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Establishing and leveraging equivalence is a central practice in mathematics. Though there have
been many studies of students’ uses of equivalence, much of the research thus far has been
domain-specific, and the literature generally lacks coherence within and across mathematical
domains. In this theoretical paper, we propose an initial unifying framework for capturing the
different ways that students might establish equivalence. Using constructs born out of the K-12
literature, we discuss how this framework can be applied to student reasoning in undergraduate
settings. We do so by presenting the results of conceptual analyses of students’ possible uses of
equivalence when thinking about vectors, isomorphisms and homeomorphisms, and single-
variable limits. We then conclude with a detailed analysis of student data from combinatorics
that identifies productive aspects of their uses of equivalence when constructing permutations.

Keywords: Equivalence, Conceptual Analysis, Student Thinking

Equivalence is a pervasive mathematical concept that is fundamental to constructing
relationships between mathematical objects at all levels (Carpenter, Franke, & Levi, 2003; Cook,
2018; Lockwood & Reed, 2020; Hamdan, 2006; Kieran & Sfard, 1999; Knuth et al., 2006;
Moore, 2013; Ni, 2001; Steffe, 2004; Stylianides et al., 2004). In postsecondary mathematics,
equivalence is fundamental to students’ thinking about topics such as angle measure (Moore,
2013), logic (Stylianides et al., 2004), combinatorics (Lockwood & Reed, 2020), and abstract
algebra (Cook, 2012, 2018; Larsen, 2013). There is, however, evidence that students throughout
K-16 mathematics face difficulties in reasoning about equivalence (Chesney et al., 2013;
Godfrey & Thomas, 2008; Kieran, 1981; McNeil et al., 2006; Weinberg, 2009). We propose that
one reason for these difficulties is that equivalence is often treated in compartmentalized,
context-specific ways that emphasize its utility within a context but not its common, overarching
structure. This is significant because, as noted by Asghari (2019), “equivalence has had many
different faces and [...] many different names” (p. 4675).

We note that very little has been done to develop a clear, unifying image of what is involved
in productively reasoning with equivalence across domains in undergraduate mathematics. In this
theoretical report, we seek to begin to address this need by presenting an initial theoretical
framework that characterizes key aspects students’ reasoning with equivalence. Specifically, we
first present theoretical analyses of the ways that students might operationalize equivalence when
reasoning about (1) vectors, (2) isomorphisms and homeomorphisms, and (3) limits in single-
variable calculus. Then, we present an analysis of students’ mathematical activity in
combinatorics that highlights how they conceived of various sets of outcomes as equivalent. In
doing so, we demonstrate the utility of the framework for highlighting key aspects of students’
productive engagement with equivalence across multiple mathematical domains.



Background Literature

As there is much more literature on equivalence at the K-12 level than at the postsecondary
level, we draw on K-12 literature in situating our paper. Because of spatial restrictions, we only
discuss the works that largely informed our framework. The K-12 equivalence literature holds
two key implications for our theory-building objectives. First, there are a plethora of explicit
calls for instruction to attend to equivalence (McNeil & Alibali, 2005; McNeil et. al., 2006; Ni,
2001; Smith; 1995; Solares & Kieran, 2013; Stephens, 2006). While this has been somewhat
achieved at the K-12 level, we have observed that equivalence in postsecondary domains often
remains backgrounded.

Second, the K-12 literature contains descriptions of various in ways in which students might
interpret equivalence, specifically in the context of the equals sign. These descriptions provided
an initial foundation for our framework. A fundamental distinction in K-12 involves students
viewing the equal sign operationally (as a indicator to “do something”) or relationally (as an
indicator that the objects in question are in some way the same) (Kieran, 1981; Knuth et al.,
2005). But what does a relational understanding of the equal sign entail? As an example, we
consider the equivalent algebraic expressions 2x + 2y and x + y + x + y: What does it mean to
say that two objects are in some way the same? Our framework stems from three possible ways
to interpret the equivalence of these two expressions that appear in the K-12 literature
(Liebenberg et al., 1999; Saldana & Kieran, 2005; Solares & Kieran, 2013; Zwetzschler &
Prediger, 2013):

1. Numerical: these two expressions are equivalent because, for any real numbers x and y,

the expressions 2x + 2y and x + y + x + y have the same numerical value.

