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Abstract. Adaptive gradient methods such as RMSprop andAdam use
exponential moving estimate of the squared gradient to compute adap-
tive step sizes, achieving better convergence than SGD in face of noisy
objectives. However, Adam can have undesirable convergence behaviors
due to unstable or extreme adaptive learning rates. Methods such as
AMSGrad and AdaBound have been proposed to stabilize the adap-
tive learning rates of Adam in the later stage of training, but they do
not outperform Adam in some practical tasks such as training Trans-
formers [38]. In this paper, we propose an adaptive learning rate prin-
ciple, in which the running mean of squared gradient in Adam is re-
placed by a weighted mean, with weights chosen to maximize the esti-
mated variance of each coordinate. This results in a faster adaptation
to the local gradient variance, which leads to more desirable empirical
convergence behaviors than Adam. We prove the proposed algorithm
converges under mild assumptions for nonconvex stochastic optimiza-
tion problems, and demonstrate the improved efficacy of our adaptive
averaging approach on machine translation, natural language under-
standing and large-batch pretraining of BERT. The code is available
at https://github.com/zhuchen03/MaxVA.

1 Introduction

Stochastic Gradient Descent (SGD) and its variants are commonly used for train-
ing deep neural networks because of their effectiveness and efficiency. In their
simplest form, gradient methods train a network by iteratively moving each pa-
rameter in the direction of the negative gradient (or the running average of
gradients) of the loss function on a randomly sampled mini-batch of training
data. A scalar learning rate is also applied to control the size of the update. In
contrast, adaptive stochastic gradient methods use coordinate-specific learning
rates, which are inversely proportional to the square root of the running mean of
squared gradients [37,12,19]. Such methods are proposed to improve the stability
of SGD on non-stationary problems, and have achieved success in different fields
across Speech, Computer Vision, and Natural Language Processing.

http://arxiv.org/abs/2006.11918v4
https://github.com/zhuchen03/MaxVA
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Large pretrained Transformer-based language models have achieved remark-
able successes in various language tasks [10,25,20,31,5]. The original Trans-
former architecture (Post-LN Transformers) often demonstrates better perfor-
mance than its Pre-LN variant [24], but its gradient has high variance during
training. A warmup learning rate schedule or small initial adaptive learning
rates [23] are required for its convergence. [49] shows that SGD fails to train
Transformers without gradient clipping, and adaptivity is important for sta-
bilizing optimization under the heavy-tailed noise in Transformer’s gradients.
This indicates that the strategy of AdaBound [27], which is to transition from
Adam into SGD, may fail on Post-LN Transformers (see Appendix D for in-
stance). However, the adaptive learning rate of Adam can be unstable in the later
stage of training, and such instability sometimes leads to sub-optimal solutions or
even non-convergent behavior on some simple problems [33,27]. AMSGrad [33]
was proposed to deal with this issue by computing the adaptive learning rate
with an update rule that guarantees monotonically decaying adaptive learning
rates for each coordinate, but to our knowledge, it has not been widely deployed
to enhance Adam for training Transformer-based language models.

In this work, we explore a different approach to improving the stability of
adaptive learning rates. We propose Maximum Variation Averaging (MaxVA),
which computes the running average of squared gradients using dynamic, rather
than constant, coordinate-wise weights. These weights are chosen so that the es-
timated variance of gradients is maximized, to enable a faster adaptation to the
changing variance of gradients. The MaxVA weights for maximizing this variance
have a simple closed-form solution that requires little storage or computational
cost. With MaxVA, the adaptive optimizer 1) takes a smaller step size when
abnormally large gradient is present, to improve stability; 2) takes a larger step
size when abnormally small gradient is prevent, to avoid spurious minima and
achieve better generalization [22]; 3) takes a steady step size when gradients
are stable and within estimated deviation, to ensure convergence [33]. In the
large-batch setting of BERT pretraining, where the total number of iterations is
sharply reduced and a faster adaptation in each step is more important, MaxVA
achieves faster convergence and obtain models with better test performance on
downstream tasks than both Adam and Lamb [45]. Extensive experiments on
both synthetic and practical datasets demonstrate that MaxVA leads to an im-
proved adaptability and stability for Adam, yielding better test set performance
than Adam on a variety of tasks. We also prove MaxVA converges under mild
assumptions in the nonconvex stochastic optimization setting.

2 Preliminary and Definitions

By default, all vector-vector operators are element-wise in the following sections.
Let θ ∈ Rd be the parameters of the network to be trained, "(x; θ) is the loss
of the model with parameters θ evaluated at x. Our goal is to minimize the
expected risk on the data distribution defined as:

f(θ) = Ex∼D ["(x; θ)] . (1)
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In most deep learning problems, only a finite number of potentially noisy
samples can be used to approximate Eq. 1, and the gradients are computed on
randomly sampled minibatches during training. Stochastic regularizations such
as Dropout [36] are commonly used for training Transformer-based language
models [38,51], which further adds to the randomness of the gradients. Thus,
it is important to design optimizers that tolerate noisy gradients. Adam [19] is
an effective optimizer that adapts to such noisy gradients. It keeps exponential
moving averages mt and vt of past gradients g1, ..., gt−1, defined as:

m̃t = αm̃t−1 + (1− α)gt, mt =
m̃t

1− αt+1
,

ṽt = βṽt−1 + (1− β)g2t , vt =
ṽt

1− βt+1
,

where α,β ∈ [0, 1], gt = ∇θ"(xt; θt) is the gradient of the t-th minibatch xt,
m̃0 = ṽ0 = 0, and mt, vt corrects this zero-initialization bias of m̃t, ṽt [19].
Adam updates the parameters with the estimated moments as θt+1 = θt −
ηt

mt√
vt+ε

, where ε > 0 is a small constant for numerical stability.

If we assume that the distribution of the stochastic gradient is constant
within the effective horizon of the running average, then mt and vt will be
estimates of the first and second moments of the gradient gt [2]. Same as other
adaptive methods such as Adam and the recently proposed AdaBelief [52], we
adopt this assumption throughout training. With this assumption, at time t,
we assume E[mt] ≈ ∇ft, E[vt] ≈ ∇f2

t + σ2
t , where σ2

t is the variance of gt.
Adam, RMSprop and other variants that divide the update steps by

√
vt can

be seen as adapting to the gradient variance under this assumption when mt

is small. These adaptive methods take smaller step sizes when the estimated
variance σ2

t = vt − m2
t is high. Higher local gradient variance indicates higher

local curvature, and vice versa. In certain quadratic approximations to the loss
function, this variance is proportional to the curvature [34] (Eq. 12 of our paper).
Therefore, like a diagonal approximation to Newton’s method, such adaptative
learning rates adapt to the curvature and can accelerate the convergence of first-
order methods.

However, the adaptive learning rate ηt/(
√
vt+ε) of Adam andRMSprop can

take extreme values, causing convergence to undesirable solutions [42,8]. [33] gave
one such counter example where gradients in the correct direction are large but
occur at a low frequency, and Adam converges to the solution of maximum
regret. They solve this issue by keeping track of the maximum vt for each co-
ordinate throughout training with a new variable v̂t, and replace the adaptive
learning rate with ηt/

√
v̂t to enforce monotonically descreasing learning rates.

Extremely small adaptive learning rates can also cause undesirable convergence
behavior, as demonstrated by a counter example from [27].

3 Maximizing the Variance of Running Estimations

Motivation.We propose to mitigate the undesirable convergence issue of Adam

by changing the constant running average coefficient β for the second moment
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Fig. 1. An illustrative example of MaxVA. It adopts a smaller adaptive learning rate
when an abnormally large gradient appears at θ2 by choosing a smaller β, to prevent
overshooting to θ′3. When the gradient is more stable near convergence at θ5, it uses
a larger β for the slowest change in adaptive learning rate, to prevent overshooting to
θ′6.

into an adaptive one. The idea is to allow βt to adopt the value that maximizes
the estimated variance of the gradient at each iteration t. As a result, our method
will assign a higher coefficient (1−βt) to gt when it deviates too much from the
estimated mean, resulting in a smaller step size when the gradient is too large
to avoid overshooting, and a larger step size when the gradient is abnormally
small to avoid spurious local minima. By contrast, if the gradient is stable and
close to the estimated mean, which often happens near a flat minimum, our
method will assign minimum coefficient to gt to maintain the value of vt and
take steady steps towards the minimum. Therefore, our method can use βt as the
adaptive running average coefficient to take steps that are cautious enough to
avoid instability and spurious minima but aggressive enough to make progress.
An illustrative example is given in Figure 1.

