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Abstract

Learning from spatio-temporal data has numerous applications such as human-
behavior analysis, object tracking, video compression, and physics simulation.
However, existing methods still perform poorly on challenging video tasks such
as long-term forecasting. The gap partially is because these kinds of challenging
tasks require learning long-term spatio-temporal correlations in the video sequence.
We propose a higher-order convolutional LSTM model that can efficiently learn
these correlations with a succinct representation of the history. Our model relies on
a novel tensor-train module that performs prediction by combining convolutional
features across time. To make computation and memory requirements feasible,
we develop a novel convolutional tensor-train decomposition of the higher-order
model. This decomposition reduces the model complexity by jointly approximating
a sequence of convolutional kernels as a low-rank tensor-train factorization. As
a result, our model outperforms existing approaches but uses only a fraction of
parameters, including the baseline models. Our results achieve state-of-the-art
performance in a wide range of applications and datasets, including the multi-steps
video prediction on the Moving-MNIST-2 and KTH action datasets as well as early
activity recognition on the Something-Something V2 dataset. |

1 Introduction

While computer vision has achieved remarkable successes, e.g., on image classification, many real-life
tasks remain out-of-reach for current deep learning systems, such as prediction from complex spatio-
temporal data. Such data naturally arises in a wide range of applications such as autonomous driving,
robot control [1]], visual perception tasks such as action recognition [2] or object tracking [3], and even
weather prediction [4]. This kind of video understanding problems is challenging, since they require
learning spatial-temporal representations that capture both content and dynamics simultaneously.

Learning from (video) sequences. Most state-of-the-art video models are based on recurrent neural
networks (RNNs), typically some variations of Convolutional LSTM (ConvLSTM) where spatio-
temporal information is encoded explicitly in each cell [4H7]. These RNNs are first-order Markovian
models in nature, meaning that the hidden states are updated using information from the previous
time step only, resulting in an intrinsic difficulty in capturing long-range temporal correlations.
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Incorporating higher-order correlations. For one-dimensional sequence modeling, Soltani and
Jiang [8] and Yu et al. [9] proposed higher-order generalizations of RNNs for long-term forecasting
problems. Higher-order RNNs explicitly incorporate an extended history of previous states in each
update, which requires higher-order tensors to characterize the transition function (instead of a
transition matrix as in the first-order RNNs). However, this typically leads to an exponential blow-
up in the complexity of the transition function. This problem is compounded when generalizing
ConvLSTM to higher-orders and no prior work explores these generalizations.

Scaling up with tensor methods. To avoid the exponential blow-up in the complexity of transition
function, tensor decompositions [10] have been investigated within higher-order RNNs [9]. Tensor
decomposition avoids the exponential growth of model complexity and introduces an information
bottleneck that facilitates effective representation learning. This bottleneck restricts how much
information can be passed on from one sub-system to another in a learning system [[11}12]. Previously,
low-rank tensor factorization has been used to improve various deep network architectures [[13-16].
However, its application has not been explored in the context of spatio-temporal LSTMs. The
only approach that leveraged tensor factorization for compact higher-order LSTMs [9] considers
exclusively sequence forecasting, which does not naturally extend to general spatio-temporal data.

Generalizing ConvLSTM to higher-orders. When extending to higher-orders, we aim to design a
transition function that can leverage all previous hidden states and satisfies three properties: (i) The
operations preserve the spatial structure of the hidden states; (ii) The receptive field increases with
time. In other words, the longer the temporal correlation is captured, the larger the spatial context
should be; (iii) Finally, space and time complexities grow at most linearly with the number of times
steps. Because previous transition functions in higher-order RNNs were designed for one-dimensional
sequence, when directly extended to spatio-temporal data, they do not satisfy all three properties. A
direct extension fails to preserve the spatial stricture or increases the complexity exponentially.

Contributions. In this paper, we propose a higher-order Convolutional LSTM model for complex
spatio-temporal data satisfying all three properties. Our model incorporates a long history of states
in each update while preserving their spatial structure using convolutional operations. Directly
constructing such a model leads to an exponential growth of parameters in both spatial and temporal
dimensions. Instead, our model is made computationally tractable via a novel convolutional tensor-
train decomposition, which recursively performs a convolutional factorization of the kernels across
time. Besides parameter reduction, this factorization introduces an information bottleneck enabling
the learning of better representations. As a result, it achieves better results than previous works with
only a fraction of parameters.

