
Proceedings of Machine Learning Research vol 145:721–756, 2021 2nd Annual Conference on Mathematical and Scientific Machine Learning

Practical and Fast Momentum-Based Power Methods

Tahseen Rabbani TRABBANI@CS.UMD.EDU
Department of Computer Science
University of Maryland, College Park, MD

Apollo Jain APOLLO.JAIN@STRERESEARCH.COM
Systems and Technology Research
Sensors Division, Arlington, VA

Arjun Rajkumar RAJKUMAR@UMD.EDU
Department of Computer Science
University of Maryland, College Park, MD

Furong Huang FURONGH@CS.UMD.EDU

Department of Computer Science
University of Maryland, College Park, MD

Editors: Joan Bruna, Jan S Hesthaven, Lenka Zdeborova

Abstract
The power method is a classical algorithm with broad applications in machine learning tasks, in-
cluding streaming PCA, spectral clustering, and low-rank matrix approximation. The distilled pur-
pose of the vanilla power method is to determine the largest eigenvalue (in absolute modulus) and its
eigenvector of a matrix. A momentum-based scheme can be used to accelerate the power method,
but achieving an optimal convergence rate with existing algorithms critically relies on additional
spectral information that is unavailable at run-time, and sub-optimal initializations can result in di-
vergence. In this paper, we provide a pair of novel momentum-based power methods, which we call
the delayed momentum power method (DMPower) and a streaming variant, the delayed momentum
streaming method (DMStream). Our methods leverage inexact deflation and are capable of achiev-
ing near-optimal convergence with far less restrictive hyperparameter requirements. We provide
convergence analyses for both algorithms through the lens of perturbation theory. Further, we ex-
perimentally demonstrate that DMPower routinely outperforms the vanilla power method and that
both algorithms match the convergence speed of an oracle running existing accelerated methods
with perfect spectral knowledge.
Keywords: matrix decomposition, PCA, power methods, momentum acceleration, streaming PCA

1. Introduction

Approximating the dominant eigenvector of a matrix A 2 Rd⇥d is a task common to many statistical
and industrial applications. The vanilla power method is a simple and inexpensive algorithm for
computing the dominant eigenvector v1 of a matrix A. For an initial q0 2 Rd non-orthogonal to v1,
the power method performs the following update eventually converging to v1,

qk = Akqk�1/||A
kqk�1||. (1)

Owing to its ease of implementation and modest assumptions for convergence, the power method
has found its use in a variety of machine learning tasks. It can be used to assist the k-means algorithm

© 2021 T. Rabbani, A. Jain, A. Rajkumar & F. Huang.

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

for class separation of large datasets, which is referred to as power iteration clustering (PIC) (Lin
and Cohen, 2010a,b; Thang et al., 2013). It is also used in sparse PCA, which projects data onto
sparse principal components, that is, components with small `0 norm (Journée et al., 2010; Yuan
and Zhang, 2013). In particular, word-embedding matrices for NLP models can be dimensionally-
reduced via sparse PCA (Gawalt et al., 2010; Drikvandi and Lawal, 2020).

De Sa et al. (De Sa et al., 2018) introduced the power method with momentum, abbreviated as
Power+M along with a stochastic variant, Mini-Batch Power+M. Both of these methods outperform
their vanilla counterparts (the stochastic version of equation 1 uses instead an unbiased estimate
bA of A). Here, speed is measured in the sense of iteration complexity, i.e., the number of outer
loop iterations/updates required to output a vector qk with precision ✏, i.e., sin2 ✓(qk, v1) , 1 �
(q>k v1)

2 < ✏. Recently, other algorithms have been developed which adopt a momentum-based
scheme (Kim and Klabjan, 2020; Mai and Johansson, 2019). However, a notable drawback to
Power+M, Mini-Batch Power+M, and other existing momentum-based methods is that achieving
accelerated iteration complexity requires knowledge of �2, the second greatest eigenvalue of A,
which is an impractical assumption. Specifically, the momentum coefficient �, a hyperparameter of
momentum-based power methods, must be set near �22/4 to achieve improved iteration complexity
over the vanilla power method.

In this work, we develop a scheme which enjoys a near-optimal acceleration without the strict
spectral knowledge requirements of other momentum-based methods. Our scheme consists of two
phases. In the pre-momentum phase, we run a vanilla (or stochastic for the online setting) power
method to approximate the dominant eigenvector and an inexact Hotelling deflation (Saad, 2011) to
estimate �2 and later assign � ⇡ �22/4 (our momentum coefficient). In the momentum phase, we run
Power+M (or Mini-Batch Power+M for the online setting) with the near-optimal � assignment taken
from the previous phase for the remaining iterations until convergence. Our main contributions, the
delayed momentum power method (DMPower) and the delayed momentum streaming power method
(DMStream), are realizations of this scheme.

Relaxing Spectral Knowledge As explained above, an optimal acceleration of momentum-based
methods relies on the proper selection of �. Previous approaches rely on expensive guess-and-check
auto-tuning, whereby the user chooses �, and at each round conducts many experimental iterations
with 0.67�, 0.99�, �, 1.01�, etc., revising the coefficient after determining which adjustment results
in the largest Rayleigh quotient (De Sa et al., 2018). To the best of our knowledge, DMPower
and DMStream are the first momentum-based algorithms to approximate optimal � in a partially-
adaptive manner while still benefiting from acceleration. We present an informal version of our
major results.

Theorem 1 (Informal) Let � = |�1 � �2| denote the absolute difference between the largest
and second-largest eigenvalues. With high probability, our proposed practical DMPower, after
an efficient pre-momentum warm-up stage, outputs an ✏-close estimate of the leading eigenvector
within the state-of-the-art O

⇣
1p
�
log
�
1
✏

�⌘
iteration complexity using a momentum acceleration,

without requiring knowledge of �2 or hyperparameter selection for �2. DMPower is extended to
DMStream in the streaming setting, with similar iteration complexity.

In section 4 we provide the full version the above theorem along with a companion streaming
theorem. Although the momentum phases utilize existing methods, neither of our algorithms are
true hybrids; DMPower and DMStream are the first of their kind to utilize inexact Hotelling deflation

722

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

for second eigenvalue recovery with guarantees. We will show that the iteration complexity of
the DMPower and DMStream momentum phases respectively match the iteration complexity of
Power+M and Mini-Batch Power+M without having to assign � at initialization.

Our experiments show that DMPower converges faster than the vanilla power method to vari-
ous precisions of estimation and for matrices with tighter eigengaps, � = 0.01,� = 0.001, our
DMPower matches the convergence speed of Power+M running with optimal �. DMPower also out-
performs than the vanilla power method and closely mimics the performance of optimal Power+M
when employed in the unsupervised learning task of spectral clustering. Additionally, in comparison
to another concurrent iteration method, the simultaneous power iteration, our experiments demon-
strate that DMPower determines a more accurate approximation of �2. DMStream outputs a more
accurate estimation of the dominant eigenvector for a variety of batch sizes when compared against
Oja’s algorithm and performs nearly identically to Mini-Batch Power+M initialized with optimal �.

Summary of Contributions (1) Our proposed algorithms DMPower and DMStream achieve
close to optimal performance when compared against other momentum-based power methods,
which have been initialized with a priori unknowable optimal hyperparameters. (2) To the best
of our knowledge, we are to first to provide a convergence analysis of an inexact deflation receiving
approximate dominant eigenvectors supplied by a power iteration, both in the deterministic setting
(Lemma 12) and streaming setting (Proposition 21). (3) Our Proposition 7 provides a guarantee for
acceleration if one can provide lower bounds on |�1��2| and |�2��3|, which is a far more practical
requirement at run-time. (4) For many estimation precision requirements, DMPower outperforms
the state-of-the-art Lanczos algorithm in iteration complexity when factoring in the recommended
number d of tri-diagonalization iterations needed for numerical stability of the Lanczos algorithm.
Additionally, DMPower runs noticeably faster (in seconds) than the Lanczos algorithm.

2. Related Works

Speedy Deterministic Power Methods Variations of the vanilla power method intended to im-
prove its iteration complexity of O(1

�1��2
log 1

✏) have been suggested. The Lanczos algorithm
(Golub and Van Loan, 2012) itself may be thought of as a fast variation of the power method, which
has iteration complexity O(1p

�1��2
log 1

✏) but only after a tri-diagonalization process which is ex-
pensive in high dimensions. Lei et al. (Lei et al., 2016) consider a coordinate-wise update with
complexity O

�
�1

�1��2
log tan ✓0

✏

�
. Based on the heavy ball method first studied by Polyak (Polyak,

1964), De Sa et al. (De Sa et al., 2018) first proposed the addition of a momentum term to accel-
erate the basic power method. The term is controlled by a momentum coefficient, �, which is a
hyperparameter selected at initialization. Their method achieves O

�
1p

�1��2
log 1

✏

�
, but only with a

precise selection of � requiring unrealistic spectral knowledge at run-time. Mai and Johannson (Mai
and Johansson, 2019) created a momentum-based algorithm NAPI for solving the canonical corre-
lation analysis (CCA) problem similar requiring impractical hyperparameter selection. In contrast,
our proposed DMPower requires no spectral knowledge and achieves the same speed as existing
momentum methods running optimally.

Block Iterations To enjoy the effects of acceleration, DMPower concurrently runs a second power
iteration for a finite number of rounds and extracts an optimal momentum coefficient. This ap-
proach is reminiscent, though not the same as block power iterations such as the simultaneous
power iteration for matrices (Trefethen and Bau III, 1997), extended to tensors by Wang and Lu

723

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

(Wang and Lu, 2017), which intends to recover multiple eigenvectors at once. The simultaneous
power method for matrices is well-known to suffer from rounding errors (Golub and Van Loan,
2012)(Börm and Mehl, 2012). In contrast, our inexact deflation is experimentally shown to achieve
greater accuracy in extracting the second eigenvalue, which is critically important when eigengaps
are tight. The improved ”practical” simultaneous iteration and QR algorithm (Börm and Mehl,
2012) compute a QR factorization followed by a reversed RQ computation, which requires O(d2)
more flops than inexact deflation. Furthermore, these block iterations do not employ any acceler-
ation schemes: the convergence rate of an ✏-close approximation of v1 in a 2-vector simultaneous
iteration is O

�
1

min{�1��2,�2��3} log
1
✏

�
.

Inexact Power Methods In the pre-momentum phase, DMPower relies on an inexact deflation
step every round. This step may be regarded as a Hardt-Price noisy power method, which has
been studied in differential privacy-preserving PCA (Hardt and Roth, 2013) (Kapralov and Talwar,
2013), but primarily as a meta-algorithm. The DMPower may be regarded then as one practical
application of the noisy power method, with an added momentum phase and thus requiring novel
analysis beyond the scope of existing noisy power method literature. Furthermore, most existing
results on deflation schemes operate under the assumption that eigenvectors and eigenvalues have
been exactly recovered, but in practice, only approximate eigenvectors are used. To the best of
our knowledge, we are the first to provide a guarantee on obtaining a second eigenvalue through
deflation using inaccurate dominant eigenvectors (Lemma 12 and Proposition 21). Our algorithm
is the first in the class of momentum-based power methods to incorporate an acceleration scheme
without the requirement of guessing an approximation of the second eigenvalue at runtime.

Streaming Methods DMStream is a streaming companion to DMPower, which instead uses un-
biased estimates of the underlying covariance matrix A for all of its updates. The streaming setting
assumes that A is either inaccessible or expensive to obtain, and several algorithms have been devel-
oped to address this situation (Mitliagkas et al., 2013; Shamir, 2015; Kim and Klabjan, 2020; Jain
et al., 2016). The momentum phase of DMStream is built upon Mini-Batch Power+M (De Sa et al.,
2018), whose iteration complexity is O

⇣
1p

�1��2
log
�
1
✏

�⌘
, which is desirable in that it matches

the offline state-of-the-art Lanczos complexity, but similar to Power+M, requires a momentum hy-
perparameter � close to �22/4. Just like DMPower, DMStream efficiently approximates �2 in its
pre-momentum phase and then drops into a momentum phase where it enjoys the aforementioned
optimal offline iteration complexity.

Gradient Descent Methods From the optimization perspective, leading eigenvector computation
is equivalent to minimizing �x>Ax where x 2 S2, i.e., the unit sphere. Although this problem is
geodesically non-convex, it is possible to use gradient descent to solve this problem (Absil et al.,
2009; Wen and Yin, 2013; Pitaval et al., 2015).In particular, the global convergence rate has been
shown to be O

⇣�
�1

�1��2

�2
log 1

✏

⌘
, which is generally incomparable to the guarantee of DMPower

(Xu et al., 2018). Conjugate gradient (CG) methods have also been employed to compute the
dominant eigenvector. The Fletcher-Reeves Gradient Descent (FRGD) (Wang and Ye, 2020), a
fully-adaptive momentum-based CG method, achieves a convergence rate of O

⇣p
�1p
+1

⌘
, where

 = �1/�n and thus this rate is also not directly comparable to the convergence rate of DMPower
and other classical power methods, since they largely depend on the first eigengap.

