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Abstract

Global information is essential for dense prediction problems, whose goal is to
compute a discrete or continuous label for each pixel in the images. Traditional
convolutional layers in neural networks, initially designed for image classifica-
tion, are restrictive in these problems since the filter size limits their receptive
fields. In this work, we propose to replace any traditional convolutional layer
with an autoregressive moving-average (ARMA) layer, a novel module with an
adjustable receptive field controlled by the learnable autoregressive coefficients.
Compared with traditional convolutional layers, our ARMA layer enables explicit
interconnections of the output neurons and learns its receptive field by adapting the
autoregressive coefficients of the interconnections. ARMA layer is adjustable to
different types of tasks: for tasks where global information is crucial, it is capable of
learning relatively large autoregressive coefficients to allow for an output neuron’s
receptive field covering the entire input; for tasks where only local information
is required, it can learn small or near zero autoregressive coefficients and auto-
matically reduces to a traditional convolutional layer. We show both theoretically
and empirically that the effective receptive field of networks with ARMA layers
(named ARMA networks) expands with larger autoregressive coefficients. We also
provably solve the instability problem of learning and prediction in the ARMA
layer through a re-parameterization mechanism. Additionally, we demonstrate
that ARMA networks substantially improve their baselines on challenging dense
prediction tasks, including video prediction and semantic segmentation. Our code
is available on https://github.com/umd-huang-lab/ARMA-Networks.

1 Introduction

Convolutional layers in neural networks have many successful applications for machine learning
tasks. Each output neuron encodes an input region of the network measured by the effective receptive

field (ERF) [25]. A large ERF that allows for sufficient global information is needed to make
accurate predictions; however, a simple stack of convolutional layers does not effectively expand ERF.
Convolutional neural networks (CNNs) typically encode global information by adding downsampling
(pooling) layers, which coarsely aggregate global information. A fully-connected classification layer
subsequently reduces the entire feature map to an output label. Downsampling and fully-connected
layers are suitable for image classification tasks where only a single prediction is needed. But they
are less effective, due to potential loss of information, in dense prediction tasks such as semantic
segmentation and video prediction, where each pixel requests a prediction. Therefore, it is crucial to
introduce mechanisms that enlarge ERF without too much information loss.

Naive approaches to expanding ERF, such as deepening the network or enlarging the filter size,
drastically increase the model complexity, which results in expensive computation, difficulty in
optimization, and susceptibility to overfitting. Advanced architectures have been proposed to expand
ERF, including encoder-decoder networks [30], dilated convolutional networks [40, 41], and non-
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local networks [34]. However, encoder-decoder networks could lose high-frequency information due
to the downsampling layers. Dilated convolutional networks could suffer from the gridding effect
while the ERF expansion is limited, and non-local networks are expensive in training and inference.

We introduce a novel autoregressive-moving-average (ARMA) layer that enables adaptive receptive
field by explicit interconnections among its output neurons. Our ARMA layer realizes these intercon-
nections via extra convolutions on output neurons, on top of the convolutions on input neurons as in a
traditional convolutional layer. We provably show that an ARMA network can have arbitrarily large
ERF, thus capturing global information, with minimal extra parameters at each layer. Consequently,
an ARMA network can flexibly enlarge its ERF to leverage global knowledge without reducing spatial
resolution. Moreover, the ARMA networks are independent of the architectures above, including
encoder-decoder networks, dilated convolutional networks, and non-local networks.

A significant challenge in ARMA networks lies in the complex computations needed in both forward
and backward propagations — simple convolution operations are not applicable since the output
neurons are influenced by their neighbors and thus interrelated. Another challenge in ARMA networks
is instability — the additional interconnections among the output neurons could recursively amplify
the outputs and lead them to infinity. We address both challenges in this paper.

Summary of Contributions
• We introduce a novel ARMA layer that is a plug-and-play module substituting convolution layers

in neural networks to allow flexible tuning of their ERF, adapting to the task requirements, and
improving performance in dense prediction problems.