We empirically demonstrate our model’s performance on several challenging tasks, including early
activity recognition and video prediction. We report an absolute increase of 8% accuracy over the
state-of-the-art [7] for early activity recognition on the Something-Something v2 dataset. Our model
outperforms both 3D-CNN and ConvLSTM by a large margin. We also report a new state-of-the-art
for multi-step video prediction on both Moving-MNIST-2 and KTH datasets.

2 Background: Convolutional LSTM and Higher-order LSTM

In this section, we briefly review Long Short-Term Memory (LSTM), and its generalizations Convolu-
tional LSTM for sptio-temporal modeling, and higher-order LSTM for learning long-term dynamics.

Long Short-Term Memory (LSTM) [17] is a first-order Markovian model widely used in 1D
sequence learning. At each time step, an LSTM cell updates its states {h(t),c(¢)} using the
immediate previous states {h(t — 1), ¢(t — 1)} and the current input x(t) as

[i(t); F(1); €(); o(t)] = o (W(t) + Kh(t — 1)); (1a)

c(t) =c(t —1)o f(t) + é(t) o i(t), h(t) = o(t) o o(c(t)), (1b)

where o (-) denotes a sigmoid(+) applied to the input gate i(t), forget gate f(t) and output gate o(t),
and a tanh(-) applied to the memory cell é(t) and cell state c(t). o denotes element-wise product.
LSTMs have two major restrictions: (a) only 1D-sequences can be modeled, not spatio-temporal data
such as videos; (b) they are difficult to capture long-term dynamics as first-order models.

Convolutional LSTM (ConvLSTM) [4), 18] addresses the limitation (a) by extending LSTM to
model spatio-temporal structures within each cell, i.e., the states, cell memory, gates and parameters



are all encoded as high-dimensional tensors:

[Z(t); F(£); C(1); O(1)] = (W X (1) + K+ H(t — 1)), @)
where * defines convolution between states and parameters as in convolutional neural networks.
Higher-order LSTM (HO-LSTM) is a higher-order Markovian generalization of the basic LSTM,
which partially addresses the limitation (b) in modeling long-term dynamics. Specifically, HO-LSTM
explicitly incorporates more previous states in each update, replacing the first step in LSTM by

[6(t); £(1); €(t); 0(t)] = o (Wa(t) + @ (h(t —1),--- ,h(t = N))), ©)
where ® combines N previous states {h(t — 1),--- ,h(t — N)} and N is the order of the HO-LSTM.
Two realizations of ® have been proposed: a linear function [8] and a polynomial one [9]:

Linear: @ (h(t—1),---,h(t— N); T(1),--- ,T(N)) = Zj\; T(i)h(t —1). e
Polynomial: @ (h(t—1),--- ,h(t—N); T)=(T, h(t—-1)® - h(t— N)). ®)

While a linear function requires the numbers of parameters and operations growing linearly in IV, a
polynomial function has space/computational complexity exponential in N if implemented naively.

3 Methodology: Convolutional Tensor-Train LSTM

Here, we detail the challenges and requirements for designing a higher-order ConvLSTM. We then
introduce our model and motivate the design of each module by these requirements.

3.1 Extending ConvLSTM to Higher-orders

We can express a general higher-order ConvLSTM by combining several previous states when
computing the gates for each step:

[Z(0); F(2): G0 0()] = 0 W X (1) + B (H(t — 1), -, H(t — N))). ©)

(1) The spatial structure in the hidden states #(¢)’s is preserved by the operations in ®.

(2) The size of the receptive field for H (¢t — i) increases with ¢, the time gap from the current
step (¢ = 1,2,--- , N). In other words, the longer temporal correlation captured, the larger the
considered spatial context should be.

(3) Both space and time complexities grow ar most linearly with times steps N, i.e., O(N).