2. Transformational: these two expressions are equivalent because one can be transformed

into the other using algebraic rules (e.g. associativity and commutativity of addition).

3. Descriptive: these two expressions are equivalence because they both describe the

perimeter of a rectangle with sides x and y.
We propose more general, refined versions of these interpretations in the next section and
illustrate how they capture key aspects of students’ reasoning across different domains.

Theoretical Framework

Our framework takes the form of a conceptual analysis, an explicit description of “what
students might understand when they know a particular idea in various ways” (Thompson, 2008,
p. 43). We find conceptual analyses to be useful for our theory-building objectives in three ways.
First, conceptual analyses offer means to identify desirable interpretations of equivalence that
can inspire targets of instruction (Thompson, 2008). Conceptual analyses can form unifying
threads within and across courses and curricula (O’Bryan, 2018). Finally, conceptual analyses
can also enable researchers to create models of students’ thinking (Clement, 2000; Steffe &
Thompson, 2000). These models are useful for both researchers and instructors because they can
be employed to explain students’ mathematical activity and render it sensible in some way.

In this report, we shall illustrate how results of the cross-domain conceptual analysis of
equivalence that we present serves these purposes. The conceptual analysis was informed by our
analyses of (1) the K-16 literature on equivalence, and (2) data collected for teaching
experiments that had been previously conducted in abstract algebra (Cook, 2018) and
combinatorics (Lockwood & Reed, 2020; Reed & Lockwood, 2020). In this framework, we
describe three interpretations of equivalence that we hypothesize are useful for reasoning about
equivalence across mathematical domains (these are featured in Table 1).



Table 1. A framework for analyzing students’ reasoning about equivalence.

Interpretation of Description Example from undergraduate
equivalence mathematics
Common Interpreting or determining Interpreting that parallel lines are
characteristic equivalence based upon a equivalent because “the common
perceived attribute that the property will be the slope” (Hamdan,
objects in question have in 2006, p. 143).
common.
Descriptive Interpreting or determining that Determining that -3 and 9 are
objects are equivalent because equivalent modulo 12 because they
they describe the same quantity ~ both function as the additive inverse
or serve the same purpose with of 3 (Cook, 2012).

respect to a given situation.

Interpreting or determining the Interpreting that two matrices are
Transformational  relationship between equivalent row-equivalent because one can be
objects in terms of the actions by  obtained by applying a sequence of

which one object has been or elementary row operations to the
might be transformed into other (Berman, Koichu, &
another. Shvartsman, 2013).

In the next two sections, we illustrate the utility of this framework by (a) elaborating
theoretical analyses of how these constructs might capture relevant aspects of students’ reasoning
about equivalence in the context of vectors and magnitudes, isomorphisms and
homeomorphisms, and single-variable limits, and (b) using the framework to conduct a detailed
analysis of students’ reasoning from a teaching experiment in enumerative combinatorics.
Together, these will demonstrate ways in which the framework can contribute to a broader,
unifying perspective on equivalence that may be applicable across domains.

Using the Framework to Gain Insight into Equivalence Across Domains
We now illustrate how the interpretations detailed above capture productive aspects of
reasoning about equivalence in the contexts of vectors, isomorphisms and homeomorphisms, and
single-variable limits.

Vectors and Magnitudes

Vector equations provide an example that extends work done at the K-12 level to the
undergraduate curriculum. For example, consider the equation ||5v|| = 5||v||, where ||-|| denotes
a vector norm. First, a student might employ transformational equivalence to consider that the
equality [|5v|| = 5]|v|| follows from allowable operations on vector norms. This transformation
might be described as “pulling the 5 out.” More formally, the definition of a norm requires that
the norm function satisfy the property |[cv|| = |c| - ||v|| for any real constant ¢ and vector v. In a
common characteristic interpretation of the equation, a student might appeal to the fact that



given any vector v, ||5v|| and 5||v|| give the same numerical value'. Finally, a descriptive
equivalence interpretation could involve reasoning with magnitudes. Following Thompson and
colleagues (2014), the magnitude of a quantity 4 is the size of that quantity measured with
respect to a unit?. From this perspective, ||5v|| = 5||v|| could be interpreted descriptively as a
statement that the measure of the length of 5v (when using the length of v as a unit) is 5.

