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A Graph-Based Approach to Boundary Estimation
With Mobile Sensors
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Abstract—We consider the problem of adaptive sampling for
boundary estimation, where the goal is to identify the two-
dimensional spatial extent of a phenomenon of interest. Motivated
by applications in estimating the spread of wildfires with a mobile
sensor, we present a novel graph-based algorithm that is efficient
in both the number of samples taken and the distance traveled.
The key idea behind our approach is that by sampling locations
close to known cut edges (edges whose vertices lie on opposite sides
of the boundary), we can reliably find additional cut edges. Our
approach repeats this process of using the newly discovered cut
edges to find additional cut edges, eventually identifying all vertices
lying adjacent to the boundary. We show that our method achieves
both a sample complexity and a distance traveled that are within a
constant factor of the optimal values. Moreover, the computational
complexity of determining sample locations and paths is O(1),
making its deployment on mobile sensors highly realistic. Experi-
mental results on both synthetic and historical wildfire data show
that our proposed algorithm outperforms existing methods in terms
of sample complexity, distance traveled, and computation time.

Index Terms—Sensor-based control, machine learning for robot
control, environment monitoring and management.

I. INTRODUCTION

RAPIDLY sensing and estimating phenomena of interest is
a fundamental problem to scientists and engineers, and

the recent development of both low-cost robots and on-board
sensors has enabled safe, persistent monitoring across a va-
riety of applications. As a motivating example, we consider
the problem of estimating wildfire boundaries using a sensor
mounted to an unmanned aerial vehicle (UAV). In this setting,
it is essential to estimate the boundary as quickly as possible,
both to provide responders with the most accurate information
and to account for nonstationarity in the wildfire front. Toward
this aim, a key problem is that of developing algorithms that
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can reliably estimate the boundary while minimizing the total
sampling time, a function of both the number of measurements
taken and the distance traveled.

Recent research has shown that active learning methods can be
applied to improve the performance of mobile sensing platforms
when tasked with a variety of problems, such as localization
and mapping with aerial robots [1]–[3], selecting the most in-
formative images collected by a robot [4], improving movement
predictability when sharing an environment with humans [5],
intelligent mobile sensor placement for improved environmental
model accuracy [6], [7], and improved positional accuracy of au-
tonomous underwater vehicles [8]. Advances in active learning
have resulted in algorithms that achieve near-optimal sample
complexity [9], [10] as well as the ability to incorporate non-
uniform label costs [11]–[13]. An important application of these
methods has been one of discovering the spatial extent of some
phenomenon using mobile sensors [6], [14]–[20]. Traditional
active learning techniques are sample efficient but do not account
for the cost associated with the distance traveled by the mobile
sensor. Existing adaptations of active learning to this problem
either rely on strong modeling assumptions [21], are limited to
very restrictive cases [18], or treat this cost myopically [13].

Among approaches from active learning with low sample
complexity, the shortest-shortest path (S2) algorithm [9] is
shown to exhibit a zig-zagging behavior that traces the class
decision boundary in a manner that is likely to reduce the
distance traveled. However, this behavior is not guaranteed, and
hence S2 may sample a sequence of points with arbitrarily long
path length. Further, the sample selection process forS2 requires
computing all pairs of shortest paths between nodes in the graph,
incurring a large computational cost that makes it impractical for
deployment on mobile sensors.

In this work, we present a novel graph-based algorithm for
active boundary estimation that overcomes the shortfalls of
existing methods. The key idea is that we reduce this problem
to one of level set estimation of a graph function; by sampling
locations near known cut edges (graph edges whose vertices lie
on opposite sides of the boundary), we can reliably find more cut
edges and efficiently determine all vertices lying adjacent to the
boundary. We show that our method is optimal in terms of sample
complexity (for the graph reduction) and nearly optimal in terms
of distance traveled. Further, experiments on synthetic and real
wildfire boundaries show that our algorithm is computationally
efficient in choosing sample locations, making its deployment
on a mobile sensor realistic.
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Fig. 1. (a) An example level set boundary ∂B (blue) and partition P10. Gray
lines indicate the cut edges in C that connect vertices on opposite side of the
level set. (b) An example sampling pattern of the proposed CuP algorithm on
∂B. Green dots indicate measurements inside the boundary, red dots indicate
measurements outside the boundary, and the gray dashed line depicts the path
traveled during sampling. Black dots are unsampled locations.

