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Establishing and leveraging equivalence is a central practice in mathematics. Though there have 

been many studies of students’ uses of equivalence, much of the research thus far has been 

domain-specific, and the literature generally lacks coherence within and across mathematical 

domains. In this theoretical paper, we propose an initial unifying framework for capturing the 

different ways that students might establish equivalence. Using constructs born out of the K-12 

literature, we discuss how this framework can be applied to student reasoning in undergraduate 

settings. We do so by presenting the results of conceptual analyses of students’ possible uses of 

equivalence when thinking about vectors, isomorphisms and homeomorphisms, and single-

variable limits. We then conclude with a detailed analysis of student data from combinatorics 

that identifies productive aspects of their uses of equivalence when constructing permutations. 
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Equivalence is a pervasive mathematical concept that is fundamental to constructing 

relationships between mathematical objects at all levels (Carpenter, Franke, & Levi, 2003; Cook, 

2018; Lockwood & Reed, 2020; Hamdan, 2006; Kieran & Sfard, 1999; Knuth et al., 2006; 

Moore, 2013; Ni, 2001; Steffe, 2004; Stylianides et al., 2004). In postsecondary mathematics, 

equivalence is fundamental to students’ thinking about topics such as angle measure (Moore, 

2013), logic (Stylianides et al., 2004), combinatorics (Lockwood & Reed, 2020), and abstract 

algebra (Cook, 2012, 2018; Larsen, 2013).  There is, however, evidence that students throughout 

K-16 mathematics face difficulties in reasoning about equivalence (Chesney et al., 2013; 

Godfrey & Thomas, 2008; Kieran, 1981; McNeil et al., 2006; Weinberg, 2009). We propose that 

one reason for these difficulties is that equivalence is often treated in compartmentalized, 

context-specific ways that emphasize its utility within a context but not its common, overarching 

structure. This is significant because, as noted by Asghari (2019), “equivalence has had many 

different faces and […] many different names” (p. 4675). 

We note that very little has been done to develop a clear, unifying image of what is involved 

in productively reasoning with equivalence across domains in undergraduate mathematics. In this 

theoretical report, we seek to begin to address this need by presenting an initial theoretical 

framework that characterizes key aspects students’ reasoning with equivalence. Specifically, we 

first present theoretical analyses of the ways that students might operationalize equivalence when 

reasoning about (1) vectors, (2) isomorphisms and homeomorphisms, and (3) limits in single-

variable calculus. Then, we present an analysis of students’ mathematical activity in 

combinatorics that highlights how they conceived of various sets of outcomes as equivalent. In 

doing so, we demonstrate the utility of the framework for highlighting key aspects of students’ 

productive engagement with equivalence across multiple mathematical domains.   



Background Literature 

As there is much more literature on equivalence at the K-12 level than at the postsecondary 

level, we draw on K-12 literature in situating our paper. Because of spatial restrictions, we only 

discuss the works that largely informed our framework. The K-12 equivalence literature holds 

two key implications for our theory-building objectives. First, there are a plethora of explicit 

calls for instruction to attend to equivalence (McNeil & Alibali, 2005; McNeil et. al., 2006; Ni, 

2001; Smith; 1995; Solares & Kieran, 2013; Stephens, 2006). While this has been somewhat 

achieved at the K-12 level, we have observed that equivalence in postsecondary domains often 

remains backgrounded. 

Second, the K-12 literature contains descriptions of various in ways in which students might 

interpret equivalence, specifically in the context of the equals sign. These descriptions provided 

an initial foundation for our framework. A fundamental distinction in K-12 involves students 

viewing the equal sign operationally (as a indicator to “do something”) or relationally (as an 

indicator that the objects in question are in some way the same) (Kieran, 1981; Knuth et al., 

2005). But what does a relational understanding of the equal sign entail? As an example, we 

consider the equivalent algebraic expressions 2𝑥 + 2𝑦 and 𝑥 + 𝑦 + 𝑥 + 𝑦: What does it mean to 

say that two objects are in some way the same?  Our framework stems from three possible ways 

to interpret the equivalence of these two expressions that appear in the K-12 literature 

(Liebenberg et al., 1999; Saldana & Kieran, 2005; Solares & Kieran, 2013; Zwetzschler & 

Prediger, 2013): 

1. Numerical:  these two expressions are equivalent because, for any real numbers 𝑥 and 𝑦, 

the expressions 2𝑥 + 2𝑦 and 𝑥 + 𝑦 + 𝑥 + 𝑦 have the same numerical value.   

2. Transformational:  these two expressions are equivalent because one can be transformed 

into the other using algebraic rules (e.g. associativity and commutativity of addition). 

3. Descriptive:  these two expressions are equivalence because they both describe the 

perimeter of a rectangle with sides 𝑥 and 𝑦.   