724

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

3. Accelerated Momentum-Based Power Methods via Inexact Deflation

Problem Setup We first outline the setting and assumptions typical of deterministic momentum-
based PCA. We discuss the streaming setting in section 3.2. Let x1, x2, . . . , xn 2 Rd be data points.
Our goal is to recover the top eigenvector and dominant eigenvalue of the symmetric PSD covariance
matrix A = 1

n

Pn
i=1 xix

>
i 2 Rd⇥d. We assume that A has eigenvalues 1 � �1 > �2 > �3 � �4 �

· · · � �d � 0 with associated orthonormal eigenvectors v1, v2, . . . , vd. Unless noted otherwise, k·k
refers to the 2-norm for vectors and matrices. We let �1,2 := �1 � �2 and �2,3 := �2 � �3. The
vanilla power method, at each round k = 1, 2, . . . performs the following update,

qk =
Akqk�1

kAkqk�1k
(2)

⌫k = q>k Aqk (3)

where q0 is a random unit vector non-orthogonal to v1. Under these conditions, qk ! v1 and
⌫k ! �1 at a geometric convergence rate, with ratio

�
�2
�1

�2. Here, error is measured as the sine
squared of the angle ✓(qk, v1) between our unit qk and v1, that is, sin2 ✓(qk, v1) , 1� (q>k v1)

2. The
power method with momentum uses the alternative update,

qk =
Aqk�1 � �qk�2

kAqk�1 � �qk�2k
(4)

where q�1 = 0 and � is the momentum coefficient chosen by the user at initialization. Sa et al.
(De Sa et al., 2018) establish the following theorem and its corollary,

Theorem 2 (Convergence of Power+M (De Sa et al., 2018)) Given a PSD matrix A 2 Rd⇥d with
eigenvalues 1 � �1 > �2 � �3 . . .�d � 0, running with �2 < 2

p
�  �1 results in qk with

sin2 ✓(qk, v1) = 1� (q>k v1)
2


4

|q>0 v1|
2

✓
2
p
�

�1 +
p
�21 � 4�

◆2k

(5)

Corollary 3 ((De Sa et al., 2018)) For ✏ 2 (0, 1) after T = O
� p

�p
�2
1�4�

log 1
✏

�
iterations,

sin2 ✓(qT , v1)  ✏.

We have from these results that � 2 [�22/4,�
2
1/4), and minimizing

p
�p

�1�4�
as in Corollary 3 over

this interval results in an optimal assignment � = �22/4.

Practical Considerations The power method with momentum is capable of achieving a faster
convergence rate than the vanilla power iteration. For � = �22/4, we have, as in Theorem 2, a

geometric convergence with ratio
⇣

�2

�1+
p

�2
1��2

2

⌘2
, which is smaller and thus faster than the vanilla

convergence ratio
�
�2
�1

�2. However, therein lies the impracticality of the algorithm: the user will
generally not have knowledge of �2. Guessing the momentum coefficient 2

p
� > �1 can result in

extremely slow convergence and in some cases, divergence, as shown in Figure 1. In fact, there is
currently no known convergence guarantee for 2

p
� > �1; we notice that in the setting of Theorem

2 and its associated Corollary, that such selection of � results in an imaginary ratio, rendering the
guarantee uninformative. For practical use, we should remove � as a hyperparameter.

725

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Ultimately then, we must approximate �2. This naturally leads us to consider a concurrent/block
iteration scheme that synchronously converges towards v1 and v2. From our approximations of v2,
we may obtain Rayleigh quotient estimations of �2. Accuracy is critical when the eigengap �1,2 is
small, and since the simultaneous power iteration experiences rounding errors as shown in Figure 2,
it is not appropriate for use. The more accurate practical simultaneous power iteration (Börm and
Mehl, 2012) employs a thin QR factorization at each step, which is expensive. Our instinct, then, is
to adopt a concurrent iteration which utilizes matrix deflation to approximate �2.

10�8 10�7 10�6 10�5 10�4 10�3 10�2
0

20

40

60

80

100

120

Error Threshold

Ite
ra

tio
n

C
ou

nt

Loose Eigengaps spec=[1, 0.9, 0.8, . . . , 0.8]

Vanilla Power Method (No Momentum)
Power+M, � = 0.1025 (�0.10)
Power+M, � = 0.2025 (Optimal)
Power+M, � = 0.3025 (+0.10)
Power+M, � = 0.4025 (+0.20)
Power+M, � = 0.4225 (+0.22)
Power+M, � = 0.4525 (+0.25)

Figure 1: Sub-optimal � Selection for
Power+M. We measure convergence speeds
at various momentum assignments. The X-axis
is the error threshold ✏ between approximates
qk, qk�1 of v1 needed for Power+M to terminate,
i.e., we run until ||qk � qk�1|| < ✏. The Y-axis
is the total number of iterations k needed to
meet this condition according to the update
equation (4). Averaged over 1000 runs, each
time run on a random PSD A 2 R10⇥10 with
spectrum �1 = 1,�2 = 0.9,�3 = 0.8, and
remaining eigenvalues set to 0.8. We observe
that increased deviation from the optimal �
assignment results in worsened and eventually
divergent performance.

Approach for Smart Selection of � Deflation methods extract further eigenvalues along the spec-
trum (ordered in absolute modulus), once previous eigenvalues and eigenvectors are determined.
Hotelling deflation (Golub and Van Loan, 2012) is one such scheme upon which we model our
algorithms. Assume for our symmetric PSD A that it also has a positive second eigengap, i.e.,
�2 > �3. If we form the deflation matrix B = A � �1v1v>1 , then for w0 non-orthogonal to v2, we
have that wk = Bwk�1

||Bwk�1|| ! v2 and q>k Bqk ! �2 as k !1. Clearly, we do not have access to �1
and v1 (their approximation is the entire purpose of PCA), but at each round of a vanilla power iter-
ation, we do have approximations ⌫k and qk as in update equations (2) and (3), so we may instead
form an inexact deflation matrix A� ⌫kqkq>k .

One might wonder the implications of setting � as q>J AqJ . Setting � = q>J AqJ will result
in a momentum parameter converging towards �1, which would not lie in the convergence zone
[�22/4,�

2
1/4) of Theorem 2. The next logical idea then would be to set � = (q>J AqJ)

2/4, which
would converge towards �21/4, but employing this coefficient very nearly follows the same dynamics
as the vanilla power method (see Theorem 2) and hence, no improvement.

Our first proposed algorithm the delayed momentum power method (DMPower) is a realization
of the above discussion and considerations, using inexact deflation to progressively approximate �2.
Experimentally, DMPower outperforms the vanilla power method for all specified error thresholds,
running near-optimally at tighter eigengaps �1,2 = 0.01 and �1,2 = 0.001. DMPower experiences
decayed noise at each step, making it possible to establish a convergence guarantee, which we
present in Theorem 4.

726

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

10�8 10�7 10�6 10�5 10�4 10�3 10�2
0

5 · 10�2

0.1

0.15

Error Threshold

A
cc

ur
ac

y:
|�

2
�
b � 2

|
Loose Eigengaps: spec=[1, 0.9, 0.8, . . . , 0.8]

SimPM
DMPower, ⇢ = ✏
DMPower, ⇢ =

p
✏

DMPower, ⇢ = 3
p
✏

DMPower, ⇢ = 4
p
✏

Figure 2: Accuracy vs Simultaneous Power. We
measure the Rayleigh quotient accuracy in deter-
mining �2 between the Simultaneous Power Iter-
ation (SimPM) and DMPower. The X-axis is the
error threshold ✏ of the entire DMPower run. We
report the true accuracy of b�2 output by the pre-
momentum phase, which is reflected in the Y-axis.
Averaged over 1000 runs, each time run on a ran-
dom PSD A 2 R10⇥10. We varied ⇢ according
to ✏ for convenience, but ⇢ does not depend on ✏
in implementation. We observe that DMPower is
overall the most accurate, while SimPM is inac-
curate at low thresholds.

3.1. Delayed Momentum Power Method (DMPower)

Intuitions of DMPower The delayed momentum power method, our primary contribution, expe-
riences momentum-based acceleration after an initial waiting period with no required selection of
� at initialization. As stated before, we use inexact Hotelling deflation to approximate �22/4. It is
known that inexact deflation can succeed with controlled noise (Kapralov and Talwar, 2013; Hardt
and Roth, 2013), and we prove in Appendix B that the inexact deflation step in DMPower satisfies
such conditions. We will eventually obtain an estimate � 2 [�22/4,�

2
1/4). Using this well-behaved

�, we can transition to a momentum-based update exhibiting acceleration.

Overview Algorithm 1 describes DMPower. It proceeds as a routine vanilla power method, but
at each step, our approximate top eigenvector and eigenvalue qk and ⌫k are used to form an inexact
deflation matrix (A�P) = A�⌫kqkq>k , which is run in a power-iterative manner on an initial vector
w0, which is non-orthogonal to v2. We refer to this portion of DMPower as the pre-momentum
phase. For a practical implementations, the first for-loop would exit once |µk+1 � µk|  ⇢, for
some user-specified ⇢, i.e., once our �2 approximates are close to each other. We discuss at length
the practical and theoretical considerations of selecting ⇢ in section 4.3.

After achieving ⇢-accuracy between our approximates µk, we set � µ2
k/4, and q0 qj as

our new initial vector. We then proceed to the momentum phase, which runs Power+M updates until
✏-accuracy is achieved among the qk. Notice that qj has already made progress towards v1. This
greatly benefits our Power+M updates according to Theorem 2, where sin2 ✓(qt, v1) is limited at
each step by the constant 4

|q>j v1|
. We provide a convergence guarantee in Theorem 4 for DMPower.

Complexity The vanilla power iteration costs O(d2) flops per round, and since we are concur-
rently running two vanilla power methods in addition to a Rayleigh quotient, we perform two
additional O(d2) flops. Although we are not asymptotically increasing the time complexity, we
justify the increased flops: we prove in Theorem 4 that for a fixed ⇢, we will achieve our desired
approximation of �2 after a finite number of rounds. Furthermore, we are only interested in the
Rayleigh quotient approximations µj of �2 from each deflation step, and it is well-known that if
kv2 � wkk = ⇢, then |�2 � µk| = O(⇢2) (Trefethen and Bau III, 1997). That is, the Rayleigh
quotient is a quadratically-accurate estimate of v2.

727

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Algorithm 1 Delayed Momentum Power Method (DMPower)

Require: A 2 Rd⇥d symmetric, unit q0 2 Rd, pre-momentum phase iterations J , momentum
phase iterations K, unit w0 2 Rd

1: for j = 1, 2, . . . , J do
2: qj Aqj�1

3: qj qj/ kqjk
4: ⌫j q>j Aqj . Rayleigh Quotient estimate of �1
5: P ⌫jqjq>j
6: wj (A� P)wj�1 . Inexact deflation
7: wj wj/ kwjk

8: µj w>
j Awj . Rayleigh Quotient estimate of �2

9: b�2 = µJ

10: � b�22/4 . Approximated optimal momentum coefficient
11: q1 qJ . Current estimate of v1
12: q0 0
13: for k = 1, 2, . . . ,K do . while kqk � qk�1k > ✏
14: qk+1 Aqk � �qk�1 . Momentum update
15: qk+1 qk+1/ kqk+1k

16: ⌫k q>k+1Aqk+1
return qK , ⌫K

3.2. Delayed Momentum Streaming Power Method (DMStream)

Overview We first review a typical setting for streaming PCA. Assume we have a stream of Rd

inputs x1, x2, . . . drawn from some unknown distribution D with underlying covariance matrix A.
We wish to recover the dominant eigenvector v1 of A.

Streaming algorithms have risen to address this challenge, which instead use a different unbiased
estimate bAt =

1
n

Pn
i=1 xix

>
i of A at each round t to conduct their updates, where n is a fixed batch

size, and the xi’s are selected in a uniformly random manner (Shamir, 2015; Jain et al., 2016;
Mitliagkas et al., 2013; De Sa et al., 2018). In general, the total iteration complexity and runtime
is dependent on several factors, including the variance E[(bAt � A) ⌦ (bAt � A)] of each unbiased
estimate (where⌦ denotes the Kronecker product) and the batch size. The sample complexity is the
total number of streaming inputs need overall to output an ✏-close estimate of v1 for ✏ < 1.

Our second algorithm which we call the delayed momentum streaming power method (DM-
Stream) shown in Algorithm 2 is a streaming companion to DMPower. Theorem 16 due to De Sa
et. al De Sa et al. (2018) provides a convergence guarantee on a momentum-based streaming algo-
rithm referred to as Mini-Batch Power+M. In particular, significant acceleration is experienced if
2
p
� 2 [�2,�1), but as in the case of Power+M, selection of such a � at run-time is an impractical

ask. The full convergence guarantee of Mini-Batch Power+M is provided in Theorem 16. Similar to
DMPower, DMStream approximates a converging momentum coefficient in a pre-momentum phase
and then uses that coefficient to accelerate convergence in a secondary momentum phase.