II. PROBLEM FORMULATION & RELATED WORK

Given a function f : [0, 1]2 → R, the γ-level set of f is
defined as

B =
{
x ∈ [0, 1]2 : f(x) ≥ γ

}
,

where γ is a critical value determined by the end user. In this
work, we consider the case where the level set B consists of
a single, simply-connected region. The problem of level set
estimation can be viewed as one of estimating the boundary,
denoted as ∂B ! {x ∈ [0, 1]2 : f(x) = γ}, between the γ-level
set B and its complement. Toward this end, we discretize and
consider a set of potential sampling locations determined by
a regular partition of [0, 1]2 into squares of side length 1/w,
denoted by Pw. Notice that w determines the accuracy of our
estimate of the boundary. An example boundary and partition
P10 are shown in Fig. 1(a).

Given a partition Pw, consider the undirected graph Gw =
(V,E) with vertices V ⊂ [0, 1]2 corresponding to the corners of
each cell and edgesE such that the resulting nodes are connected
to their four nearest neighbors (see Fig. 1(a)). Letg : V → {0, 1}
define the labeling ofV according tof , i.e., g(v) = 1 iff(v) ≥ γ
and g(v) = 0 otherwise. Define the cut set with respect to g
byC = {ex,y ∈ E : g(x) %= g(y)}, where ex,y denotes the edge
connecting vertices x and y, and let ∂C denote the boundary of
the cut set ∂C = {x ∈ V : ∃e ∈ C with x ∈ e}. The boundary
∂C corresponds to all points in Pw whose corresponding cells
intersect the boundary ∂B, and hence by uncovering ∂C we ob-
tain an estimate of ∂B, where the approximation error decreases
as w grows.

Since the sampling procedure will be performed by a mobile
sampling vehicle, we wish to minimize not only the number
of samples taken, but also the distance traveled throughout the
sampling procedure. Hence our goal is to uncover the set ∂C
while traveling a distance on par with the total length of the
boundary ∂B.

In this work we assume that each sample yields the exact
value g(v), noting that noisy labels can be accommodated
through repeated measurements as proven in Proposition 1
of [9]. Additionally, when comparing a fixed γ-level set against

measurements f(v) with Gaussian or Sub-Gaussian noise, Ho-
effding’s inequality shows us that the uncertainty of the resulting
label g(v) decreases exponentially with the number of repeated
measurements.

A. Related Work

As stated above, a number of approaches exist to perform
spatial sampling through the framework of active learning.
Greedy approaches, such as those based on adaptive submodu-
larity [12] have the flexibility to incorporate nonuniform costs
and have strong theoretical guarantees. However, submodularity
is fundamentally a property of set functions, and hence costs
such as the distance between sequential samples cannot be
incorporated. A nonmyopic graph-based method for adaptive
sampling is introduced by [22] that exploits this submodularity
to achieve near-optimal sampling paths when the environment
is predictable. Unfortunately, this method was designed to solve
the information path planning problem, and is not applicable to
our problem of boundary estimation. A notion of submodular
optimization with sequential dependencies was presented in
the recent work [23], but the proposed algorithm relies on a
reordering procedure that is not applicable to our problem.

Numerous approaches to adaptive sampling assume the un-
derlying function f is a Gaussian process (GP), beginning
with [16], [24], where confidence-based algorithms are pre-
sented for function optimization and level set estimation, re-
spectively. These proceed by successively sampling points based
on an upper/lower confidence bound related to the variance of
the GP estimate. This approach is extended in [13], [17] and
deployed on an autonomous surface vessel for spatial sampling.
Another approach to adaptive sampling is given in [6] where the
authors modify the approach from [24] to move mobile sensors
throughout the sample space to improve accuracy of the function
estimate. A similar method is used in [7] to uncover the global
maximum of an unknown field using multiple mobile sensors.
However, these approaches require the selection of an appro-
priate kernel, as well as a number of hyperparameters, both of
which require existing data to fit. Moreover, these methods incur
a computational cost that is cubic in the number of measurement
locations considered, which may prohibit their use in real-time
settings.

