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A Practical and Intuitive Quality Measure for Evaluating Antipodal
Grasp Poses in The Image Space
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Abstract— Practical robot applications that require grasping
often fail due to failed grasp planning, and a good grasp quality
measure is the key to successful grasp planning. In this paper,
we developed a novel grasp quality measure that quantifies
and evaluates grasp quality in real-time. To quantify the grasp
quality, we compute a set of object movement features from
analyzing the interaction between the gripper and the object’s
projections in the image space. The normalizations and weights
of the features are tuned to make practical and intuitive grasp
quality predictions. To evaluate our grasp quality measure, we
conducted a real robot grasping experiment with 1000 robot
grasp trials on ten household objects to examine the relationship
between our grasp scores and the actual robot grasping results.
The results show that the average grasp success rate increases,
and the average amount of undesired object movement decrease
as the calculated grasp score increases, which validates our
quality measure. We achieved a 100% grasp success rate from
100 grasps of the ten objects when using our grasp quality
measure in planning top quality grasps.

[. INTRODUCTION

Generating grasp pose candidates and evaluating their
qualities are core problems in grasp planning. In this work,
we focus on addressing the grasp pose evaluation problem
in the image space. Existing approaches to this problem can
be divided into two categories, analytical [1]-[3] and data-
driven [4][5]. The analytical approaches extract various hand-
crafted features from analyzing the input sensory data and
calculating an overall quality score. On the other hand, data-
driven approaches use auto-generated features. The grasp
quality can be found by either feature combination or com-
parison with known-quality grasps in the feature space. This
type of approach requires extensive training data or a large
reference database.

Our grasp evaluation method design is application-driven.
We consider assistive robots in grasping household items
with parallel jaw grippers. Assistive robots designed for
the old and individuals with disabilities must be reliable.
Due to the limitations of robots on perceiving and decision
making, the most practical and reliable control strategy is
a semi-autonomous or shared control, which combines the
superior human perceptive and cognitive abilities with the
motor functions and basic sensing and reasoning capabilities
of robots. We designed a two-stage semi-autonomous system
to simplify the six-dimensional grasp planning problem and
make the task allocation between the human user and the
autonomous agent more natural. In the first stage of this
system, the object position is found using a depth camera,
and the gripper is positioned at a certain distance from the
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Fig. 1. Grasp quality evaluation flowchart.

object. With the gripper’s z-axis always pointing towards
the object, the gripper pitch and yaw are controlled by an
autonomous grasp planner and the human user in a shared
control mode. The goal of controlling the gripper pitch
and yaw is to set the gripper (with a hand-camera) in a
proper grasp direction. So, in the second stage, we can take
advantage of the parallel jaw gripper’s grasping mechanism,
which allows us to reduce the 3D grasp evaluation problem
to 2D. The object’s boundary in the 2D image can represent
the object’s potential contact region when it is grasped
from the direction where the image is taken. Therefore,
we can perform grasp-planning on a 2D silhouette image
of the object taken from a proper grasp direction. When
projecting the 3D object to a 2D silhouette, the change of
the object’s cross-sections in the projection direction should
be considered as in [[6], Fig.6].

This paper presents our analytical grasp evaluation method
for evaluating grasp poses in the image space. We designed
eight grasp features, consisting of two low-level visual
features that capture the grasp region’s geometry properties
and six high-level quality features that measure the object
movement during gripper closing. The overall quality score
is calculated as the weighted sum of the normalized feature
values. Fig. 1 shows the flowchart of the evaluation process.

II. RELATED WORK AND BACKGROUND

The existing approaches for grasp evaluation include data-
driven and analytical approaches. The most successful data-
driven approaches are deep learning approaches. The most
popular deep learning approaches [7]-[10] can achieve 80-
100% grasp success rate in grasping common household
items. However, the grasp success rate alone cannot validate
the grasp network’s auto-generated grasp quality measure
since there can be a significant quality difference between
successful grasp poses. For example, grasps A and B both
picked up a toothbrush successfully, but grasp A did not
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move the toothbrush during gripper closing, while grasp B
rotated the toothbrush 60 degrees. If using only success rate
to judge the grasp quality, then grasp A and B are the
same quality, but grasp A is apparently better than grasp
B. The main problem of the grasp networks is that even
they can achieve high grasp success rates, the grasp poses’
actual qualities are unpredictable. Thus, grasp networks are
suitable for such tasks as bin picking and storing/retrieving
non-fragile goods, but not reliable enough to be used alone
on assistive robots.

