 

underscores that the variables 𝐿 and 𝐷 are the measurements resulting from these multiplicative 

comparisons. Thus, one way in which we can coherently view lines 1 and 3 is by interpreting the 

roles of the letters 𝐷 and 𝐿 as different yet interconnected components of the same measurement 

process: they represent magnitudes in line 1 and measurements resulting from multiplicative 

comparisons using those magnitudes in line 3.   

Reasoning transformationally affords additional insight into the relationship between lines 1 

and 3. A transformational interpretation of D = 28L involves focusing on how multiplying by 28 

changes the number of lunar cycles into the number of days (an expression to expression 

transformation). We view such reasoning as an instance of Vergnaud’s (1983) unit 

transformation (as opposed to the preservation of units via scaling). Accordingly, we find that the 

units of the number 28 can be interpreted as the units needed to transform ‘lunar cycles’ into 

‘days,’ perhaps via cancellation – for example, 28 (&)%

*+#&,	!)!*"
⋅ 37	lunar	cycles = 	28 ⋅

37	lunar	cycles. There is, however, another useful view of the number 28 that uses 

transformations to build upon the descriptive interpretation set forth in the previous paragraph.  

Specifically, we call attention to the (equation to equation) transformation in which both sides of 

D * |day| = L * |lunar cycle| are divided by the (nonzero) magnitude |day|. This yields 𝐷 =
|*+#&,	!)!*"|

|(&)|
⋅ 𝐿.  As we know that |lunar cycle| = 28 * |day| from our descriptive interpretation of 

line 1, this yields 𝐷 = 28𝐿, the equation in line 3. These various interpretations of D = 28L are 

summarized in Table 2.  

 

   Table 2.  Using the 3 interpretations to parse D = 28L. 

 Interpretation of D = 28 L 





raised in the previous section that could serve as the starting point for such conceptually-

grounded discussions with students. 

 One of our key points in our response to question 1 was the distinction that ‘28 days = 1 

lunar cycle’ represented two measurements of the same magnitude using different units while 

‘28 students = 1 teacher’ could not readily be interpreted in this way. The descriptive 

interpretation thus renders the former valid, but not the latter. We propose that rendering binary 

judgements about the validity of such equations potentially misses an opportunity for rich 

discussion. Changing the question from “is it valid or invalid?” to “what is the essential 

relationship the students and teacher ‘equation’ expresses?” could foster a productive discussion. 

We hypothesize that such an activity could reinforce a greater awareness of why it is normative 

and conventional in the mathematical community to distinguish between proportional 

relationships that are best represented using equations (e.g. 28 days = 1 lunar cycle) and those 

that are best represented using ratios (e.g. 28 students : 1 teacher).  

More generally, in our experience students often recognize the apparent paradoxes that 

manifest in the various equations they write (though sometimes we have to juxtapose examples 

of student work and invite some reflection). Most of the time the equations are not invalid if 

understood in the manner intended: students know what they mean by and can reason 

productively with ‘28 students = 1 teacher,’ even if we could improve the notation. This is a 

great opportunity for us as educators to look for the coherent meaning in what is written before 

applying conventions to correct someone’s work. Learners use equations first to express a 

thought process, and we hope educators attend to that thought process. Therein lies the power of 

conceptual analysis: it provides a theoretical tool by which we can avoid surface-level judgments 

about ‘misconceptions’ and ‘errors,’ enabling us instead to identify and explicate productive 

lines of reasoning.    

Another rich point of discussion involves encouraging students to reflect on and recognize 

the inherent nuance in uses of equivalence that otherwise might seem trivial and overly familiar.   

Productively reasoning about such fundamental tasks as those featured in this article requires 

subtle shifts between equations that express multiplicative comparisons of units (e.g. 28 days = 1 

lunar cycle) and equations that express the relationship between measurements in these units 

(e.g. D = 28L) – indeed, distinguishing between D and |day| is at the core of our answer to 

question 3 above. We find that many of our own students (at universities in the United States of 

modest selectivity) are not accustomed to thinking about these subtleties, even when implicitly 

present in their work. We propose that engaging students in guided reflections on these kinds of 

paired tasks through the lens of the interpretations of equivalence can serve as an excellent 

means by which to encourage students to attend to these ideas.   

 

Contributions to the literature 

In addition to facilitating productive conversations with students, we believe the conceptual 

analysis set forth in this article contributes to the literature in three key ways. First, the three 

interpretations contribute to the literature on equivalence by providing an answer to the question: 

what exactly does a relational understanding of the equal sign entail? While the three 

interpretations of equivalence we leverage here are all set forth in some form in prior literature, 

our analysis extends this work by explicitly operationalizing these interpretations through the 

lens of research on measurement and multiplicative reasoning (e.g. Iszak & Beckmann, 2019; 

Thompson, et al., 2014; Vergnaud, 1983). More generally, we see this framework as a powerful 





researchers and educators to attend to it more explicitly. We hope that future work will continue 

to explore how students coordinate these various notions of equivalence in practice and how they 

can be harnessed and juxtaposed for rich sensemaking. Indeed, we would love if more of our 

preservice teachers’ work with equations was less guided by “what is allowed” and more guided 

by “what makes sense.” 
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