Maximum Variation Averaging. Formally, we estimate the variance of
the gradient at each coordinate by keeping track of the zeroth, first, and second
moments of the gradient as functions of the adaptive running average coefficient
βt, denoted as wt(βt), ũt(βt) and ṽt(βt), respectively:

wt(βt) = βtwt−1(βt−1) + (1− βt), (2)

ũt(βt) = βtũt−1(βt−1) + (1− βt)gt, (3)

ṽt(βt) = βtṽt−1(βt−1) + (1− βt)g
2
t . (4)

The zeroth moment wt(βt) is used to normalize ũt(βt) and ṽt(βt) to achieve
bias-corrected estimates ut(βt) = ũt(βt)/wt(βt) and vt(βt) = ṽt(βt)/wt(βt) for
the first and second moments, so that the estimates are not biased towards zero
(m̃0 = ṽ0 = 0) [19].

Under our assumptions, the bias-corrected local estimate of the gradient
variance is σ2

t = ṽt(βt)/wt(βt)− [ũt(βt)/wt(βt)]2. Taking the arg max for σ2
t , we



MaxVA: Fast Adaptation of Step Sizes 5

find the βt that achieves the maximal variance for each coordinate i:

βt,i = argmax
β

σ2
t,i = argmax

β
vt,i(β)− [ut,i(β)]

2. (5)

We call our approach to finding adaptive running average coefficient βt Maximum
Variation Averaging (MaxVA). We plug MaxVA into Adam and its variant
LaProp [53], which results in two novel algorithms, MAdam and LaMAdam,
listed in Algorithm 1 and Algorithm 2 (in the Appendix). Different from Adam,
LaProp uses vt to normalize the gradients before taking the running average,
which results in higher empirical stability under various hyperparameters. Note,
we only apply the adaptive βt to the second moment ut(βt) used for scaling the
learning rate;mt is still an exponential moving average with a constant coefficient
α of the gradient for MAdam or the normalized gradient for LaMAdam.

Algorithm 1 MAdam

1: Input: Learning rate {ηt}Tt=1, parameter 0 < α < 1, 0 < β < β̄ < 1, ε > 0
2: Set m̃0 = ũ0 = ṽ0 = w0 = 0
3: for t = 1 to T do
4: Draw samples St from training set
5: Compute gt = 1

|St|
∑

xk∈St
∇&(xk; θt)

6: m̃t = αm̃t−1 + (1− α)gt
7: β̃t = argmaxβvt(β)− u2

t (β) ' see Eq 6

8: βt = max(β,min(β̄, β̃t))
9: ũt = βtũt−1 + (1− βt)gt
10: ṽt = βtṽt−1 + (1− βt)g

2
t

11: wt = βtwt−1 + (1− βt)

12: θt = θt−1 − ηt
√

wt

1−αt
m̃t√
ṽt+ε

Finding βt via a Closed-form Solution. The maximization for βt in Eq.
5 is quadratic and has a relatively simple closed-form solution that produces
maximal σ2

t for each coordinate:

βt =
∆g2t + σ2

t−1

wt−1(∆g2t − σ2
t−1) +∆g2t + σ2

t−1

, (6)

where all variables are vectors and all the operations are elementwise,∆gt = (gt−
ut−1) is the deviation of the gradient gt from the estimated mean ut−1, σ2

t−1 =
vt−1 − u2

t−1 is the estimated variance, and we have abbreviated ut−1(βt−1),
vt−1(βt−1) and wt−1(βt−1) into ut−1, vt−1 and wt−1. We use this abbreviation
in the following sections, and defer the derivation of Eq. 6 to Appendix A.

Implementation Notes.We apply MaxVA in every step except for the first
step, where the gradient variance one can observe is zero. So for Algorithm 1
and Algorithm 2 we define:

ũ1 = (1− β1)g1, ṽ1 = (1− β1)g
2
1 , w1 = 1− β1. (7)
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The coefficient β1 for t = 1 is set to a constant that is the same as typical values
for Adam. To obtain a valid running average, we clip βt so that β ≤ βt ≤ β̄,
where the typical values are β = 0.5, 0.98 ≤ β̄ ≤ 1. For convenience, we set
β1 = β̄ by default. For t > 1, since 0 < βt ≤ 1, wt will monotonically increase
from (1−β1) to 1. Before clipping, for any gt, ut−1, vt−1 satisfying vt−1−u2

t−1 > 0
in Eq. 6, we have βt ∈ [1/(1+wt−1), 1/(1−wt−1)]. As a result, the lower bound
that we use (β = 0.5) is tight and does not really change the value of βt, and as
t → ∞, wt → 1 and βt ∈ [0.5,∞]. We have a special case at t = 2, where βt is a
constant 1/(2− β1).

In practice, we also add a small coefficient δ > 0 to the denominator of Eq. 6
to prevent division by zero, which will have negligible effect on the value of βt and
does not violate the maximum variation objective (Eq. 5). All the derivations
for these conclusions are deferred to Appendix C.

Effect of Maximum Variation Averaging. By definition, we have σ2
t−1 ≥

0, but in most cases σ2
t−1 > 0. When σ2

t−1 > 0, we define a new variable
Rt = ∆g2t /σ

2
t−1, which represents the degree of deviation of gradient gt from

the current estimated average. Then, we can rewrite:

βt =
Rt + 1

(1 + wt)Rt + 1− wt
. (8)

From Eq. 8, we can see βt monotonically decreases from 1/(1−wt) to 1/(1+wt)
as Rt increases from 0 to ∞, and equals to 1 when Rt = 1. As a result, for each
coordinate, if Rt * 1, gt deviates much more than σt−1 from ut−1, and MaxVA
will find a smaller βt and therefore a higher weight (1 − βt) on g2t to adapt
to the change faster. This helps to avoid overshooting when abnormally large
gradient is present (see Figure 1), and avoids spurious sharp local minima where
gradients are abnormally small. With a faster response to abnormal gradients,
MaxVA is better at handling the heavy-tailed distribution of gradients in the
process of training Transformers [49]. In practice, vt tends to be larger than
Adam/LaProp using a constant β̄, but as we will show in the experiments,
using a larger learning rate counters such an effect and achieves better results.

On the other hand, if Rt < 1, or the deviation of the gradient gt from the
current running mean ut−1 is within the estimated standard deviation σt−1, we
will use β̄ to update ṽt, which is the smallest change we allow for ṽt. This tends
to happen in the later phase of training, where the gradient variance decreases.
MaxVA will adopt a steady step towards convergence by finding the slowest rate
to update ṽt. This allows large values of ṽt to last for a longer horizon even
compared with setting βt to a constant β̄ on the same sequence, since we have
assigned more mass to large gradients, which can be seen as an adaptive version
of AMSGrad. Note that MaxVA and AMSGrad can be complementary ap-
proaches if applied together, which we have found helpful for Image Classification
on CIFAR10/100.