DMStream superficially resembles DMPower, instead using unbiased estimates for its updates.
However, due to the noise introduced by estimation error of A by bAt in conjunction with the noise

728

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Algorithm 2 Streaming Delayed Momentum Power Method (DMStream)

Require: Streaming samples x1, x2, . . . , xl 2 Rd, batch size n, unit q0 2 Rd, pre-momentum
phase iterations J , momentum phase iterations K, unit w0 2 Rd

1: for j = 1, 2, . . . , J do
2: Generate unbiased estimate bAj =

1
n

Pjn
i=(j�1)n+1 xix

>
i

3: qj bAjqj�1

4: qj qj/ kqjk

5: ⌫j q>j
bAjqj . Rayleigh Quotient estimate of �1

6: P ⌫jqjq>j
7: wj (bAj � P)wj�1 . Inexact deflation
8: wj wj/ kwjk

9: µj w>
j
bAjwj . Rayleigh Quotient estimate of �2

10: �̂2 µJ

11: � µ2
J/4 . Approximated optimal momentum coefficient

12: q1 qJ . Current estimate of v1
13: q0 0
14: for k = 1, 2, . . . ,K do . while kqk � qk�1k > ✏
15: Generate unbiased estimate bAk = 1

n

Pkn
i=(k�1)n+1 xix

>
i

16: qk+1
bAkqk � �qk�1 . Momentum update

17: qk+1 qk+1/ kqk+1k

18: ⌫k q>k+1
bAkqk+1

return qK , ⌫K

introduced by our imperfect estimations of v1 by qt, the inexact deflation step is more challenging
to analyze and results in a distinct guarantee, which we provide in Theorem 5.

Complexity Each matrix-vector multiplication cost O
�
d2
�

with three such multiplications in ev-
ery round of the pre-momentum phase (power iteration, Hotelling iteration, and an inexact Rayleigh
quotient). Akin to DMPower, we justify these increased FLOPS by noting that the pre-momentum
phase will terminate in a finite number of rounds, which is shown in Theorem 5. We empirically
observe that even a rough selection of � provides us with noticeable acceleration, resulting in lower
iteration complexity overall, and thus a decreased total runtime when compared to conventional
streaming PCA as in Algorithm 4.

4. Convergence Analysis

We now provide our two major convergence theorems. We adopt the same notations as in Algorithm
1 and Algorithm 2. Both algorithms are divided into J steps of a pre-momentum phase and K steps
of a momentum phase. As a reminder, µj is the Rayleigh quotient approximation of �2 at step j and
� := b�2/4 = µ2

J/4. For notational convenience, we let ✓0 := arccos |q>0 v1|.

4.1. Delayed Momentum Power Method (DMPower)

729

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Theorem 4 (Convergence of DMPower) Let J represent the number of steps in the pre-momentum
phase and K the number of steps in the momentum phase as in Algorithm 1. Let ✏ < 1 represent
the desired error threshold of our v1 estimates, i.e., sin2 ✓(qt, v1) < ✏ and ⇢ < min{1/2,

q
�1��2
�2��d

}

represent the desired error threshold of our �2 estimates, i.e., |µk � �2| < ⇢. Further fix ⌧ > 1 and
� = min{⇢, 1

⌧
p
d
}. Then after

J = O
� 1

�1 � �2
log

tan2 ✓0
�(�2 � �3)

+
�2

�2 � �3
log

d⌧

⇢

�
, (6)

K = O
� �p

�21 � 4�2
log

1

✏

�
(7)

pre-momentum and momentum steps, respectively, where � = b�22/4 = µ2
J/4, with all but ⌧�⌦(1) +

e�⌦(d) probability, DMPower outputs a vector qK with sin2 ✓(qK , v1) < ✏.

Remark 1: Our step count for Power+M convergence implicitly assumes �2  2
p
�J , i.e., our �

approximation lives on the right of �22/4. It is possible for 2
p
�J  �2, in which case we will still

appreciate the effects of acceleration (see Theorem 23).
Remark 2: We require J = O

�
1

�1��2
log tan2 ✓0

�(�2��3)
+ �2

�2��3
log d⌧

⇢

�
to achieve ⇢-accuracy and a

further K = O
� �Jp

�2
1�4⌫2J

log 1
✏

�
steps to achieve ✏-accuracy. In the momentum phase, we absorb

qJ as our initial vector, which has already made convergent progress towards v1. In practice, we
will not need all J +K iterations.

Proof Sketch. We divide DMPower by its pre-momentum and momentum phases. The full proof
is deferred to Appendix C.

Pre-momentum phase: We regard the inexact deflation step as an exact deflation experiencing
a perturbation every round. In Lemma 12, we show that this noise decays at every step and after
J1 = O

�
1

�1��2
log tan2 ✓0

�(�2��3)

�
steps, we achieve the Hardt-Price bounds (Hardt and Price, 2014)

necessary for convergence of a noisy power method. The convergence rate for noisy power methods
(Hardt and Price, 2014, Corollary 1.1) indicates that after an additional J2 = O

�
�2

�2��3
log d⌧

⇢

�

steps, we will reach our desired ⇢-accuracy, so in total, we need J = J1 + J2 iterations to complete
the pre-momentum phase. We set � =

µ2
J
4 and proceed to the momentum phase.

Momentum phase: Now that our momentum b�2 = µ2
J/4 coefficient is within the interval

[�22/4,�
2
1/4), we may invoke Sa et al.’s Power+M convergence Theorem 4, which states that af-

ter K = O

⇣
�Jp

�2
1�4�2

J

log
�
1
✏

�⌘
steps of iteration on qJ (which we take to be our initial vector for

Power+M) steps, we will have that sin2 ✓(qJ+K , v1) < ✏.

4.2. Delayed Momentum Streaming Power Method (DMStream)

Theorem 5 (Convergence of DMStream) Let ⌃ = E[(bAt � A) ⌦ (bAt � A)], where bAj =
1
n

Pn
i=1 xix

>
i represents any unbiased estimate of A in DMStream with fixed batch size n and

⌦ denotes the Kronecker product. Assume we initialize with unit q0 2 Rd where d � 0 and
|v>1 q0| � 1/2. Let ✓0 = arccos |q>0 v1|. For any � < 1, ✏ < 1, suppose

||⌃|| 
(�21 � 4�)�✏

256
p
dJ

=
(�21 � 4�)3/2�✏

256
p
d
p
�

log�1
⇣32
�✏

⌘
, (8)

730

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

where J is the total number of pre-momentum steps we have fixed at runtime. Furthermore, we let
⇢ < min{1/2,

q
�1��2
�2��d

} represent the error threshold of our �2 estimates, i.e., |µk � �2| < ⇢.

Lastly, fix ⌧ > 1 and � = min{⇢, 1
⌧
p
d
}. If our batch size n is chosen such that

n

log4 n
= O

⇣ 1/�2 log d

(�2 � �3)2d

⌘
. (9)

where � = ⇢(�2��3)

10⌧
p
d

, then after

J = O

1

�1 � �2
log

✓
tan2 ✓0⌧

p
d

⇢(�2 � �3)

◆
+

�2
�2 � �3

log
d⌧

⇢

!
, (10)

K =

p
�

p
�1 � 4�

log
⇣32
�✏

⌘
(11)

pre-momentum steps and momentum steps, respectively, with (1� 1
n2)(1�2�)(1�⌧�⌦(1)+e�⌦(d))

probability DMStream outputs a vector qK such that sin2\(qK , v1) < ✏.

Remark 1: Both phases have a probabilistic guarantee, whereas in DMPower, the momentum phase
was deterministically guaranteed. The probabilistic parameter for the pre-momentum phase ⌧ while
it is � for the momentum phase.
Remark 2: We assume a variance condition on our estimates in equation 8. While there are many
sophisticated methods designed to reduce variance (Shamir, 2015; Partridge and Calvo, 1998; De Sa
et al., 2018) via introduction of step sizes and anchor iterates, we do not explore these options in
this paper. However, a simple strategy for reducing variance is to increase batch size n, since we
have the relation ||⌃||  �2

s , where �2 is the variance of a single random sample.
Remark 3: The total sample complexity is n(J +K).

Proof Sketch. We divide DMStream by its pre-momentum and momentum phases. The proof is
deferred to Appendix D. Pre-momentum phase: There are two sources of noise in every round of
this phase: Ht the estimation error associated to (A� bAj)wj , and Gt the estimation error associated
to (�1v1v>1 � ⌫jqjq

>
j)wj . Proposition 18 shows us how to control ||Ht|| through batch size and

Proposition 21 details ||Gt||. We require J1 := O

✓
1

�1��2
log

✓
tan2 ✓0⌧

p
d

⇢(�2��3)

◆◆
to achieve the Hardt-

Price bounds and a further J2 := O
�

�2
�2��3

log d⌧
⇢

�
to acquire the appropriate �, for a total of

J = J1 + J2 pre-momentum rounds.
Momentum phase: Now that our momentum coefficient � = b�2 = µ2

J/4 coefficient is within
the interval [�22/4,�21/4), we may invoke Sa et al.’s streaming power convergence Theorem 16, to
conclude that we need K =

p
�p

�1�4�
log
�
32
�✏

�
steps to complete the momentum phase.

4.3. Precision of Inexact Deflation

In this section we refer to variables and notations as listed in Algorithm 1 and Algorithm 2. We let
�1,2 := |�1 � �2|. Although one sets the number of iterations J for the pre-momentum phase at
run-time, we are also interested in the accuracy of our �2 estimates, that is, |�2 � µj |, since this
will determine how quickly our momentum phase converges. In Theorem 4 and Theorem 5, we

731

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

discuss how many pre-momentum iterations J are needed to ensure |µj � µj�1|  ⇢, where ⇢ is
an error threshold which controls the accuracy of our final estimate b�2. As such, for the remainder
of this section we will look at a modification of DMPower and DMStream where ⇢ is provided as a
hyperparameter and how it affects our overall convergence.

Effects of inaccurate approximation of �2 In Theorem 4 and Theorem 5, the overall conver-
gence rate is dependent on our pre-momentum phase error |�2 � b�2| < ⇢, where b�2 = µJ . Ulti-
mately, we need our approximated momentum coefficient � = b�22/4 2 [�22/4,�

2
1/4). In fact, even

if � < �22/4, the momentum phase will still converge, and will still experience similar momentum
effects as long as |� � �22/4| < |�21/4� �

2
2/4|, which is a generalization of Theorem 2, provided in

Theorem 23. We establish a proposition suggesting how accurately b�2 must approximate �2:

Proposition 6 The momentum phase of DMPower set with momentum coefficient � = µ2
J/4 con-

verges if and only if |�2 � b�2|  �1,2.

The proof is deferred to Appendix F. In lieu of fixed number of iterations for the pre-momentum
phase, one may instead choose to exit the first for-loop if |µj � µj�1| < ⇢, where we have now
adopted ⇢ as a hyperparameter, which is a far less aggressive option than the guesswork required
with randomly selecting a convergent � as in Power+M. We assume this termination condition for
the remainder of our discussion.

By Theorem 4, the µj ! �2, so we argue it is fair to assume |µj � µj�1| ⇡ |µj � �2|. In
which case, by the triangle inequality and Proposition 4.3, we have that |µj �µj�1| < ⇢ if and only
if ⇢ . 1

2�1,2. Loosening ⇢ beyond this bound does not necessarily result in divergence, however,
which we experimentally observe and discuss in the next section. Current state-of-the-art bounds do
not say anything meaningful about how quickly we can expect to converge/diverge outside of this
bound. According to Theorem 4, the looser we set ⇢, the fewer iterations we can expect to run in
the pre-momentum phase. However, the tighter we set ⇢, the closer our � approaches �22/4, which
is the optimal assignment for the momentum phase.

Practical selection of ⇢ Instead of setting ⇢ to an exceedingly small value close to machine pre-
cision, we experimentally demonstrate in Figure 3 that DMPower is successful in the setting where
�1,2 = �2,3 for a variety of ⇢ selections. In Figure 3 we have set ⇢ = k

p
✏ for k = 1, 2, 3, 4

to demonstrate flexibility, but they are independent precision bounds; ⇢ depends only on �1,2 by
Proposition 6, not on ✏. We further observe that our DMPower outperforms the vanilla power
method at nearly all error thresholds, and converges at a rate similar to optimal Power+M for tighter
eigengaps according to Figure 3. In Figure 2 and Table 2, we demonstrate that setting ⇢ looser
causes us to non-negligibly lose precision in our approximation of �2. Setting ⇢ = ✏ tighter in-
creases our accuracy, but our iteration complexity worsens by a noticeable amount, especially in the
medium eigengap setting.

If one is certain about lower bounds ↵1,↵2 of �1,2 and �2,3, respectively, then we have the
following result for DMPower:

Proposition 7 Assume ↵1  �1,2 and ↵2  �2,3. Fix ⇢ < min{1/2,
p
↵1}, ⌧ > 1 and let

✓0 = arccos |q>0 v1|, � = min{⇢, 1
⌧
p
d
}. Then after

J = O
� 1

↵1
log

tan2 ✓0
�↵2

+
1

↵2
log

d⌧

⇢

�
(12)

732

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

pre-momentum phase steps, we output a vector wJ such that if µJ = wJAw>
J , then |�2�µJ | < ⇢2.