• We recognize and address the problems of computation and instability in ARMA layers. (1)
To reduce computational complexity, we develop FFT-based algorithms for both forward and
backward passes; (2) To guarantee stable learning and prediction, we propose a separable ARMA

layer and a re-parameterization mechanism that ensures the layer to operate in a stable region.
• We successfully apply ARMA layers in ConvLSTM network [39] for pixel-level multi-frame video

prediction and U-Net model [30] for medical image segmentation. ARMA networks substantially
outperform the corresponding baselines on both tasks, suggesting that our proposed ARMA layer
is a general and useful building block for dense prediction problems.

2 Related Works

Dilated convolution [15] enlarges the receptive field by upsampling the filter coefficients with zeros.
Unlike encoder-decoder structure, dilated convolution preserves the spatial resolution and is thus
widely used in dense prediction problems, including semantic segmentation [7, 24, 40], and objection
detection [10, 20]. However, dilated convolution by itself creates gridding artifacts if its input contains
higher frequency than the upsampling rate [41], and the inconsistency of local information hampers
the performance of the dilated convolutional networks [35]. Such artifacts can be alleviated by extra
anti-aliasing layer [41], group interacting layer [35] or spatial pyramid pooling [8].

Deformable convolution allows the filter shape (i.e., locations of the incoming pixels) to be learn-
able [11, 16, 42]. While deformable convolution focuses on adjusting the filter shape, our ARMA
layer aims to expand the effective filter size adaptively.

Non-local attention network [34] inserts non-local attention blocks between the convolutional layers.
A non-local attention block computes a weighted sum of all input neurons for each output neuron,
similar to attention mechanism [33]. In practice, non-local attention blocks are computationally
expensive, thus they are typically inserted in the upper part of the network (with lower resolution). In
contrast, our ARMA layers are economical (see section 4) and can be used throughout the network.

Encoder-decoder structured network pairs each downsampling layer with another upsampling
layer to maintain the resolution, and introduces skip-connection between the pair to preserve the
high-frequency information [24, 30]. Since the shortcut bypasses the downsampling/upsampling
layers, the network has a small receptive field for the high-frequency components. A potential
solution is to augment upsampling with non-local attention block [27] or ARMA layer (section 6).

Recurrent neural networks over the spatial domain [5, 17, 22, 23, 28, 32] are used to expand the
receptive field or learn the affinity between neighboring pixels. However, almost all prior works
consider nonlinear recurrent neural networks, where the activation in recursions prohibits an efficient
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parallel algorithm. Quasi-recurrent neural networks [4] partially address the problem by decoupling
the linear operations and parallelizing them using convolutions. In contrast, our proposed ARMA
layer is equivalent to a linear recurrent neural network, allowing for efficient evaluation using FFT.

3 ARMA Neural Networks

In this section, we introduce a novel autoregressive-moving-average (ARMA) layer and analyze its
ability to expand Effective Receptive Field (ERF) in neural networks. The analysis is further verified
by visualizing the ERF with varying network depth and strength of autoregressive coefficients.

3.1 ARMA Layer

A traditional convolutional layer is essentially a moving-average model [3]:

Y:,:,t =
SX

s=1

W:,:,t,s ⇤ X:,:,s, (1)

where the moving-average coefficients W 2 RKm⇥Km⇥T⇥S , is parameterized by a 4th-order kernel
(Km is the filter size, and S, T are input/output channels), : denotes all elements from the specified
coordinate and ⇤ denotes convolution between an input feature and a filter.

(a) Convolution (b) ARMA

Figure 1: The ARMA layer introduces intercon-
nections among output neurons explicitly.

As motivated in the introduction, we introduce
a novel ARMA layer that enables an adaptive
receptive field by introducing explicit intercon-
nections among its output neurons, as illustrated
in Figure 1. Our ARMA layer realizes these
interconnections by introducing extra convolu-
tions on the outputs, upon the convolutions on
the inputs as in a traditional convolutional layer.
As a result, in an ARMA layer, each output neu-
ron can be affected by an input pixel faraway
through interconnections among the output neu-
rons, thus receives global information. Formally,
we define an ARMA layer in Definition 1.
Definition 1 (ARMA Layer). An ARMA layer is parameterized by a moving-average kernel (co-

efficients) W 2 RKm⇥Km⇥S⇥T
and an autoregressive kernel (coefficients) A 2 RKa⇥Ka⇥T

. It

receives an input X 2 RI1⇥I2⇥S
and returns an output Y 2 RI0

1⇥I0
2⇥T

with an ARMA model:

A:,:,t ⇤ Y:,:,t =
SX

s=1

W:,:,t,s ⇤ X:,:,s. (2)

Remarks: (1) The ARMA layer maintains the shift-invariant property, since the output intercon-
nections are realized by convolutions. (2) The ARMA layer reduces to a traditional layer if the
autoregressive kernel A represents an identical mapping. (3) The ARMA layer is a plug-and-play

module that can replace any convolutional layer, adding K2
aT extra parameters negligible compared

to K2
wST parameters in a traditional convolution layer. (4) Unlike a traditional layer, computing

Equation 2 and its backpropagation are nontrivial, studied in section 4.

(a) Convolution. (b) ARMA. (c) Dilated convolution. (d) Dilated ARMA.

Figure 2: Diagrams of receptive field. In (b), each output neuron receives its neighbors’ receptive
field. In (d), ARMA’s autoregression fills the gaps created by dilated convolution.

3



Our ARMA layer can be combined with the methods of dilated convolutional layer, deformable
convolutional layer, non-local attention block, as well as encoder-decoder architecture. For instance, a
dilated ARMA layer, illustrated in Figure 2d, removes the gridding effect caused by dilated convolution
— the autoregressive kernel is interpreted as an anti-aliasing filter.

The motivation of introducing the ARMA layer is to enlarge the effective input region for each
network output without increasing the filter size or network depth, thus avoiding the difficulties
in training larger or deeper models. As illustrated in Figure 2, each output neuron in a traditional
convolutional layer (Figure 2a) only receives information from a small input region (the filter size).
However, an ARMA layer enlarges the small local region to a larger one (Figure 2b). It enables an
output neuron to receive information from a faraway input neuron through the connections to its
neighbors. In subsection 3.2, we formally introduce the concept of effective receptive field (ERF)
to characterize the input region size. Moreover, we will show that an ARMA network can have
arbitrarily large ERF with a single extra parameter at each layer in Theorem 3.

3.2 Effective Receptive Field

Effective receptive field (ERF) [25] measures the area of the input region that makes substantial

contribution to an output neuron. In this section, we analyze the ERF size of an L-layers network
with ARMA layers v.s. traditional convolutional layers. Formally, consider an output at location
(i1, i2), the impact from an input pixel at (i1 � p1, i2 � p2) (i.e L layers and (p1, p2) pixels away) is
measured by the amplitude of partial derivative g(i1, i2, p1, p2) =

���@Y(L)
i1,i2,t

/@X (1)
i1�p1,i2�p2,s

��� (where
superscripts index the layers), i.e., how much the output changes as the input pixel is perturbed.
Definition 2 (Effective Receptive Field, ERF). Consider an L-layers network with an S-channels

input X (1) 2 RI1⇥I2⇥S
and a T -channels output Y(L) 2 RI1⇥I2⇥T

, its effective receptive field is

defined as the empirical distribution of the gradient maps: ERF(p1, p2) = 1/(I1I2ST ) ·
P

s,t,i1,i2
[g(i1, i2, p1, p2)/

P
j1,j2

g(j1, j2, p1, p2)], To measure the size of the ERF, we define its radius r(ERF)
as the standard deviation of the empirical distribution:

r (ERF)2 =
X

p1,p2

�
p
2
1 + p

2
2

�
ERF (p1, p2)�

"
X

p1,p2

q
p21 + p22 ERF(p1, p2)

#2
. (3)

Notice that ERF simultaneously depends on the model parameters and a specified input to the
network, i.e., ERF is both model-dependent and data-dependent. Therefore, it is generally intractable
to compute the ERF analytically for any practical neural network.

We follow the original paper of ERF [25] to estimate the radius with a simplified linear network. The
paper empirically verifies that such an estimation is accurate and can be used to guide filter designs.
Theorem 3 (ERF of a Linear ARMA Network). Consider an L-layers linear network, where the

`th
layer computes y(`)i � a(`)y(`)i�1 =

PK(`)�1
p=0 [(1� a(`))/K(`)] · y(`�1)

i�d(`)p
(i.e., the moving-average

coefficients are uniform with length K(`)
and dilation d(`), and the autoregressive coefficients

a(`) = {1,�a(`)} has length 2 ). Suppose 0  a(`) < 1, 8` 2 [L], the ERF radius of the network is

r(ERF)2ARMA =
LX

`=1

2

4
d
(`)2

⇣
K

(`)2 � 1
⌘

12
+

a
(`)

(1� a(`))2

3

5 . (4)

We prove Theorem 3 in Appendix B. If the coefficients for different layers are identical, e.g., K(`) =
K, d(`) = d, a(`) = a, the radius reduces to r(ERF)ARMA =

p
L ·

p
d2(K2 � 1)/12 + a/(1� a)2.