Convergence Analysis. We prove the convergence of MaxVA in the non-
convex stochastic optimization setting. For the sake of simplicity, we analyze the
case where α = 0, which is effectively applying MaxVA to RMSprop. We leave
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the analysis for α += 0 for future research. We assume the function " is L-smooth
in θ, i.e., there exists a constant L such that for all θ1, θ2 ∈ Rd, x ∈ X ,

‖∇θ"(x; θ1)−∇θ"(x; θ2)‖ ≤ L‖θ1 − θ2‖. (9)

This automatically implies that f(θ) = E["(x; θ)] is L-smooth. Such a smooth-
ness assumption holds for networks with smooth activation functions, e.g., Trans-
formers that use the GELU activation [17]. We also need to assume function "
has bounded gradient, i.e., ‖∇θ"(x; θ)‖∞ ≤ G for all θ ∈ Rd, x ∈ X . As typi-
cally used in the analysis of stochastic first-order methods [46,13], we assume
the stochastic gradient has bounded variance: E[[∇θ"(x; θ)]i − [∇θf(θ)]i]2 ≤ σ2

for all θ ∈ Rd. Further, we assume the batch size increases with time as bt = t,
which is also adopted in the analysis of signSGD [4], and holds in our large
batch experiments. Theorem 1 gives a “worst-case” convergence rate of MaxVA
to a stationary point under these assumptions, where the dependence of βt on
gt is ignored and we only consider the worst-case of βt in each step. The proof
is given in Appendix B.

Theorem 1. Define w0 = 1. Let ηt = η and bt = t for all t ∈ [T ]. Furthermore,

we assume ε,β, β̄, η are chosen such that η ≤ ε
2L , 1 − β ≤ ε2

16G2 , and β̄ ≤ 2β.
Then for θt generated using MAdam, we have the following bound:

E‖∇f(θa)‖2 ≤ O

(
f(θ1)− f(θ∗)

ηT
+

2σdG

ε
√
T

)

, (10)

where θ∗ is an optimal solution to minimize the objective in Eq. 1, and θa is an
iterate uniformly randomly chosen from {θ1, ..., θT }.

4 Experiments on Synthetic Data

For a quantitative control of the stochasticity and data distribution, which af-
fects the difficulty of the problem and the efficacy of the optimizers, we compare
MAdam and the baselines in two sets of synthetic data, and demonstrate the ef-
ficacy of MaxVA with statistical significance on a large number of instances.
The first dataset simulates prevalent machine learning settings, where mini-
batch stochastic gradient methods are applied on a finite set of samples, on
which we show MAdam fixes the nonconvergence issue of Adam and achieves
faster convergence rate than AMSGrad. The second dataset evaluates the al-
gorithms under different curvatures and gradient noise levels, where we show
MAdam achieves both lower loss and variance than fine-tuned Adam at conver-
gence.

4.1 Convergence with Stochastic Gradients

Since MaxVA maximizes the variance and the gradient converges to zero in most
cases, MAdam biases towards larger vt than Adam but does not require vt to
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Fig. 2. Median and standard error (100 runs) of objective value (f(θ)), accumulated
update size (

∑T
t=1

||gt/
√
vt||2) and total change in adaptive learning rate (

∑T
t=1

|| 1√
vt
−

1√
vt−1

||1) for Adam, AMSGrad, MAdam on the problem in Eq. 11.

be monotonically increasing, which is like an adaptive version of AMSGrad.
To highlight the difference, we compare Adam, MAdam and AMSGrad on the
synthetic dataset from [8] simulating training with stochastic mini batches on a
finite set of samples. Formally, let [·] be the indicator function. We consider the

problem minθ f(θ) =
∑11

i=1 "i(θ) where

"i(θ) =

{

i=15.5θ2 + i&=1(−0.5θ2), if |θ| ≤ 1;

i=1(11|θ|− 5.5) + i&=1(−|θ|+ 0.5), otherwise.
(11)

At every step, a random index i is sampled uniformly from i ∈ [11], and the gra-
dient∇"i(θ) is used by the optimizer. The only stationary point where∇f(θ) = 0
is θ = 0. We set α = 0,β = 0.9 for Adam and AMSGrad. For MAdam, we set
α = 0, (β, β̄) = (0.5, 1). We select the best constant learning rates for the three
algorithms, see Appendix E for details.

We plot the median and standard error of the objective (f(θ)), accumu-
lated update size (S1 =

∑T
t=1 ||gt/

√
vt||2), and total change in adaptive step

size (S2 =
∑T

t=1 ||
1√
vt

− 1√
vt−1

||1) over 100 runs in Figure 11.The optimal learn-

ing rates for these optimziers are different, so for fair comparisons, we have
ignored the constant learning rate in S1 and S2. From the curves of f(θ), we
can see Adam diverges, and MAdam converges faster than AMSGrad in the
later stage. As shown by the S2 curves, the adaptive step sizes of MAdam and
AMSGrad all converged to some constant values after about 10 steps, but
MAdam converges faster on both f(θ) and S1, indicating the adaptive step size
found by MAdam fits the geometry of the problem better than AMSGrad.
This also shows S1 + S2 of MAdam has a smaller slope than AMSGrad in
the log-scale plots after 10 iterations, leading to a faster theoretical convergence
rate in the bound given by [8]. The slightly larger variation in adaptive step
sizes of MAdam at the beginning of training, shown by the larger S2 values,
demonstratesMAdam adapts faster to the changing gradients than AMSGrad,
achieved by dynamically selecting β < 0.9.

4.2 Convergence in the Noisy Quadratic Model

We analyze the ability of MAdam to adapt to curvature and gradient noise
on the simple but illustrative Noisy Quadratic Model (NQM), which has been
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Fig. 3. Results on NQM. The left figure shows the mean and standard error of the
loss under different learning rates η, computed over 100 runs at each point. We select
the best β for Adam at each η. The best results (mean and variance) of Adam and
MAdam are 1.84e-3 (2.51e-4) and 4.05e-3 (4.84e-4) respectively. Figure on the right
gives a qualitative example of the trajectories of two approaches.

widely adopted for analyzing optimization dynamics [34,43,48,50]. The loss func-

tion is defined as f(θ) = Ex∼N (0,σ2I)

[
1
2

∑d
i=1 hi(θi − xi)2

]

, where x is a noisy

observation of the ground-truth parameter θ∗ = 0, simulating the gradient noise
in stochastic optimization, and hi represents the curvature of the system in d
dimensions. In each step, the optimizers use the following noisy gradient for co-
ordinate i, from which we can see the gradient’s variance is proportional to the
curvature h2

i :

∇θi"(σεi; θi) = hi(θi − σεi), εi ∼ N (0, 1). (12)

To validate the effectiveness of MaxVA, we compareMAdam with Adam un-
der a variety of different curvatures h and noise level σ on an NQM with d = 2.
For each setting of h and σ, we test both algorithms on a variety of learning rates.
For Adam, we additionally choose the best β and report the best results. See
Appendix F for details. We run each setting 100 times to report the mean and
standard error. MAdam consistently achieves 30-40% lower average loss with
smaller standard error in all settings. Figure 3 shows the results for one of the
settings, from which we find the best result of MAdam is better than Adam un-
der any choice of β and learning rate, confirming the advantage of MaxVA. From
the qualitative example, MaxVA also demonstrates smaller variance near con-
vergence, enabled by a quicker response to impede the noise with a smaller βt.
More experimental results under other settings are provided in Appendix F.

5 Experiments on Practical Datasets

In this section, we evaluateMAdam and LaMAdam on a variety of tasks against
well-calibrated baselines: IWSLT’14 DE-EN/WMT’16 EN-DE for neural ma-
chine translation, the GLUE benchmark for natural language understanding,
and pretraining the BERT-Base model. We also provide results on image classi-
fication. We use the decoupled weight decay [26] in all our experiments. Across all
the plots in this section, we define the average step size at time t as the average
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Model CIFAR-10 CIFAR-100 ImageNet

SGD 95.44 (.04) 79.62 (.07) 70.18

Adam 95.37 (.03) 78.77 (.07) 66.54
LaProp 95.34 (.03) 78.36 (.07) 70.02
AdaBelief 95.30∗ 77.30∗ 70.08
MAdam (ours) 95.51 (.09) 79.32 (.08) 69.96
LaMAdam (ours) 95.38 (.11) 79.21 (.11) 70.16

Table 1. Comparing adaptive methods with exhaustively fine-tuned SGD on CI-
FAR10/100 and ImageNet. CIFAR10/100 experiments are the median (standard error)
over 4 runs. ∗: The results of AdaBelief are from their paper [52] with a ResNet34, while
our results are with ResNet18.

of |ηtmt/(
√
vt+ε)| for Adam/MAdam and |ηtmt| for LaProp/LaMAdam over

all the entries.

