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Abstract

Machine learning models that are developed to be invariant under certain types of
data transformations have shown improved generalization in practice. However,
a principled understanding of why invariance benefits generalization is limited.
Given a dataset, there is often no principled way to select “suitable” data transfor-
mations under which model invariance guarantees better generalization. This paper
studies the generalization benefit of model invariance by introducing the sample

cover induced by transformations, i.e., a representative subset of a dataset that
can approximately recover the whole dataset using transformations. For any data
transformations, we provide refined generalization bounds for invariant models
based on the sample cover. We also characterize the "suitability” of a set of data
transformations by the sample covering number induced by transformations, i.e.,
the smallest size of its induced sample covers. We show that we may tighten the
generalization bounds for “suitable” transformations that have a small sample cover-
ing number. In addition, our proposed sample covering number can be empirically
evaluated and thus provides a guidance for selecting transformations to develop
model invariance for better generalization. In experiments on multiple datasets, we
evaluate sample covering numbers for some commonly used transformations and
show that the smaller sample covering number for a set of transformations (e.g.,
the 3D-view transformation) indicates a smaller gap between the test and training
error for invariant models, which verifies our propositions.

1 Introduction

Invariance is ubiquitous in many real-world problems. For instance, categorical classification of
visual objects is invariant to slight viewpoint changes [18, 2, 23], text understanding is invariant to
synonymous substitution and minor typos [53, 36, 27]. Intuitively, models capturing the underlying
invariance exhibit improved generalization in practice [21, 13, 50, 14, 45, 14]. Such generalization
benefit is especially crucial when the data are scarce as in some medical tasks [46], or when the task
requires more data than usual as in cases of distribution shift [38] and adversarial attack [40, 49, 5].

A commonly accepted intuition attributes the generalization benefit of model invariance to the reduced
model complexity, especially the reduced sensitivity to spurious features. However, a principled
understanding of why model invariance helps generalization remains elusive, thus leaving many
open questions. Since model invariance may come at a cost (e.g., compromised accuracy, increase
computational overhead), given a task, how should we choose among various data transformations
under which model invariance guarantees better generalization? If existing data transformations
are not good enough for a given task, what is the guiding principle to find new ones? The lack
of a principled understanding limits better exploitation of model invariance to further improve
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Figure 1: Illustration of the pseudometric and sample cover induced by data transformations.

generalization. In addition, since identifying instructive generalization bound is a central topic in
machine learning, we may expect to tighten existing generalization bounds by additionally considering
the data-dependent model invariance property.

The many faces of data transformations and model classes pose significant challenges to a principled
understanding of model invariance’s generalization benefit. To address this, [2, 4, 34, 42, 39]
characterize the input space and show that certain data transformations equivalently shrink the
input space for invariant models, which then simplify the input and improves generalization. From
another perspective, [19, 30] directly characterize the function space and show that the volume
of the invariant model class is reduced, which then simplifies the learning problem and improves
generalization. These understandings provide valuable insights, yet they may become less informative
on high-dimensional input data or require the model invariance to be obtained exclusively via feature
averaging. Some certain assumptions on data transformations (e.g., finiteness, group structure with
certain measure) also make these understandings less applicable to more general data transformations.

In this paper, we derive generalization bounds for invariant models based on the sample cover
induced by data transformations and empirically show that the introduced notion can guide the data
transformations selection. Different from previous understandings, we first identify a data-dependent
property of data transformations in a model-agnostic way, and then establish its connections with
the refined generalization bounds of invariant models. The analysis applies to more general data
transformations regardless of how the model invariance is obtained and naturally provides a model-
agnostic guidance for data transformations selection. We summarize our contributions as follows.

Contributions. At the core of our understanding is the notion of sample cover induced by data
transformations, defined informally as a representative subset of a dataset that can approximately
recover the whole dataset using data transformations (illustrated in Figure 1). We show that this notion
identifies a data-dependent property of data transformations which is related to the generalization
benefit of the corresponding invariant models. Under a special setting of the sample cover, we first
bound the model complexity of any invariant and output-bounded model class in terms of the sample
covering numbers. Since this general bound requires a restrictive condition on data transformations
in order to be informative, we then assume the model Lipschitzness to relax the requirement and
refine the model complexity bound for invariant models. Finally, we outline a framework for model-
invariance-sensitive generalization bounds based on the invariant models’ complexities, and use it to
discuss the generalization benefit of model invariance.

Given the usefulness of sample cover in the analysis, we propose an algorithm to empirically estimate
the sample cover. This algorithm exactly verifies whether a given subset of a sample forms a
valid sample cover, and always estimates a sample covering number that upper-bounds the ground-
truth. Inspired by our analysis, we also propose to use the sample covering number as a suitability
measurement for practical data transformation selections. This measurement is data-driven, widely
applicable, and empirically correlates with invariant models’ actual generalization performance. We
discuss its limitations and the empirical mitigation.