Limitations of previous approaches. While it is possible to construct a function ® by extending
the linear function in Eq.(#) or the polynomial function in Eq.( (3) to the tensor case, none of these
extensions satisfy the all three properties. While the polynomial function with tensor-train decompo-
sition [9]] meets requirement (3), the operations do not preserve the spatial structures in the hidden
states. On the other hand, augmenting the linear function with convolutions leads to a function:

O (H(t—1), -, H(t— N); K(1),-- Z K(4) * H(t — i) (7)

which does not satisfy requirement (2) if all /(i) contain filters of the same size K. An immediate
remedy is to expand K(7) such that its filter size K (i) grows linearly in i. However, the resulting
function requires O(NN?) space/computational complexity, violating the requirement (3).

3.2 Designing an Effective and Efficient Higher-order ConvLSTM

In order to satisfy all three requirements (1)-(3) introduced above, and enable efficient learn-
ing/inference, we propose a novel convolutional tensor-train decomposition (CTTD) that leverages a
tensor-train structure [19] to jointly express the convolutional kernels {/C(1), -+ , K(N)} in Eq.(7)
as a series of smaller factors {G(1),--- , G(N)} while maintaining their spatial structures.

Convolutional Tensor-Train module. Concretely, let (i) be the i-th kernel in Eq.(7), of size
[K (i) x K(i) x C(i) x C(0)], where K (i) = i[K (1) — 1] 4 1 is the filter size that increases linearly
with ¢; K (1) is the initial filter size; C(¢) is the number of channels in H (¢ — ¢); and C/(0) is the
number of channels for the output of the function ® (thus C'(0) = 4 x Cqy, Where Cyy is the number
of channels of the higher-order ConvLSTM). The CTTD factorizes K (%) using a subset of factors
{G(1),---,G (i)} up to index 7 such that

c(i-1)  cQ)

’C(i):,:,c7 co A CTTD ({g }] 1) Z Z g $,C5,Ci—1 ’*g(2):,:,c2,cl *g(l):,:,cl,coy (8)

c;i—1=1 c1=1
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Figure 1: Convolutional Tensor-Train LSTM. The preprocessing module first groups the previous
hidden states into overlapping sets with a sliding window, and reduces the number of channels in
each group using a convolutional layer. The convolutional tensor-train module takes the results,
aggregates their spatio-temporal information, and computes the gates for the LSTM update. The
diagram visualizes a Conv-TT-LSTM with one channel. When Conv-TT-LSTM has multiple channels,
the addition also accumulates the results from multiple channels.

where G (i) has size [K (1) x K(1) x C(i) x C(i — 1)]. The number of factors N is known as
the order of the decomposition, and the ranks of the decomposition {C(1),--- ,C(N — 1)} are the
channels of the convolutional kernels.

Notice that the same set of factors {G(1),- -, G(N)} is reused to construct all convolutional kernels
{K(1),--- ,KK(N)}, such that the number of total parameters grows linearly in N. In fact, the
convolutional kernel (i + 1) can be recursively constructed as K(i) = G(i) * (i — 1) with
K1) =G(1) and K(3): :.c;.co = Zci_l G(1):eieia ¥ K= 1)se, 1,00 fOri > 2.

This results into in a convolutional tensor-train module that we use for function ® in Eq.(7):
N .
®=CTT(H(t = 1), H(t=N); G(1),- .GIN) =) CTTD({GU)} =) xH(t —1) )

In[Appendix A} we show that the computation of Eq.(9) can be done in linear time O(N ), thus the
construction of CTT satisfies all requirements (1)-(3).

Preprocessing module. In Eq.(9), we use the raw hidden states #(¢) as inputs to CTT. This
design has two limitations: (a) The number of past steps in CTT (i.e., the order of the higher-order
ConvLSTM) is equal to the number of factors in CTTD (i.e., the order of the tensor decomposition),
which both equal to N. It is prohibitive to use a long history, as a large tensor order leads to gradient
vanishing/exploding problem in computing Eq.(9); (b) All the ranks C'(¢) are equal to the number of
channels in (t), which prevents the use of lower-ranks to further reduce the model complexity.