5.1 Image Classification

To evaluate the effectiveness of MaxVA for image classification, we compare
with SGD, Adam, LaProp [53] and AdaBelief [52] in training ResNet18 [16]
on CIFAR10, CIFAR100 and ImageNet. On all the datasets, we perform a grid
search for the learning rate and weight decay, and report the best results for each
method in Table 1. For CIFAR10/100, we train ResNet18 with a batch size of 128
for 200 epochs. We also find AMSGrad [33] improves the classification accuracy
of all adaptive methods evaluated on CIFAR10/100, so we apply AMSGrad in all
experiments with adaptive methods. On ImageNet, we use the implementation
from torchvision and the default multi-step learning rate schedule. We do not
use AMSGrad in this case. Further details are in Appendix G.

Despite achieving a marginal improvement on CIFAR10, adaptive methods
often underperforms carefully tuned SGD on CIFAR100 and ImageNet when
training popular architectures such as ResNet, as confirmed by [42,50,23]. Never-
theless, with the proposed MaxVA, we shrink the gap between adaptive methods
and carefully tuned SGD on these image classification datasets, and achieve top-1
accuracy very close to SGD on ImageNet. Note our results with ResNet18 is bet-
ter than the recent AdaBelief’s results with ResNet34 on CIFAR10/CIFAR100
(95.51/79.32 vs. 95.30/77.30 approximately), as well as AdaBelief with ResNet18
on ImageNet (70.16 vs. 70.08) [52].

5.2 Neural Machine Translation

We train Transformers from scratch with LaProp and LaMAdam on IWSLT’14
German-to-English (DE-EN) translation [6] and WMT’16 English-to-German
(EN-DE) translation, based on the implementation of fairseq.4 We do not com-
pare with SGD, since it is unstable for Transformers [49]. We also show in Ap-
pendix D that AdaBound cannot achieve any good result without degenerating
into Adam. More details are in Appendix H.

4 https://github.com/pytorch/fairseq
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Method IWSLT’14 DE-EN WMT’16 EN-DE

RAdam 35.51 -
AdaBelief 35.90 -

LaProp(ours) 35.98 (0.06) 27.02
LaMAdam(ours) 36.09 (0.04) 27.11

Table 2. BLEU score for training transformers on machine translation datasets. We
report the median and standard error for IWSLT’14 over 5 runs. Results of other
meethods are from the AdaBelief paper [52].

IWSLT’14 DE-EN has 160k training examples, on which we use a Trans-
former with 512-dimensional word embeddings and 1024 FFN dimensions. We
train it for 60k iterations, with up to 4096 tokens in each minibatch. Results are
listed in Table 2. Note the baseline’s BLEU score is already 1.22 higher than the
best results reported in [23] using the same model. As shown in Appendix H,
LaMAdam uses much smaller update size than LaProp, and it is not able for
LaProp to achieve better results even when we scale its learning rate to get
similar update sizes as LaMAdam, indicating MaxVA helps to find a better
minimum not achievable by using constant β.

WMT’16 EN-DE has 4.5M training examples, where same as [29], we use
a larger Transformer with 1024-dimensional word embeddings and 4096 FFN
dimensions. Each batch has up to 480k tokens. We train for 32k iterations using
the same inverse square root learning rate schedule as [38]. We evaluate the single
model BLEU on newstest2013, unlike [23] where models in the last 20 epochs
are averaged to get the results. As shown in Table 2, LaMAdam also achieves
better results.

5.3 General Language Understanding Evaluation (GLUE)

Method MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B
(Acc) (Acc) (Acc) (Acc) (Acc) (Acc) (Mcc) (Pearson)

Reported 87.6 92.8 91.9 78.7 94.8 90.2 63.6 91.2

Adam 87.70 (.03) 92.85 (.06) 91.80 (.03) 79.25 (.71) 94.75 (.08) 88.50 (.24) 61.92 (1.1) 91.17 (.13)
LaProp 87.80 (.04) 92.85 (.13) 91.80 (.03) 78.00 (.46) 94.65 (.11) 89.20 (.20) 63.01 (.61) 91.17 (.06)
MAdam 87.90 (.08) 92.95 (.07) 91.85 (.03) 79.60 (.66) 94.85 (.12) 89.70 (.17) 63.33 (.60) 91.28 (.03)
LaMAdam 87.80 (.03) 93.05 (.05) 91.85 (.05) 80.15 (.64) 95.15 (.15) 90.20 (.20) 63.84 (.85) 91.36 (.04)

Table 3. Results (median and variance) on the dev sets of GLUE based on finetun-
ing the RoBERTa-base model ([25]), from 4 runs with the same hyperparameter but
different random seeds.

To evaluate MaxVA for transfer learning, we fine-tune pre-trained RoBERTa-
base model [25] on 8 of the 9 tasks of the GLEU benchmark [39]. Following
prevalent validation settings [10,20,31], we report the median and standard error
for fine-tuning the RoBERTa-base model [25] over 4 runs where only the random
seeds are changed. The results are in Table 3. MAdam and LaMAdam give
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Fig. 4. Training loss, validation accuracy and step size of various optimization methods
on SST-2. All optimizers here use λ = 0.1. Adam and LaProp use (η,β)=(1e-5, 0.98),
MAdam and LaMAdam use (η,β, β̄)=(4e-5, 0.5, 0.98), Adam-η′ and LaProp-η′ use
(η,β)=(1.6e-5, 0.98).

better scores than the corresponding baselines in the 8 tasks. More experimental
details are in Appendix I.

To highlight the difference of the optimizers, we compare the training loss, dev
set accuracy and the average step size on SST-2, as shown in Figure 4. Different
from Machine Translation experiments where we train the Transformers from
scratch, the adaptive step size of MAdam/LaMAdam is higher in this transfer
learning setting. The ratio of the learning rate and step size of MaxVA to non-
MaxVA optimizers are 4 and 1.8 respectively on GLUE, while on IWSLT’14
the two ratios are 2 and (approximately) 0.875. Because we start from a pre-
trained model, the heavy tail of the gradient is alleviated, just as the BERT
model in the later stage of training as shown by [49], and the curvature of the
loss landscape should be smaller. Therefore, MaxVA selects larger adaptive step
sizes for better convergence. Same as in the Machine Translation experiments,
the highest test accuracy of Adam/LaProp cannot reach the same value as
MAdam/LaMAdam by simply scaling the base learning rate η to reach similar
step sizes as MAdam/LaMAdam.

5.4 Large-batch Pretraining for BERT

We use the NVIDIA BERT pretraining repository to perform large-batch pre-
training for BERT-Base model on the Wikipedia Corpus only.5 Each run takes
about 52 hours on 8 V100 GPUs. Training is divided into two phases: the first
phase uses a batch size of 64K with input sequence length 128 for 7,038 steps;
the second phase uses a batch size 32K with input sequence length 512 for 1563
steps. The total of steps is significantly smaller than the 1,000,000 steps used in
the small-batch training of [10]. Therefore, a faster adaptation to curvature in
each step is more important.

This point is validated by the faster convergence of MAdam in both phases,
as shown in the training loss curves in Figure 5. Contrary to the observation
by [45],Adam even converges faster than Lamb in the earlier iterations. [45] only

5 Note the results from the repository are for BERT-Large trained with additional
data from BookCorpus.
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Fig. 5. Training losses of Adam, Lamb and MAdam on Wikipedia Corpus in the two
training phases.

explored weight decay of up to 0.01 for Adam, but we find using larger weight
decay of 0.1 together with gradient clipping (‖gt‖2 ≤ 1, same as Lamb) stabilizes
Adam. We inherit this setting for MAdam. For MAdam and Adam, we do a
grid search on the learning rate of phase 1 while keeping the ratios of learning
rate in phase 1 and phase 2 to the same as Lamb. We use β̄ = 0.999,β = 0.5
for MAdam. For Lamb, we use the default setting from the aforementioned
repository.