Distance-penalized active learning in one dimension was first
considered in [18] and extended in [25], though neither approach
provides optimality guarantees. In the recent work [19], the au-
thors show that the one-dimensional distance-penalized bound-
ary detection problem can be formulated as a stochastic shortest
path problem, for which an optimal policy can be obtained
using dynamic programming. In this case, a two-dimensional
boundary can be estimated using a series of transects. However,
determining the optimal number of transects and their impact on
the overall cost remains an open problem.

In [26], the authors present a means of estimating a one-
dimensional boundary of interest using a zig-zag pattern. A sim-
ilar method capable of estimating a two-dimensional boundary
is presented in [27], [28]. In this approach, the mobile sensor
follows circular paths across the boundary, adaptively updating
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the mobile sensor’s trajectory whenever the boundary is crossed.
Further improvements to the method of [27], [28] are made
in [29] by constantly adapting the sensor’s trajectory based on
the current measurement. This allows the mobile sensor to more
closely track the boundary, yielding a more accurate estimate.
However, this method uses a gradient estimation technique
which requires continuous-valued sensor readings and cannot
be implemented from binary labels alone. Additionally, none
of these approaches provide any theoretical guarantees, and all
assume samples can be obtained continuously with negligible
cost. Our empirical results (see Section IV) demonstrate that
our proposed method requires fewer samples and travels a lower
distance than the methods of [27], [28].

Most related to the work presented here, [9] presents S2,
a graph-based approach to active learning that exhibits this
zig-zagging behavior, yielding strong theoretical guarantees
under broad assumptions. The algorithm achieves near-optimal
sample complexity for non-parametric learning by successively
sampling the shortest shortest path between vertices lying in∂C.
While this algorithm is sample efficient, it requires performing
the computationally-expensive task of finding the shortest short-
est paths between all previously-unsampled vertices, making its
deployment on a mobile sensor impractical. Further, in the case
where there are multiple shortest paths, the algorithm breaks
ties arbitrarily, resulting in unnecessarily large distances traveled
between subsequent sample locations, making it a poor choice
for distance-penalized applications.

III. ALGORITHM DESCRIPTION & ANALYSIS

In this section, we describe the proposed algorithm for bound-
ary estimation in two dimensions, which we refer to as Cut
Pursuit (CuP). We show that CuP overcomes the shortcomings
of S2, uncovering the same cut edges while traveling a shorter
distance and requiring much less computation between samples.

The CuP algorithm proceeds as follows. Assume without
loss of generality that sampling begins at the point x1 with
g(x1) = 1 and proceeds to the point x2 with g(x2) = 0 having
distance 1/w from x1. These points could be obtained either
from prior knowledge, or from applying a one-dimensional
spatial sampling algorithm such as that of [19]. In the notation
above, the line segment connecting these two points is a cut edge
lying in the set C, and the vertices x1, x2 correspond to adjacent
corners of a single cell. In the general case where x1 and x2 are
not adjacent, CuP begins by sampling along a path between x1

and x2 until an adjacent pair of locations with different values is
found. We assume that the level set B is either fully contained
within the sampling region (as in Fig. 1(a)) or that the initial
locations x1, x2 are on one extreme of the domain.