To address both issues, we develop a preprocessing module to reduce the number of steps and
channels in previous hidden states before CTT. Suppose the number of steps M is no less than the
tensor order N (i.e., M > N), the preprocessing collects the neighboring steps with a sliding window
and reduce it into an intermediate result with C'(¢) channels:

H(i) = P(i) * [H(t —i);--- ;H({E—i+ N — M) (10)

where P (i) represents a convolutional layer that maps the concatenation [-] into 7—2(2)

Convolutional Tensor-Train LSTM. By combining all the above modules, we obtain our proposed
Conv-TT-LSTM, illustrated in and expressed as:

[Z(); F(£); C(); O(1)] = o (W * X(t) + CTT(H(1), -+, H(N); G(1), -+ ,G(N))) (11

This final implementation has several advantages: it drastically reduces the number of parameters
and makes the higher-order ConvLSTM even more compact than the first-order ConvLSTM. The
low-rank constraint acts as an implicit regularizer, leading to more generalizable models. Finally, the
tensor-train structure inherently encodes the correlations resulting from the natural flow of time [9].
The full procedure can be found in|Appendix Af(algorithm 2).




4 Experiments

Here, we empirically evaluate our approach on several datasets for two different tasks — video
prediction and early activity recognition and find out it outperforms existing approaches.

Evaluation. For video prediction, the model predicts every pixel in the frame. We test our proposed
models on the KTH human action dataset [20] with resolution 128 x 128 and the Moving-MNIST-2
dataset [2]] with resolution 64 x 64. All models are trained to predict 10 future frames given 10
input frames and tested to predict 10 — 40 frames recursively. For early activity recognition, we
evaluate our approach on the Something-Something V2 dataset. Following [7]], we used the subset
of 41 categories defined by Goyal et al. [21]] (Table 7). The prediction model is trained to predict
the next 10 frames given 25% — 50% of frames, and jointly classify the activity using the learned
representations of the prediction model.

Model architecture. In all video prediction experiments, we use 12 recurrent layers. For early
activity recognition, we follow the framework in [7]. The prediction model consists of two-layers
2D-convolutional encoder and decoder with eight recurrent layers in between. The classifier, which
contains two 2D-convolutional layers and one fully-connected layer, takes the last recurrent layer’s
output and returns a label output. We explain the detailed architecture in

Loss function. For video prediction, we optimize an 1 + /5 10ss Lprediction = || X — X I % +|X— X II1,
where X and X are the ground-truth and predicted frames. For early activity recognition, we
combine the prediction loss above with an additional cross entropy for classification Lrecognition =
A Lorediciion + Lee (Y, 9), where y and ¢ are the ground-truth and predicted labels. The weighting
factor X balances the learning representation and exploiting the representation for activity recognition.

Hyper-parameter selection. We validate the hyper-parameters of our Conv-TT-LSTM on though
a wide grid search on the validation set. Specifically, we consider a base filter size S = 3, 5, order
of the decomposition N = 1,2, 3,5, tensor ranks C(i) = 4, 8,16, and number of hidden states

M =1, 3,5. [Appendix B|contains the details of our hyper-parameter search.

Efficient Implementation. Two versions of the implementation are available: the original and the
optimized version. In the optimized version, we use multi-threading to accelerate our implementation
using the NVIDIA apex library [22]]. Furthermore, we adopt fused kernels to speed up the ADAM
optimizer [23] and TorchScript to fuse multiplications and additions. Lastly, we use affinity binding to
reduce the communication cost between GPUs and CPUs. These modifications speed up training up
to four times. Both versions are available online: https://github.com/NVlabs/conv-tt-1lstm.

4.1 Experimental Results

Multi-frame Video prediction: KTH action dataset. First, we test our model with human action
videos. In[Table 2, we report the evaluation on both 20 and 40 frames prediction. [Figure 2 (right)
shows the model comparisons with SSIM v.s. LPIPS and the model size. (1) Our model is consistently
better than the ConvLSTM baseline for both 20 and 40 frames prediction. (2) While our proposed

0.85 Best Best
Conv-TT-LSTM [Ours] 0.885 <

~0.84 PredRNN [18] 02.69M — Conv-TT-LSTM [Ours]
. re ++ .
g I g © 2.69M
©0.83 2 088
-D < ConvLSTM
o o
4082 450875 @3.57m
=
2o.s1 ConvLSTM 2
£ 0. -y
; Q 3.97M ; 0.87
= 08 = PredRNN++ [18]
[0} wn 0.865 15.05M

0.79

0.8
80 70 60 50 40 30 350 300 250 200 150
LPIPS (lower is better) LPIPS (lower is better)

Figure 2: SSIM v.s. LPIPS scores on Moving MNIST-s2 (left) and KTH action datasets (right).
The bubble size is the model size. The higher SSIM scores and lower LPIPS scores, the better
quality of predictions. On both datasets and for both metrics, our approach reaches a significantly
better performance than other methods while having only a fraction of the parameters.
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Figure 3: 30 frames prediction on Moving-MNIST (left), and 20 frame prediction on KTH
action datasets (right) given 10 input frames. The first frames (f = 1, 11) are animations. Adobe
reader is required to view the animation. Our method generates both semantically plausible and
visually crisp images, compared to other approaches.