Since ⇢2 < ↵1, our momentum phase will converge with all but ⌧�⌦(1) + e�⌦(d) probability.

Proof The size of J along with the probabilistic guarantee is a simple corollary of Theorem 4 in
conjunction with Lemma 9 to relate sin(wJ , v2) to |�2 � µJ |.

It is important to note the usefulness and practicality of Proposition 7: in other momentum-based
methods, having a lower bound on �1,2 was not sufficient to guarantee convergence – one would
still need the actual location of [�2,�1) over [0,1].

5. Experiments

In this section, we discuss the set of experiments we conducted to measure the performance of DM-
Power and DMStream against a variety of common baseline algorithms. All the experiments were
run on an Intel(R) Xeon(R) E5-1650 v4 machine with 32GiB RAM and Linux OS. The algorithms
were implemented in Python using the Numpy and SciPy libraries. We refer the reader Appendix
E for further experimental design and analyses, including the construction of the synthetic matrices
and runtime (wall-time) comparisons.

5.1. DMPower Experiments

Experimental Setup In these experiments, we compare DMPower against the vanilla power
method, Power+M with optimal assignment of �, and the Lanczos algorithm. In each experiment,
we generate a random symmetric PSD A 2 R100⇥100 with a fixed spectrum and conduct PCA using
the methods listed above. In Figures 1 and 3, we record the number of iterations that are required
to achieve the desired error-tolerance ✏ between our dominant eigenvalue approximates and then
take an average over 1000 runs, each time generating a new symmetric PSD A with a specified
spectrum. The initial vector q0 is uniformly set across all methods for every run. Since we know the
spectrum of these synthetic matrices, we can initialize Power+M to run with � = �22/4, the optimal
momentum coefficient. In Figure 2, we measure the accuracy of Rayleigh quotient estimates to the
Simultaneous Power Iteration rather than convergence speeds.

Iteration Complexity Results As shown in Figure 3, DMPower outperforms the vanilla power
method at nearly all ✏ thresholds, across a variety of ⇢ settings. We set ⇢ = ✏1/k for k = 1, 2, 3, 4,
but we must stress that ⇢ and ✏ are independent precision bounds; ⇢ depends on �1,2 by Proposition
6. Furthermore, at medium and tight eigengaps, observe DMPower performs nearly as well as opti-
mal Power+M. When factoring in tridiagonalization iterations, DMPower outperforms the Lanczos
algorithm, especially at tighter precisions (the Lanczos is well-known to suffer from numerical in-
stability without corrective measures such as re-orthogonalization (Saad, 2011)). See Table 3 for a
full set of raw data. We also measured the proportion of pre-momentum versus momentum phase
iterations in Table 4, noting that for a variety of ⇢ settings, most iterations of DMPower are spent in
the momentum phase.

Wall-time Performance At loose and medium eigengaps, Power+M (optimal) registers the lowest
wall-time, owing to fewer matrix-vector computations. We remind the reader that this setting is only
a baseline and not practically achievable. Of particular note is that at nearly all settings, DMPower
runs noticeably faster than the Lanczos algorithm. We refer the reader to Table 5 for full data.

733

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

10�6 10�5 10�4 10�3 10�2 10�1
0

50

100

150

Error Threshold

Ite
ra

tio
n

C
ou

nt
Loose Eigengaps: spec=[1, 0.9, 0.8,. . . , 0.8]

Vanilla Power Method
Power+M, � = 0.2025
DMPower, ⇢ = ✏
DMPower, ⇢ =

p
✏

DMPower, ⇢ = 3
p
✏

DMPower, ⇢ = 4
p
✏

Lanczos Algorithm

(a) �1,2 = �2,3 = 0.1

10�6 10�5 10�4 10�3 10�2 10�1
0

100

200

300

Error Threshold

Ite
ra

tio
n

C
ou

nt

Med Eigengaps: spec=[1, 0.99, 0.98,. . . , 0.98]

Vanilla Power Method
Power+M, � = 0.2025
DMPower, ⇢ = ✏
DMPower, ⇢ =

p
✏

DMPower, ⇢ = 3
p
✏

DMPower, ⇢ = 4
p
✏

Lanczos Algorithm

(b) �1,2 = �2,3 = 0.01

10�6 10�5 10�4 10�3 10�2 10�1
0

500

1,000

1,500

2,000

2,500

Error Threshold

Ite
ra

tio
n

C
ou

nt

Tight Eigengaps: spec=[1, 0.999, 0.998,. . . , 0.998]

Power Method
Power+M, � = 0.2025
DMPower, ⇢ = ✏
DMPower, ⇢ =

p
✏

DMPower, ⇢ = 3
p
✏

DMPower, ⇢ = 4
p
✏

Lanczos Algorithm

(c) �1,2 = �2,3 = 0.001

Figure 3: Iteration Complexity Comparisons. We compare DMPower (with different ⇢ settings)
against the vanilla power method, Power+M with optimal �, and the Lanczos algorithm. The X-axis
corresponds to ✏, and the Y-axis measures performance by iteration count. Our algorithms demon-
strate consistently favorable performance against the vanilla power method baseline and match op-
timal convergence speeds established by Power+M at medium and tight eigengap settings. Note 1:
For the Lanczos algorithm, we start by taking 100 tri-diagonalization iterations, which is the rec-
ommended number for numerical stability. Note 2: We vary ⇢ according to ✏ for convenience, but
they are independent precision thresholds. As stated in Proposition 6, ⇢ is dependent on �1,2.

5.2. DMStream Experiments

Experimental Setup We used a 50,000 sample subset of the MNIST dataset (LeCun et al., 1998),
which is represented as a matrix of size 50000 ⇥ 784. The dataset was first pre-processed by
centering and dividing the entire matrix by �

p
784. We compared DMStream against Oja’s algo-

rithm (Oja, 1982) with varying step sizes, stochastic power iteration (Algorithm 4), and Mini-Batch
Power+M set with optimal � = �22/4, where �2 is the second eigenvalue of the (processed) covari-
ance matrix of MNIST. We measured performance by a commonly-used metric log10

�
1� ||X>qK ||

||X>v1||
�
.

We tested over a variety of batch sizes with ⇢ = 0.1 for DMStream. For each batch size, we ran 50
iterations and averaged the results over 10 runs.

1,000 2,000 3,000 4,000

�4

�3

�2

�1

0

Batch Size

Lo
g

Er
ro

r

Performance on MNIST (50000⇥ 784)

Mini-Batch Power+M
Streaming Oja, ⌘t = 3/t
Streaming Oja, ⌘t = 9/t
Streaming Oja, ⌘t = 27/t
DMStream, ⇢ = 0.1

Figure 4: Performance by batch size. In this
experiment we measure the performance of DM-
Stream versus Oja’s algorithm (with various step
sizes) and Mini-Batch Power+M (optimal � =
�22/4). We measure performance by the log er-
ror log10(1 �

||X>qK ||
||X>v1||). DMStream exhibits a

consistent increase in accuracy as batch-size is in-
creased and mimics the performance of optimal
Mini-Batch Power+M.

734

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Results Our algorithm performs significantly better than Oja’s algorithm for several step sizes and
is as accurate as Mini-Batch Power+M initialized with optimal � = �22/4. As Table 6 demonstrates,
our accuracy eventually ceases to improve for fixed batch size, but Figure 4 indicates noticeable
improvement with increasing batch size, owing to reduced variance of our unbiased estimates bAt.

5.3. Application: Spectral Clustering

Overview Clustering is the unsupervised learning task of dividing a collection of data points into
distinct groups or ”clusters.” The k-means algorithm (Lloyd, 1982) is a popular clustering method
which has found ubiquitous use in machine learning, including social network analysis (Mishra
et al., 2007), image processing (Shi and Malik, 2000), and other data mining tasks.

However, k-means is limited in effectiveness when applied to nonlinear data. Spectral clustering
is an extension of k-means used to properly separate nonlinear data. Whereas k-means is applied
directly on the data points {xi}ni=1, spectral clustering first begins with a symmetric affinity matrix
Aij = s(xi, xj) where s is a similarity function which could be Euclidean distance, for example. We
define the diagonal matrix D where Dii =

Pn
j=1Aij and then form the normalized affinity matrix

W = D�1A. Spectral clustering then computes the top k components of W . These eigenvectors
are supplied to the k-means algorithm to obtain the final separation result.

The power iteration may be used to find the eigenvectors of W , which is referred to as power
iteration clustering (PIC). The deflation-based PIC algorithm (Thang et al., 2013) we use for our
experiments is provided in Appendix H. In this section, we compare variants of the power iteration
in carrying out PIC and demonstrate that DMPower is capable of faster eigenvector computation
and more accurate data separation when compared against the vanilla power iteration.

(a) Unlabeled (b) Naı̈ve k-means (c) ✏ = 10�4 (d) ✏ = 10�6 (e) ✏ = 10�8

(f) Unlabeled (g) Naı̈ve k-means (h) ✏ = 10�4 (i) ✏ = 10�6 (j) ✏ = 10�8

Figure 5: Performance of DMPM on Spectral Clustering. We depict the performance of DMPM
(⇢ = 3

p
✏) on dividing a collection of data points into their natural, geometrically-partitioned clus-

ters. The first series (a-e) is the concentric circles dataset while the second series (f-j) is the half-
moons dataset. In both series, the first image depicts the unlabeled arrangement, the second depicts
a naı̈ve application of k-means without spectral clustering, while the last three images depict the
performance of k-means assisted by spectral clustering over progressively tighter ✏ error thresholds
(thus, requiring more accurate affinity matrix eigenvector approximations). As ✏ grows smaller, the
data separation improves, eventually achieving perfect classification by ✏ = 10�8.

735

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Experimental Setup We used two popular toy datasets for clustering: half-moons and concentric
circles. The half-moons dataset was generated with 500 samples while the concentric circles set
was generated using 1000 samples. We compared DMPower (with various ⇢ settings) against the
vanilla power method and Power+M with optimal assignment of �. We follow the deflation-based
approach of spectral clustering, which is outlined in Algorithm 5. Each method was used to recover
the top two eigenvectors and eigenvalues of the normalized affinity matrix W of each dataset (our
similarity function was pairwise `2 distance).

We use a practical implementation of the DMPower Algorithm 1: we exit the pre-momentum
phase when ||wj+1 � wj ||  ⇢, where ⇢ is a function of ✏, and exit the momentum phase when
||qk�1�qj ||  ✏. Similarly, for the vanilla power iteration Algorithm 3 and the alternative Power+M
update in equation 4, we end the procedure once ||qk+1 � qk||  ✏. Therefore, termination of these
algorithms is governed by the closeness of the approximates.

Results DMPower, under all ⇢ settings, and for most error thresholds ✏ requires fewer iterations
to recover the top two eigenvectors of the affinity matrices than the vanilla power method, see Table
6. Furthermore, DMPower with ⇢ =

p
✏, 3
p
✏ performs similarly in both iteration complexity and

accuracy when compared against Power+M with optimal � = �22/4 as reported in to Tables 7 and 8.
Figure 5 depicts a progression of separation over the datasets, when DMPower (⇢ = 3

p
✏) is used.

6. Conclusion

In summary, this paper introduces a new scheme for accelerating the vanilla and streaming power
methods. The realization of this scheme is the delayed momentum power method (DMPower) and
its streaming companion the delayed streaming momentum method (DMStream). DMPower is
experimentally shown to outperform the vanilla power iteration and achieves iteration complexity
similar to an existing accelerated method Power+M initialized with optimal hyperparameters. Em-
pirically, it also outperforms the state-of-the-art Lanczos algorithm in both wall-time and iteration
complexity under several regimes. DMStream is shown to vastly outperform all variations of Oja’s
algorithm and register close-to-optimal error when compared against the Mini-Batch Power+M ini-
tialized with an optimal momentum coefficient. We provide convergence guarantees for DMPower
and DMStream using a mixture of perturbation theory and classical power iteration bounds. While
other momentum-based methods rely on unrealistic spectral knowledge for acceleration, DMPower
and DMStream are both practical and fast.

Acknowledgements

Rabbani thanks John Mattox and Mark Davis for helpful discussions. Huang is supported by a
startup fund from the Department of Computer Science of the University of Maryland, National
Science Foundation IIS-1850220 CRII Award 030742-00001, DOD-DARPA-Defense Advanced
Research Projects Agency Guaranteeing AI Robustness against Deception (GARD), Laboratory
for Physical Sciences at University of Maryland, and Adobe, Capital One and JP Morgan faculty
fellowships.

736

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

References

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2009.

Steffen Börm and Christian Mehl. Numerical methods for eigenvalue problems. Walter de Gruyter,
2012.

C De Sa, Bryan He, Ioannis Mitliagkas, Christopher Ré, and Peng Xu. Accelerated stochastic power
iteration. Proceedings of machine learning research, 84:58–67, 2018.

Reza Drikvandi and Olamide Lawal. Sparse principal component analysis for natural language
processing. Annals of Data Science, pages 1–17, 2020.