By convention, we maintain our “current” cut edge by de-
noting the “inside” vertex a to be such that g(a) = 1, and the
“outside” vertex b such that g(b) = 0, yielding the initial cut
edge ea,b = e1,2. This edge is then removed from the graph
(G← G \ ea,b) and the shortest path p between a and b is
calculated. Our proposed algorithm then samples iteratively
along this path, updating a and b when appropriate until another
cut edge is found. Subsequent cut edges are then removed from

Algorithm 1: Cut Pursuit (CuP) for Boundary Estimation.
1: Input: Graph G, initial vertices x1, x2 where

g(x1) = 1 and g(x2) = 0
2: Initialize: a = x1, b = x2, p = path(a← b)
3: while p exists do
4: while a and b are not adjacent do
5: Obtain closest sample xn in path p (unless

previously sampled)
6: if g(xn) = 0 then
7: b← xn

8: else
9: a← xn

10: end if
11: end while
12: G← G \ ea,b
13: p = path(a← b)
14: end while

Fig. 2. Example sampling procedure of proposed CuP algorithm. The bound-
ary is the blue dashed line and cut edges are depicted in green. The initial cut
edge is ea,b = e1,2. Sampling vertex x3 may reveal a cut edge e3,2 (a). If x3
does not reveal a cut edge, then sampling vertex x4 will reveal a cut edge at
either e4,3 (b) or e1,4 (c).

the graph, at which point p is recalculated based on the “current”
verticesa and b. The process of removing edges and finding paths
repeats until no path exists between a and b, meaning the two
vertices are elements of two separate graph components, and
an estimate of the boundary between these two components has
been found.

Let us consider (without loss of generality) the first shortest
path p around a single cell (see Fig. 2). Denote the first vertex
sampled along the first path p as x3. If g(x3) = 1, then a = x3

and ea,b = e3,2 is a new cut edge. The edge ea,b is then removed
from the graph (G← G \ ea,b) and p is recalculated (in O(1)
time, as described below). Otherwise, b = x3 and no cut edge is
discovered. In this case the next sample x4 is the fourth vertex
in the current cell. If g(x4) = 1, then a = x4 and ea,b = e4,3 is
a new cut edge, and if g(x4) = 0, then b = x4 and ea,b = e1,4
is a new cut edge. In all cases a cut edge is discovered, and the
next vertex to sample lies along the path p.

The pseudocode for this procedure is given in Alg. 1. After
the initial cut edge is discovered and removed, the path p is
always guaranteed to be the path around a single cell. This
ensures that p always has exactly four nodes: a, b, and the two
intermediate nodes in the cell. The intermediate nodes may have
been members of a previous path p and therefore may have
already been sampled. In this case the sample value is already
known and the mobile sensor does not need to travel to this
location again. Because the length of p is fixed to a constant,
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finding the next path p (line 13 of Algorithm 1) has complexity
O(1). This also ensures that the inner loop (lines 4 through
11) is run at most two times, making these lines O(1) as well.
Therefore, every operation inside the outer loop (lines 3 through
14) of Algorithm 1 can be completed in O(1), making the
computational complexity of the sample selection/path planning
procedure O(1).

Fig. 1(b) shows an example of the sampling pattern selected
by CuP, where the red dots correspond to locations xn with
g(xn) = 0, the green dots correspond to g(xn) = 1, and the gray
dashed line denotes the path traversed throughout the sampling
procedure. The figure shows that CuP achieves the desired zig-
zagging behavior and does not sample any vertices away from
the cut set.

A. Theoretical Results

In this section, we analyze the performance of the proposed
CuP algorithm. We show that, under a mild assumption on the
level set, CuP recovers the cut set exactly while maintaining a
sample complexity and distance traveled within a constant factor
of the optimal values.

Assumption 1: The level set B and inverse partition side
length w ∈ N are such that the graph Gw\C consists of exactly
two components.

Our main assumption implies that (1) the continuous-domain
level set consists of a single, simply connected component,
and (2) that the partition Pw is fine enough to maintain the
connectedness of this set. This corresponds to boundaries that
are guaranteed to be completely uncovered by the aggressive
search phase ofS2, and for applications of interest such as air and
water quality monitoring this assumption is likely to be satisfied
for sufficiently large w [30], [31]. We remark that multiple
connected components can be easily accommodated through
either random search, following [9], or through prior knowledge
indicating one point within each component. Level sets whose
boundary is a Lipschitz function in one coordinate can be shown
to satisfy this assumption, though these may be restrictive in
practice. In the following theorem, we consider a more realistic
setting, showing that level sets with radial Lipschitz boundaries
satisfy Assumption 1.