Conv-TT-LSTMs achieve lower SSIM value compared to the state-of-the-art models in 20 frames
prediction, they outperform all previous models in LPIPS for both 20 and 40 frames prediction.
[Figure 3 (right) shows a visual comparison of our model, ConvLSTM baseline, PredRNN++ [6], and
E3D-LSTM [[7]. [Appendix C|includes more examples of visual results. Overall, our model produces
sharper frames and better preserves the human silhouettes’ details, although there exist slight artifacts
over time (shifting). We believe this artifact can be resolved by using a different loss or an additional
technique that helps per-pixel motion prediction.
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Figure 4: Examples of Early Activity Recognition Results given 25% and 50% of frames on the
Something-Something V2 dataset, and () is the confidence for Correct/Wrong prediction.

Model Input Dropping Holding MovingLR MovingRL Picking Poking Pouring Putting Showing Tearing
3D-CNN 8.5 4.7 25.8 32.6 7.5 29 1.9 10.3 14.0 14.5
ConvLSTM 25% 8.5 7.0 27.4 38.8 16.8 59 1.9 12.0 7.0 21.2
Conv-TT-LSTM 11.5 4.7 339 40.8 16.8 5.9 5.7 13.6 20.9 26.0
3D-CNN 14.6 11.6 45.2 57.1 16.8 8.8 11.3 17.4 16.3 26.0
ConvLSTM 50% 21.5 7.0 43.5 47.0 159 147 5.7 20.7 16.3 30.8
Conv-TT-LSTM 24.6 11.6 56.5 571 27.6 59 13.2 25.5 37.2 46.2

Table 1: Per-activity accuracy of early activity recognition on the Something-Something V2
dataset. We used 41 categories for training. For per-activity evaluation, the 41 categories are grouped
into 10 similar activities. The activity mapping are described in [21]. Our model substantially
outperforms 3D-CNN and ConvLSTM on long-term dynamics such as Moving or Tearing, while
achieves marginal improvement on static activities such as Holding or Pouring.

Early activity recognition: Something-Something V2 dataset. To demonstrate that our Conv-
TT-LSTM-based prediction model can learn efficient representations from videos, we evaluate the
models on early activity recognition on the Something-Something V2 dataset. In this task, a model
only observes a small fraction (25% — 50%) of frames and learns to predict future frames. Based
on the learned representations of the beginning frames, the model predicts the full video’s overall
activity. Intuitively, the learned representation encodes the future information for frame prediction,
and the better the quality of the representations, the higher the classification accuracy. As shown in



Table 1|and[Table 3|our Conv-TT-LSTM model consistently outperforms the baseline ConvLSTM and
3D-CNN models as well as E3D-LSTM [[7] under different ratio of input frames. Our experimental
setup and architecture follow [7]].

Method (10 -> 20) (10 -> 40) Complexities
PSNR SSIM LPIPS PSNR SSIM LPIPS # Params. # FLOPS Time(m)
ConvLSTM [4] 23.58 0.712 - 2285 0.639 - 7.58M  106.6G -

5 MCNET [24] 2595 0.804 - - - - - - -

£ PredRNN++ [6] (retrained [25])  28.62 0.888 228.9 26.94 0.865 279.0 15.05M - -

; E3D-LSTM [7] (retrained [26]) 27.92 0.893 298.4 26.55 0.878 328.8 41.94M - -

E ConvLSTM (baseline) 28.21 0.903 137.1 26.01 0.876 201.3 397M 55.83G 289
ConvLSTM (classic TTD [27]28]) 27.70 0.897 141.5 25.89 0.872 191.7 221M - -
Conv-TT-LSTM (Ours) 28.36 0.907 1334 26.11 0.882 191.2 2.69M 37.83G  74.8