The faster adaptation of MaxVA improves the stability, which enablesMAdam

to use a much larger learning rate to achieve faster convergence than Adam. The
best learning rate for MAdam is 3.4e-3. We tried learning rates in {7e-4, 8e-4,
9e-4, 1e-3} for Adam, and find it always diverges when the learning rate is higher
or equal to 9e-4. The best result of Adam is achieved with learning rate 8e-4.
MAdam achieves a training loss of 1.492, while Lamb achieves a training loss
of 1.507, and Adam has the worst training loss 1.568. The test scores of the
models pretrained with MAdam/Lamb/Adam are 88.53/87.60/88.07 (F1) and
82.10/81.40/80.78 (Accuracy) on SQuAD v1.1 and MNLI, respectively.

6 Related Work

Various adaptive methods have been proposed and broadly applied in deep learn-
ing [19,12,37,47]. [33] proposed to compute the adaptive learning rate with the
coordinate-wise maximum value of vt so that the adaptive learning rate does not
increase. AdaBound [27] clips the adaptive learning rate of Adam with a de-
creasing upper bound and an increasing lower bound. Lookahead [50] computes
weight updates by looking ahead at the sequence of “fast weights” generated by
another optimizer. Padam [7] improves the generalization of adaptive methods
by choosing a proper exponent for the vt of AMSGrad. LAPROP [53] uses
local running estimation of the variance to normalize the gradients, resulting in
higher empirical stability. RAdam [23] was recently invented to free Adam from
the warmup schedule for training Transformers. [28] found that using a linear
warmup over 2 · (1 − β2)−1 iterations for Adam achieves almost the same con-
vergence as RAdam. [44] proposes Layer-wise Adaptive Rate Scaling (LARS),
and scales the batch size to 16,384 for training ResNet50. LAMB [45] applies a
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similar layer-wise learning rate on Adam to improve LARS on training BERT.
Starting from a similar motivation of adapting to the curvature, the recent work
AdaBelief [52] directly estimates the exponential running average of the gradient
deviation to compute the adaptive step sizes. Our approach finds the averaging
coefficients βt automatically by maximizing the estimated variance for a faster
adaptation to the curvature, which could be complementary to all the aforemen-
tioned methods, and is the first to explore in this direction to our knowledge.

7 Conclusion
In this paper, we present Maximum Variation Averaging (MaxVA), a novel
adaptive learning rate scheme that replaces the exponential running average of
squared gradient with an adaptive weighted mean. In each step, MaxVA chooses
the weight βt for each coordinate, such that the esimated gradient variance is
maximized. This enables MaxVA to: (1) take smaller steps when large curvatures
or abnormally large gradients are present, which leads to more desirable conver-
gence behaviors in face of noisy gradients; (2) adapt faster to the geometry of
the objective, achieving faster convergence in the large-batch setting. We illus-
trate how our method improves convergence by a better adaptation to variance,
and demonstrate strong empirical results on a wide range of tasks. We prove
MaxVA converges in the nonconvex stochastic optimization setting under mild
assumptions.
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MaxVA: Fast Adaptation of Step Sizes by Maximizing
Observed Variance of Gradients (Appendix)

A Deriving the closed form solution Eq.6

Plugging Eq. 2,3,4, and the unbiased estimations ut(β) = ũt(β)/wt(β), vt(β) =
ṽt(β)/wt(β) into Eq. 5, each coordinate is solving the same problem:

argmax
β

f(β) =
βwt−1vt−1 + (1− β)g2t

βwt−1 + (1− β)
−
[
βwt−1ut−1 + (1 − β)gt

βwt−1 + (1− β)

]2

. (13)

Let γ = 1/[βwt−1 + (1 − β)] ∈ [1, 1/wt−1], we can see f(β) can be represented
as a quadratic function of γ. Specifically,

f(β) = h(γ) =
wt−1vt−1 − g2t

wt−1 − 1
+

[

g2t −
wt−1vt−1 − g2t

wt−1 − 1

]

γ−
{
wt−1ut−1 − gt

wt−1 − 1
+

[

gt −
wt−1ut−1 − gt

wt−1 − 1

]

γ

}2

.

Meanwhile, β is a monotonic function of γ. Therefore, f(β) has a unique maxi-
mum value.

To find the maximum value, we return to Eq. 13, from which we can find a
stationary point

vt−1 − u2
t−1 + (gt − ut−1)2

wt−1

[

(gt − ut−1)2 − vt−1 + u2
t−1

]

+ vt−1 − u2
t−1 + (gt − ut−1)2

. (14)

B Convergence Proof

Following the convergence proofs of Yogi [46], we prove the convergence of
MAdam in the nonconvex setting.

Proof of Theorem 1.

Proof. Recall that we have assumed the update steps of MAdam as

θt+1,i = θt,i − ηt
gt,i√
vt,i + ε

, (15)

for all i ∈ [d], and that f is L-smooth, which results in the following inequalities:

f(θt+1) ≤ f(θt) + 〈∇f(θt), θt+1 − θt〉+
L

2
‖θt+1 − θt‖2

= f(θt)− ηt

d
∑

i=1

∇f(θt,i)
gt,i√
vt,i + ε

+
Lη2t
2

d
∑

i=1

g2t,i
(
√
vt,i + ε)2

.
(16)
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Note the stochastistic gradient is defined as gt = 1
bt

∑bt
j=1 ∇θ"(xj ; θt). Given

θt, we take expectation over the stochastic gradient gt in Eq. 16 (denoted as
Et[·] = E[·|θt]) to get

Et[f(θt+1)] ≤f(θt)− ηt

d
∑

i=1

(

[∇f(θt)]i × Et

[
gt,i√
vt,i + ε

])

+
Lη2t
2

d
∑

i=1

Et

[

g2t,i
(
√
vt,i + ε)2

]

=f(θt)− ηt

d
∑

i=1

(

[∇f(θt)]i × Et

[

gt,i√
vt,i + ε

− gt,i
√

βt,ivt−1,i + ε
+

gt,i
√

βt,ivt−1,i + ε

])

+
Lη2t
2

d
∑

i=1

Et

[

g2t,i
(
√
vt,i + ε)2

]

=f(θt)− ηt

d
∑

i=1

(

[∇f(θt)]i ×
[

Et

[

gt,i
√

βt,ivt−1,i + ε

]

+ Et

[

gt,i√
vt,i + ε

− gt,i
√

βt,ivt−1,i + ε

]])

+
Lη2t
2

d
∑

i=1

Et

[

g2t,i
(
√
vt,i + ε)2

]

≤f(θt)− ηt

d∑

i=1




[∇f(θt)]2i

√

β̄vt−1,i + ε
− σG

ε
√
t



+ ηt

d∑

i=1

[∇f(θt)]iEt

[∣
∣
∣
∣
∣

gt,i√
vt,i + ε

− gt,i
√

βt,ivt−1,i + ε

∣
∣
∣
∣
∣

]

︸ ︷︷ ︸

T1

+
Lη2t
2

d
∑

i=1

Et

[

g2t,i
(
√
vt,i + ε)2

]

,

(17)

where the second equality holds by applying Lemma 1 to the first expectation
term, and taking the absolute value of the second expectation term.