Moreover, if a = 0 and d = 1, the ARMA layers reduce to traditional convolutional layers, and the
ERF of the resulted linear CNN has radius r(ERF)CNN =

p
L ·

p
(K2 � 1)/12 as shown in [25].

Remarks: (1) Compared with a (dilated) CNN, an ARMA network can have arbitrarily large
ERF with an extra parameter a at each layer. When the autoregressive coefficient a is large (e.g.,
a > 1 � 1/(dK)), the second term a/(1 � a)2 dominates the radius, and the ERF is substantially
larger than that of a CNN. In particular, the radius tends to infinity as a approaches 1. (2) An ARMA
network can adaptively adjust its ERF through learnable parameter a. As a gets smaller (e.g.,
a < 1� 1/(dK)), the second term is comparable to or smaller than the first term, and the effect of
expanded ERF diminishes. In particular, if a = 0, an ARMA network reduces to a CNN.
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Visualization of the ERF. We analytically show in Theorem 3 that the ERF radius increases with
the network depth and autoregressive coefficients’ magnitude. We now verify our analysis by
simulating linear ARMA networks with varying depths and autoregressive coefficients’ magnitude.
As shown in Figure 3, the ERF radius increases as the autoregressive coefficients get larger. When
the autoregressive coefficients are zeros, an ARMA network reduces to a traditional convolutional
network. The simulation results also indicate that ARMA’s ability to expand the ERF increases with
the network depth. In conclusion, an ARMA network can have a large ERF even when the network is
shallow, and its ability to expand the ERF increases when the network gets deeper.

a L = 1 L = 3 L = 5 a L = 1 L = 3 L = 5

0.0
(CNN) 0.8

0.6 0.9

Figure 3: Visualization of ERF in linear ARMA networks under different network depth L = 1, 3, 5
and different magnitude of the autoregressive coefficient a = 0.0, 0.6, 0.8, 0.9 (See subsection A.1
for detailed experimental setup.)

4 Prediction and Learning of ARMA Layers

In an ARMA layer, each neuron is influenced by its neighbors from all directions (see Figure 2b). As
a result, no neuron could be evaluated alone before evaluating any other neighboring neurons. To
compute Equation 2, we need to solve a set of linear equations to obtain all values simultaneously.
(1) However, the standard solver using Gaussian elimination is too expensive to be practical, and
therefore we need to seek a more efficient solution. (2) Furthermore, the solver for linear equations
typically does not support automatic differetiation, and we have to derive the backward equations
analytically. (3) Finally, we also need to devise an efficient algorithm to compute the backpropagation
equations efficiently. In the section, we address these aforementioned problems.
Decomposing an ARMA Layer. We decompose the ARMA layer in Equation 2 into a moving-
average (MA) layer and an autoregressive (AR) layer:

MA Layer: T:,:,t =
SX

s=1

W:,:,t,s ⇤ X:,:,s; (5a)

AR Layer: A:,:,t ⇤ Y:,:,t = T:,:,t, (5b)

where T 2 RI0
1⇥I0

2⇥T is the intermediate result.
Layer # params. # FLOPs r(ERF)2

Conv. K
2
wC

2
O(I2K2

wC
2) O(LK2

w)

ARMA
K

2
wC

2

+K
2
aC

O(K2
wI

2
C

2+

I
2 log(I) C)

O
�
LK

2
w+

L
a

(1� a)2
�

Table 1: An ARMA layer achieves large gain of
the ERF radius through small overhead of extra # of
parameters and # of FLOPs. Through a single extra
parameter a (thus Ka = 2), the ERF radius can be
arbitrarily large. For notational simplicity, we assume
all heights and widths are equal I1 = I2 = I

0
1 =

I
0
2 = I , and the input and output channels are the

same S = T = C.