2



To empirically verify our propositions, we first estimate the sample covering number for some
commonly used data transformations on four image datasets, including CIFAR-10 and ShapeNet
(a 3D dataset). Under typical settings, the 3D-view transformation induces a much smaller sample
covering number than others on ShapeNet, while cropping induces the smallest sample covering
number on others datasets. For those data transformations, we then train invariant models via data
augmentation and invariance loss regularization to evaluate the actual generalization benefit. Results
show a clear correlation between smaller sample covering numbers induced by data transformations
and the better generalization benefit enjoyed by invariant models.

2 Preliminaries

Data transformations. We refer to the data transformation as a function from the input space
X ! X , and data transformations as a set of such functions. Unless otherwise specified, we do not
assume data transformations to have group structures since many non-invertible transformations (e.g.,
cropping) do not fit into a group structure directly. For a set of data transformations G = {g : X ! X}

and a data point (also referred to as an example) x 2 X , we overload the notion of orbit in
group theory and denote by G(x) the orbit of x defined as follows. The orbit of x generated by
data transformations G is the collection of outputs after applying any transformation g 2 G on x:
G(x) = {g(x) 2 X : g 2 G}.

Model invariance. Let D be the underlying data distribution and supp(D) be its support. A model
h : X ! Y is said to be invariant under data transformations G on D if h(g(x)) = h(x) for any
x 2 supp(D) and any g 2 G. We refer to a class of invariant models as the G-invariant model class.

Complexity measurements. Covering number and Rademacher complexity [33] are two commonly
used complexity measurements for model classes (including neural networks [6]) that can provide
uniform generalization bounds. The covering number can also be directly used to upper bound the
Rademacher complexity via Dudley’s entropy integral theorem [17, 32].

Covering number. Let (F , d) be a (pseudo)metric space with some (pseudo)metric1
d. An ✏-cover of

a set H ✓ F is defined as a subset bH ✓ H such that for any h 2 H, there exists bh 2 bH such that
d(h,bh)  ✏. The covering number N(✏,H, d) is defined as the minimum cardinality of an ✏-cover
(among all ✏-covers) of H. In this paper, we use the concept of covering number both for measuring
model class complexities and for defining the sample covering number on datasets.

Empirical Rademacher complexity. Let H be a class of functions h : X ! R. Given a sample
S = {xi}

n
i=1, the empirical Rademacher complexity of model class H is defined as: RS(H) =

E�

⇥
suph2H

1
n

Pn
i=1 �ih(xi)

⇤
where � = [�1, ...,�n]> is the vector of i.i.d. Rademacher random

variables, each uniformly chosen from {�1, 1}.

Generalization error and gap. Let S = {xi}
n
i=1 be a sample drawn i.i.d. from some data

distribution D, and H be a model class. Given a loss function ` : R ! [0, 1], for a h 2 H,
we define the empirical error as RS(h) = 1

n

Pn
i=1 `(h(xi), yi), the generalization error as

R(h) = E(x,y)⇠D[`(h(x), y)], and the generalization gap as R(h)�RS(h).

3 Generalization Benefit of Model Invariance

In this section, we derive the generalization bounds for invariant models by identifying the model
invariance properties. We start by introducing the notion of sample cover induced by data transfor-
mations and based on it bound the Rademacher complexity of any invariant models with bounded
output (Section 3.1). Then, we assume model Lipschitzness to provide a more informative model
complexity bound for any data transformations (Section 3.2). Finally, we provide a framework for
model-invariance-sensitive generalization bounds and discuss the generalization benefit of model
invariance (Section 3.3).

1A pseudometric is a metric if and only if it separates distinct points, namely d(x, y) > 0 for any x 6= y.
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3.1 Sample Cover Induced by Data Transformations

Existing empirical results suggest that, compared with standard models, invariant models may have
certain properties reducing their effective model complexities. To identify such properties, we
alternatively identify the related properties of the corresponding data transformations via the notion
of sample cover induced by data transformations. We now formalize the introduced notion.

The definition of sample cover relies on the pseudometric induced by the data transformations G.
Note that G generates an orbit G(x) ✓ X for each example x 2 S . Let k · k be any norm on the input
space X . Given a set of transformations G, we define the G-induced pseudometric2 as

⇢G(x1,x2) = inf
�2�(x1,x2)

Z

�
c(r)ds, where c(r) =

⇢
0, if r 2 [x2SG(x)
1, otherwise (3.1)

where ds = kdrk, and � denotes the set of all paths (curves) in X from x1 to x2. The ⇢G is
essentially calculating the line integral along the shortest (if achievable) path � in the scalar field c,
where c can also be viewed as the "moving cost" function depending on G. The norm k · k here can
be selected as any meaningful norm on the input space (e.g., Euclidean norm as in our experiments)
and will later be used in defining the model’s Lipschitz constant. It can be checked that ⇢G satisfies
pseudometric axioms.

Definition 3.1 (Sample cover induced by data transformations). Let (X , ⇢G) be a pseudometric space
and S = {xi}

n
i=1 be a sample of size n. An ✏-sample cover bSG,✏ of the sample S induced by data

transformations G at resolution ✏ is defined as a subset of the sample S such that for any x 2 S , there
exists bx 2 bSG,✏ satisfying ⇢G(x, bx)  ✏.