Next, we need to bound the term T1 to show convergence. First, we have the
following upper bound for T1:

T1 =

∣
∣
∣
∣
∣

gt,i√
vt,i + ε

− gt,i
√

βt,ivt−1,i + ε

∣
∣
∣
∣
∣

≤|gt,i|×

∣
∣
∣
∣
∣

1
√
vt,i + ε

− 1
√

βt,ivt−1,i + ε

∣
∣
∣
∣
∣

≤ |gt,i|
(
√
vt,i + ε)(

√

βt,ivt−1,i + ε)
×

∣
∣
∣
∣
∣

vt,i − βt,ivt−1,i
√
vt,i +

√

βt,ivt−1,i

∣
∣
∣
∣
∣

=
|gt,i|

(
√
vt,i + ε)(

√

βt,ivt−1,i + ε)
×

(1− βt,i)g2t,i
√
vt,i +

√

βt,ivt−1,i
,

(18)
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where the last equality comes from the definition of vt,i = βt,ivt−1,i+(1−βt,i)g2t,i.
We can further bound T1 as

T1 =
g2t,i

(
√
vt,i + ε)(

√

βt,ivt−1,i + ε)
× (1− βt,i)|gt,i|
√

βt,ivt−1,i + (1− βt,i)g2t,i +
√

βt,ivt−1,i

≤
g2t,i

(
√

βt,ivt−1,i + ε)ε
× (1− βt,i)|gt,i|
√

(1− βt,i)g2t,i

=

√

1− βt,ig2t,i
(
√

βt,ivt−1,i + ε)ε
≤

√

1− βg2t,i
(
√

βvt−1,i + ε)ε

(19)

Since the loss on each sample s satisfies |[∇"(x, s)]i| ≤ G, we will have |[∇f(x)]i| ≤
G for ∀i ∈ [d]. Substituting the coefficients of T1 in Eq. 17 with this gradient
bound, we have

Et[f(θt+1)] ≤f(θt)− ηt

d∑

i=1

[∇f(θt)]2i
√

β̄vt−1,i + ε
+

ηtG
√

1− β

ε

d∑

i=1

Et

[

g2t,i
√

βvt−1,i + ε

]

+
Lη2t
2

d
∑

i=1

Et

[

g2t,i
(
√
vt,i + ε)2

]

+
σηdG

ε
√
t
,

≤f(θt)− ηt

d
∑

i=1

[∇f(θt)]2i
√

β̄vt−1,i + ε
+

ηtG
√

1− β

ε

d
∑

i=1

Et

[

g2t,i
√

βvt−1,i + ε

]

+
Lη2t
2ε

d
∑

i=1

Et

[

g2t,i
√

βvt−1,i + ε

]

+
σηdG

ε
√
t
,

≤f(θt) +
d
∑

i=1



− ηt

(
√

β̄vt−1,i + ε)
+

ηtG
√

1− β

ε(
√

βvt−1,i + ε)
+

Lη2t
2ε(
√

βvt−1,i + ε)





︸ ︷︷ ︸

T2

[∇f(θt)]
2
i

+

(

ηtG
√

1− β

ε
+

Lη2t
2ε

)
d
∑

i=1

σ2

bt(
√

βvt−1,i + ε)
+

σηdG

ε
√
t
,

(20)

where the second inequality comes from the fact that
√
vt,i + ε ≥ ε and vt,i =

βt,ivt−1,i +(1− βt,i)g2t,i ≥ βvt−1,i, and the third inequality comes from applying
Lemma 1 by [46] to Et[g2t ]. The application of Lemma 1 is possible because vt−1

is independent of the t-th batch. By the assumptions for ε, G,β, we have

Lη2t
2ε

≤ η

4
,
ηG
√

1− β

ε
≤ 1

4
η. (21)
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Plugging these two results and the assumption β̄ ≤ 2β into T2, we have

T2 ≤ − η
√

β̄vt−1,i + ε
+

η

2(
√

βvt−1,i + ε)

≤ − η√
2(
√

βvt−1,i + ε)
+

η

2(
√

βvt−1,i + ε)

≤ η

5(
√

βvt−1,i + ε)

(22)

the main inequality, we have

Et[f(θt+1)] ≤f(θt)−
η

5

d
∑

i=1

[∇f(θt)]2i
√

βvt−1,i + ε
+

(

ηtG
√

1− β

ε
+

Lη2t
2ε

)
d
∑

i=1

σ2

t(
√

βvt−1,i + ε)
+

σηdG

ε
√
t

≤f(θt)−
η

5(G
√

β + ε)
‖∇f(θt)‖2 +

(

ηtG
√

1− β

ε2
+

Lη2t
2ε2

)

σ2d

t
+

σηdG

ε
√
t
,

(23)

where we have replaced bt with t by our assumption on the batch size, and the
second inequality comes from the fact that vt−1,i ≤ G2. Taking expectation on
both the LHS and RHS for the inequalities at t = 1, ..., T , using telescope sum
and rearranging the terms, we can conclude that

η

5(G
√

β + ε)

T
∑

i=1

‖∇f(θt)‖2 ≤ f(θ1)−E[f(θT+1)]+

(

ηG
√

1− β

ε2
+

Lη2

2ε2

)

σ2d log(T+1)+
2σηdG

ε

√
T .

(24)

Multiplying both sides with
5(G

√
β+ε)

Tη
, and using the fact that f(x∗) ≤ f(θt+1),

we conclude that

1

T

T
∑

i=1

‖∇f(θt)‖2 ≤ 5(G
√

β+ε)

(

f(θ1)− f(x∗)

ηT
+

(

G
√

1− β

ε2
+

Lη

2ε2

)

σ2d log(T + 1)

T
+

2σdG

ε
√
T

)

.

(25)

Lemma 1. Assume the gradient is bounded as ‖∇θ"(x; θ)‖∞ ≤ G, and has
bounded variance E[[∇θ"(x; θ)]i − [∇f(θt)]i]2 ≤ σ2, and the batch size bt = t.
For the t-th iteration of MAdam, we have

− [∇f(θt)]iEt

[

gt,i
√

βt,ivt−1,i + ε

]

≤ − [∇f(θt)]2i
√

β̄vt−1,i + ε
+

Gσ

ε
√
t

(26)
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Proof. The LHS can be decomposed as

LHS = −[∇f(θt)]iEt

[

[∇f(θt)]i
√

βt,ivt−1,i + ε

]

− [∇f(θt)]iEt

[

gt,i − [∇f(θt)]i
√

βt,ivt−1,i + ε

]

≤ − [∇f(θt)]2i
√

β̄vt−1,i + ε
−[∇f(θt)]iEt

[

gt,i − [∇f(θt)]i
√

βt,ivt−1,i + ε

]

︸ ︷︷ ︸

T3

,
(27)

where the inequality comes from taking the upper bound of βt,i, since the first
term is non-positive. Let [h(x)]+ and [h(x)]− be the operators for taking the
positive and negative values of function h(x) respectively, i.e.,

[h(x)]+ =

{

h(x), if h(x) > 0

0, otherwise
, [h(x)]− =

{

h(x), if h(x) < 0

0, otherwise
. (28)

It is obvious that E[[X ]+] ≤ E[|X |] ≤
√

E[X2], where the second inequal-
ity comes from Cauchy-Schwarz inequality. Similarly, E[[X ]−] ≥ −E[|X |] ≥
−
√

E[X2]. With this in mind, we have

0 ≤ Et

[

[gt,i − [∇f(θt)]i]+

]

≤
√

Et [gt,i − [∇f(θt)]i]
2 ≤ σ√

t
, (29)

where the last inequality comes from applying Lemma 1 from [46] under the
bounded gradient variance assumption, and the assumption that the batch size
grows as bt = t. Similarly, we have

− σ√
t
≤ Et

[

[gt,i − [∇f(θt)]i]−

]

≤ 0. (30)

Now we will decompose and bound T3 as

T3 = −Et

[

[∇f(θt)]i
[gt,i − [∇f(θt)]i]+
√
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]
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

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βvt−1,i+ε

]

, if [∇f(θt)]i > 0

−Et

[

[∇f(θt)]i
[gt,i−[∇f(θt)]i]+√

βvt−1,i+ε

]

, otherwise

≤ σ|[∇f(θt)]i|
(
√

βvt−1,i + ε)
√
t
,

≤ σG

ε
√
t
.