Difficulty in Computing the AR Layer. While
the MA layer in Equation 5a is simply a traditional
convolutional layer (Equation 1), it is nontrivial to
solve the AR layer in Equation 5b. Naively using
Gaussian elimination, the linear equations in the
AR layer can be solved in time cubic in dimension
O((I21 + I22 )I1I2T ), which is too expensive.

Solving the AR Layer. We propose to use the
frequency-domain division [21] to solve the decon-

volution problem in the AR layer. Since the con-
volution in the spatial domain leads to an element-
wise product in the frequency domain, we first
transform A, T into their frequency representa-
tions eA, eT , with which we compute eY (the frequency representation of Y) with the element-wise
division. Then, we reconstruct the output Y by an inverse Fourier transform of eY .
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Computational Overhead. ARMA trades small overhead of extra parameters and computation
for a large gain of ERF radius, as shown in Table 1. With Fast Fourier Transform (FFT), the
FLOPS required by the extra autoregressive layer is O(log(max(I1, I2))I1I2T ) (see Appendix C
for derivations). Importantly, compared with non-local attention block [34], the extra computation
introduced in an ARMA layer is smaller; a non-local attention block requires O(I21I

2
2T ) FLOPS.

Backpropagation. Deriving the backpropagation for an ARMA layer is nontrivial; although the
backpropagation rule for the MA layer is conventional, that of the AR layer is not. In Theorem 4, we
show that the backpropagation of an AR layer can be computed as two ARMA models.
Theorem 4 (Backpropagation of an AR layer). Given A:,:,t ⇤ Y:,:,t = T:,:,t and the gradient

@L/@Y , the gradients {@L/@A, @L/@X} can be obtained by two ARMA models:

A>
:,:,t ⇤

@L
@A:,:,t

= �Y>
:,:,t ⇤

@L
@Y:,:,t

; (6a)

A>
:,:,t ⇤

@L
@T:,:,t

=
@L

@Y:,:,t
. (6b)

where A>
:,:,t and Y>

:,:,t are the transposed images of A:,:,t and Y:,:,t (e.g., A>
i1,i2,t = A�i1,�i2,t).

Since the backpropagation is characterized by ARMA models, it can be evaluated efficiently using
FFT similar to Equation 5. The proof of Theorem 4, with its FFT evaluation, is given in Appendix C.

5 Stability of ARMA Layers

An ARMA model with arbitrary coefficients is not always stable. For example, the model yi�ayi�1 =
xi is unstable if |a| > 1: Consider an input x with x0 = 1 and xi = 0, 8i 6= 0, the output y will
recursively amplify itself as y0 = 1, y1 = a, · · · , yi = ai and diverge to infinity.

5.1 Stability Constraints for an ARMA Layer

The key to guaranteeing the stability of an ARMA layer is to constrain its autoregressive coefficients,
which prevents the output from repeatedly amplifying itself. To derive the constraints, we propose a
special design, separable ARMA layer inspired by separable filters [21].
Definition 5 (Separable ARMA Layer). A separable ARMA layer is parameterized by a moving-

average kernel W 2 RKw⇥Kw⇥S⇥T
and T ⇥Q sets of autoregressive filters {(f (q)

:,t , g
(q)
:,t )

Q
q=1}Tt=1,.

It takes an input X 2 RI1⇥I2⇥S
and returns an output Y 2 RI0

1⇥I0
2⇥T

as

⇣
f
(1)
:,t ⇤ · · · ⇤ f (Q)

:,t

⌘
⌦
⇣
g
(1)
:,t ⇤ · · · ⇤ g(Q)

:,t

⌘
⇤ Y:,:,t =

SX

s=1

W:,:,t,s ⇤ X:,:,s (7)

where the filters f (q)
:,t , g

(q)
:,t 2 R3

are length-3, and ⌦ denotes outer product of two 1D-filters.