Definition 3.2 (Sample covering number induced by data transformations). The sample covering

number N(✏,S, ⇢G) induced by data transformations G is defined as the minimum cardinality of an
✏-sample cover:

N(✏,S, ⇢G) = min{| bSG,✏| : bSG,✏ is an ✏-sample cover of S}. (3.2)

Informally, the G-induced sample cover specifies a representative subset of examples which can
approximately recover all the original examples using the given data transformations G. This notion is
closely related to the sample compression [20] which represents a scheme to prove the learnability of
concepts through a compressed set of sample. While identifying the generalization-related properties
of data transformations, this notion is insensitive to other unrelated properties (e.g., finiteness, group
structures) and thus applies to any data transformations.

The intuition behind sample cover is that G-invariant models may have consistent behaviors on an
example and its associated approximation in the G-induced sample cover. As such, we can analyze the
model complexities of invariant models by considering the models’ behaviour only on the potentially
small-sized sample covers. Indeed, we directly have the following model complexity result. The
proof is in Appendix B.

Proposition 3.3. Let S = {xi}
n
i=1 be a sample of size n. Let H be a model class mapping from X to

[�B,B] for some B > 0 and is invariant to data transformations G. Then the empirical Rademacher
complexity of H satisfy

RS(H)  24B

r
N(0,S, ⇢G)

n
. (3.3)

Proposition 3.3 generally bounds the model complexity of any output-bounded and G-invariant model
class in terms of the sample covering number N(0,S, ⇢G) induced by G. A small G-induced sample
covering number at resolution ✏ = 0 thus tightens the model complexity bound for a general class of
G-invariant models.

Note, however, that Proposition 3.3 is informative only when the data transformations G yields
N(0,S, ⇢G) ⌧ n on the sample S — a condition requiring G to be able to exactly recover S from a
small-sized subset of S . This condition is unfortunately too strict to hold for many commonly used

2Note that ⇢G is not a metric since it allows ⇢G(x, y) = 0 for x 6= y.
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data transformations which only generate orbits with measure zero (with respect to the data measure)
at most data points. For example, the rotation transformations on CIFAR-10 do not satisfy this
condition, since no two images in CIFAR-10 are rotated versions of each other. To better understand
the generalization benefit brought by any data transformations (e.g., rotation), we further assume
specific model properties which equivalently expand the orbits in order to get more general results.
We study Lipschitz models in Section 3.2, and relegate a sharper (and relatively independent) analysis
for linear models under linear data transformations to Appendix C.

3.2 Refined Complexity Analysis of Lipschitz Models

This subsection refines the model complexity analysis for Lipschitz models that are invariant. Char-
acterizing the Lipschitz constant of models has been the focus of a line of work. For example, the
Lipschitz constant of ReLU networks can be upper-bounded by the product of the spectral norms of
the weight matrices, considering the worst-case inputs [6, 22]. Assuming Lipschitzness, the following
theorem refines the covering number analysis for invariant models. The proof is in Appendix B.

Theorem 3.4. Let S = {xi}
n
i=1 be a sample of size n. Let H be a model class such that every

h 2 H is -Lipschitz with respect to k · k (used in defining the sample cover) and is invariant to G.
Then the covering number of H satisfies

N
�
⌧,H, L2(PS)

�
 inf

✏�0, bSG,✏

N
�
⌧ � ✏

s

1�
| bSG,✏|

n
,H, L2(P bSG,✏

)
�
, (3.4)

where 8h, g 2 H, the L2(PS) metric is defined as kh� gkL2(PS) =
⇣P

x2S

1
n

�
h(x)� g(x)

�2⌘ 1
2

,

and the L2(P bSG,✏
) metric is defined as3

kh� gkL2(P bSG,✏
) =

⇣P
x2 bSG,✏

p(x)
n

�
h(x)� g(x)

�2⌘ 1
2

.

Theorem 3.4 upper-bounds the covering number of H evaluated at the sample S by the new covering
number evaluated at any sample cover bSG,✏, under a modified metric and at the cost of an additional
error term depending on ✏ and . The equality trivially holds by taking bSG,✏ = S , while by searching
over all sample covers with different resolution ✏ it is possible to tighten the covering number bound
for invariant models. Additionally, Theorem 3.4 leads to a refined version of Dudley’s entropy integral
theorem (see Lemma B.1) that bounds the Rademacher complexity of invariant models.

Theorem 3.4 suggests that we may improve existing covering-number-based model complexity
analysis by weakening the dependence on input dimensions. Note that covering numbers that do not
yield N

�
⌧,H, L2(PS)

�
/n ! 0 as n ! 1 are vacuous. Therefore, existing covering number results

typically avoid linear dependence on n at the cost of (explicitly or implicitly) increased dependence on
the input dimension [52]. With the refined result in Theorem 3.4, however, a covering number linear
in n can now be replaced by one that is linear in a potentially much smaller sample covering number
N(✏,S, ⇢G) and consequently become informative, thus circumvent the increased dependence on
input dimensions. An interesting direction for future work is to instantiate the result in Equation 3.4
for specific model classes to get more interpretable results.