(31)

Plugging this inequality back into Eq. 27 and we will get the RHS.
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Algorithm 2 LaMAdam

1: Input: Learning rate {ηt}Tt=1, parameter 0 < α < 1, 0 < β < β̄ < 1, ε > 0
2: Set m̃0 = ũ0 = ṽ0 = w0 = 0
3: for t = 1 to T do
4: Draw samples St from training set
5: Compute gt = 1

|St|
∑

xk∈St
∇&(xk; θt)

6: β̃t = argmaxβvt(β)− u2
t (β) ' see Eq 6

7: βt = max(β,min(β̄, β̃t))
8: ũt = βtũt−1 + (1− βt)gt
9: ṽt = βtṽt−1 + (1− βt)g

2
t

10: wt = βtwt−1 + (1− βt)
11: m̃t = αm̃t−1 + (1− α) gt√

ṽt/wt+ε

12: θt = θt−1 − ηt
1−αt m̃t

C Practical notes of βt

Claims and arguments:

1. For t > 1, since 0 < βt ≤ 1, wt will monotonically increase from (1− β1) to
1.
This is obvious since in every step, wt is an interpolation between wt−1 and
1, and wt ≥ wt−1. We have also set w1 = 1− β1.

2. For any gt, ut−1, vt−1 satisfying vt−1 − u2
t−1 > 0 in Eq. 6, we have βt ∈

[1/(1 + wt−1), 1/(1− wt−1)].
Eq. 8 is monotonic in Rt .Since gt can be any value, Rt can be any value
from 0 to ∞. If Rt = 0, βt takes the largest value 1/(1 − wt). If Rt → ∞,
βt → 1/(wt + 1).

3. As t → ∞, wt → 1 and βt ∈ [0.5,∞].
Combining Claims 1 and 2 to get this result.

4. Adding a small coefficient δ > 0 to the denominator of Eq. 6 has negligibale
effect on the value of βt and does not violate the maximum variation objective
(Eq. 5).
Since δ is small, it has negligible effect on βt when division by zero does not
happen. We only need to confirm adding δ will not affect the solution when
division by zero happens. We can re-write the dividend of Eq. 6 as

(wt−1 + 1)(gt − ut−1)
2 + (1− wt−1)(vt−1 − u2

t−1). (32)

Since E[X2]− (E[X ])2 = Var[X ] ≥ 0, we can conclude that vt−1 − u2
t−1 ≥ 0.

When 1 − β1 ≤ wt−1 < 1, Eq. 32 can be 0 only when gt = ut−1 and
vt−1 = u2

t−1. In this special case, we can set βt to any value in [0, 1] without
changing σ2

t ; we will always have vt = ṽt−1/wt−1 = vt−1, ut = ũt−1/wt−1 =
ut−1, and σ2

t = 0. Only wt = (wt−1 − 1)βt + 1 is affected by βt, which takes
a larger value when βt is smaller. The solution given by adding δ to the
denominator is βt = 0, and the following clipping will set βt = β, resulting
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in the largest possible wt = (wt−1 − 1)β + 1. In the next step, if Eq. 32 is
not zero, then we have βt+1 = 1/(wt + 1), and we know gt+1 += ut.6 In this
case, for 0.5 ≤ βt+1 < 1, σ2

t+1 increases as βt+1 decreases, so setting wt to its
maximum will achieve the maximum variance at the next step. Otherwise if
Eq. 32 is zero, doing this will not change σ2

t+1 = 0.
When wt−1 = 1, Eq. 32 is 0 if and only if gt = ut−1. As a result, if vt−1 =
u2
t−1, we have the same conclusion as before. Otherwise, βt = (vt−1 − u2

t−1)/δ
before clipping, and βt = β̄ after clipping. Also, any 0 < βt < 1 will not
change the value of ut = βtut−1+(1−βt)gt = ut−1. Since g2t = u2

t−1 < vt−1,
to maximize σ2

t = vt(β)− u2
t−1, we should set βt = β̄ so that vt(β) takes the

maximum value, which is consistent with the solution after adding δ to the
denominator.

D AdaBound might fail on Transformers?

Fig. 6. Distribution of effective step size of AdaBound and MAdam at iteration 10000,
30000 and 60000 on IWSLT’14. Red lines indicate the clipping range of AdaBound. On
the top/bottom are results of AdaBound/MAdam with learning rates 5e-4/1.25e-3.

Since SGD often performs much worse than Adam on transformers, and Ad-

aBound transitions into SGD asymptotically, it is reasonable to believe that
AdaBound would not converge well on transformers. We did experiments on
the IWSLT’14 dataset to evaluate AdaBound on Transformers. AdaBound
clips the effective step size to be within 0.1 − 0.1

γt+1 and 0.1 − 0.1
γt

, and recom-

mends setting γ = 1 − β2 = 10−3. In practice, this setting only gives a < 24
test BLEU on IWSLT’14. To explore the full potential of AdaBound, we tried
γ ∈ {10−4, 10−5, 10−6, 10−7, 10−8}, and found γ = 10−8 to give the best BLEU

6 Otherwise we will still have gt+1 = ut, g2t+1 = u2
t = vt and Eq. 32 is 0.
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35.99 (0.04). However, as shown in Figure 6, AdaBound does not effectively clip
most of the coordinates even in the last iteration with γ = 10−8, which means
AdaBound essentially degraded into Adam, yet it gives better results than
those effectively doing clipping. By comparison, the best result of MAdam and
Adam with AMSGrad is 36.07(0.07) / 35.87 (0.05), respectively.

E Experimental Details on the Synthetic Finite-sample
Experiment

Same as [8], we use constant learning rates η in every step, and set α = 0,β =
0.9 for Adam and AMSGrad. For MAdam, we set α = 0, (β, β̄) = (0.5, 1).
Adam never converged for a variety of η we tried within [10−4, 1], consistent
with [8]. Generally, a larger η gives faster convergence for both AMSGrad and
MAdam. For reproducibility, we repeat experiments 100 times with the same set-
tings, and choose the η forAMSGrad andMAdam where the solution |θ∗| < 0.1
every time. η = 1.2 satisfies this requirement for MAdam, but AMSGrad only
satisfied it 1% of the times for η = 1.2 and 65% of the times for η = 0.9. η = 0.8
is the largest η we find for AMSGrad to achieve 100% satisfaction. Therefore,
we use η = 0.8 for both Adam and AMSGrad.

F Details and Additional Experimental Results on the
Noisy Quadratic Model

Fig. 7. More results on the Noisy Quadratic Model.

Details of experimental settings We set β = 0.5, β̄ = 0.99 for MAdam, and for
fair comparison, we do a grid search forAdam with β ∈ [0.5, 0.6, 0.7, 0.8, 0.9, 0.99],
and only report the results with the best β. We repeat the experiments 100 times
under each setting, where we select a random initialization of θ ∼ N (0, I) each
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time, and run MAdam and Adam with different hyper-parameters from this
random initialization. Each run takes 1000 iterations by default.

Additional Results We give more results comparing Adam and MAdam on the
Noisy Quadratic Model. The results are shown in Figure 7. Generally, the best
result of MAdam has a more significant margin when h2 and σ are higher, i.e.,
the improvement is more significant when the problem is worse conditioned and
the noise level is higher. Note that for each trial, we start both algorithms from
the same random initialization.

G Details of Experiments on Image Classification

Model, larning rate schedules and data augmentations On CIFAR10 and CI-
FAR100, the ResNet18 comes from a public repository,7 which has a base width
of 64 by default. We use random cropping (4-pixel zero paddings on each side)
and random horizontal flip as the data augmentations. Instead of using the
multi-step schedule, we find the cosine learning rate schedule to yield better re-
sults for both SGD and adaptive methods. Therefore, we use the cosine learning
rate schedule and set a final learning rate of 2e-6 in all cases. On ImageNet, we
use random resized crop and random horizontal flip for data augmentation. For
the multi-step learning rate schedule, multiply the learning rate by 0.1 every 30
epochs, and train a total of 90 epochs, with a batch size of 256.