Method (10 ->10) (10 -> 30) Complexities
MSE SSIM LPIPS MSE SSIM LPIPS # Params. # FLOPS Time(m)
=~ ConvLSTM [4] 2522 0.713 - 38.130.595 - 7.58M  30.32G -

£ VPN [29] 15.650.870 - 31.64 0.620 - - - -

E PredRNN++ [6] (retrained [25]) 10.29 0.913 59.51 20.53 0.834 139.9 15.05M - -

&% E3D-LSTM [7] (pretrained [26]) 20.23 0.869 76.12 32.37 0.803 150.3 41.94M - -

S ConvLSTM (baseline) 18.17 0.882 67.13 33.08 0.806 140.1 3.97M  15.88G 14.8

§ ConvLSTM (classic TTD [27/128]) 16.78 0.890 57.90 29.07 0.815 1264 2.20M - -
Conv-TT-LSTM (Ours) 12.96 0.915 40.54 25.81 0.840 90.38 2.69M  10.76G 29.6

Table 2: Evaluation of multi-steps prediction on the KTH action (top) and Moving-MNIST-2
(bottom) datasets. Higher PSNR/SSIM and lower MSE/LPIPS values indicate better predictive
results. # of FLOPs denotes the multiplications for one-step prediction per sample, and Time(m)
represents the clock time (in minutes) required by training the model for one epoch (10,000 samples)

Multi-frame video prediction: Moving-MNIST-2 dataset. We also evaluate our model on the
Moving-MNIST-2 dataset and show that our model predicts the digits almost correctly in terms of
structure and motion (See [Figure 3). [Table 2| reports the average statistics for 10 and 30 frames
prediction, and [Figure 2] (left) shows the comparisons of SSIM v.s. LPIPS and the model size. Our
Conv-TT-LSTM models (1) consistently outperform the ConvLSTM baseline for both 10 and 30
frames prediction with fewer parameters; (2) outperform previous approaches in terms of SSIM and
LPIPS (especially on 30 frames prediction), with less than one fifth of the model parameters.

We reproduce the PredRNN++ [6] and E3D-LSTM [[7] from the source code [25, 26]]. We find that
(1) PredRNN++ and E3D-LSTM output vague and blurry digits in long-term prediction (especially
after 20 steps); (2) our Conv-TT-LSTM produces sharp and realistic digits over all steps. An example

of visual comparison is shown in[Figure 3| and more visualizations can be found in

Model Input Ratio MSE(x107%) SSIM  LPIPS
Front 25% Front 50% CTTD with 1 x 1 filters (similar to standard TTD)
3D-CNN* 9.11 10.30 single order 31.52 0.810 148.7
E3D-LSTM* [7] 14.59 22.73 order 3 34.84 0.800 151.2
3D-CNN 13.26 20.72 CTTD with 5 x 5 filters
SEEXFTS”E?/ISTM (ours) iggg g(l)g; single order 33.08 0.806 140.1

order 3 28.88 0.831 104.1

Table 3: Early activity recognition on the Table 4: Ablation studies of higher-order Conv-
Something-Something V2 dataset using 41 TT-LSTM on Moving-MNIST-2 dataset. The
categories as [7]. (*) indicates the result by [7]. models are tested for 10 to 30 frames prediction.



5 Discussion

In this section, we further justify the importance of the proposed modules, convolutional tensor-train
decomposition (CTTD) and the preprocessing module. We also explain the computational complexity
of our model and the difficulties of spatio-temporal learning with Transformer [30].

Importance of encoding higher-order correlations in a convolutional manner. Two key differ-
ences between CTTD and existing low-rank decompositions are higher-order decomposition and
convolutional operations. To verify their impact, we compare the performance of two ablated models
against our CTTD-base model in[Table 4. The single order means that the higher-order model is
replaced with a first-order model (tensor order = 1). By replacing 5 x 5 filters to 1 x 1, the convolu-
tions are removed, and the CTTD reduces to a standard tensor-train decomposition. The results show
a decrease in performance: the ablated models achieve similar performances of ConvLSTM baseline
at best, demonstrating that both higher-order models and convolutional operations are necessary.