Brian Gawalt, Youwei Zhang, and Laurent El Ghaoui. Sparse pca for text corpus summarization
and exploration. In NIPS 2010 Workshop on Low-Rank Matrix Approximation. Citeseer, 2010.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press, 2012.

Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applications. In
Advances in Neural Information Processing Systems, pages 2861–2869, 2014.

Moritz Hardt and Aaron Roth. Beyond worst-case analysis in private singular vector computation.
In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 331–340,
2013.

Prateek Jain, Chi Jin, Sham M Kakade, Praneeth Netrapalli, and Aaron Sidford. Streaming pca:
Matching matrix bernstein and near-optimal finite sample guarantees for oja’s algorithm. In
Conference on learning theory, pages 1147–1164, 2016.

Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre. Generalized power
method for sparse principal component analysis. Journal of Machine Learning Research, 11
(2), 2010.

Michael Kapralov and Kunal Talwar. On differentially private low rank approximation. In Proceed-
ings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 1395–
1414. SIAM, 2013.

Cheolmin Kim and Diego Klabjan. Stochastic variance-reduced algorithms for pca with arbitrary
mini-batch sizes. Proceedings of the 23rdInternational Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Qi Lei, Kai Zhong, and Inderjit S Dhillon. Coordinate-wise power method. In Advances in Neural
Information Processing Systems, pages 2064–2072, 2016.

Frank Lin and William W Cohen. Power iteration clustering. In ICML, 2010a.

737

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Frank Lin and William W Cohen. A very fast method for clustering big text datasets. In ECAI,
pages 303–308, 2010b.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Vien V Mai and Mikael Johansson. Noisy accelerated power method for eigenproblems with appli-
cations. IEEE Transactions on Signal Processing, 67(12):3287–3299, 2019.

Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert E Tarjan. Clustering social networks.
In International Workshop on Algorithms and Models for the Web-Graph, pages 56–67. Springer,
2007.

Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. Memory limited, streaming pca. In
Advances in neural information processing systems, pages 2886–2894, 2013.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15(3):267–273, 1982.

Matthew Partridge and Rafael A Calvo. Fast dimensionality reduction and simple pca. Intelligent
data analysis, 2(3):203–214, 1998.

Renaud-Alexandre Pitaval, Wei Dai, and Olav Tirkkonen. Convergence of gradient descent for
low-rank matrix approximation. IEEE Transactions on Information Theory, 61(8):4451–4457,
2015.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics, volume 37. Springer
Science & Business Media, 2010.

Yousef Saad. Numerical methods for large eigenvalue problems: revised edition, volume 66. Siam,
2011.

Ohad Shamir. A stochastic pca and svd algorithm with an exponential convergence rate. In Inter-
national Conference on Machine Learning, pages 144–152, 2015.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on
pattern analysis and machine intelligence, 22(8):888–905, 2000.

Nguyen Duc Thang, Young-Koo Lee, Sungyoung Lee, et al. Deflation-based power iteration clus-
tering. Applied intelligence, 39(2):367–385, 2013.

Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam, 1997.

Bao Wang and Qiang Ye. Stochastic gradient descent with nonlinear conjugate gradient-style adap-
tive momentum, 2020.

Po-An Wang and Chi-Jen Lu. Tensor decomposition via simultaneous power iteration. In Proceed-
ings of the 34th International Conference on Machine Learning-Volume 70, pages 3665–3673.
JMLR. org, 2017.

738

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, 142(1):397–434, 2013.

Zhiqiang Xu, Xin Cao, and Xin Gao. Convergence analysis of gradient descent for eigenvector
computation. International Joint Conferences on Artificial Intelligence, 2018.

Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue problems. Journal
of Machine Learning Research, 14(4), 2013.

739

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Appendix A. Preliminaries and Facts

A.1. Vanilla Power Method

Unless noted otherwise, k·k refers to the 2-norm for vectors and the induced 2-norm for matrices.
We recall the vanilla power method algorithm.

Algorithm 3 Fetch-Com

Require: A 2 Rd⇥d diagonalizable, initial vector q0 2 Rd, error threshold ✏
Ensure: ✏-accurate approximation of v1,�1

1: for k = 1, 2, . . . do . While ||qk � v1|| > ✏

2: qk
Aqk�1

kAqk�1k
3: ⌫k q>k Aqk . Rayleigh Quotient

return qk, ⌫k

Although the termination condition relies on an `2 distance from v1, this is often replaced with
a sine squared error condition, that is, we exit the loop once sin2(✓k) , 1� (q>k v1)

2 > ✏. We make
use of both variations throughout this paper.

A.2. Power Iteration Bounds

The setting for the next two lemmas is the following: we let A 2 Rd⇥d be symmetric with spectrum
|�1| > |�2| � |�3| � · · · � |�n| and associated unit eigenvectors v1, v2, . . . , vn. Note that we do
not need the presence of the second eigengap |�2| > |�3| for these classical results. We will now
establish several well-known inequalities regarding the accuracy of the vanilla power iteration.

Lemma 8 (Quarteroni et al. (2010), p. 194) Let q0 2 Rd such that |q0>v1| 6= 0. We may write
q0 =

Pd
i=1 civi since A is diagonalizable (being symmetric). Let C =

�Pd
i=1

�
ci
c1

�2�1/2. We have
that

kq̃k � v1k  C

����
�2
�1

����
k

k � 1 (13)

where

q̃k =
qk

kAkq0k
↵1�1

k = v1 +
dX

i=2

ci
c1

✓
�i
�1

◆k

vi, k = 1, 2, . . . (14)

Remark. Since q̃k is nothing more than a scaled version of qk convenient for analysis, as an abuse
of notation, where 2-norm inequalites are invoked involving qk and v1, we assume we are working
with q̃k.

Lemma 9 (Golub and Van Loan (2012), p. 451) Let q0 2 Rn such that |q0>v1| 6= 0. Let qk =
Akq0
kAkq0k

and ⌫k = qk>Aqk, i.e., the basic power iteration approximation of v1 and �1 after k steps.

Define ✓k 2 [0,⇡/2] by cos(✓k) = |qk>v1|. For k = 0, 1, 2, . . . , we have

| sin(✓k)|  tan(✓0)

����
�2
�1

����
k

(15)

|�1 � ⌫k|  max
2id

|�1 � �i| tan(✓0)
2

����
�2
�1

����
2k

(16)

740

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

We now prove a more general, well-known fact: the Rayleigh quotient is a quadratically-accurate
estimate when compared to the sine squared error.

Lemma 10 Let wk ! vj for {wk}
1
i=1 a sequence of unit vectors and vj a unit eigenvector of A

associated to eigenvalue �j . Let ⌘k be the Rayleigh quotient of wk and sin2(�k) = 1 � (w>
k vj)

2.
Then

|⌘k � �i| = O
�
sin2(�k)

�
(17)

Proof Express wk =
Pd

i=1 civi, i.e., as a linear combination in the eigenbasis of A. We have then
that

⌘k � �j = w>
k Awk � �j =

Pd
i=1 c

2
i�iPd

i c
2
i

� �j =

Pd
i=1(�i � �j)c

2
iPd

i=1 c
2
i

 max
i 6=j

|�j � �i|
dX

i 6=j

c2i (18)

Since
Pd

i=1 c
2
i = 1 (wk is unit), we have that

dP
i=1
i 6=j

c2i = 1�c2j = 1�(w>
k vj)

2 = sin2(�j). Therefore,

|⌘k � �j |  max
i 6=j

|�j � �i| sin
2(�k) (19)

proving our claim.

Appendix B. Noisy Deflation

The following results will help us determine how many steps of inexact deflation we need to com-
plete before we achieve small enough noise at each iteration to permit convergence. As usual, we let
⌫k and qk reflect our eigenvalue and eigenvector approximation at step k of a vanilla power iteration
with matrix A. We first recall the formulation of a noisy power method (NPM). We consider an
alternative update step of Algorithm 3:

qk =
Aqk�1 +Gk�1

kAqk�1 +Gk�1k
(20)

Here, Gk�1 is noise or a perturbation added at each round. The following is a powerful result on
the conditions under which NPM can successfully converge:

Corollary 11 (Noisy Power Method Convergence Hardt and Price (2014)) Let k  p. Let U 2
Rd⇥k represent the top k singular vectors of B 2 Rd⇥d and let �1 � �2 � · · · � �d denote its
singular values. Suppose X0 is an orthonormal basis of a random p-dimensional subspace. Further,
suppose at every step of NPM we have

5||G`||  ✏(�k � �k�1) and 5||U>G`||  (�k � �k�1)

p
p�
p
k � 1

⌧
p
d

(21)

for some fixed parameter ⌧ and ✏ < 1/2. Then with all but ⌧⌦(p+1�k) + e�⌦(d) probability, there
exists an L = O

� �k
�k��k�1

log d⌧
✏

�
so that after L steps we have

��(I �XLX>
L)U

��  ✏.

741

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

In the context of Theorem 4, we have that B = A� �1v1v>1 , X0 = w0, U = v2, and G` is the error
||�1v1v>1 � ⌫`q`q

>
` ||, that is, the ”inexactness” of our deflation, and d is the dimension. We also

note that in relation to A, the deflated matrix B has spectrum �2 > �3 � · · ·�n�1 � �n = 0. In

this setting, we have that
��(I �XLX>

L)U
�� =

��(I � wLw>
L)v2)

�� =
q
1� (wLv>2)

2, i.e., the sine
error between v2 and wL. We will now provide an upper bound on ||G`|| and show it decays with
every round. For notational convenience, we denote ✓0 := arccos |q>0 v1|.

Lemma 12 If we express A � ⌫kqkq>k as A � �1v1v>1 + Gk, where Gk = �1v1v>1 � ⌫`q`q
>
` is a

perturbation reflecting the error of our eigenpair approximation, then kGkk = O(tan2 ✓0|
�2
�1
|
k
).

Proof Let qk = v1 + ⇠k and ⌫k = �1 + �k, that is, ⇠k and �k reflect the perturbations (error)
associated with our power iterates. We may express our inexact deflation matrix as follows:

A� ⌫kqkqk
> = A� (�1 + �k)(v1 + ⇠k)(v1 + ⇠k)

>. (22)

Expanding, we have that our deviation from A� �1v1v>1 is expressible as

Gk = �1(v1⇠
>
k + ⇠kv

>
1 + ⇠k⇠

>
k) + �k(v1v

>
1 + v1⇠

>
k + ⇠kv

>
1 + ⇠k⇠

>
k). (23)

||Gk||  |�1|(||v1⇠
>
k ||+ ||⇠kv

>
1 ||+ ||⇠k⇠

>
k ||) + |⌫k|(||v1v

>
1 ||+ ||v1⇠

>
k ||+ ||⇠kv

>
1 ||+ ||⇠k⇠

>
k ||)

(24)

Express the initial vector q0 of the power iteration in the eigenbasis of A: v0 =
Pn

i=1 civi. For the
next step, we recall by the previous two lemmas that

|�1 � ⌫k|  max
2id

|�1 � �i| tan
2(✓0)

����
�2
�1

����
2k

and

||qk � v1|| 

����
�2
�1

����
k � dX

i=1

(
ci
c1
)2
�1/2

.

For brevity, we denote C =
�Pd

i=1[
ci
c1
]2
�1/2 and D = max

2id
|�1 � �i| tan2(✓0). Now, it also well

known that for u, v 2 Rl that ||uvt|| = |u>v|. Therefore, in conjunction with application of the
Cauchy-Schwarz inequality, we have that

||v1v
>
1 || = 1 (25)

||v1⇠
>
k || = ||⇠kv

>
1 || = |v>1 ⇠k|  |⇠k|  C

����
�2
�1

����
k

(26)

||⇠k⇠
>
k || = |⇠>k ⇠k| = |⇠k|

2
 C2

����
�2
�1

����
2k

(27)

Noting that �1  1, we have then that

||Gk||  2C

����
�2
�1

����
k

+ C2

����
�2
�1

����
2k

+D

����
�2
�1

����
2k

(1 + 2C

����
�2
�1

����
k

+ C2

����
�2
�1

����
2k

). (28)

Thus, ||Gk|| = O(tan2(✓0)|
�2
�1
|
k
).

742

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Lemma 13 Let v, w 2 Rd be of unit length, A 2 Rd⇥d. We have then that

|v>Aw|  ||A||F (29)

Proof Applying the Cauchy-Schwarz inequality and sub-multiplicativity of the induced 2-norm for
matrices,

|v>Aw|  ||v|| · ||A|| · ||w||2 = ||A||2  ||A||F .

We may establish how many initial steps of inexact deflation we need to run before it is set on a
path towards convergence. Our setting is the same as in the previous lemmas.

Theorem 14 Let A 2 Rd⇥d be symmetric PSD and w0 be the initial unit vector for inexact
deflation such that w0

>x2 6= 0. Fix ⌧ > 1, ⇢ < 1/2 and � = min{⇢, 1
⌧
p
d
}. Then after

T = O
�

1
�1��2

log(tan2 ✓0
�(�2��3)

)
�

steps, the perturbations Gk achieve the Hardt-Price bounds in Equa-
tion 21.