Remarks: Each autoregressive filter A:,:,t is designed to be separable, i.e., A:,:,t = F:,t ⌦G:,t, thus
it can be characterized by 1D-filters F:,t and G:,t. By the fundamental theorem of algebra [29], any
1D-filter can be represented as a composition of length-3 filters. Therefore, F:,t and G:,t can further
be factorized as F:,t = f (1)

:,t ⇤ f (2)
:,t · · · ⇤ f (Q)

:,t and G:,t = g(1):,t ⇤ g(2):,t · · · ⇤ g(Q)
:,t . In summary, each

A:,:,t is characterized by Q sets of length-3 autoregressive filters (f (q)
:,t , g

(q)
:,t )

Q
q=1.

Theorem 6 (Constraints for a Stable Separable ARMA Layer). A sufficient condition for the

separable ARMA layer (Definition 5) to be stable (i.e., output be bounded for any bounded input) is:

���f (q)
�1,t + f

(q)
1,t

��� < f
(q)
0,t ,

���g(q)�1,t + g
(q)
1,t

��� < g
(q)
0,t , 8q 2 [Q], t 2 [T ]. (8)

The proof is deferred to Appendix D, which follows the standard techniques using Z-transform.

5.2 Achieving Stability via Re-parameterization

In principle, the constraints required for stability in an ARMA layer (as in Theorem 6) could be
enforced through constraints in optimization. However, a constrained optimization algorithm, such as
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A: ,: , t

=

F : ,t G: , t F : ,t

= *

f : , t
(2)

f : , t
(1)

=

f −1, t
(1)

f 1, t
(1)

f 0, t
(1)

●

γ1, t
f

α1, t
f

βq ,t
fβ1, t
f

tanh

√2/2 −√2 /2

√2/2 √2/2

Parameter

β1, t
f

α1, t
f

f 0, t
(1)

f −1, t
(1)

f 0, t
(1)

f 1, t
(1)

(a) (b) (c) (d)

Figure 4: For each channel t, (a) the two-dimensional filter A:,:,t is parameterized through an
outer product of two 1D-filters F:,t and G:,t; (b) F:,t is parameterized through a convolution of
f (1)
:,t ⇤ · · · ⇤ f (Q)

:,t , and similarly G:,t as a convolution of g(1):,t ⇤ · · · ⇤ g(Q)
:,t ; (c) we re-parameterize each

constrained (f (q)
�1,t, f

(q)
1,t ) to unconstrained (↵f

q,t,�
f
q,t), and similarly (g(q)�1,t, g

(q)
1,t ) to (↵g

q,t,�
g
q,t); (d)

final parameters for unconstrained optimization are (f (q)
0,t ,↵

f
q,t,�

f
q,t, g

(q)
0,t↵

g
q,t,�

g
q,t)

Q
q=1.

projected gradient descent [2], is more expensive as it requires an extra projection step. Moreover, it
could be more difficult to achieve convergence. In order to avoid the aforementioned challenges, we
introduce a re-parameterization mechanism to remove constraints needed to guarantee stability.
Theorem 7 (Re-parameterization). For a separable ARMA layer in Definition 5, if we re-parameterize

each tuple (f (q)
�1,t, f

(q)
1,t , g

(q)
�1,t, g

(q)
1,t ) as learnable parameters (↵f

q,t,�
f
q,t,↵

g
q,t,�

g
q,t):

 
f
(q)
�1,t g

(q)
�1,t

f
(q)
1,t g

(q)
1,t

!
=

 
f
(q)
0,t 0

0 g
(q)
0,t

!✓p
2/2 �

p
2/2p

2/2
p
2/2

◆✓
↵
f
q,t ↵

g
q,t

tanh(�f
q,t) tanh(�g

q,t)

◆
(9)

then the layer is stable for arbitrary {(f (q)
0,t ,↵

f
q,t,�

f
q,t, g

(q)
0,t ,↵

g
q,t,�

g
q,t)

Q
q=1}Tt=1 with no constraints.

In practice, we set f (q)
0,t = g(q)0,t = 1 (since the scale can be learned by the moving-average kernel), and

only store and optimize over each tuple (↵f
q,t,�

f
q,t,↵

g
q,t,�

g
q,t). In other words, each autoregressive

filter A:,:,t is constructed from (↵f
q,t,�

f
q,t,↵

g
q,t,�

g
q,t)

Q
q=1 on the fly during training or inference.

0 200 400 600 800 1,000 1,200 1,400

20

40

60

80

iterations

pe
rc

en
ta

ge
tra

ni
ng

ac
cu

ra
cy

without reparam
with reparam

Figure 5: Learning curves with
and without re-parameterization on an
ARMA network with a VGG-11 back-
bone on CIFAR-10.