There are two sub-categories of analytical approaches,
the contact geometry-based, and the contact wrench-based
approaches. The contact geometry-based approaches typi-
cally evaluate grasp quality by examining if the contact
region’s geometric properties/features are consistent with the
designed criteria. Davidson [11] and Vahedi [12] presented
geometric caging methods for finding immobilizing grasps.
Calli [13] used the object contour curvature derived from its
contour function to help determine graspable regions on the
object contour. Blake [14] exploited the properties of object
contour local reflectional and rotational symmetry. Due to
the lack of good feature designs, the contact geometry-based
approaches often have many limitations.

The contact wrench-based approaches judge the grasp
quality by analyzing the contact wrenches (forces and
torques) acting on the object [2]. Most of the contact wrench
based methods are built upon the grasp force closure property
[15]. Nguyen [16] presented a method to construct force
closure grasps, which is one of the representative works in
the field. Ferrari and Canny [17] developed the most popular
grasp quality measure(often referred to as Q measure) for
force closure grasps. The Q measure is a measure of how
well a grasp can resist external disturbances. It is currently
the most versatile and reliable analytical grasp evaluation
method. Many variants of the Q measure were developed
[18]-[21] to improve the method in different aspects. Other
than the Q measure, other contact wrench-based approaches
[22] often have many restrictions similar to the geometry-
based approaches.

Compared to deep learning-based grasp quality measures,
our quality measure is more practical and reliable. Compar-
ing to the Q measure, the advantages of our quality measure
are: (1) our quality score is normalized and can be tuned to
approximate the grasp success rate, while the quality score
of the Q measure is a distance measure in the grasp wrench
space, which makes our quality scoring more intuitive than
the Q measure; (2) our method can evaluate grasps with all
types of contact conditions while the Q measure only works
for grasps with non-slippery contact (the grasp force has to
be inside the friction cone); (3) our method is less sensitive
to imperfect object modeling than the Q measure, making
our method work better with real camera data.

III. GRASP QUALITY EVALUATION

A. Grasp Representation

To evaluate the gripper-object interaction, we established
mathematical models for both the gripper and the object pro-

Object silhouette

Fig. 2. [Mustration of grasp lines(gl;), grasp points(gps), grasp
distances(d), contact points and grasp pose parameters(x,y, 6, r,w,n).
The thicker lines labeled as L and R represent the left and right gripper
fingers’ contact lines. The arrow indicates the gripper closing direction.

jections in the image. An object’s projection is a silhouette
image of the object, which is mathematically a binary matrix.
As for the gripper projection, we designed a different grasp
representation in the image space. Instead of describing an
antipodal grasp as a rectangle, we treat it as a set of line
segments, {gl1, glo, ..., gl,}, as shown in Fig. 2. Therefore,
the gripper projection can be discretely modeled as a set of
line segment functions. Let point F;; be the 4t point on
grasp line i (gl;), then the function of gl; can be expressed
as the coordinates of P;;(P%, P?) in the image frame {I}:

i7" 4
P = x — Aw;sinf + Ar; cos 0 (1)
PZ% =y + Aw;cosf + Ar;siné (2)
w(2i —n —1)
Aw; = ————— 2
YT T o) ®)

Where i = 1,2,...,n is the index of a grasp line. Aw; is
the distance from the center of the gripper projection to the
it" grasp line. Ar; is the distance from a grasp line’s center
to its point j. Also, (Ar;, Aw;) is the coordinate of F;; in
the gripper projection frame {G}. Ar; is positive if P;; is
on the right side of the grasp line center, and negative if
otherwise (Ar; € (—5,%)). The parameters of this grasp
representation, (z,y, 0, w,r,n), are composed of the planar
center location (x, y), planar orientation (), grasp width(w),
grasp range(r), and the number of grasp lines (n € [1, w])
of the gripper projection in the image coordinates.