Proof Let B = A � �1v1v1>. For k = 1, 2, . . . we have that step k in the pre-momentum phase
involves computing qk = Akqk�1

kAkqk�1k
, ⌫k = q>k Aqk and then an inexact deflation (A� ⌫kq>k qk)wk�1.

We have then that inexact deflation at step k is representable as

(B +Gk)wk�1 = Bwk�1 +Gkwk�1 (30)

where Gk is associated with the error
���1v1v1> � ⌫kqkqk>

��. By Lemma 12, the fact the wk are
unit, and sub-multiplicativity, we have that

||Gkwk�1||  ||Gk|| · ||wk�1|| = ||Gk|| = O

⇣
tan2 ✓0

����
�2
�1

����
k⌘

. (31)

Reminding ourselves of the Hardt-Price bounds, we need any given perturbation to satisfy

5||Gk||  ⇢(�2 � �3) and 5||Gk||  (�2 � �3)
1

⌧
p
d

(32)

Solving for k such that tan2 ✓0
����2
�1

���
k

satisfies these bounds, we arrive at our claim.

Appendix C. Proof of Theorem 4

We first outline the setting before proving our main result. We let A 2 Rd⇥d be symmetric PSD
with spectrum

1 � �1 > �2 > �3 � · · · � �d � 0. (33)

Distinct to our setting is the presence of a positive eigengap between �2 and �3. We select q0 =Pn
i=1 civi such that |v>1 q0| 6= 0, which will be used for the vanilla and momentum power iter-

ations, and w0 =
Pd

i=1 bivi such that |v2>w0| 6= 0, which will be used for inexact deflation.
Let ✓0 = arccos |q>0 v1|. Lastly, in the first for-loop we add the theoretical termination condition
while |�2 � µk| > ⇢.

743

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Theorem 15 (Restating of Theorem 4) Let J represent the number of steps in the pre-momentum
phase and K the number of steps in the momentum phase as in Algorithm 1. Let ✏ < 1 represent
the desired error threshold of our v1 estimates, i.e., sin2 ✓(qt, v1) < ✏ and ⇢ < min{1/2,

q
�1��2
�2��d

}

represent the desired error threshold of our �2 estimates, i.e., |µk � �2| < ⇢. Select unit q0 2 Rd

and w0 2 Rd. Further fix ⌧ > 1 and � = min{⇢, 1
⌧
p
d
}. Then after

J = O
� 1

�1 � �2
log

tan2 ✓0
�(�2 � �3)

+
�2

�2 � �3
log

d⌧

⇢

�
, (34)

K = O
� �p

�21 � 4�2
log

1

✏

�
(35)

pre-momentum and momentum steps, respectively, where � = b�22/4 = µ2
J/4, with all but ⌧�⌦(1) +

e�⌦(d) probability, DMPower outputs a vector qK with

sin2 ✓(qK , v1) < ✏. (36)

Proof We divide our proof into an analysis of the pre-momentum stage and then the momen-
tum stage. Specifically, we will first establish how many iterations are needed to acquire a � 2
[�22/4,�

2
1/4). Then, we will use this � to conduct Power+M updates and derive how many addi-

tional steps we will need to obtain a qk with 1� (q>k v1)
2 < ✏.

Pre-momentum phase: By Theorem 14, after J1 = O
�

1
�1��2

log tan2 ✓0
�(�2��3)

�
steps, we achieve

the Hardt-Price bounds. Therefore, by Corollary 1.1 in (Hardt and Price, 2014), after a further
J2 = O

�
�2

�2��3
log d⌧

⇢

�
iterations the wt will converge to ⇢-accuracy. That is, if we let J = J1 + J2

we have ���(I � wJw
>
J)v2

��� = 1� (w>
J v2) = sin(�J) < ⇢ (37)

with all but ⌧�⌦(1) + e�⌦(n) probability. Therefore in conjunction with Lemma 10 we have that

|�2 � µJ |  (�2 � �d) sin
2(�J) < (�2 � �d)⇢

2 < �1 � �2 (38)

so by Proposition 6 we obtain
1

4
|�22 � µ2

J | <
1

4
|�21 � �

2
2|. (39)

We set � =
µ2
J
4 as our momentum coefficient and proceed to the momentum phase.

Momentum phase: Our momentum coefficient is now within the interval of acceleration†, i.e.,
� 2 [�22/4,�

2
1/4), so we may now invoke Theorem 2, which tell us that after

K = O

✓
�p

�21 � 4�2
log

1

✏

◆
(40)

steps of Power+M iteration on qJ (which we now take to be our initial vector for Power+M), we
will have that 1� (q>J+Kv1)2 < ✏, completing our proof.

† Subtly, we assume that µJ � �2. We discuss the case µJ < �2 in Theorem 23.

744

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Algorithm 4 Stochastic Power Method/Streaming PCA

Require: Streaming inputs x1, x2, · · · 2 Rd, batch size n, unit q0 2 Rd, iterations T , unit q0 2 Rd

1: for t = 1, 2, . . . , T do
2: Generate unbiased estimate bAt =

1
n

Ptn
i=(t�1)n+1 xix

>
i

3: qt bAtqt�1

4: qt qt/ kqtk
5: ⌫t q>t bAtqt . Inexact Rayleigh quotient estimate of �1

return qT , ⌫T

Appendix D. Proof of Theorem 5

We re-outline the typical streaming setting: we have d-dimensional data points x1, x2, · · · ⇠ D, with
underlying covariance matrix A 2 Rd⇥d with eigenvalues 1 � �1 > �2 > �3 � �4 � · · · � �n �
0. Presumably, it is too costly to access and/or store A, but we have access to a stream of inputs
x1, x2, Algorithm 4 is a conventional streaming PCA method designed to recover the principal
components of A using only a sample of inputs. As an abuse of notation, they are not indexed in
any particular order – we receive the data points in a uniformly random manner. At each round, we
form an unbiased estimate bA = 1

n

Pn
i=1 xix

>
i , where n is a fixed batch size. We are interested in

determining how many total samples are needed to output a vector qt such that sin2(qt, v1) < ✏ for
a fixed precision ✏ < 1, which is also referred to as the sample complexity.

Similar to the vanilla power method, one may accelerate a conventional streaming PCA by
attaching a momentum term. That is, our update step in Algorithm 4 would instead be

qj+1
bAjqj � �qj�1 (41)

where � is a momentum coefficient. De Sa et. al provide a guarantee for updates of this kind:

Theorem 16 (De Sa et al. (2018), Theorem 3) Suppose we run Algorithm 4 with momentum up-
dates as in equation 41. Let ⌃ = E[(bAj �A)⌦ (bAj �A)]. Assume we initialize with unit q0 2 Rd

and with |v>1 q0| � 1/2. For any � < 1 and ✏ < 1, if 2
p
� 2 [�2,�1) and

J =

p
�

p
�1 � 4�

log
⇣32
�✏

⌘
and ||⌃|| 

(�21 � 4�)�✏

256
p
dJ

=
(�21 � 4�)3/2�✏

256
p
d
p
�

log�1
⇣32
�✏

⌘
, (42)

then after J updates with probability at least 1� 2�, we have that sin2(qJ , v1)  ✏.

Similar to Power+M, streaming PCA with momentum updates experiences noticeable acceleration.
However, of particular note is the bounded variance condition and the initialization of �. The former
has been addressed through further variance reduction techniques outlined in (De Sa et al., 2018),
but current literature does not suggest how to intelligently set � so that it lies in the convergence
interval [�22/4,�21/4). Similar to our design of DMPower, our Algorithm 2 successively approx-
imates a convergent � in a pre-momentum phase before dropping into a momentum phase. The
convergence analysis of DMStream is more challenging, however, since we have two sources of
noise: the estimation error ||A � bA|| and the estimation error of ||v1 � qt||. The remainder of this
section is devoted to providing upper bounds on both sources of noise.

We have the following noisy representation of bAx for x 2 Rd:

bAx = Ax+H (43)

745

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

where H = (A � bA)x. In light of Theorem 14, if we can control ||H||, then we can produce a
convergent noisy power method. To this end, we provide several results to aid our analysis, some of
which are not proven here. The first result bounds the error in a single step of a streaming PCA:

Lemma 17 (Hardt and Price (2014), Lemma 3.5) Let A be a covariance matrix as in the set-
ting described above and bA = 1

n

Pn
i=1 xix

>
i an empirical estimate based off a streaming batch

x1, x2, . . . , xn. Consider the noisy representation as in equation 43. Then with all but O(1/n2)
probability

||H|| 

s
log4 n log d

n
+

1

n2
and ||v>1 H|| 

s
log4 n log d

n
+

1

n2
(44)

We now consider Ht = (A � bAt)qt�1, where bAt and qt are the unbiased estimate of A and v1
respectively in round j as in Algorithm 4.

Proposition 18 (Hardt and Price (2014), Theorem 3.2) Choose batch size n such that

n

log4 n
= O

⇣ 1/✏2 log d

(�1 � �2)2d

⌘
(45)

for ✏ < 1/2 and we will have by Lemma 17 that

||Ht|| 
✏(�1 � �2)

5
and ||v>1 Ht|| 

�1 � �2

5
p
d

, (46)

thereby satisfying the Hardt-Price bounds as in equation 21. Thus, by Theorem 14, after T =
O(log(d/✏)/(1 � �2/�1)) iterations, we have with all but 1 �max{1, T/n2

} probability that Al-
gorithm 2 outputs qT such that 1� (v>1 qT)

2 < ✏.

Now, consider the inexact update in Algorithm 2, (bAt � ⌫tqtq>t)wt. For convenience, we let
B := A� �1v1v>1 , the exact deflation matrix. We may express this as

(bAt � ⌫tqtq
>
t)wt�1 = Bwt�1 +Ht +Gt (47)

where Ht = (A � bAt)wt�1 and Gt = (�1v1v>1 � ⌫tqtq>t)wt�1. By Proposition 18 we know
how to control ||Ht||, so we will now focus our attention on ||Gt||. We will conduct analysis in
the same spirit as Lemma 12, but first we will require a another pair of results. The first lemma
demonstrates that if we satisfy the Hardt-Price bounds of equation 21, then tan ✓(v1, qt) decreases
multiplicatively with each step of a noisy power method.

Lemma 19 (Hardt and Price (2014), Lemma 2.3 (modified)) Let v1 2 Rd be the dominant eigen-
vector with eigenvalue �1 of A, �2 the second dominant eigenvalue, x 2 Rd a unit vector. Let
G 2 Rd and ✓0 = arccos |v>1 x| satisfy

4||v>1 G||  (�1 � �2) cos(✓0) (48)
4||G||  (�1 � �2)✏ (49)

for some ✏ < 1. Then

tan ✓(v1, Ax+G)  max{✏,max{✏,
⇣�2
�1

⌘1/4
} tan ✓0}. (50)

746

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

We now provide a bound on the sin ✓(v1, qt) using Lemma 19.

Proposition 20 (Hardt and Price (2014), Theorem 2.4 (rephrased)) Suppose q0 is the initial vec-
tor supplied to a noisy power method, ✓0 = |v>1 q0|, and Gt is the noise experienced at round t.
Further suppose that

5||v>1 Gt||  (�1 � �2) cos ✓0 (51)
5||Gt||  ✏(�1 � �2) (52)

holds at every stage including and after round t for some ✏ < 1/2. Then

sin ✓(qt+k, v1)  max{✏, (�2/�1)
k/4 tan ✓0} (53)

Proof Let l � t. Since |Gl|| satisfies the modified Hardt-Price bounds of Lemma 19, we have that

tan ✓(v1, ql)  max{✏,max{✏, tan ✓0}}. (54)

For ✏ < 1/2 we have that,

cos ✓(v1, ql) � min{1� ✏2/2, cos ✓0} �
7

8
cos ✓0, (55)

which means that we may invoke Lemma 19 at every step l � t. This gives us

tan(v1, ql+1) = tan ✓(v1, Aql +G)  max{✏,max{✏,
⇣�2
�1

⌘1/4
} tan ✓(v1, ql)}. (56)

Extending this inequality recursively for l + k and noting that sin ✓(ql, v1)  tan ✓(ql, v1) gives us
our claim.

We are now prepared to conduct analysis on ||Gt|| in equation 47.

Proposition 21 Choose ✏ < 1/2 and n such that

n

log4 n
= O

⇣ 1/✏2 log d

(�1 � �2)2d

⌘
. (57)

. Let

�t = |�1 � �d| tan
2 ✓(q0, v1)

����
�2
�1

����
2t

+min{
✏(�1 � �2)

5
,
�1 � �2

5
p
d

} (58)

 t =

r
2� 2

q
(1�min{1,max{✏2, (�2/�1)t/2 tan2 ✓0})}. (59)

Then with all but O(1/n2) probability, we have that kGtk = O(max{�t, t}).