Experimental Demonstration of Re-parameterization. To
verify that the re-parameterization mechanism is essential
for stable training, we train a VGG-11 network [31] on the
CIFAR-10 dataset, where all convolutional layers are replaced
by ARMA layers with autoregressive coefficients initialized
as zeros. We compare the learning curves using the re-
parameterization v.s. not using the re-parameterization in Fig-
ure 5. As we can see, the training quickly converges under
our proposed re-parameterization mechanism with which the
stability of the network is guaranteed. However, without the
re-parameterization mechanism, a naive training of the ARMA
network never converges and gets NaN error quickly. The ex-
periment thus verifies that the theory in Theorem 7 is effective
in guaranteeing stability.

6 Experiments

We apply our ARMA networks on two dense prediction problems – pixel-level video prediction and
semantic segmentation to demonstrate the effectiveness of ARMA networks. (1) We incorporate our
ARMA layers in U-Nets [30, 36] for semantic segmentation, and in the ConvLSTM network [6, 39] for
video prediction. We show that the resulted ARMA U-Net and ARMA-LSTM models uniformly
outperform the baselines on both tasks. (2) We then interpret the varying performance of ARMA
networks on different tasks by visualizing the histograms of the learned autoregressive coefficients.
We include the detailed setups (datasets, model architectures, training strategies, and evaluation
metrics) and visualization in Appendix A for reproducibility purposes.
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Semantic Segmentation on Biomedical Medical Images. We evaluate our ARMA U-Net on the
lesion segmentation task in ISIC 2018 challenge [38], comparing against a baseline U-Net [30] and
non-local U-Net [36] (U-Net augmented with non-local attention blocks).

Table 2: Semantic segmentation on ISIC dataset. For all metrics (ACC, SE, SP, PC, F1 and JS), higher
values indicates better performance. The reported numbers are an average of 10 runs with different seeds.

Model params. ACC SE SP PC F1 JS

U-Net [30] 3.453M 0.946 ± 0.003 0.884 ± 0.019 0.977 ± 0.005 0.857 ± 0.020 0.842 ± 0.009 0.754 ± 0.011
NL U-Net [36] 4.403M 0.945 ± 0.003 0.877 ± 0.017 0.973 ± 0.004 0.844 ± 0.014 0.831 ± 0.012 0.741 ± 0.013

ARMA U-Net 3.455M 0.955 ± 0.003 0.896 ± 0.011 0.972 ± 0.005 0.873 ± 0.011 0.861 ± 0.007 0.780 ± 0.009
NL ARMA U-Net 4.405M 0.960 ± 0.002 0.909 ± 0.009 0.968 ± 0.004 0.870 ± 0.011 0.870 ± 0.006 0.790 ± 0.008

ARMA networks outperform both baselines in almost all metrics. As shown in Table 2, our (non-local)
ARMA U-Net outperforms both U-Net and non-local U-Net except for specificity (SP). Furthermore,
we find that the synergy of non-local attention and ARMA layers achieves the best results among all.

Pixel-level Video Prediction. We evaluate our ARMA-LSTM network on the Moving-MNIST-2
dataset [12] with different moving velocities, comparing against the baseline ConvLSTM network [6,
39] and its augmentation using dilated convolutions and non-local attention blocks [34]. As shown in
the visualizations in Appendix A, the dilated ARMA-LSTM does not have gridding artifacts as in
dilated Conv-LSTM; that is, ARMA removes the gridding artifacts.

Table 3: 10-frames video prediction on Moving-MNIST-2 with three different speeds (results averaged over
10 predicted frames). MA and AR denote the size of moving-average and autoregressive kernels respectively,
and dil. denotes dilation in the moving-average kernel. Higher PSNR, SSIM values indicate better performance.