3.3 Framework for Model-invariance-sensitive Generalization Bounds

This subsection presents the framework for generalization bounds sensitive to the model invariance.
While the results are straightforward applications of the derived complexities of invariant models, our
goal is to justify the selection of suitable data transformations to maximize the generalization benefit.
We start with the generalization analysis of invariant models and then present the framework.

Generalization benefit for invariant models. The generalization bounds of invariant models follow
immediately by applying the Rademacher model complexities (Proposition 3.3, Proposition B.1, and
Theorem C.1) to the standard generalization bound (Theorem A.2). Compared with standard models,
invariant models’ tightened model complexity bounds already imply their reduced generalization gaps,

3The term p(x)/n can be viewed as the probability mass at x where the numerator indicates the number of
examples that x covers. See Appendix B.1 for the formal definition of p(x).
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whereas for reduced generalization error they further need to have low empirical error. Since enforcing
the model invariance may simultaneously increase the empirical error, we can use standard model
selection techniques (e.g., structural risk minimization [33]) to select suitable data transformations
and control the trade-off.

Model-invariance-sensitive generalization bound. We outline the generalization bound that identi-
fies model invariance properties based on the derived invariant models’ complexities. It follows by
the post-hoc analysis which specifies a proper set of invariant models using the "invariant loss" — the
loss when composed with any model, makes the composition invariant. For data transformations with
group structures, we can construct such loss by averaging (assuming Haar measure) or adversarially
perturbing any given loss over the orbits of input examples [30, 19]. Specifically, the adversarial loss
with respect to data transformations G is defined as èG (h(x), y) = maxx02G(x) ` (h(x

0), y), where `

is any given loss. Using the adversarial loss, the following proposition provides the model-invariance-
dependent generalization bound by applying the model selection framework [33]. Appendix B.3
further describes a binary coding construction of combinations of data transformation classes.

Proposition 3.5. Let S = {xi}
n
i=1 be a sample of size n. Let H be any given model class and ` be

any given loss. Suppose we have K sets of group-structured data transformations {G1,G2, ...,GK}.
Then with probability at least 1� �, the following generalization bound holds for any h 2 H and any
k 2 [K]:

R(h) 
1

n

nX

i=1

è
Gk(h(xi), yi) + 4RS(èGk �H) +

r
log k

n
+ 3

s
log 4

�

2n
, (3.5)

where RS(èGk�H) is upper-bounded by the complexity of Gk-invariant models. For any model trained
on S , Proposition 3.5 shows that we can optimize over all selections of data transformations to improve
its generalization bound. Note that the selection of Gk is subject to a potential trade-off between
the reduced model complexity RS(èGk �H) and the increased empirical error

Pn
i=1

è
Gk(h(xi), yi).

Thus, if a suitable Gk reduces the model complexity while keeping the empirical error low, then the
trained model will benefit from a tightened generalization bound. This generalization bound does not
require the models to be (strictly) invariant and potentially explains the improved generalization of
models with trained invariance (e.g., via data augmentation [43, 41] or consistency regularization
[31, 47]). The difficulty in instantiating Proposition 3.5 is that the model complexity with adversarial
loss may be hard to compute for general data transformations. Therefore, we discuss more practical
data transformations selections based on the sample covering numbers in Section 5.

4 Sample Cover Estimation Algorithm

The sample cover induced by data transformations plays a central role in our understanding of model
invariance. Despite the usefulness in the analysis, exactly computing the sample cover turns out to
be non-trivial in general. Indeed, computing the transformation-induced metrics can be difficult for
continuous data transformations, and finding the smallest sample cover is NP-hard. To address this
problem, we propose an algorithm to estimate the sample covering number and find the associated
sample cover. We outline the algorithm and discuss the algorithmic challenges in this section. The
algorithmic details appear in Appendix D.

Setup. The estimation algorithm takes as input a sample S , a set of data transformations G, and the
resolution parameter ✏. It then returns the estimated sample covering number N(✏,S, ⇢G) and the
associated sample cover bSG,✏. The estimation algorithm has the following steps.

Step 1. Compute (or approximate) the direct orbit distance between any two examples in S. The
direct orbit distance between any two examples xi,xj 2 S is

dG(xi,xj) = kG(xi)� G(xj)k = min
g1,g22G

kg1(xi)� g2(xj)k,

which can be exactly computed for finite transformations (e.g., flipping) with complexity O(|G|2)),
or can be approximated for continuous transformations (e.g., rotation) via optimization or sampling.
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Step 2. Compute the ⇢G distance between any two examples in S . Given results in step 1, computing
the ⇢G distance between any two examples can be formulated as a shortest path problem on a complete
graph, where each node represents an example and the cost of each edge is the direct orbit distance
computed in step 1 (see formulations in Appendix D). Note that the shortest path is always included
in our finite candidates even though the ⇢G distance considers infinitely many paths. This is because
any other path outside our finite candidates will be longer than its counterparts (depending on what
orbits it intersects) in our finite candidates. Standard shortest path algorithms solve for all pairs of
examples in polynomial time (e.g., via Dijkstra’s algorithm [16] in O(n3)).