Importance of the preprocessing module. There could be other ways to incorporate previous
hidden states into the CTT module. One is to reduce the number of channels while keeping the
number of steps; the other is to reuse all previous states’ concatenation for each input to CTT. The
former fails due to the gradient vanishing/exploding problem, while the latter has a tube-shaped
receptive field that fails to distinguish more recent steps and the ones from the remote history.

Computational complexity. [Table 2| provides the number of FLOPS for all models. Our Conv-TT-
LSTM model has lower computational complexity and fewer parameters than other models under
comparison. This efficiency is made possible by a linear algorithm for the convolutional tensor-train

module in Eq.(9), which is derived in

Trade-off between FLOPs and latency. Notice that a lower FLOPS does not necessarily lead to
faster computation since the convolutional tensor-train module is naturally sequential. In[Appendix A}
we introduce two algorithms. While[algorithm 2]significantly decreases the complexity in FLOPs, it
also lowers the degree of parallelism. However, [algorithm T shows how our model can be parallelized.
Ideally, these two algorithms can be combined using CUDA multi-streams (execute multiple kernels
in parallel): use for the beginning iterations of 4 and for the later ones
(the beginning ones have smaller kernel sizes). In our current implementation, we use [algorithm 2]
to reduce the GPU memory requirement. As stated in the run-time is 74.8 minutes for
Conv-TT-LSTM (37.83 GFLOPs) vs. 28.9 mins for ConvLSTM (55.83 GFLOPs) per epoch on KTH
without any GPU optimization. With an efficient implementation as mentioned in we
manage to decrease them to 27.3 mins (37.83 GFLOPs) for Conv-TT-LSTM vs. 26.2 mins (55.83
GFLOPs) for ConvLSTM. Finally, Conv-TT-LSTM is only slightly slower than ConvLSTM despite
the lack of parallelism.

Classic Tensor-Train Decomposition for RNN compression. Classic fensor-train decomposition
(TTD) [19] is traditionally used to compress fully-connected and convolutional layer in a feed-forward
network [31} 28], where the parameters in each layer are reshaped into a higher-order tensor and
stored in a factorized form. Yang et al. [27]] applies this idea to RNNs and compress the input-hidden
transition matrix [31]. There are three major differences between our work and Yang et al. [27]:

e Single-order LSTM v.s. Higher-order ConvLSTM. Yang et al. [27] consider a first-order fully-
connected LSTM [17] for compression, while our method aims to compress a higher-order
convolutional LSTM model.

e Classic decomposition v.s. Convolutional decomposition. Yang et al. [27]] relies on the classic
TTD, while our proposed convolutional tensor-train decomposition (CTTD) factorizes the tensor
with convolutions in addition to inner products; our decomposition is designed to preserve spatial
structures in spatio-temporal data.

e Compression of input-hidden matrix v.s. hidden-to-hidden convolutional kernels. Yang et al. [27]
only compresses input-hidden transition W in LSTM, but our CTTD compresses a sequence of
convolutional kernels {(1),--- ,C(N)} for different time steps simultaneously (see Eq.(7)).

To understand the necessity of our design for long-term spatio-temporal dynamics, we develop a
compressed ConvLSTM following the same idea in [31} 28| 27]], which stores the parameters for

input-hidden transition VY in a tensor-train format W = TT({G(i)}*;*) (where N denotes the order
of the decomposition, i.e., the number of factors):

[Z(t); F(); C(1); O()] = o (TTHG(0) ;1o ") + X (1) + K+ H(t — 1)) (12)



Since the transition in ConvLSTM is characterized as a convolutional layer, we follow the approach by
Garipov et al. [28]] and represent W with size [K X K X Cyy X Ciy] using N factors: (1) The 4-th order

tensor W is reshaped to an 2 M -th order tensor W with size [KXKxTy- - xTn_1XS1 - xXSN_1]
and Cyy = Hf\;_ll T;, Cin = Hf\:l S;; (2) The tensor W is factorized using TTD as

Wigitroin—vanana = D G0)igroG Wi siror GOV = Doy, (13)

0, TN —1

where G(0) has size [K x K X Ro], G(4) has [T; x S; X R;_1 x R;] for0 < i < N — 1, and
G(N — 1) has [Tny—1 x Sny—1 X Ry_1]. A comparison against the uncompressed ConvLSTM and
our Conv-TT-LSTM is presented in Table|2| We observe that our model outperforms this method on
MNIST and KTH (except LPIPS on KTH) with similar number of parameters.