B. Terminologies

Here we introduce some terminologies and annotations to
help describe the gripper-object interaction and better explain
our algorithm. We use superscripts L and R to differentiate
the gripper’s left and right sides in our equations. We use
superscript e to indicate that the term is side specific, and
it should be replaced by either L or R. The intersections
of the grasp lines and the object outline are referred to as
grasp points of the object, such as gp§ (¢ = 1,2,...,n) in
Fig. 2. The distances between grasp points and the center
points of the corresponding grasp line segments are referred
to as the grasp distances (d$) of those grasp points. When
the gripper closes along the grasp line, some of the grasp
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points will contact the gripper, and these grasp points become
contact points. The green square shape grasp points in Fig.
2 are the contact points corresponding to that grasp pose.
The collection of grasp points is the grasp region, and the
collection of contact points is the contact region.

C. Low-level Visual Features

The visual features are the grasp region profile vector
(GRPV) and the contact region feature vector (CRFV), both
of which carry information about the geometry and the
contact properties of the object contour inside the grasp
region. The GRPV is a vector of grasp distances of all grasp
lines.

L L L L
GRPV:[GRPV]__[@I1 dt ... db

GrPVR| = |ai af ... af]

The grasp distances can be found from searching the
intersections of the object outline and the grasp lines. If there
are no intersections between the grasp line and the object
silhouette, then the left and right grasp distances are set to
—r and r, respectively. If the endpoint of one side of the
grasp line segment is inside the object silhouette, then the
grasp distance of that side is —2r (left) or 3r (right). These
abnormal grasp distance values are used to indicate gripper
misses or collides with the object.

After calculating the GRPV, the left and right primary
contact points can be defined as the grasp points with max-
imum absolute grasp distances (excluding abnormal grasp
distances) in the left and right grasp regions, respectively.
If the grasp distances’ difference between a grasp point and
the primary contact point of the same side is less than a
threshold, this grasp point is a secondary contact point on
that side. Adding secondary contact points into consideration
decreases the effect of false contact prediction caused by
imperfect object silhouette detection. Once the contact points
are found, we calculate their normals and center offsets and
organize them in the CRFV:

CPN*

CRFV'] _ |cPD*
CRFV[?RFVR] CPNR 5)

CPD®

CPN¢ and CPD° are the vectors of contact point
normals and contact point center offsets, respectively. The
contact point center offset equals to the distance from the
gripper center to the grasp line that the contact point is on,
which is the Aw; in equation (3).

D. High-level Quality Features

Based on the two low-level features, we derived a set
of more in-depth features that can be used to quantify
the quality of the grasp. These high-level features are the
missing detector, the collision detector, the object translation
predictor, the object rotation predictor, the type 1 and type
2 object slippage predictors. The missing detector (D,,)
and the collision detector (D..) are binary terms that indicate
if the gripper will miss the object and if the gripper will
collide with the object, respectively. As shown in Fig. 3,

Fig. 3. Features that relate to missing and collision.

T~--1IR

Fig. 4.
direction.

Feature that relates to object translation in the gripper closing

when a grasp line misses the object, there is no grasp
point correspond to the grasp line, and the grasp distances
are abnormal values. Similarly, when the gripper collides
with the object, the colliding side’s grasp distance is also
abnormal. Therefore, using these abnormal grasp distances,
we can calculate D,, and D, from the GRPV:

1 A = Lo _
D, — Amax . 0 and dy, . r (6)
0 Otherwise
1 A >r
D= S 2 (7
0 0< Admaa: < %

Adpag = maz(| | GRPVY | — | GRPVE[|)  (8)
dL

max

= max(GRPVY!) (9)

When D,, is 1, the gripper misses the object, and when D,
is 1, there is a collision.