Proof We first consider |�1�⌫t| = |�1�q>t bAtqt|. Let ✓0 = q>0 v1. First observe that since qt ! v1,
we have by Lemma 10 that |�1 � q>t Aqt| = O(sin2(qt, v1)). We have then that

|�1 � ⌫t| = |�1 � q>t bAtq1| = |�1 � q>t Aqt + q>t Aqt � q>t bAtqt| (60)

 |�1 � q>t Aqt|+ |q>t (A� bAt)qt| (61)

 |�1 � �d| tan
2 ✓(q0, v1)

����
�2
�1

����
2t

+min{
✏(�1 � �2)

10
,
�1 � �2

10
p
d

}

(62)

747

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

where the last inequality follows from applying the result on Rayleigh quotient approximation in
Lemma 10 to the left term and Proposition 18 along with the Cauchy-Schwarz inequality to the right
term.

We now examine ||v1 � qt||. We have chosen n in such a way that we satisfy the Hardt-Price
bounds of equation 21, therefore, we may invoke Proposition 20 and conclude that

||v1 � qt|| 

r
2� 2

q
(1�min{1,max{✏2, (�2/�1)t/2 tan2 ✓0})}, (63)

where we have used the identity ||v1�qt||2 = 2�2 cos ✓(v1, qt) since unit v1 and qt are unit vectors.
Following the exact same analysis as in the proof of Lemma 12, we will arrive at

||Gt|| = O(max{|�1 � ⌫t|, ||v1 � qt||}). (64)

Taking the upper bounds on ||�1� ⌫t|| and ||v1� qt|| which we derived above gives us our result.

We are now prepared to prove our main convergence theorem for DMStream.

Theorem 22 (Restating of Theorem 5) Let ⌃ = E[(bAt�A)⌦(bAt�A)], where bAj =
1
n

Pn
i=1 xix

>
i

represents any unbiased estimate of A in DMStream with fixed batch size n. Assume we initialize
with a unit q0 2 Rd where d� 0 and |v>1 q0| � 1/2. Let ✓0 = arccos |q>0 v1|. For any � < 1, ✏ < 1,
suppose

||⌃|| 
(�21 � 4�)�✏

256
p
dJ

=
(�21 � 4�)3/2�✏

256
p
d
p
�

log�1
⇣32
�✏

⌘
, (65)

where J is the total number of pre-momentum steps we have fixed at runtime. Furthermore, we let
⇢ < min{1/2,

q
�1��2
�2��d

} represent the error threshold of our �2 estimates, i.e., |µk � �2| < ⇢.

Lastly, fix ⌧ > 1 and � = min{⇢, 1
⌧
p
d
}. If the batch size n is chosen such that

n

log4 n
= O

⇣ 1/�2 log d

(�2 � �3)2d

⌘
. (66)

where � = ⇢(�2��3)

10⌧
p
d

, then after

J = O

1

�1 � �2
log

✓
tan2 ✓0⌧

p
d

⇢(�2 � �3)

◆
+

�2
�2 � �3

log
d⌧

⇢

!
, (67)

K =

p
�

p
�1 � 4�

log
⇣32
�✏

⌘
(68)

pre-momentum steps and momentum steps respectively, with (1� 1
n2)(1�2�)(1�⌧�⌦(1)+e�⌦(d))

probability DMStream outputs a vector qK such that

sin2\(qK , v1) < ✏. (69)

748

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Proof As a reminder, our exact deflation matrix B has spectrum �2 > �3 � �4 � · · ·�n with
respective eigenvectors v2, v3, . . . , vn. We will show that for our choice of n and J , that ||Ht|| +
||Gt|| for all t > J satisfy the Hardt-Price bounds, therefore allowing our inexact deflation to
probabilistically succeed.

First we examine ||Ht||. By our choice of n and since d� 0, we have by Proposition 18 that

||Ht|| 
�(�2 � �3)

5
=
⇢(�2 � �3)2

50⌧
p
d

<
⇢(�2 � �3)

10⌧
p
d

, (70)

||v>2 Ht||  ||Ht|| <
⇢(�2 � �3)

10⌧
p
d

. (71)

Now, we will analyze ||Gt||. By Proposition 21, we must consider both �t and t.
Case 1: �t > t. For our choice of n we have that

�t = |�1 � �d| tan
2 ✓(q0, v1)

����
�2
�1

����
2t

+min{
�(�1 � �2)

5
,
�1 � �2

5
p
d

} (72)

= |�1 � �d| tan
2 ✓(q0, v1)

����
�2
�1

����
2t

+
⇢(�2 � �3)

50⌧
p
d

(73)

< |�1 � �d| tan
2 ✓(q0, v1)

����
�2
�1

����
2t

+
⇢(�2 � �3)

20⌧
p
d

. (74)

Solving for |�1 � �d| tan2 ✓0
����2
�1

���
2t
< ⇢(�2��3)

20⌧
p
d

we get

t = O

1

�1 � �2
log

✓
tan2 ✓0⌧

p
d

⇢(�2 � �3)

◆!
, (75)

therefore, in this many steps we will have that �t <
⇢(�2��3)

10⌧
p
d

.
Case 2: t � �t. If min{1,max{�2, (�2/�1)t/2 tan2 ✓0})} = 1 then ||Gt||  t = 0, i.e., we have
0 noise. So we consider the more interesting case where our minimum is max{�2, (�2/�1)t/2 tan2 ✓0}.
We first note that for any ↵  1, we have that

 t =

q
2� 2

p
1� ↵  ↵. (76)

If for all t our max is �2, we have that

||Gt||  t  �
2

⇢2(�2 � �3)2

100⌧2d
<
⇢(�2 � �3)

10⌧
p
d

. (77)

Otherwise, solving for ����
�2
�1

����
t/2

tan2 ✓(q0, v1) <
⇢(�2 � �3)

10⌧
p
d

(78)

we get

t = O

1

�1 � �2
log

✓
tan2 ✓0⌧

p
d

⇢(�2 � �3)

◆!
. (79)

749

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Now, for our choice of n, after J1 := t = O

1

�1��2
log

✓
tan2 ✓0⌧

p
d

⇢(�2��3)

◆!
steps, we have that for all

t > J1,

||Ht +Gt||  ||Ht||+ ||Gt|| <
⇢(�2 � �3)

10⌧
p
d

+
⇢(�2 � �3)

10⌧
p
d

<
⇢(�2 � �3)

5
. (80)

and
||v2(Ht +Gt)||  ||Ht||+ ||Gt|| <

⇢(�2 � �3)

10⌧
p
d

+
⇢(�2 � �3)

10⌧
p
d

<
�2 � �3

5⌧
p
d

, (81)

thereby satisfying the Hardt-Price bounds of equation 21, so after a further J2 := O
�

�2
�2��3

log d⌧
⇢

�

steps, our pre-momentum phase, with a total of J = J1 + J2 steps, outputs a vector qJ such
that sin ✓(qJ , v1) < ⇢ with probability (1 � 1

n2)(1 � ⌧�⌦(1) + e�⌦(d)). Through dual application
of Lemma 10 and Proposition 6, similar to the proof of Theorem 4, we have that � = µ2

J/4 2
[�22/4,�

2
2/4), therefore, we may proceed to the momentum phase.

By our assumptions on the variance of our unbiased estimates bAt in relation to J , we have by
Theorem 16 that after a further K =

p
�p

�1�4�
log
⇣
32
�✏

⌘
steps our entire algorithm outputs a vector

qJ+K with sin2 ✓(qJ+K , v1) < ✏, with probability (1 � 2�). By multiplying the probability of the
pre-momentum phase succeeding with the probability of the momentum phase succeeding, our full
claim follows.

Appendix E. Experimental Data

We provide raw experimental data used to generate various plots displayed in this paper (mostly
related to iteration complexity) and include comparative wall-time benchmarks for vanilla power
method, Power+M, DMPower, and the Lanczos algorithm.

Table 1: Iterations required for Power+M to converge at various sub-optimal and optimal � assign-
ments. � = �22/4 = 0.2025 is the optimal momentum coefficient at this setting, where �2 = 0.9.

Sub-optimal � Selection for Power+M Data with Loose Eigengaps: spec=[1,0.9,0.8,. . . ,0.8]
Error Threshold (✏) 10e-9 10e-8 10e-7 10e-6 10e-5 10e-4 10e-3

Vanilla Power Method 81.097 70.309 59.230 48.746 37.263 26.873 16.671
Power+M, � = 0.1025 60.463 52.565 44.420 36.745 28.272 20.561 12.859
Power+M, � = 0.2025 34.986 30.954 26.764 22.879 18.497 14.472 10.205
Power+M, � = 0.3025 43.579 38.605 32.439 27.265 20.991 16.182 10.981
Power+M, � = 0.4025 89.440 76.524 65.099 54.101 42.651 31.200 19.501
Power+M, � = 0.4225 111.972 94.846 81.729 68.635 50.530 36.275 23.144
Power+M, � = 0.4525 179.062 155.476 130.219 106.71 81.776 58.348 32.412

750

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Table 2: Absolute difference between final approximation of �2 and true value of �2.

Accuracy vs Simultaneous Power Data with Loose Eigengaps: spec=[1,0.9,0.8,. . . ,0.8]
Error Threshold (✏) 10e-9 10e-8 10e-7 10e-6 10e-5 10e-4 10e-3
Simultaneous PM 0.1723 0.1721 0.1684 0.1628 0.1466 0.1107 0.1126
DMPower, ⇢ = ✏ 0.0000 0.0000 0.0003 0.0017 0.0054 0.0370 0.0678

DMPower, ⇢ =
p
✏ 0.0065 0.0145 0.0316 0.0696 0.0672 0.0552 0.0574

DMPower, ⇢ = 3
p
✏ 0.0570 0.0692 0.0648 0.0545 0.0570 0.0577 0.0505

DMPower, ⇢ = 4
p
✏ 0.0667 0.0538 0.0537 0.0564 0.0587 0.0529 0.0488

Table 3: Iterations for Vanilla PM, Power+M, and DMPower at spec=[1, 0.99, 0.98,. . . , 0.98].

Iteration Complexity Data with A 2 R10⇥10

Error Threshold (✏) 10e-2 10e-3 10e-4 10e-5 10e-6 10e-7
Vanilla Power Method 2.0 77.18 185.4 285.4 385.42 474.62
Power+M, � = �22/4 2.0 40.5 98.86 143.42 199.82 231.74

DMPower, ⇢ = ✏ 3.0 44.5 104.7 139.9 197.08 243.84
DMPower, ⇢ =

p
✏ 3.0 33.86 93.7 153.48 192.86 249.52

DMPower, ⇢ = 3
p
✏ 3.0 36.8 102.36 138.82 200.48 234.48

DMPower, ⇢ = 4
p
✏ 3.0 37.7 81.28 144.02 192.72 243.58

Lanczos Algorithm 10.0 10.0 89.08 184.66 284.78 388.56

Iteration Complexity Data with A 2 R100⇥100

Error Threshold (✏) 10e-2 10e-3 10e-4 10e-5 10e-6 10e-7
Vanilla Power Method 1.0 141.18 211.34 293.94 378.1 472.98
Power+M, � = �22/4 2.0 68.66 120.4 152.32 197.84 262.8

DMPower, ⇢ = ✏ 3.0 76.54 113.9 156.6 203.26 259.2
DMPower, ⇢ =

p
✏ 3.0 71.92 116.5 156.08 191.64 257.66

DMPower, ⇢ = 3
p
✏ 3.0 75.44 114.6 159.08 194.34 238.66

DMPower, ⇢ = 4
p
✏ 3.0 77.1 107.04 158.2 196.74 245.38

Lanczos Algorithm 100.0 100.0 206.06 315.62 431.12 551.76

Iteration Complexity Data with A 2 R500⇥500

Error Threshold (✏) 10e-2 10e-3 10e-4 10e-5 10e-6 10e-7
Vanilla Power Method 1.0 185.98 259.22 360.12 429.16 489.4
Power+M, � = �22/4 1.0 93.16 133.48 163.18 214.64 259.0

DMPower, ⇢ = ✏ 2.0 102.94 133.18 163.98 203.88 264.72
DMPower, ⇢ =

p
✏ 2.0 93.06 131.76 171.62 207.24 252.4

DMPower, ⇢ = 3
p
✏ 2.0 97.56 143.66 170.06 212.36 252.24

DMPower, ⇢ = 4
p
✏ 2.0 94.12 137.5 161.2 213.24 262.36

Lanczos Algorithm 500.0 500.0 607.24 717.84 833.56 964.18

751

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Table 4: Percentage of iterations in the momentum phase for spec=[1, 0.99, 0.98,. . . , 0.98] with
A 2 R100⇥100. DMPower across a variety of ⇢ settings spends the vast majority of its time in the
less computationally-intensive momentum phase.

Phases Iteration Complexity Data with A 2 R100⇥100

Error Threshold (✏) 10e-4 10e-5 10e-6 10e-7
DMPower, ⇢ = ✏ 64.72% 88.15% 99.06% 98.71%

DMPower, ⇢ =
p
✏ 99.6% 99.49% 99.28% 98.72%

DMPower, ⇢ = 3
p
✏ 99.6% 99.49% 99.29% 98.75%

Table 5: Recorded wall-time convergence speeds (in nanoseconds) for vanilla power method,
Power+M with optimal � assignment, and various settings of DMPower, and the Lanczos algo-
rithm. Performed 1000 calls using random PSD of various sizes with fixed spectrum �1 = 1,�2 =
0.99,�3 = 0.98, and remaining eigenvalues set to 0.98. In several instances DMPower exhibits
faster wall-time speeds than Power+M with optimal � assignment, consistently outperforms Lanc-
zos, and markedly accelerates the vanilla power method at all error thresholds (✏) tighter than 0.1.