We propose more general, refined versions of these interpretations in the next section and 

illustrate how they capture key aspects of students’ reasoning across different domains. 

Theoretical Framework  

Our framework takes the form of a conceptual analysis, an explicit description of “what 

students might understand when they know a particular idea in various ways” (Thompson, 2008, 

p. 43). We find conceptual analyses to be useful for our theory-building objectives in three ways. 

First, conceptual analyses offer means to identify desirable interpretations of equivalence that 

can inspire targets of instruction (Thompson, 2008). Conceptual analyses can form unifying 

threads within and across courses and curricula (O’Bryan, 2018). Finally, conceptual analyses 

can also enable researchers to create models of students’ thinking (Clement, 2000; Steffe & 

Thompson, 2000). These models are useful for both researchers and instructors because they can 

be employed to explain students’ mathematical activity and render it sensible in some way.  

In this report, we shall illustrate how results of the cross-domain conceptual analysis of 

equivalence that we present serves these purposes. The conceptual analysis was informed by our 

analyses of (1) the K-16 literature on equivalence, and (2) data collected for teaching 

experiments that had been previously conducted in abstract algebra (Cook, 2018) and 

combinatorics (Lockwood & Reed, 2020; Reed & Lockwood, 2020). In this framework, we 

describe three interpretations of equivalence that we hypothesize are useful for reasoning about 

equivalence across mathematical domains (these are featured in Table 1).  

 



Table 1. A framework for analyzing students’ reasoning about equivalence. 

Interpretation of 

equivalence 

 

Common 

characteristic  

 

 

 

 

Descriptive  

 

 

 

 

 

 

Transformational 

Description 

 

 

Interpreting or determining 

equivalence based upon a 

perceived attribute that the 

objects in question have in 

common.  

 

Interpreting or determining that 

objects are equivalent because 

they describe the same quantity 

or serve the same purpose with 

respect to a given situation. 

 

Interpreting or determining the 

relationship between equivalent 

objects in terms of the actions by 

which one object has been or 

might be transformed into 

another. 

Example from undergraduate 

mathematics 

 

Interpreting that parallel lines are 

equivalent because “the common 

property will be the slope” (Hamdan, 

2006, p. 143). 

 

 

Determining that -3 and 9 are 

equivalent modulo 12 because they 

both function as the additive inverse 

of 3 (Cook, 2012). 

 

 

Interpreting that two matrices are 

row-equivalent because one can be 

obtained by applying a sequence of 

elementary row operations to the 

other (Berman, Koichu, & 

Shvartsman, 2013). 

 

 

In the next two sections, we illustrate the utility of this framework by (a) elaborating 

theoretical analyses of how these constructs might capture relevant aspects of students’ reasoning 

about equivalence in the context of vectors and magnitudes, isomorphisms and 

homeomorphisms, and single-variable limits, and (b) using the framework to conduct a detailed 

analysis of students’ reasoning from a teaching experiment in enumerative combinatorics. 

Together, these will demonstrate ways in which the framework can contribute to a broader, 

unifying perspective on equivalence that may be applicable across domains. 

Using the Framework to Gain Insight into Equivalence Across Domains 

We now illustrate how the interpretations detailed above capture productive aspects of 

reasoning about equivalence in the contexts of vectors, isomorphisms and homeomorphisms, and 

single-variable limits.  

Vectors and Magnitudes 

Vector equations provide an example that extends work done at the K-12 level to the 

undergraduate curriculum. For example, consider the equation ‖5𝑣‖ = 5‖𝑣‖, where ‖⋅‖ denotes 

a vector norm. First, a student might employ transformational equivalence to consider that the 

equality ‖5𝑣‖ = 5‖𝑣‖ follows from allowable operations on vector norms. This transformation 

might be described as “pulling the 5 out.” More formally, the definition of a norm requires that 

the norm function satisfy the property ‖𝑐𝑣‖ = |𝑐| ⋅ ‖𝑣‖ for any real constant 𝑐 and vector 𝑣. In a 

common characteristic interpretation of the equation, a student might appeal to the fact that 



given any vector 𝑣, ‖5𝑣‖ and 5‖𝑣‖ give the same numerical value1. Finally, a descriptive 

equivalence interpretation could involve reasoning with magnitudes. Following Thompson and 

colleagues (2014), the magnitude of a quantity 𝐴 is the size of that quantity measured with 

respect to a unit2. From this perspective, ‖5𝑣‖ = 5‖𝑣‖ could be interpreted descriptively as a 

statement that the measure of the length of 5𝑣 (when using the length of 𝑣 as a unit) is 5.   