The object translation predictor (D) estimates the ratio
of the object travel distance during gripper closing to half
of the grasp range (3). As shown in Fig. 4, Ty is the
object translate distance in the gripper closing direction. It is
measured from the center of the two primary contact points
to the grasp rectangle’s center. Using GRPYV, the ratio of the
object translate distance to the gripper half grasp range is
calculated as:

min(GRPVL) + maz(GRPVE)
r

D, =

(10)

The minimum and maximum operations here only apply
to normal grasp distance values. We use the distance ratio
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instead of the distance as the grasp quality measure because
using ratio allows this feature to adapt to objects and grippers
of different sizes.

T~ =-IR

Fig. 5. Feature that relates to object planar rotation during grasping.

Fig. 6. Feature that relates to contact angle and indicates the likelihood
of slippage.

The object rotation predictor (R,) predicts the angle of
object rotation during grasping. The object rotates when
there is torque, and the torque occurs when the two primary
contact points are not on the same grasp line. With the
two primary contact points, the rotation center and the
rotation direction can be determined. The potential after-
rotation contact region (PARCR) is defined using the center
of rotation and the rotation direction.

As shown in Fig. 5, the PARCR on each side is the object
outline segment between the two grasp points highlighted in
blue. One grasp point is on the same grasp line as the rotation
center, and the other is the last grasp point of the region
that is approaching the gripper in the rotation process. Once
the PARCRs are determined, the angle of rotation can be
found by selecting the minimum required rotation angle for
a grasp point in the PARCR to be the new contact point after
rotation. Geometrically, the rotation angle (a;) is defined as
the angle between the gripper plate and the line that connects
the primary contact point (approximate pivot point) and the
new after-rotation contact point. This can mathematically be
expressed as:

R R R
alaa27-'~7anR)

(11)

Where af’s are the rotation angles. Each rotation angle is
calculated as the angle between the gripper plate vector G
and C,GY the vector from the primary contact point to the
it" grasp point in the PARCR.

(L L L
R, =min(ar,asy,...,a,L,

The type 1 slippage predictor (S,) is a feature that
measures how likely the object will slip during grasping due
to the slope of the contact surfaces. This feature is defined
as the average contact angle of the most slippery contact
region.

As shown in Fig. 6, the contact angle (8 € [—90,90)) is
defined as the angle between the contact force (F) and the
contact point’s inward normal (—N;). If the contact point
normal (N;) points towards the 15¢ and 2"¢ quadrant of the
gripper frame {G}, then the contact angle is positive; and it
is negative otherwise. If one contact region’s contact angles
have the same polarity, then the contact region is slippery,
and the slipperiness is indicated by the average of all the
contact angles. The larger the average contact angle, the more
likely the object will slip. The following equations describe
this slippage prediction:

e _ Z(Fe7 —N?) ny >0
By = {—4(Fe,—N§) N, <0 (12)
SIe=>Y 1871 = >8] (13)
i=1 i=1
nt gL P gr
Sa = LS| 4 | =) s =0 (14)
0 SI¢#0

Where N is the y coordinate of the normal N{ in {G}, and
n® is the number of contact points of the e side of the gripper.
S1¢ is the slippage indicator. When SI¢ is 0, slippage is
likely to happen because all contact angles of the same side
have the same polarity.
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Fig. 7. Feature relates to grasp force location and indicates the likelihood
of slippage. The shaded areas are the force zones.

The type 2 slippage predictor (S¢) is a feature that predicts
slippage through the grasp force placement. This feature
favors grasp forces that are balanced and centered on the
gripper contact surface. It is calculated as the average of the
left and right force zone center offsets.

As shown in Fig. 7, the force zone of one side of the
gripper is the continuous region that contains all contact
points of that side. The center offset is the distance from
the center of the force zone to the gripper’s center. Using
CPDe, this feature can be calculated as:

min(CPD¢®) + max(CPD®)

Sk 4 Sk
f=—"5+ (16)
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Where min(CPD¢) and maxz(CPD®) are the Aw¢,,, and
Awg, ... respectively. Note that we do not directly consider
friction force in predicting slippage. However, our slippage
predictors are related to how the gripper forces are applied
to the object. Minimizing the slippage predictors’ values

maximizes the friction forces applied to the object.