Theorem 1: Assume that the level set boundary ∂B is a
2π-periodic function r(φ) that is bounded below by rmin,
i.e., r(φ) ≥ rmin, ∀φ ∈ [0, 2π]. Further, assume that r is K-
Lipschitz with constant

K ≤

√
r2min − 1

2w2 + 1√
2w
− rmin

sin−1
((√

2wrmin
)−1) , (1)

Then the corresponding graph Gw satisfies Assumption 1.
Proof: The theorem holds as long as no cell contains more

than two cut edges. We consider a cell in the worst-case location
and derive the Lipschitz constant for which this cell can have no
more than two cut edges.

Consider a cell with vertices at locations x1, . . . , x4 where
vertices x1 and x3 both lie on the circle of radius rmin and
are outside of the boundary. These two vertices, being as close

Fig. 3. Example case of a cell with two opposite vertices on the rmin circle
and a boundary that creates four cut edges.

as possible to the center of the circle, represent the largest
possible difference in φ that two samples in the same cell can
have while lying outside of the boundary. Fig. 3 shows the
relevant geometry for such a cell. We denote the φ values of
these two vertices φ1 and φ3, where r(φ1) = r(φ3) = rmin. The
orientation and location of this cell minimizes the maximum
difference in r between these vertices and the farthest vertex
from the center of the circle, denoted x2. In order for this cell
to contain four cut edges, both x2 and x4 must be inside the
boundary, while x1 and x3 remain outside of the boundary. A
cell in this orientation requires the smallest possible change in
r over the largest possible change in φ to produce a cell with
four cut edges. Thus, if our Lipschitz constant is small enough
to ensure that Assumption 1 holds for this cell, it must also hold
for all other cells in the sampling domain.

Now let us use the properties of this cell to derive a Lipschitz
constant. The distance between the center o and the vertices
x1, x3 is rmin, and the distance between these two vertices is√
2/w. We now have an isosceles triangle with known side

lengths from which the angle between x1 and x3 can be derived:

φ1 − φ3 = 2 sin−1
((√

2rminw
)−1)

. (2)

Due to the symmetry of the triangle and the cell in this orienta-
tion, φ1 − φ2 = φ2 − φ3 = (φ1 − φ3)/2.

Let us now compare r(φ2), with r(φ1) and r(φ3), which are
known to be rmin. Note that r(φ2) must be greater than the
distance between o and x2 for x2 to lie inside the boundary.
The distance from o to x2 can be broken into two computable
distances: the segment between x2 and the intersection with line
l13 between x1 and x3, and the segment between l13 and the
origin o,

dist(o, x2) = dist(o, l13) + dist(l13, x2)

=
√

r2min − 1
2w2 + 1√

2w
. (3)

Therefore the change in r between φ1 and φ2 must be at least
dist(o, x2)− rmin to produce such a labeling. The resulting
inequality is derived from the change in φ given in (2) and the
change in r given in (3). "
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Radial Lipschitz boundaries have been studied extensively in
the context of non-parametric estimation [32] and are a subset
of the box counting class [33]. Further, such boundaries are
likely to occur in air quality monitoring contexts and align with
the spatial models used to estimate particulate matter [34]–[36].
The requirement of a minimum radius on the boundary is due
to the assumption that the boundary ∂B have a functional form
and is not a strict requirement for our algorithm. A more precise
characterization of level sets that satisfy Assumption 1 is a topic
for our future research.

Next, we prove that CuP recovers the cut set boundary exactly
and characterize its performance in terms of the number of
samples required and distance traveled.

Theorem 2: Let B and w be such that Assumption 1 is
satisfied. Then CuP uncovers the boundary estimate ∂C in at
most 2|C| queries.

Proof: Consider all possible enumerations of labelings for a
single cell. Note that of the possible enumerations, there are only
cases with two or four cut edges. The cases with four cut edges
occur when g(x1) = g(x3) %= g(x2) = g(x4), for x1, . . . , x4 as
in the proof of Theorem 1. Such a cell cannot exist unless there
are more than two components in the graph; thus, if Assumption
1 is satisfied, all cells containing a cut edge must contain exactly
two cut edges.