Isomorphic and Homeomorphic Spaces 

Significant identifications commonly made in advanced mathematics establish spaces as 

equivalent in the sense of possessing the same essential features. The standard method of 

determining such an equivalence entails the finding of a (usually bijective) map between the 

spaces such that the map satisfies certain topological, analytic, or algebraic properties. A 

homeomorphism, for instance, is a bijective map, 𝑓, such that both 𝑓 and its inverse, 𝑓!", are 

continuous. A group isomorphism, 𝜙, is a bijective map such that 𝜙 preserves the group 

operation: 𝜙(𝑎 ∗ 𝑏) = 𝜙(𝑎) ⋅ 𝜙(𝑏), where ∗ and ⋅ are the binary operations of the two groups. A 

student using such mappings to change one space into another would employ transformational 

equivalence, as the maps are the means by which elements of one space are transformed into 

elements of another. The analytic, algebraic, and topological qualifications of the bijective maps 

afford other implications, however, that also constitute interpretations of equivalence. Given two 

isomorphic groups 𝐺 and 𝐻, 𝐺 is abelian if and only if 𝐻 is abelian. If 𝑀 and 𝑁 are 

homeomorphic metric spaces, then they share convergent sequences. Put another way, viewing 

the equivalence between spaces this way focuses on their common characteristics.  One benefit 

of this interpretation is that such fundamental results as those we have given above become 

intuitive (if not obvious). Another is that it can be leveraged to justify that certain spaces are not 

the same:  an abelian group cannot be equivalent (isomorphic) to a non-abelian group, and a 

connected topological space cannot be equivalent (homeomorphic) to one that is disconnected. 

Single-Variable Limits 

Limits underlie most curricular treatments of fundamental operations in single-variable 

calculus: derivatives, integrals, and series. One formulation of limits answers the question: At a 

given domain value, 𝑎, of a function, 𝑓, is there a single real number, 𝐿, that 𝑓 approximates to 

any desired error bound via domain restrictions of 𝑓 around 𝑎? The mathematical necessity of 

such a question can be seen by examining 
# !"

$
, which does not admit a readily available output 

for all domain values. While numerical and graphical methods might allow determination of 

rather obvious limiting values, 𝐿, for certain functions, 𝑓, the most efficient way to determine the 

limits of functions - such as 
# !"

$
 - at points of discontinuity is to find an alternate, continuous 

function 𝑓∗ that has the same limit as 𝑓 at 𝑎.  

For simpler functions, 𝑓∗ can be determined algebraically. For instance, 𝑥 + 1 can be used to 

determine the limit of 
$ !"

$!"
  at 𝑥 = 1 by noting that 

$ !"

$!"
=

($!")($(")

$!"
= 𝑥 + 1, so that lim

$→"

$ !"

$!"
=

lim
$→"

𝑥 + 1 = 2. We consider the determining 𝑓∗ in this way to be an example of transformational 

equivalence, specifically by obtaining 𝑥 + 1 from 
$ !"

$!"
 through a series of algebraic 

 
1 Notice that numerical equivalence from the K-12 literature is subsumed in common characteristic equivalence. 
2 Symbolically, |𝐴| = 𝑚(𝐴) ⋅ |𝑢| where |𝐴| is the magnitude, 𝑚(𝐴) is the measure of 𝐴 in unit 𝑢, and |𝑢| is the 

magnitude of the unit. 



transformations.  These operations by themselves, however, do not constitute the utility of 

interpreting 𝑓 and 𝑓∗ as equivalent for the purpose of limit calculations. Rather, 𝑓 and 𝑓∗ are also 

equivalent because of a common characteristic: they share the same output values in their 

common domain (that is, all real numbers except 1). Because of this common characteristic, the 

output 𝑓∗(1) = 2 is approximated by values of 𝑓 for any error bound given a sufficiently small 

domain interval around 𝑥 = 1, thus constituting the limit of 𝑓 at 𝑥 = 1. As such, the limit of 𝑓 is 

determined because of the common characteristic equivalence of 𝑓 and 𝑓∗, yet 𝑓∗ is likely to be 

originally determined transformationally.  

As functions, 𝑓, vary in complexity, engaging in algebraic transformations becomes 

increasingly insufficient, requiring new ways to determine suitable 𝑓∗. For instance, while many 

functions share the same limiting value as 
# !"

$
 at 𝑥 = 0,

# !"

$
 admits no readily available 

algebraic transformations. From this perspective, limit theorems - such as L’Hopital’s rule or the 

squeeze theorem - can be viewed as providing the means of generating useful equivalent 

functions, 𝑓∗. While desired functions 𝑓∗ have a common characteristic with 𝑓 that their limits 

evaluate to the same number, there are many such functions, 𝑔, that have this same common 

characteristic. We consider that students might productively generate more robust 

understandings of limit theorems as ways to establish equivalence between 𝑓∗ and 𝑓 via 

applications of ideas fundamental to calculus, those of locality and approximation, for instance.  