Wall-Time Performance Data with A 2 R10⇥10

Error Threshold (✏) 10e-2 10e-3 10e-4 10e-5 10e-6 10e-7
Vanilla Power Method 67.32 3186.6 7440.56 11497.34 15388.04 18846.76
Power+M, � = �22/4 101.54 1941.46 4539.84 6140.58 8514.94 9984.74

DMPower, ⇢ = ✏ 251.28 2117.2 4813.14 6436.1 8982.4 11550.66
DMPower, ⇢ =

p
✏ 262.54 1696.62 4383.94 7066.94 8869.68 11470.54

DMPower, ⇢ = 3
p
✏ 260.84 1837.14 4732.32 6508.14 9440.62 16254.96

DMPower, ⇢ = 4
p
✏ 256.94 1878.86 3830.36 6586.34 8938.38 11294.3

Lanczos Algorithm 1463.06 1471.86 5818.92 7836.14 11705.58 22829.88

Wall-Time Performance Data with A 2 R100⇥100

Error Threshold (✏) 10e-2 10e-3 10e-4 10e-5 10e-6 10e-7
Vanilla Power Method 107.24 10027.98 16213.82 21231.46 29691.06 31801.24
Power+M, � = �22/4 132.2 4890.36 9701.76 10840.92 13930.12 21100.88

DMPower, ⇢ = ✏ 432.06 5969.96 8910.08 11985.2 15986.18 19431.32
DMPower, ⇢ =

p
✏ 457.82 5765.98 9028.7 12397.06 15048.34 19432.9

DMPower, ⇢ = 3
p
✏ 435.48 6113.44 9393.82 12575.0 15028.84 20037.1

DMPower, ⇢ = 4
p
✏ 432.32 6094.92 8143.68 12136.16 16063.48 20166.24

Lanczos Algorithm 7724.94 6672.18 13832.8 21457.2 29447.52 39152.46

752

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Wall-Time Performance Data with A 2 R500⇥500

Error Threshold (✏) 10e-2 10e-3 10e-4 10e-5 10e-6 10e-7
Vanilla Power Method 307.9 27496.5 35858.14 49056.32 66559.52 70891.42
Power+M, � = �22/4 337.26 12912.76 20098.66 24924.28 31590.88 49575.94

DMPower, ⇢ = ✏ 1423.64 15366.22 20172.32 24663.36 30818.32 38748.8
DMPower, ⇢ =

p
✏ 2094.86 15868.62 20382.9 27008.76 30883.86 38207.12

DMPower, ⇢ = 3
p
✏ 1490.0 15209.92 22283.78 26917.66 31475.8 36617.02

DMPower, ⇢ = 4
p
✏ 1623.94 17126.1 20743.88 25229.04 32106.58 39925.98

Lanczos Algorithm 58438.68 58700.02 80682.24 91623.18 106078.32 126685.16

Table 6: Averaged log error, batch size = 500, with performance measured by log10
�
1� ||X>qK ||

||X>v1||
�
.

DMStream registers much better accuracy than Oja’s algorithm and emulates the performance of
optimal Mini-Batch Power+M. We notice that accuracy does not improve as we increase the number
of epochs, which is commonly observed for streaming algorithm running with small batch sizes. We
demonstrate in Figure 4 that increasing batch size results in improved accuracy.

Log Error Performance Data with batch size = 500
Epochs 10 20 30 40 50

DMStream, ⇢ = 0.1 -1.900 -1.894 -1.983 -1.969 -1.959
DMStream, ⇢ = 0.01 -1.992 -1.908 -1.882 -1.949 -1.905
DMSteam, ⇢ = 0.001 -1.929 -1.9585 -1.936 -1.963 -1.973

Oja ⌘t = 3/t -0.588 -0.599 -0.625 -0.565 -0.549
Oja ⌘t = 9/t -0.629 -0.592 -0.599 -0.531 -0.638
Oja ⌘t = 27/t -0.680 -0.668 -0.584 -0.599 -0.647
Oja ⌘t = 81/t -0.590 -0.676 -0.527 -0.604 -0.665

Mini-Batch Power+M (optimal � = �22/4) -1.881 -1.860 -1.964 -1.996 -1.966

Appendix F. Precision Bounds for Momentum

In our main result Theorem 4, we assume that � 2 [�22/4,�
2
1/4), while it is possible that we select

� < �22/4. This poses no problem: as long as � is near �22/4 we will experience similar acceleration
effects. We state the more general version of Theorem 2 which reflects this fact and add our own
modified condition, �2,3 := �2 � �3 > 0.

Theorem 23 (Generalized Convergence of Power+M (De Sa et al., 2018)) Given a PSD matrix
A 2 Rd⇥d with eigenvalues �1 > �2 > �3 . . .�d � 0 with associated orthonormal eigenvectors
v1, v2, . . . , vd, for a unit q0 2 Rn non-orthogonal to v1, running Power+M with �  �1 results in
qk with

sin2(✓k) = 1� (q>k v1)
2


1

|q>0 v1|
2
·

8
>><

>>:

4

✓
2
p
�

�1+
p

�2
1�4�

◆2k

, �2 < 2
p
�

✓
�2+
p

�2
2�4�

�1+
p

�2
1�4�

◆2k

, �2 � 2
p
�

(82)

753

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Ultimately then, our � can land on either side of �2
2
4 and we we will experience acceleration as long

as we are ”close.” The next result establishes tolerance for our estimations b�2 of �2.

Proposition 24 (Proposition 6 re-stated) The momentum phase of DMPower set with momentum
coefficient � = b�22/4 = µ2

J/4 converges if and only if

|�2 � b�2|  �1,2. (83)

Proof If |�2 � b�2| = |�2 � µJ |  ⇢ = �1,2 = |�1 � �2|, then

|�2 � µJ | · |�2 + µJ | < |�1 � �2| · |�1 + �2| (84)

) |�21 � µ2
J | < |�21 � �

2
2| (85)

)
1

4
|�21 � µ2

J | <
1

4
|�21 � �

2
2| (86)

The first line of our inequality follows from the fact that µJ > 0 since A is PSD, therefore implicitly
we have that 0 < µJ < �1, implying |�2 + µJ | < |�2 + �1|. This shows we satisfy the constraint.
To show that this is necessary and sufficient, we consider the case where ⇢ > �1,2. This allows
for possible selection of µJ > �1, in which case we have that 1

4 |�2
2
� µ2

k| >
1
4 |�

2
1 � �

2
2|, which is

outside of our guaranteed interval for convergence.

Appendix G. Data Matrix Generation for Non-Streaming Experiments

For every experiment, we ran variations of the power method on a random covariance matrix A
with a fixed spectrum. We constructed such matrices using a synthetic singular value decomposition
(SVD). Specifically, we begin with a diagonal d⇥d matrix ⌃ = diag{1,

p
�2,
p
�3,
p
�4, . . . ,

p
�d}.

Notice that by default we set �1 = 1. In practice, we set
p
�3 =

p
�4 = · · · =

p
�d for simplic-

ity. We then drew two random orthogonal matrices U 2 R1000⇥d and V 2 Rd⇥d from the Haar
distribution. We then form the data matrix X = dU⌃V >

2 R1000⇥d, from which we acquire
our covariance matrix A = 1

1000XX> with spectrum diag{�1,�2, . . . ,�d}. For every run in our
non-streaming experiments, we would generate a new covariance matrix with our desired spectrum
using this construction.

Appendix H. Spectral Clustering & Experimental Data

We first describe provide and discuss the algorithm used for deflation-based power iteration clus-
tering (Thang et al., 2013). We then provide the results of our spectral clustering experiments. We
note that PowerIteration in step 3 of Algorithm 5 may be replaced with DMPower, Power+M, or
any other variant. To recover the second eigenvector, DPIC uses a Schur complement deflation
(Saad, 2011) on W once the leading eigenvector is computed. Briefly, deflating a matrix shifts
its spectrum so that the second leading eigenvalue/eigenvector now becomes the leading eigen-
value/eigenvector, upon which a power iteration may be used again. Successive deflations allows
one to recover as many eigenvectors as desired, although numerical instability is increased with
each deflation.

754

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Algorithm 5 Deflation-based Power Iteration Clustering (DPIC)

Require: normalized affinity matrix W 2 Rd⇥d

1: W0 = W
2: for i = 1, 2 do . Top-2 component recovery
3: vi = PowerIteration(Wi�1) . Return the leading eigenvector
4: Wi = Wi�1 �

Wi�1viv>i Wi�1

v>i Wi�1vi
. Schur complement deflation

5: i i+ 1
6: Use k-means on eigenvector approximates v1, v2.
7: return C1, C2

Table 7: Proportion of data points correctly classified by spectral clustering combined with k-
means. As the error-threshold (and therefore, accuracy) of the eigenvector output is tightened,
accuracy improves, eventually achieving perfect classification. See Figure 5 for a visual depiction
of data separation using DMPower (⇢ = 3

p
✏). We further note that although the vanilla power

method achieves perfect classification at lower error-thresholds, it is at the cost of significantly
more iterations as indicated in Table 8.

Spectral Clustering Accuracy Data on Concentric Circles Dataset
Error Threshold (✏) 10e-2 10e-4 10e-6 10e-8 10e-10

Vanilla Power Method 0.6953 0.7854 1.0000 1.0000 1.0000
Power+M, � = �22/4 0.6679 0.7158 0.7810 0.9886 1.0000

DMPower, ⇢ = ✏ 0.6997 0.7215 0.8191 0.9869 1.0000
DMPower, ⇢ =

p
✏ 0.6908 0.6927 0.7779 0.9881 1.0000

DMPower, ⇢ = 3
p
✏ 0.6770 0.7056 0.7657 0.9872 1.0000

Spectral Clustering Accuracy Data on Half Moons Dataset
Error Threshold (✏) 10e-2 10e-4 10e-6 10e-8 10e-10

Vanilla Power Method 0.6164 0.7793 0.9808 1.0000 1.0000
Power+M, � = �22/4 0.5966 0.6362 0.7560 1.0000 1.0000

DMPower, ⇢ = ✏ 0.6196 0.6616 0.8185 0.9696 1.0000
DMPower, ⇢ =

p
✏ 0.6132 0.6112 0.7368 1.0000 1.0000

DMPower, ⇢ = 3
p
✏ 0.6084 0.6283 0.8054 1.0000 1.0000

755

PRACTICAL AND FAST MOMENTUM-BASED POWER METHODS

Table 8: Iteration complexity required to recover principal components. DMPower requires signif-
icantly fewer iterations for eigenvector recovery when compared to the vanilla power method, and
closely mimics the performance of Power+M with � = �22/4.

Spectral Clustering Iterations Data on Concentric Circles Dataset
Error Threshold (✏) 10e-2 10e-4 10e-6 10e-8 10e-10

Vanilla Power Method 7.72 59.16 605.36 1457.56 2426.36
Power+M, � = �22/4 3.00 9.24 85.12 642.76 1321.00

DMPower, ⇢ = ✏ 6.00 11.16 92.00 751.68 1449.08
DMPower, ⇢ =

p
✏ 5.00 11.20 77.68 694.20 1452.84

DMPower, ⇢ = 3
p
✏ 5.00 10.64 78.48 642.92 1505.88

Spectral Clustering Iterations Data on Half Moons Dataset
Error Threshold (✏) 10e-2 10e-4 10e-6 10e-8 10e-10

Vanilla Power Method 7.12 58.72 506.00 1061.68 1929.52
Power+M, � = �22/4 3.00 11.20 84.84 601.12 1226.72

DMPower, ⇢ = ✏ 6.00 12.08 89.16 629.96 1192.68
DMPower, ⇢ =

p
✏ 5.00 11.56 94.88 661.20 1225.08

DMPower, ⇢ = 3
p
✏ 5.00 11.52 92.64 711.00 1180.72

756

	Introduction
	Related Works
	Accelerated Momentum-Based Power Methods via Inexact Deflation
	Delayed Momentum Power Method (DMPower)
	Delayed Momentum Streaming Power Method (DMStream)

	Convergence Analysis
	Delayed Momentum Power Method (DMPower)
	Delayed Momentum Streaming Power Method (DMStream)
	Precision of Inexact Deflation

	Experiments
	DMPower Experiments
	DMStream Experiments
	Application: Spectral Clustering

	Conclusion
	Preliminaries and Facts
	Vanilla Power Method
	Power Iteration Bounds

	Noisy Deflation
	Proof of Theorem 4
	Proof of Theorem 5
	Experimental Data
	Precision Bounds for Momentum
	Data Matrix Generation for Non-Streaming Experiments
	Spectral Clustering & Experimental Data