Now consider the boundary ∂B as an ordered set of boundary
segments, with each segment being the portion of the bound-
ary that is contained within an individual cell. Note that each
boundary segment connects one cut edge to another subsequent
cut edge, and by following along the entire boundary we will
observe an ordered set of all the cut edges. The CuP algorithm
iteratively discovers the cut edges following this order, and thus
will discover all the cut edges.

Consider a single cell ck ∈ Pw with an initial cut edge cor-
responding to two vertices of ck obtained from two previous
queries. If Assumption 1 is satisfied, then there is exactly one
other cut edge in ck along the path pk. As shown in Section III,
CuP reveals a cut edge in every path pk. and the maximum
number of unsampled locations along every path pk is two. Thus,
the maximum number of queries needed to uncover all the cut
edges is twice the number of cut edges. "

The above sample complexity matches the aggressive search
complexity of S2 and is sharp, since a boundary ∂B consisting
of a straight line will have |∂C| = 2|C|. In such a case, CuP
queries the minimum number of samples possible to recover
∂C exactly. On the other hand, the minimum value of |∂C| is
|C|+ 1, corresponding to the case where B contains only a
single vertex of Gw. In this case, the sample complexity of CuP
is within a constant factor of the optimum sample complexity.

Finally, we derive an upper bound on the distance traveled by
the proposed algorithm in terms of the boundary length L(∂B).

Theorem 3: Let B and w be such that Assumption 1 is
satisfied, and assume ∂B has length at least 4/w. CuP travels a
distance of at most 4L(∂B) to uncover the boundary estimate,
where L(∂B) is the length of the boundary.

Proof: In the worst case, CuP visits two unsampled nodes in
path p before identifying a new cut edge. To do this, it travels at
most 2/w. To uncover all the cut edges, it must travel 2|C|/w.

The resulting expression then follows from substituting in the
bound in Lemma 1. "

Lemma 1: The number of cut edges |C| for a given boundary
length L(∂B) is at most 2wL(∂B) where w is the inverse side
length, provided L(∂B) ≥ 4/w.

Proof: Given a 2× 2 array of cells within some graph Gw,
consider the set of continuous boundary segments that intersect
all four cells and intersect two outside edges of such an array.
The length of such a boundary segment must be at least 2/w,
regardless of what outside edges the boundary intersects. Such a
boundary segment can be considered optimal in the sense that it
creates the largest possible number of cut edges over the smallest
possible length of boundary. A boundary that is constructed of
k ≥ 2 such boundary segments therefore has a length of at least
2 k/w and intersects 4 k cut edges. "

The maximum distance traveled by CuP is a constant factor
of the boundary length, meaning the total distance traveled
scales directly with the length of the boundary being estimated.
This makes CuP near-optimal in terms of distance traveled.
On the other hand, S2 has no means of accounting for the
distance traveled, and we will show empirically that breaking
ties arbitrarily results in a distance that increases with w.

IV. SIMULATIONS

In this section, we compare the performance of our proposed
algorithm with the S2 algorithm of [9] as well as the adaptive
and non-adaptive Bang-Bang algorithms proposed in [27], [28].
Specifically, we compare the performance of CuP to the “ag-
gressive search phase” of S2, described by lines 4 through 10 of
Algorithm 1 in [9], as well as a mobile sensor following the fixed
and adaptive Bang-Bang steering control policies described in
Eq. (1) and (2) of [28], where the distance between measure-
ments is set to the graph side length 1/w in order to compare to
CuP and S2. Both the fixed and adaptive Bang-Bang algorithms
can be tuned to adjust the angle between subsequent samples.
Additionally, the “adaptivity” of the adaptive Bang-Bang al-
gorithm can be tuned. We tested both algorithms over a range
of angles from 40o to 140o between samples and considered
adaptive adjustments between 0% and 50% of the maximum
angle per sample, reporting the best-performing results here.