Step 3. Construct the pairwise distance matrix [⇢G(xi,xj)]i,j and approximate the sample covering
number. This step can be formulated as a set cover problem where each example x covers a subset of
S in which each element’s ⇢G distance to x is less than or equal to ✏. Our goal is to find a minimum
number of those subset such that their union contains S. This problem is known to be NP-hard in
general but admits polynomial time approximations [24]. In experiments, we use modified k-medoids
[35] clustering method to find the approximation of N(✏,S, ⇢G) (see Algorithm 1).

Note that the estimated sample covering number returned by the algorithm is always an upper bound
of the ground-truth, regardless of the approximation error in step 1 and 3. When step 1 is exact,
the algorithm also exactly verifies whether a given subset of S forms a valid sample cover. In
our experiment, the step 2 becomes the computation bottleneck for large-sized sample. We leave
improving the scalability as well as evaluating the approximation quality for future work.

5 Data-driven Selection of Data Transformations

The pool of candidate data transformations on a given dataset may be infinitely large. To maximize
the generalization benefit of model invariance, we usually make selections based on expensive
cross-validations due to the absence of a model-training-free guidance. Section 3 suggests that
invariant models may benefit from improved generalization guarantees if the corresponding data
transformations induce small sample covering numbers. Therefore, we propose to use the sample
covering number as an empirical suitability measurement to guide the data transformations selection.
We discuss its advantages, limitations, and empirical mitigation in this section.

Suitability measurement. To maximize the generalization benefit of model invariance on a dataset
S , we measure the suitability of data transformations G by the sample covering number induced by G

and favor the small ones.

Advantages. One advantage of this suitability measurement is that it is model-training-free. It
provides a-priori guidance depending only on the dataset and the data transformations, thus avoids
expensive cross-validations and fuels the exploration of new types of data transformations. Another
advantage is that it applies to any types of data transformations (including the continuous and
non-invertible ones) and provides a uniform benchmark.

Limitations and empirical mitigation. Being model-agnostic also poses two limitations to the
suitability measurement. One limitation is that this suitability measurement, while capturing invariant
models’ reduced generalization gap, ignores their potentially increased empirical error. Note that
certain data transformations on a dataset may drastically increase invariant models’ empirical error
and overturn the benefit of reduced generalization gap. To mitigate this limitation, we consider two
necessary conditions for maintaining low empirical error. First, the data transformations should
preserve the underlying ground-truth labeling. We may use domain knowledge to meet this condition.
Second, the model class should be rich enough to contain a low-error invariant hypothesis. In our
experiment, neural networks which are invariant and achieve low training error suffice this condition.

Another limitation is that this suitability measurement ignores models’ potential Lipschitz constant
change after enforcing the invariance. Theorem 3.4 suggests that the generalization benefit enjoyed by
invariant models depends on models’ Lipschitz constant and can be overturned if enforcing invariance
leads to significantly larger Lipschitz constant. To mitigate this limitation, we use the fact that we are
doing classification tasks and use the label information to heuristically offset the Lipschitz constant
increase. We use the minimum inter-class distance change after applying data transformations to

7



(a) CIFAR-10 (b) ShapeNet

Figure 2: Estimated sample covering numbers induced by different data transformations at different
resolutions ✏. “base” indicates no transformation. Note that as ✏ increases, it starts to exceed the
L2 distance between some images and thus some images get covered by others without doing any
transformation. Three vertical dashed lines indicate the maximum resolution ✏ at which the “base”
yields a certain sample covering number, and from left to right they are 100%n, 99%n, 95%n.

capture the Lipschitz constant change and use it to normalize the sample covering number for better
data transformation selections (see Appendix E.5.2).

6 Experiments

In this section, we implement the sample cover estimation algorithm and verify the effectiveness
of using sample covering numbers to guide the data transformations selection. We first estimate
the sample covering number induced by different types of data transformations on common image
datasets. Then, we investigate the actual generalization benefit for models invariant to those data
transformations and analyze the correlation4.

Datasets. We report experimental results on CIFAR-10 [29] and ShapeNet [10] in this section, and
relegate results on CIFAR-100 and Restricted ImageNet to Appendix E.5.1. ShapeNet is a large-scale
3D data repository which enables us to do more complex data transformations (e.g., change of
3D-view) beyond the common 2D geometric transformations. The work [12] provides 24 multi-view
pre-rendered images for each 3D object in 10 chosen categories. For convenience, we use those
images to approximate the random perturbation of the 3D-view.

Data transformations. We evaluate some commonly used data transformations with typical param-
eter settings which we assume to be label-preserving. We choose flipping, cropping, and rotation

on CIFAR-10, and additionally consider the 3D-view change on ShapeNet. We use the same data
transformations with the same parameter settings during estimating the sample covering number and
evaluating the generalization benefit. Appendix E provides more details of our experimental settings.

6.1 Estimation of Sample Covering Numbers

We implement the algorithm in Section 4 to estimate the sample covering number induced by different
data transformations. For efficiency, we randomly sample 1000 training images from CIFAR-10
and randomly sample 800 training images from ShapeNet. Appendix E compares results with
different sample sizes. We use the Euclidean norm for defining the sample cover. For continuous data
transformations, we do uniform random sampling to approximate the orbit of a data point.