Hyperparameters of CIFAR10 For each optimizer, we do a grid search over the
learning rate and weight decay for the best hyperparameters. For Adam and
LaProp, we set β = 0.999. For MAdam and LaMAdam, we set β = 0.5 and
β̄ = 0.999 in all cases. Except for SGD, we tried learning rates from {5e-4, 1e-3,
2e-3, 3e-3, 4e-3, 6e-3, 8e-3} and weight decay from {0.025, 0.05, 0.1, 0.2, 0.4, 0.8,
1 }. The best learning rate and weight decay for Adam, LaProp, MAdam and
LaMAdam are (3e-3, 0.2), (1e-3, 0.4), (8e-3, 0.05) and (6e-3, 0.05) respectively.
As to SGD, we tried learning rates from {3e-2, 5e-2, 1e-1, 2e-1, 3e-1} and weight
decays from {1e-4, 3e-4, 5e-4, 1e-3, 2e-3}, and the best result was achieved with
learning rate 2e-1 and weight decay 3e-4.

Hyperparameters for CIFAR100 We use the same grid search configurations as
for CIFAR10. The best learning rate and weight decay for Adam, LaProp,
MAdam and LaMAdam are (2e-3, 0.4), (5e-4, 1), (4e-3, 0.2) and (3e-3, 0.2)
respectively. For SGD, the best learning rate and weight decay are 3e-2 and 2e-3
respectively.

Hyperparameters for ImageNet Due to the heavy workload and the time limit,
we were not able to accomplish 4 runs for each hyperparameter in ImageNet, so
we report the best results for each optimizer in Table 1, except for the result of
Adam , which was copied from [23] but uses the same hyperparameters except

7 https://github.com/kuangliu/pytorch-cifar



26 Zhu et al.

Fig. 8. Training loss, validation BLEU and average step size on IWSLT’14 DE-EN,
trained with η=5e-4, λ=1e-2, β=0.999 for LaProp and η=1.5e-3, λ=1e-2, β=0.5,

β̄=0.999 for LaMAdam, and η=4.375e-4, λ=1e-2, β=0.999 for LaProp-η′.

for the learning rate and weight decay. For LaProp, MAdam and LaMAdam,
we choose learning rates from {1e-3, 2e-3, 3e-3, 4e-3, 5e-3, 6e-3, 8e-3} and weight
decay from {0.003, 0.006, 0.01, 0.012, 0.02, 0.03}, and found the best combina-
tions for LaProp, MAdam and LaMAdam are (2e-3, 0.03), (5e-3, 0.012) and
(6e-3, 0.012). For SGD, we choose learning rate from {0.05, 0.1, 0.2} and weight
decay from {5e-5, 7e-5, 1e-4}, and found the best combination to be (0.1, 7e-5).

H Additional Experimental Results and Details on
Machine Translation

Additional Experimental Results and analysis In Figure 8, we plot the training
loss, validation BLEU and average step size on IWSLT’14 DE-EN. Although the
average update size of LaMAdam is smaller even when using 3 times higher
learning rate than Adam, LaMAdam shows slightly better convergence on the
training set and better validation BLEU. This may be explained by the heavy-
tailed distribution of the gradient in the process of training transformers from
scratch [49]. Smaller step sizes mitigate the effect of extreme gradient values on
the model’s performance. It is worth mentioning that LaProp diverges using
the large learning rate 1.5e-3. Further, we find LaProp is unable to produce the
same result as LaMAdam even when their update sizes are similar. LaProp pro-
duces a similar step size curve as LaMAdam with learning rate 4.375e-4, but the
performance is weaker than LaMAdam. LaMAdam uses the maximum varia-
tion rule to select the adaptive learning rate for each dimension, creating benefit
that is not achievable by simply scaling the base learning rate η.

Hyperparameters for IWSLT’14 The transformer we use has 512-dimensional
word embeddings and 6 Transformer blocks with 4 attention heads and 1024 FFN
dimensions for the encoder/decoder, which is refered to as transformer iwslt de en

in fairseq. We do a grid search for the learning rate and weight decay for both
optimizers. We tried η from {2.5e-4, 5e-4, 1e-3, 1.5e-3, 2e-3}, and weight de-
cay from {0.0001, 0.001, 0.01, 0.1}. The best combinations for LaProp and
LaMAdam are (5e-4, 0.01) and (1.5e-3, 0.01). To demonstrate the full potential
of adaptive methods under constant learning rates, we use the tri-stage learning
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rate schedule [30], linearly increase the learning rate from 0.01η to the full learn-
ing rate η in 4k iterations, hold it at η for 32k iterations, and exponentially decay
it to 0.01η in 24k iterations. For LaProp, we tried β from {0.98, 0.99, 0.997,
0.999}. We found 0.999 to work the best and used it for all the grid search exper-
iments. For LaMAdam, we set β = 0.5, β̄ = 0.999. For other hyperparameters,
we use the default setting in the fairseq example, which sets dropout probability
to 0.3, uses label smoothed cross entropy loss with a smoothing coefficient 0.1,
and shares the input and output token embedding parameters.

Hyperparameters for WMT’16 The Transformer we use has 1024-dimensional
word embeddings, 6 transformer blocks with 16 attention heads and 4096 FFN di-
mensions for the encoder/decoder, and is refered to as transformer vaswani wmt en de big

in fairseq. The default implementation from fairseq did not use weight decay,
so we also ignore weight decay in all experiments. The learning rate schedule
takes the first 4k steps to linearly increase the learning rate to its maximum
value. For LaProp, we found β = 0.98 to give the best results, and we set
β = 0.95, β̄ = 0.98 in all experiments. This takes around 8 hours on 16 V100
GPUs each run. For grid search, we tried η from {5e-4, 1e-3, 1.5e-3, 2e-3}, and
found 1e-3 and 1.5e-3 to work the best for LaProp and LaMAdam respectively.
Other hyperparameters are the defaults of the corresponding fairseq example,
which uses a dropout probability of 0.3, the label smoothed cross entropy loss
with a smoothing coefficient 0.1, and shares all embedding parameters.

I Additional Details of Experiments on the GLUE
benchmark

The GLUE benchmark is a collection of 9 natural language understanding tasks,
namely Corpus of Linguistic Acceptability (CoLA; [40]), Stanford Sentiment
Treebank (SST; [35]), Microsoft Research Paraphrase Corpus (MRPC; [11]),
Semantic Textual Similarity Benchmark (STS; [1]), Quora Question Pairs (QQP;
[18]), Multi-Genre NLI (MNLI; [41]), Question NLI (QNLI; [32]), Recognizing
Textual Entailment (RTE; [9]; [15]; [14]; [3]) and Winograd NLI (WNLI; [21]).

It is reported in [25] that Adam is sensitive to the choice of ε on GLUE.
Following their settings, we set ε = 1e − 6 for both Adam and MAdam. For
LaProp and LaMAdam, however, we always set ε = 1e − 15, like all other
experiments in this paper, which is consistent with the observation in [53] that
LaProp is robust to the choice of ε. We set β = 0.98 for Adam and LaProp,
and β = 0.5, β̄ = 0.98 for LaProp and LaMAdam. All other hyperparameters
are set to the same as the example in fairseq.8 For each task, we do a grid
search over the learning rate and weight decay, which are chosen from {5e-6,
1e-5, 2e-5, 4e-5, 5e-5, 6e-5} and {0.025, 0.05, 0.1, 0.2} respectively. We list the
best combinations for Adam, MAdam, LaProp and LaMAdam on each task
as below:

8 https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.md
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MNLI: (1e-5, 0.1), (1e-5, 0.1), (4e-5, 0.025), (4e-5, 0.025).
QQP: (1e-5, 0.1), (1e-5, 0.1), (4e-5, 0.025), (4e-5, 0.025).
QNLI: (1e-5, 0.1), (1e-5, 0.1), (4e-5, 0.05), (4e-5, 0.05).
SST-2: (1e-5, 0.1), (1e-5, 0.1), (4e-5, 0.1), (4e-5, 0.1).
RTE: (2e-5, 0.1), (2e-5, 0.1), (6e-5, 0.1), (6e-5, 0.1).

MRPC: (1e-5, 0.1), (1e-5, 0.1), (6e-5, 0.1), (6e-5, 0.1).
STS-B: (2e-5, 0.1), (2e-5, 0.1), (4e-5, 0.5), (4e-5, 0.5).
CoLA: (2e-5, 0.1), (2e-5, 0.1), (6e-5, 0.5), (6e-5, 0.5).
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