Isomorphic and Homeomorphic Spaces

Significant identifications commonly made in advanced mathematics establish spaces as
equivalent in the sense of possessing the same essential features. The standard method of
determining such an equivalence entails the finding of a (usually bijective) map between the
spaces such that the map satisfies certain topological, analytic, or algebraic properties. A
homeomorphism, for instance, is a bijective map, f, such that both f and its inverse, f 1, are
continuous. A group isomorphism, ¢, is a bijective map such that ¢ preserves the group
operation: ¢(a * b) = ¢(a) - ¢(b), where * and - are the binary operations of the two groups. A
student using such mappings to change one space into another would employ transformational
equivalence, as the maps are the means by which elements of one space are transformed into
elements of another. The analytic, algebraic, and topological qualifications of the bijective maps
afford other implications, however, that also constitute interpretations of equivalence. Given two
isomorphic groups G and H, G is abelian if and only if H is abelian. If M and N are
homeomorphic metric spaces, then they share convergent sequences. Put another way, viewing
the equivalence between spaces this way focuses on their common characteristics. One benefit
of this interpretation is that such fundamental results as those we have given above become
intuitive (if not obvious). Another is that it can be leveraged to justify that certain spaces are not
the same: an abelian group cannot be equivalent (isomorphic) to a non-abelian group, and a
connected topological space cannot be equivalent (homeomorphic) to one that is disconnected.

Single-Variable Limits

Limits underlie most curricular treatments of fundamental operations in single-variable
calculus: derivatives, integrals, and series. One formulation of limits answers the question: A¢ a
given domain value, a, of a function, f, is there a single real number, L, that f approximates to

any desired error bound via domain restrictions of f around a? The mathematical necessity of
eX-1
2

such a question can be seen by examining , which does not admit a readily available output

for all domain values. While numerical and graphical methods might allow determination of

rather obvious limiting values, L, for certain functions, f, the most efficient way to determine the
e*-1

limits of functions - such as - at points of discontinuity is to find an alternate, continuous

x2
function f* that has the same limit as f at a.

For simpler functions, f* can be determined algebraically. For instance, x + 1 can be used to
1 (x—1)(x+1) _
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determine the limit of =—— ! at x = 1 by noting that = = x + 1, so that lim I =
Yy g
x—1 x—1 x—1 x—>1 x—1

lirr% x + 1 = 2. We consider the determining f* in this way to be an example of transformational
X—

2_
equivalence, specifically by obtaining x + 1 from ’;—_11 through a series of algebraic

! Notice that numerical equivalence from the K-12 literature is subsumed in common characteristic equivalence.
2 Symbolically, |A| = m(A) - |u| where |A] is the magnitude, m(A) is the measure of A in unit u, and |u| is the
magnitude of the unit.



transformations. These operations by themselves, however, do not constitute the utility of
interpreting f and f* as equivalent for the purpose of limit calculations. Rather, f and f* are also
equivalent because of a common characteristic: they share the same output values in their
common domain (that is, all real numbers except 1). Because of this common characteristic, the
output f*(1) = 2 is approximated by values of f for any error bound given a sufficiently small
domain interval around x = 1, thus constituting the limit of f at x = 1. As such, the limit of f is
determined because of the common characteristic equivalence of f and f*, yet f* is likely to be
originally determined transformationally.

As functions, f, vary in complexity, engaging in algebraic transformations becomes

increasingly insufficient, requiring new ways to determine suitable f*. For instance, while many

e¥—1 e*-1
atx =0,

functions share the same limiting value as admits no readily available

x2 x2
algebraic transformations. From this perspective, limit theorems - such as L’Hopital’s rule or the
squeeze theorem - can be viewed as providing the means of generating useful equivalent
functions, f*. While desired functions f* have a common characteristic with f that their limits
evaluate to the same number, there are many such functions, g, that have this same common
characteristic. We consider that students might productively generate more robust
understandings of limit theorems as ways to establish equivalence between f* and f via
applications of ideas fundamental to calculus, those of locality and approximation, for instance.