Figure 2 illustrates the estimated sample covering numbers induced by different transformations at
different resolution ✏. As the resolution ✏ increases, the sample covering number N(✏,S, ⇢G) induced

4Code is available at https://github.com/bangann/understanding-invariance.
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n = 100 n = 1000 n = all

Model acc (%) gap acc (%) gap acc (%) gap

Base 41.05± 0.52 58.95± 0.52 68.62± 0.90 31.38± 0.90 85.43± 0.35 14.57± 0.35
Flip 44.19± 0.74 55.81± 0.74 75.12± 0.20 24.88± 0.20 89.67± 0.24 10.33± 0.24
Rotate 47.02± 0.46 52.93± 0.51 76.07± 0.28 23.92± 0.27 89.91± 0.13 10.05± 0.16
Crop 50.47± 0.48 49.53± 0.48 81.84± 0.12 18.15± 0.11 92.52± 0.08 7.48± 0.08

Table 1: Classification accuracy and generalization gap (the difference between training and test
accuracy) for ResNet18 on CIFAR-10. The number n denotes the sample size per class.

n = 100 n = 1000 n = all

Model acc (%) gap acc (%) gap acc (%) gap

Base 67.75± 2.02 32.25± 2.02 83.33± 0.38 16.67± 0.38 91.81± 0.22 8.18± 0.22
Flip 69.75± 1.55 30.25± 1.55 84.24± 0.30 15.76± 0.30 92.07± 0.20 7.92± 0.20
Rotate 70.25± 1.19 29.50± 1.15 83.93± 0.38 15.94± 0.35 91.85± 0.20 8.03± 0.26
Crop 74.88± 1.03 23.53± 1.30 86.13± 0.39 13.75± 0.32 92.64± 0.12 7.17± 0.19
3D-View 78.13± 1.31 14.94± 1.76 88.79± 0.34 8.38± 0.79 94.38± 0.08 3.09± 0.10

Table 2: Classification accuracy and generalization gap (the difference between training and test
accuracy) for ResNet18 on ShapeNet. The number n denotes the sample size per class.

by any data transformation starts to decrease, indicating a smaller-sized sample cover needed to cover
the entire dataset. Meanwhile, different transformations behave differently. On CIFAR-10, cropping
induces the smallest sample covering number. On ShapeNet, 3D-view transformation induces the
smallest sample covering number and the gap is significant. Our propositions suggest that data
transformations which induce smaller sample covering numbers tends to bring more generalization
benefit for the corresponding invariant models. Therefore, Figure 2 indicates that models should
generalize well if it is invariant to 3D-view transformation on ShapeNet or to cropping on CIFAR-10.

6.2 Evaluation of Generalization Benefit

We now evaluate the actual generalization performance of invariant models to verify if the sample
covering number is a good suitability measurement. We use ResNet18 [25] on both datasets and
discuss the influence of model class’s implicit bias in Appendix E. A simple method to learn invariant
models is to do data augmentation. The augmented loss function is Laug(x) = L(f(g(x))), where
f(·) denotes the model and g(x) denotes a randomly sampled example in x’s orbit induced by
transformation G. We use this method on CIFAR-10 and ShapeNet and show results in Table 1 and 2.

Sample covering number correlates well with generalization benefit. We use the generalization
gap (the gap between training accuracy and test accuracy) to measure actual generalization benefit.
Compared with the baseline, invariant models show an improved reduced generalization gap and also
improved test accuracy. On CIFAR-10, cropping-invariant model shows the smallest generalization
gap and the highest accuracy. On ShapeNet, the model that is invariant to 3D-view changes shows
the smallest generalization gap and the highest accuracy, especially when the training data size is
small. By comparing results in Figure 2 and Table 1-2, we observe a clear correlation between the
smaller sample covering number and better generalization benefit. This verifies our proposition —
invariance to more suitable data transformations gives the model more generalization benefit.

Model invariance indeed improves after learning. To verify that the improved generalization is
indeed brought by the model invariance, we further enforce the invariance using the invariance
regularization loss similar to [48, 51]: L = Lcls(f(x)) + �KL(f(x), f(g(x))). Specifically, in
addition to minimizing the classification loss on original images, we penalize the model by minimizing
the KL divergence between model outputs on original images and on transformed ones. At test
time, we use Linv(x) = Eg1,g22G [KL(f(g1(x)), f(g2(x)))] to evaluate the model invariance under
transformation G. Table 3 shows that, as we increase the invariance penalty by increasing �, invariant
models enjoy smaller generalization gap. Moreover, the decreased invariance loss and increased
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� train acc (%) test acc (%) gap Linv Ainv(%)

0 99.99± 0.01 91.81± 0.22 8.19± 0.22 0.0548± 0.0028 62.0± 0.6
0.01 99.98± 0.00 92.77± 0.16 7.21± 0.16 0.0290± 0.0029 74.78± 1.61
0.1 99.99± 0.00 93.87± 0.19 6.11± 0.19 0.0152± 0.0003 83.12± 0.50
0.3 99.98± 0.00 94.23± 0.11 5.76± 0.11 0.0121± 0.0003 85.10± 0.20
1 99.58± 0.04 94.68± 0.09 4.90± 0.09 0.0095± 0.0001 86.94± 0.08
3 97.74± 0.19 94.48± 0.19 3.26± 0.09 0.0060± 0.0003 88.15± 0.18
10 95.67± 0.26 93.56± 0.29 2.11± 0.04 0.0037± 0.0002 89.20± 0.16
100 92.89± 0.25 91.85± 0.26 1.03± 0.03 0.0018± 0.0001 89.82± 0.10