An Analysis of Students’ Reasoning in Combinatorics 

We now demonstrate the utility of the framework for capturing key aspects of students’ 

reasoning with equivalence in combinatorics. Lockwood and Reed (2020) characterized an 

equivalence way of thinking to describe a general approach that students in teaching experiments 

(Steffe & Thompson, 2000) used to solve enumerative combinatorics problems successfully. 

Broadly, their equivalence way of thinking involved identifying outcomes of counting processes 

as the same and then using division to account for such ‘duplicate’ outcomes. Our analysis here 

furthers this work by explicating how the students employed equivalence in multiple ways.  

Specifically, we discuss the counting activity exhibited by novice counters (pseudonyms Carson, 

Anne-Marie, and Aaron) when solving the Horse Race Problem, which states: “There are 10 

horses in a race. In how many different ways can the horses finish in first, second, and third 

place?” 

The students first answered 10 · 9 · 8, enumerating the sequence of events in which 10 

horses finish the race, but only 9 horses remain after the first horse finishes, followed by 8 horses 

that compete for a third-place spot. The interviewer then introduced the notation 
"*!

,!
 as another 

way to express the solution and asked the students to justify why 
"*!

,!
 was also a solution. The 

students first argued that 
"*!

,!

 gave another way of writing 10 · 9 · 8 as 
"*⋅.⋅/⋅,!

,!
, yielding 

cancellation of 7!. This first response employed transformational equivalence, as the students 

enacted algebraic transformations in which 
"*!

,!
 transformed into 10 · 9 · 8. Wanting to give the 

students opportunities to make other – combinatorially based - connections, the interviewer 

asked, “can you explain why this answer might make sense aside from the fact that its 

numerically equivalent to 10 times 9 times 8?”  The following conversation ensued:  

 

Carson: So, the way I’m thinking about it, is that we know kind of the method to get the 

number of ways that 10 horses can finish a race, and that’s 10!. … So, there’s 10! total 





Aaron: Well, since there are 6 options for each AB, then dividing by 6 would just mean you 

would get 1, because that’s all you’re looking for. But then 5! would give you the number 

of groups (i.e. arrangements of A-E) and 3! would give you the number of combinations 

in each group (i.e. arrangements of the 3rd-5th letters). 

Carson: Well, 3! gives you the number of ways you can arrange the last 3 letters given the 

first 2 letters. 

 

Anne-Marie similarly explained that she understood why division by 6 created the single 

desired outcome, and that the 6 was achieved by 3!. As with Carson in the Horse Race Problem, 

the students’ generation of a desired outcome from a collection of representative outcomes 

constitutes employment of descriptive equivalence. Accordingly, the students’ motivations for 

division were rooted in considering each of the 6 outcomes as a version of the desired singular 

outcome from which generation of the 1 desired from the 6 duplicates could follow.  

Following this activity, the students expressed solutions to permutation problems through 

division, and explained their process as “getting rid of unwanted” outcomes. In general, the 

students throughout the rest of the teaching experiment explicitly attended to whether certain 

outcomes generated by a counting process could be seen as duplicates of other outcomes under 

the constraints of the problem, thus continuing to employ descriptive equivalence. This was a 

notable component of students’ determination of when multiplication was appropriate and when 

addition was appropriate. As determining the operations appropriate for the constraints of a 

particular counting problem is an area of difficulty for students (e.g., Batanero et al., 1997), the 

students’ use of descriptive equivalence was productive for their overall counting.  

Conclusion 

In this report, we have presented and discussed an initial framework for analyzing students’ 

reasoning about equivalence across undergraduate mathematics. We exemplified the utility of 

this framework by demonstrating its constructs through a discussion of three different 

mathematical concepts, and by presenting student data from a combinatorial context. We are 

motivated by the fact that despite the fundamental nature of equivalence in K-16 mathematics, 

few frameworks offer constructs and language that span domains and levels of mathematics.  

As exemplified in our analyses, students might interpret established equivalences between 

objects and spaces in myriad ways, each of which might have implications for the ways students 

carry out goal-oriented activity with the objects. In addition to providing unifying accounts of the 

associations that students make between various mathematical objects, this framework also 

offers tools for identifying productive aspects of students’ engagements with equivalence, such 

as the productivity of the combinatorics students’ uses of descriptive equivalence to determine 

whether subtraction or division was appropriate in a permutation calculation.  

Our hope is that we and other researchers can refine this framework by applying it to 

empirical data in a variety of domains and topics. Moreover, conceptual analyses such as those in 

this report can serve as a foundation for design research that targets these concepts. We offer 

these theoretical analyses as inspiration for future conceptual analyses and empirical studies in 

which equivalence is considered to serve a key role in students’ reasoning.  
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