An Analysis of Students’ Reasoning in Combinatorics

We now demonstrate the utility of the framework for capturing key aspects of students’
reasoning with equivalence in combinatorics. Lockwood and Reed (2020) characterized an
equivalence way of thinking to describe a general approach that students in teaching experiments
(Steffe & Thompson, 2000) used to solve enumerative combinatorics problems successfully.
Broadly, their equivalence way of thinking involved identifying outcomes of counting processes
as the same and then using division to account for such ‘duplicate’ outcomes. Our analysis here
furthers this work by explicating how the students employed equivalence in multiple ways.
Specifically, we discuss the counting activity exhibited by novice counters (pseudonyms Carson,
Anne-Marie, and Aaron) when solving the Horse Race Problem, which states: “There are 10
horses in a race. In how many different ways can the horses finish in first, second, and third
place?”

The students first answered 10 - 9 - 8, enumerating the sequence of events in which 10
horses finish the race, but only 9 horses remain after the first horse finishes, followed by 8 horses

that compete for a third-place spot. The interviewer then introduced the notation 170'! as another

way to express the solution and asked the students to justify why 17—(:! was also a solution. The
~10-9-8-7!
7

students first argued that 17(1! gave another way of writing 10 - 9 - 8 as , yielding

1
cancellation of 7!. This first response employed transformational equivalénce, as the students
enacted algebraic transformations in which 17—(:! transformed into 10 - 9 - 8. Wanting to give the
students opportunities to make other — combiﬁatorially based - connections, the interviewer
asked, “can you explain why this answer might make sense aside from the fact that its
numerically equivalent to 10 times 9 times 8?” The following conversation ensued:

Carson: So, the way I’'m thinking about it, is that we know kind of the method to get the
number of ways that 10 horses can finish a race, and that’s 10!. ... So, there’s 10! total



outcomes, and then we know for any given first 3 there’s gonna be 7!, because that’s
saying we know the first 3 horses have finished. How can the last 7 horses finish? So
that’s gonna be 7!. But all we care about is how many given first 3s there are. So, if we
divide the total number of outcomes by the number of potential of outcomes for the last 7
horses - that will give us the potential number of outcomes for the first 3. If that makes
sense?

Interviewer: It makes sense to me. Are you guys following what he’s saying?

Anne-Marie: 1 see why, like 10! would be looking at all 10 positions for each 10 horses. I just
feel like it’d be more intuitive to subtract the 7! than it would be divide but I see why
dividing works better.

We note two complementary interpretations of equivalence that Carson engaged in for the
Horse Race Problem. First, Carson employed descriptive equivalence to establish similitude of

the expressions 10 - 9 - 8 and 17—(:!. By establishing that 10 - 9 - 8 and 17—(:! counted the same total

collection of the first three race finishers, Carson argued that the expressions described the same
outcome set. This use of descriptive equivalence is commonly employed in combinatorial proof.
Second, in the underlined portions, Carson argued that there were 7! orderings of 10 horses that
represented each single desired ordering of the first three horses. This representation of the single
outcome in 7! ways was the first time that the students identified what they would later call
“duplicate” outcomes and set the foundation for what Reed & Lockwood (2020) called an
equivalence way of thinking. For Carson, the assumption that there were 7! representations of the
same desired outcome provided the impetus for the division of 10! by 7!, and constitutes another
use of descriptive equivalence, as the 7! duplicates represent the same desired quantity.

This discussion of the utility in dividing versus subtracting, initiated above by Anne-Marie,
became a prevalent distinction for these students. While the students could articulate that there
were 7! arrangements of the 10 horses for any specific arrangement of gold, silver and bronze
medalists, at this point in the experiment only Carson could articulate why division meaningfully
accounted for those 7! extraneous arrangements to produce a single desired outcome.