Table 3: Evaluation of ResNet18 on ShapeNet under 3D-view transformations. Linv denotes the test
invariance loss. Ainv denotes the test consistency accuracy (indicating whether model’s prediction is
unchanged after data transformation) under the worst-case data transformations.

consistency accuracy verify that the model invariance indeed improves after training, supporting that
the generalization benefit is brought by the model invariance.

7 Related Work

Understandings from the input space perspective. One line of work characterizes the input space
of invariant models. [3, 4] show that the invariant representations equivalently reduce the input
dimension for downstream tasks and thus significantly reduce the model complexity (exponential in
input dimensions) of downstream linear models. [42, 39] essentially factorize the input space into the
product of a base space and a finite set of data transformations. Since the covering number needed to
cover the base space is smaller, the associated generalization bound for invariant models is reduced.
Compared with these works, our work tries to cover the sample instead of the input space which
circumvents the strong dependence on input dimensions and also enables practical evaluation.

Understandings from the function space perspective. Another line of work directly characterizes
the function space of invariant models. [30] uses PAC-Bayes to show the reduction of generalization
upper bound when the model class is symmetrized to be invariant. [19] analyzes the function space
under feature averaging operator and shows the first strict generalization gap (instead of upper bound)
via a linear model. This line of work, while being elegant, so far restricts the model invariance to be
obtained exclusively via feature averaging.

Note that the categorization of different understanding perspectives are only for presentation conve-
nience and hold no formal distinctions. We also mention some work that studies the model invariance
but does not focus on understanding the benefit. [1] proves that the VC-dimension of an invariant
model cannot be larger than its counterpart. [9] characterizes the general functional representations
of invariant probability distributions as well as neural network structures that implement them. [11]
uses group theory to show the benefit of learning with data-augmented loss. In the predicting gener-
alization competition at NeurIPS 2020 [26], the runner-up team [28] shows that model robustness
against data transformations can be used as a decent empirical proxy for predicting models’ gener-
alization performance. [37] enforce model invariance to learned data transformations that capture
inter-domain variation to improve the out-of-distribution generalization. [8] propose to select data
transformations automatically from model training via optimizing a parameterized distributions of
data transformations. Interestingly, our sample covering number may be used to determine their
regularization coefficients for better trade-offs.

8 Conclusion

In this paper, we study the generalization benefit of model invariance by deriving model complexity
bounds based on the sample cover induced by data transformations. We also propose an algorithm
to estimate the sample cover and empirically show that the sample covering number can guide the
data transformations selection. Hopefully, this work will fuel the exploration of more suitable data
transformations on specific datasets. An interesting direction for future work is to consider the
implicit bias of model classes to better understand the generalization benefit of model invariance.

10



Acknowledgements

This work is supported by a startup fund from the Department of Computer Science of the University
of Maryland, National Science Foundation IIS CRII Award, DOD-DARPA-Defense Advanced
Research Projects Agency Guaranteeing AI Robustness against Deception (GARD), Air Force
Material Command, and Adobe, Capital One and JP Morgan faculty fellowships.

References
[1] Yaser S. Abu-Mostafa. Hints and the VC Dimension. Neural Comput., 5(2):278–288, March

1993. Place: Cambridge, MA, USA Publisher: MIT Press.

[2] Fabio Anselmi, Joel Z. Leibo, Lorenzo Rosasco, Jim Mutch, Andrea Tacchetti, and Tomaso
Poggio. Unsupervised learning of invariant representations in hierarchical architectures.
arXiv:1311.4158 [cs], Mar 2014. arXiv: 1311.4158.

[3] Fabio Anselmi, Joel Z. Leibo, Lorenzo Rosasco, Jim Mutch, Andrea Tacchetti, and Tomaso
Poggio. Unsupervised Learning of Invariant Representations in Hierarchical Architectures.
arXiv:1311.4158 [cs], March 2014. arXiv: 1311.4158.

[4] Fabio Anselmi, Lorenzo Rosasco, and Tomaso Poggio. On Invariance and Selectivity in
Representation Learning. arXiv:1503.05938 [cs], March 2015. arXiv: 1503.05938.

[5] Pranjal Awasthi, Natalie Frank, and Mehryar Mohri. Adversarial Learning Guarantees for
Linear Hypotheses and Neural Networks. arXiv:2004.13617 [cs, stat], April 2020. arXiv:
2004.13617.

[6] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems 30, pages 6240–6249.
Curran Associates, Inc., 2017.

[7] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[8] Gregory Benton, Marc Finzi, Pavel Izmailov, and Andrew G Wilson. Learning invariances in
neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, page 17605–17616. Curran
Associates, Inc., 2020.