Transformer for spatio-temporal learning. Transformer [30] is a popular predictive model based
on the attention mechanism, which is very successful in natural language processing [32]]. However,
the Transformer has prohibitive limitations on video understanding, due to excessive needs for
both memory and computation. While language modeling only involves temporal attention, video
understanding requires attention to spatial dimensions as well [33]]. Moreover, since the attention
mechanism does not preserve the spatial structures by design, Transformer additionally requires
auxiliary components including an autoregressive module and multi-resolution upscaling when
applied on spatial data [34}135,133]. Our Conv-TT-LSTM incorporates a broad spatio-temporal context,
but with a compact, efficient and structure-preserving operator without additional components.

6 Related Work

Tensor decompositions. Tensor decompositions such as CP, Tucker or Tensor-Train [36} [19], are
widely used for dimensionality reduction [37] and learning probabilistic models [[10]. These tensor
factorization techniques have also been widely used in deep learning to improve performance,
speed-up computation, and compress the deep neural networks [[13} |14} [31} 38541 [16]], recurrent
networks [42 27] and Transformers [43]]. Yang et al. [27]] has proposed tensor-train RNNs to
compress both inputs-states and states-states matrices within each cell with TTD by reshaping the
matrices into tensors, and showed improvement for video classification.

Departing from prior works that rely on existing, well-established tensor decompositions, here
we propose a novel convolutional tensor-train decomposition (CTTD) designed to enable efficient
and compact higher-order convolutional recurrent networks. Unlike Yang et al. [27], we aim to
compress higher-order ConvLSTM, rather than first-order fully-connected LSTM. We further propose
Convolutional Tensor-Train decomposition to preserve spatial structure after compression.

Spatio-temporal prediction models. Prior prediction models have focused on predicting short-term
video [44, 45] or decomposing motion and contents [46, 24, |47, 48]]. Many of these works use
ConvLSTM as a base module, which deploys 2D convolutional operations in LSTM to efficiently
exploit spatio-temporal information. Some works modified the standard ConvLSTM to better capture
spatio-temporal correlations [5,16]. Byeon et al. [45] demonstrated strong performance using a deep
ConvLSTM network as a baseline, and we adopt this base architecture in the present paper.

7 Conclusion

In this paper, we proposed a fully-convolutional higher-order LSTM model for spatio-temporal data.
To make the approach computationally and memory feasible, we proposed a novel convolutional
tensor-train decomposition that jointly parameterizes the convolutions and naturally encodes temporal
dependencies. The result is a compact model that outperforms prior work on video prediction,
including something-something V2, moving-MNIST-2, and KTH action datasets. Going forward, we
plan to investigate our CTT module in a framework that spans not only higher-order RNNs but also
Transformer-like architectures for efficient spatio-temporal learning.
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Impact Statement

In this paper, the authors introduce Convolutional Tensor-Train LSTM model for spatio-temporal
learning. Our model can be applied to any spatio-temporal data, e.g., physical system simulation and
video understanding.

For physical system simulation, our model could be used in weather or turbulence prediction, where
no simple physics rule can be used to anticipate the future. The potential in these applications could
reduce loss by extreme weathers, and the chance of aircraft encountering violent turbulence. For
video understanding, our model can be applied to a wide range of applications including autonomous
driving, robot control, human behavior analysis and object tracking.

While these applications greatly relieve humans from tedious and repeat laboring, they have raised
questions in the society. For example, (1) faulty predictions in autonomous driving systems - do we
have safeguards in place? (2) human tracking and behavior analysis - are we protecting privacy?
(3) finally, object tracking - how are we regulating? Therefore, it is crucial to consider whether the
technology could be misused before they are deployed, and what needs to be in place to avoid an
undesired consequence.

We suggest the researcher in physical sciences and social sciences to investigate questions such as:

e Can a machine learning approach simulate a physical system given sufficient data? If not, to what
extent the physical system can be learned?

e How to systematically verify the capacity of a machine learning model, such that certain behavior
can be prohibited before deployment?

e How to define the responsibility if an autonomous system produces an undesired outcome (for
example, car crash and personal information leakage)?
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