E. Grasp Quality Scoring

The quality features are in different units and scales.
Before combining them, we first normalize them with linear
functions defined by two endpoints (0, 1) and (7;, 0), where x
is the feature value and y is the normalized feature score. 7; is
the threshold feature value for the O feature score. Since D;
is a ratio, its threshold value is 1. R, and S, are measures of
angles, and their thresholds are set to 60 degrees based on our
experience. Sy is the force placement feature, its value range
from 0 to the gripper projection’s half-width (). We used
two feature thresholds ¢ and % for feature scores 0.7 and
0, respectively, which makes the function has two different
slopes when normalizing low and high feature values. We
found this yields more practical quality scores than a single
slope function. After feature normalization, we calculate the
grasp quality measure S as the weighted sum of the feature
scores:

S = kSmin + (1 — k)s,- (17)

Where S, is the minimum feature score, and s,- is the
average of other feature scores. Since the grasp pose’s quality
mainly depends on its worst quality feature, the weight &
should be assigned in a minimum-dominant fashion (k >>
0.5), and it can be empirically determined by specifying the
grasp quality to the desired value when s,,;, = 0 and s,- =
1 (in this paper we used k£ = 0.9).

IV. REAL ROBOT GRASPING EXPERIMENT
A. Experiment Setup

We used the Baxter robot [24] from Rethink Robotics as
our test platform. The computations were performed on a
laptop PC running Ubuntu 18.04 with a 2.2 GHz Intel Core
17-8750H CPU, 8 GB of RAM, and an NVIDIA GeForce
GTX 1060 (laptop) graphics card. The graphics card is
only used for computing the objects’ silhouettes, and other
computations are all performed on the CPU. We used a
parallel jaw gripper with a pair of narrow fingers(1.3 cm
wide). The fingers’ rubber contact surfaces are masked by
scotch tape to reduce friction so that slipping is more likely
to happen when the grasp pose is prone to slippage. Fig. 8
shows the hardware and the 10 objects used in the grasping
experiment.

This experiment examines how our calculated grasp qual-
ity score relates to the actual robot grasping performance.
In the experiment, an eye-to-hand camera (Intel Realsense
L515) was used to locate the object. Because controlling
the gripper pitch and yaw is outside the scope of this
work, we set them as -90 and O degrees, respectively, to
form top-down grasps. Then from the top of the object,
an eye-in-hand camera (Baxter hand camera) was used to

Category 1

scotch tape

RGB camera

Category 2 Category 4

Category 3

Fig. 8. The robot gripper and the objects used in the robot grasping
experiment.Scotch tape was used to reduce the friction of the gripper contact
surfaces, so that grasping is prone to failure when the grasp pose is not good
enough.

take a closer shot at the object. Facebook Detectron2 [23]
was used to extract the object’s silhouette from the close
shot object image. Assuming the gripper is at the object’s
location, we calculate the gripper’s projection in the object
silhouette image using calibrated camera intrinsics and the
object’s distance to the camera. With the object and gripper
projections, we randomly generate grasp candidates within
the object bounding box and evaluate them with our quality
measure to select the one with the desired quality score
for robot execution. Randomly generates grasp poses help
prove our quality measure’s robustness, since to get the
desired pose, we need to evaluate hundreds and thousands
of candidates.

To test the whole grasp score value domain, we catego-
rized the grasp scores into ten score levels, 0-0.1, 0.1-0.2, ...,
0.9-1. We performed ten grasp trials within each score level
for each object, which is 1000 total grasps. For each grasp
trial, we record the number of evaluated grasp candidates,
the time used in grasp evaluation, and the robot grasp
outcome. The robot grasp outcome includes: (1) a binary
term that indicates if the grasp is successful, and (2) two hand
camera images (BA images) were taken right before and
after the gripper closes, which capture the object’s movement
during gripper closing. If the robot can lift the object for 2
seconds and put it back without visible slippage, then the
grasp is recorded as successful. The object’s rotation and its
translation in the gripper closing direction are measured as
the key lines’ orientation change and the key points’ position
change, respectively, in the BA images. The key lines are
drawn using the object’s appearance features that are visible
in both BA images. The position key point is drawn as the
object’s center on the gripper’s center grasp line.