Model MA AR dil. params. original speed 2X speed 3X speed
PSNR SSIM PSNR SSIM PSNR SSIM

Conv-LSTM (size 3) 3 1 1 0.887M 18.24 0.867 16.62 0.827 15.81 0.810
Conv-LSTM (size 5) 5 1 1 2.462M 19.58 0.901 17.61 0.856 16.99 0.841
Dilated Conv-LSTM 3 2 2 0.887M 19.16 0.893 17.92 0.858 17.48 0.846

Dilated ARMA-LSTM 3 3 2 0.893M 19.72 0.904 18.05 0.870 17.65 0.855
ARMA-LSTM (size 3) 3 2 1 0.893M 19.72 0.899 18.73 0.881 18.13 0.869

ARMA networks outperform larger networks: As shown in Table 3, our ARMA networks with kernel
sizes 3⇥ 3 outperform all baselines under all velocities (at the original speed, our ARMA network
requires dilated convolutions to achieve the best performance). Moreover, for videos with a higher
moving speed, the advantage is more pronounced as expected due to ARMA’s ability to expand the
ERF. The ARMA networks improve the best baseline (Conv-LSTM with kernel size 5⇥ 5) in PSNR
by 6.36% at 2X speed and by 6.70% at 3X speed, with 63.7% fewer parameters.

Table 4: Comparison with non-local attention blocks on
video prediction. The original networks are the same as in
Table 3. Each non-local network additionally inserts two
non-local blocks in the corresponding base network.

Model Original Non-local
PSNR SSIM PSNR SSIM

ConvLSTM (size 3) 18.24 0.867 19.45 0.895
ConvLSTM (size 5) 19.58 0.901 19.18 0.891

ARMA-LSTM (size 3) 19.72 0.899 19.62 0.897 Figure 6: Histogram of the autoregressive coef-
ficients in trained ARMA networks.

ARMA networks outperform non-local blocks: As shown in Table 4, our ARMA-LSTM with kernel
sizes 3⇥ 3 outperforms the Conv-LSTMs augmented by non-local blocks. However, the non-local
mechanism does not always improve the baselines or our models. When both ARMA-LSTM and
Conv-LSTM are combined with non-local blocks, our model achieves better performance compared
to the non-ARMA baselines.
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Interpretation by Autoregressive Coefficients. Figure 6 compares the histograms of the trained
autoregressive coefficients between video prediction and image classification to explain why ARMA
networks achieve impressive performance in dense prediction, (subsection A.4 demonstrates the
ARMA networks’ performance in image classifications with baselines VGG and ResNet.)

1. The histograms demonstrate how ARMA networks adaptively learn autoregressive coefficients
according to the tasks. As motivated in the introduction, dense prediction such as video prediction
requires each layer to have a large receptive field to capture global information.

2. The large autoregressive coefficients in the video prediction model suggest that the overall ERF is
significantly expanded. In the image classification model, global information is already aggregated
by pooling (downsampling) layers and a fully-connected classification layer. Therefore, the
ARMA layers automatically learn nearly zero autoregressive coefficients.

7 Discussion

This paper proposes a novel ARMA layer capable of expanding a network’s effective receptive field
adaptively. Our method is related to techniques in signal processing and machine learning. First,
an ARMA layer is equivalent to a multi-channel impulse response filter in signal processing [29].
Alternatively, we can interpret the autoregressive layer as a learnable spectral normalization [26]
following the moving-average layer. Additionally, the ARMA layer is a linear recurrent neural

network, where the recurrent propagations are over the spatial domain (section 2).
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Impact Statement

Our presented ARMA layer is a plug-and-play module that can replace any convolutional layer in
neural networks. The module is particularly effective in dense prediction problems, including video
prediction, object detection and medical image segmentation.

These improved performance in all these applications could revolutionize people’s daily life; it could
alarm humans potential risks, relieve workers from repeat laboring, and help experts in making better
decisions. For examples, video prediction in autonomous system helps to anticipate future risks and
contributes to safe self-driving, and medical image segmentation could provide additional information
to doctors and help them to make more reliable decisions on high-stakes tasks.

However, these applications also raise controversies in the society. For examples, a faulty prediction
in self-driving car or medical diagnostic system could lead to deadly consequence. Furthermore,
object detection could be misused for military purposes. To understand and thus mitigate these
potential risks, we suggest researchers in engineering and social sciences to investigate questions
such as:

• How to systematically verify the capacity of a machine learning model, such that certain behavior
can be prohibited before deployment?

• How to define the responsibility if a machine learning system produces an undesired outcome (e.g.
car crash or misdiagnosis)?
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