[9] Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural
networks. arXiv:1901.06082 [cs, stat], September 2020. arXiv: 1901.06082.

[10] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

[11] Shuxiao Chen, Edgar Dobriban, and Jane Lee. A Group-Theoretic Framework for Data
Augmentation. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 21321–21333. Curran
Associates, Inc., 2020.

[12] Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2:
A unified approach for single and multi-view 3d object reconstruction. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Computer Vision - ECCV 2016 - 14th European

Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII, volume
9912 of Lecture Notes in Computer Science, pages 628–644. Springer, 2016.

[13] Taco Cohen and Max Welling. Group Equivariant Convolutional Networks. In International

Conference on Machine Learning, pages 2990–2999. PMLR, June 2016. ISSN: 1938-7228.

[14] Taco S. Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on
homogeneous spaces. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché Buc, Emily B. Fox, and Roman Garnett, editors, NeurIPS, page 9142–9153, 2019.

11



[15] Terrance Devries and Graham W. Taylor. Improved regularization of convolutional neural
networks with cutout. CoRR, abs/1708.04552, 2017.

[16] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

[17] R. M. Dudley. The sizes of compact subsets of hilbert space and continuity of gaussian processes.
Journal of Functional Analysis, 1(3):290–330, 1967.

[18] Shimon Edelman. Class similarity and viewpoint invariance in the recognition of 3d objects.
Biological Cybernetics, 72(3):207–220, Feb 1995.

[19] Bryn Elesedy and Sheheryar Zaidi. Provably Strict Generalisation Benefit for Equivariant
Models. arXiv:2102.10333 [cs, stat], February 2021. arXiv: 2102.10333.

[20] Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the vapnik-
chervonenkis dimension. Machine learning, 21(3):269–304, 1995.

[21] Robert Gens and Pedro M. Domingos. Deep symmetry networks. In Zoubin Ghahramani, Max
Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, NIPS, page
2537–2545, 2014.

[22] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity
of neural networks. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet, editors,
Proceedings of the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine

Learning Research, pages 297–299. PMLR, 06–09 Jul 2018.

[23] Yena Han, Gemma Roig, Gad Geiger, and Tomaso Poggio. Scale and translation-invariance for
novel objects in human vision. Scientific Reports, 10(1):1411, Jan 2020.

[24] Sariel Har-Peled. Geometric approximation algorithms. Number 173. American Mathematical
Soc., 2011.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[26] Yiding Jiang, Pierre Foret, Scott Yak, Daniel M. Roy, Hossein Mobahi, Gintare Karolina
Dziugaite, Samy Bengio, Suriya Gunasekar, Isabelle Guyon, and Behnam Neyshabur. Neurips
2020 competition: Predicting generalization in deep learning. CoRR, abs/2012.07976, 2020.
arXiv: 2012.07976.

[27] Erik Jones, Robin Jia, Aditi Raghunathan, and Percy Liang. Robust encodings: A framework
for combating adversarial typos. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, page 2752–2765. Association for Computational Linguistics, Jul
2020.

[28] Sumukh Aithal K, Dhruva Kashyap, and Natarajan Subramanyam. Robustness to augmentations
as a generalization metric, 2021.

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto, 2009.

[30] Clare Lyle, Mark van der Wilk, Marta Kwiatkowska, Yarin Gal, and Benjamin Bloem-Reddy.
On the Benefits of Invariance in Neural Networks. arXiv:2005.00178 [cs, stat], April 2020.
arXiv: 2005.00178.

[31] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. IEEE transactions on

pattern analysis and machine intelligence, 41(8):1979–1993, 2018.

[32] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
The MIT Press, 2012.

12



[33] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
MIT press, 2018.

[34] Youssef Mroueh, Stephen Voinea, and Tomaso A Poggio. Learning with group invariant features:
A kernel perspective. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[35] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids clustering.
Expert systems with applications, 36(2):3336–3341, 2009.

[36] Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lipton. Combating adversarial misspellings
with robust word recognition. In Anna Korhonen, David R. Traum, and Lluís Màrquez, editors,
ACL (1), page 5582–5591. Association for Computational Linguistics, 2019.

[37] Alexander Robey, George J. Pappas, and Hamed Hassani. Model-based domain generalization.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural

Information Processing Systems, 2021.

[38] Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. Distributionally
robust neural networks. In International Conference on Learning Representations, 2020.

[39] Akiyoshi Sannai and Masaaki Imaizumi. Improved Generalization Bound of Group Invariant /
Equivariant Deep Networks via Quotient Feature Space. arXiv:1910.06552 [cs, stat], March
2020. arXiv: 1910.06552.

[40] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry.
Adversarially Robust Generalization Requires More Data. In Advances in Neural Information

Processing Systems 31, pages 5014–5026. Curran Associates, Inc., 2018.

[41] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6(1):1–48, 2019.

[42] Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel R. D. Rodrigues. Generalization Error
of Invariant Classifiers. arXiv:1610.04574 [cs, stat], July 2017. arXiv: 1610.04574.

[43] Luke Taylor and Geoff Nitschke. Improving deep learning with generic data augmentation. In
2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1542–1547. IEEE,
2018.

[44] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander
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