B. Results

In terms of the computational cost, the recorded average
grasp generation time for the 1000 grasps is 0.534 s. 261868
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Robot Grasping Success Rate and Object Movement Score VS. Grasp Score
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Fig. 9.

grasp candidates were evaluated to generate those grasps; the
average grasp evaluation time is 2.04 ms, with a standard
deviation of 0.264 ms.

To analyze the accuracy of our quality measure, the results
of our robot grasping experiment are visualized in Fig. 9.
The left y-axis is the success rate; the right y-axis is the
normalized object movement score. Because the objects’
movements in failed grasp trails are unpredictable and not
useful for evaluating our method, we ONLY measure the
objects’ movements in succeeded grasp trials to reveal the
quality difference among those successful grasp poses. The
object movement score is calculated as the average of the
normalized object rotation and translation (in the gripper
closing direction). The thresholds used for normalizing the
object translation and rotation are 100 pixels and 60 degrees,
respectively. The x-axis is the average grasp score. The level-
wise average grasp score of each object is very close to
the level-wise average of all objects; the maximum standard
deviation of the all objects average is 0.0087 at the 0.6-
0.7 score level. The thin non-solid lines show each object’s
average success rate at each score level. The thick solid line
shows the average success rate, and the bars show the average
object movement of all objects at each score level. To help
interpret the results, we classified our test objects into four
categories based on their geometrical properties. As shown
in Fig. 8, objects in categories 1 and 2 both have flat contact
surfaces. However, the graspable parts of category-1 objects
are much thinner than category-2 objects. Objects in category
4 have curved contact surfaces, and category-3 objects have
both flat and curved contact surfaces.

From the object-wise success rate, we can see that objects
in the same category tend to have similar success rates under
the same score level. Also, category-1 objects and category-
4 objects have the highest and lowest overall grasp success
rate, respectively. The category-1 objects are long and thin
and have flat contact surfaces in the projection, making them
the easiest for parallel-jaw grippers to grasp, while category-
4 objects are the hardest to grasp because they are round
and our gripper fingers are narrow. The category-1 objects
and the banana have relatively high success rates even when

The success rate and the object movement score of the robot grasping experiment vs. the grasp score.

the grasp qualities are low. This result does not disprove
our quality measure because the object movements in those
grasps are very high. Therefore, even though the grasps were
successful, they were evaluated as low quality because they
were expected to move the objects a lot.

Despite the differences between different objects’ success
rates in the medium quality score levels, at the highest
and lowest score level, all objects’ success rates merge to
the same points. This observation indicates that our quality
measure can distinguish good and bad grasps regardless of
the object type. We achieved a 100% success rate from
grasping the ten objects 100 times with grasps of an average
score of 0.93 and an average movement score of 0.1 with
a standard deviation of 0.0618. Overall, the average grasp
success rate increases, and the average object movement
score decreases as the quality score increases. All the results
show that our grasp quality measure is accurate, practical,
and intuitive.

V. CONCLUSIONS

This paper presents the detailed design and experimental
results of our novel grasp evaluation method, which cal-
culates grasp poses’ quality by analyzing the interactions
between the gripper and the object through their projections
in the image space. Two low-level geometrical features were
directly extracted from the image, and six higher-level grasp
quality features were derived from these geometrical fea-
tures. The overall grasp quality is calculated as the weighted
sum of the normalized features. The real robot grasping
results show that our grasp quality measure is practical and
intuitive. The main limitation of our method is that it only
works for parallel jaw grippers. We will develop a versatile
object silhouette extraction method and a semi-autonomous
grasp direction control system in future works. So that our
quality measure based grasp planning can generate grasps in
all directions and work on objects of complex shapes.
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