Figure 1: Arrangements of A-E

ABCDE ACBDE BACDE BCADE CABDE CBADE DABCE DBACE EABCD EBACD
ABCED ACBED BACED BCAED CABED CBADE DABED DBACE EABDC EBACD
ABDCE ACDBE BADCE BCDAE CADBE CBDAE DACBE DBCAE EACBD EBCAD
ABDEC ACDEB BADEC BCDEA CADEB CBDEA DACEB DBCEA EACDB EBCDA
ABECD ACEBD BAECD BCEAD CAEBD CBEAD DAEBC DBEAC EADBC EBDAC
ABEDC ACEDB BAEDC BCEDA CAEDB CBEDA DAECB DBECA EADCB EBDCA

ADBCE AEBCD BDACE BEACD CDABE CEABD DCABE DEABC ECABD EDABC
ADBEC AEBDC BDAEC BEADC CDAEB CEBAD DCAEB DEACB ECADB EDABC
ADCBE AECBD BDCAE BECAD CDBAE CEBAD DCBAE DEBAC ECBAD EDBAC
ADEBC AEDBC BDEAC BEDAC CDEAB CEDAB DCEAB DECAB ECDAB EDCAB
ADECB AEDCB BDECA BEDCA CDEBA CEDBA DCEBA DECBA ECDBA EDCBA

To elicit further reflection, the interviewer provided a printed list of the 5! arrangements of
the letters A through E (Figure 1) and asked the students to find the 20 groups of letters that
could represent first and second place finishers. Notice that the entries in the list were spaced
apart according to the fixed first two letters. The students noticed this arrangement, and
subsequently circled the 20 groups that reflected this spacing. Seeing that there were six
elements to each grouping, Aaron asked why division by 3! made more sense than “getting rid of
the other 5”. The following exchange occurred after the interviewer pointed out that 3! was 6:



Aaron: Well, since there are 6 options for each AB, then dividing by 6 would just mean you
would get 1, because that’s all you’re looking for. But then 5! would give you the number
of groups (i.e. arrangements of A-E) and 3! would give you the number of combinations
in each group (i.e. arrangements of the 37-5' [etters).

Carson: Well, 3! gives you the number of ways you can arrange the last 3 letters given the
first 2 letters.

Anne-Marie similarly explained that she understood why division by 6 created the single
desired outcome, and that the 6 was achieved by 3!. As with Carson in the Horse Race Problem,
the students’ generation of a desired outcome from a collection of representative outcomes
constitutes employment of descriptive equivalence. Accordingly, the students’ motivations for
division were rooted in considering each of the 6 outcomes as a version of the desired singular
outcome from which generation of the 1 desired from the 6 duplicates could follow.

Following this activity, the students expressed solutions to permutation problems through
division, and explained their process as “getting rid of unwanted” outcomes. In general, the
students throughout the rest of the teaching experiment explicitly attended to whether certain
outcomes generated by a counting process could be seen as duplicates of other outcomes under
the constraints of the problem, thus continuing to employ descriptive equivalence. This was a
notable component of students’ determination of when multiplication was appropriate and when
addition was appropriate. As determining the operations appropriate for the constraints of a
particular counting problem is an area of difficulty for students (e.g., Batanero et al., 1997), the
students’ use of descriptive equivalence was productive for their overall counting.

Conclusion

In this report, we have presented and discussed an initial framework for analyzing students’
reasoning about equivalence across undergraduate mathematics. We exemplified the utility of
this framework by demonstrating its constructs through a discussion of three different
mathematical concepts, and by presenting student data from a combinatorial context. We are
motivated by the fact that despite the fundamental nature of equivalence in K-16 mathematics,
few frameworks offer constructs and language that span domains and levels of mathematics.

As exemplified in our analyses, students might interpret established equivalences between
objects and spaces in myriad ways, each of which might have implications for the ways students
carry out goal-oriented activity with the objects. In addition to providing unifying accounts of the
associations that students make between various mathematical objects, this framework also
offers tools for identifying productive aspects of students’ engagements with equivalence, such
as the productivity of the combinatorics students’ uses of descriptive equivalence to determine
whether subtraction or division was appropriate in a permutation calculation.

Our hope is that we and other researchers can refine this framework by applying it to
empirical data in a variety of domains and topics. Moreover, conceptual analyses such as those in
this report can serve as a foundation for design research that targets these concepts. We offer
these theoretical analyses as inspiration for future conceptual analyses and empirical studies in
which equivalence is considered to serve a key role in students’ reasoning.
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