We run the algorithms on synthetic boundaries as well as
historical wildfire boundaries from the MTBS Burned Area
Boundaries Dataset [37].1

We first characterize the performance of our proposed algo-
rithm by drawing 100 random boundaries from a radial GP [38,
Ch. 4] and check to ensure that each boundary satisfies Assump-
tion 1 for inverse partition widths w ranging between 10 to 50.
We then run the algorithms on each boundary for this range of
w values and compare our results.

We also characterize the performance of the algorithm on
real wildfire boundaries from the MTBS dataset. Specifically,
we investigate the performance of these algorithms on wildfire
boundaries in Oregon ranging in size from 1000 to 5000 acres by

1The source code for these experiments is available at
https://github.com/sstalley/CuP
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Fig. 4. Average performance of proposed CuP algorithm compared with Bang-Bang and S2 algorithms on synthetic boundaries as a function of inverse side
length w. (a) Number of samples required to uncover all cut edges. (b) Distance traveled. (c) Estimation error. (d) Computation time. For CuP the sample complexity
is linear in w as predicted by Theorem 2, the distance traveled is independent of w, as predicted by Theorem 3, and the computation time is orders of magnitude
lower than that of S2 as predicted in Section III.

Fig. 5. Average performance of proposed CuP algorithm compared with Bang-Bang andS2 algorithms on historical wildfire data. (a) Number of samples required
to uncover all cut edges. (b) Distance traveled. (c) Estimation error. (d) Computation time.

Fig. 6. A simulated CuP sampling path on the 2017 Staley wildfire. The blue
region indicates the burned area. The red line indicates the path traveled by the
remote sensor when using CuP with a side length of 400 m. Aerial imagery
from [39].

mapping the set of sampling locations Pw to a 20 km× 20 km
region centered around each fire. Fig. 6 shows the sampling path
used by the CuP algorithm on one such wildfire boundary. We
analyze the performance of CuP and S2 when using regular

partitions with side lengths 1/w and compare them with the
tuned Bang-Bang algorithms that sample at a rate of 1/w. This
corresponds to distances ranging between 200 m and 500 m
between samples. We report the average results on 159 different
fire boundaries that satisfy Assumption 1. The resulting number
of samples, distance traveled, estimation error, and computation
time as a function of w for the synthetic and real boundaries are
shown in Figs. 4 and 5, respectively.

We make several observations on the results on both real and
synthetic boundaries. First, we see that with CuP the number of
samples increases linearly with w, as predicted by Theorem 2.
We see that the number of samples in S2 also increases linearly
with w, but at a faster rate. The adaptive and fixed Bang-Bang
algorithms have similar sample complexity, but both use more
samples than both CuP and S2 for all values of w. This is true
for both the synthetic and real boundaries.

Second, the distance traveled by CuP is roughly constant, as
predicted by Theorem 3. The distance traveled by the Bang-Bang
algorithms is also roughly constant on both the real and synthetic
boundaries, but noticeably larger than the distance needed by the
equivalent CuP algorithm. In contrast, the distance traveled by
S2 appears to increase linearly with w.

Next, we compute the resulting estimation error to be the
proportion of cells in Pw that are mislabeled, which is exactly to
the number of cells intersecting the boundary divided by the total
number of cells. Both CuP and S2 find the exact same cut edges,
and thus have identical estimation error. The estimation error of
the Bang-Bang algorithms is comparable to that of CuP and S2

on both the real and synthetic data. On the synthetic boundaries,
the Bang-Bang algorithms have slightly lower estimation error
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TABLE I
TOTAL SAMPLING COSTS ON HISTORICAL WILDFIRE DATA

than CuP and S2, but as discussed above travel farther and re-
quire significantly more samples to do so. On the real boundaries,
we found that all four algorithms produced results with the exact
same estimation error. On these boundaries the most successful
Bang-Bang tuning was one with 90o between samples and no
adaptive adjustments. This results in the Bang-Bang algorithms
sampling on the same grid as the other algorithms, resulting in
identical boundary estimates but requiring more samples than
CuP or S2. In all cases, the figures indicate a clear trade-off of
w between linearly increasing sampling cost and the inversely
decreasing and estimation error.

Finally, we see that the computation time of CuP and Bang-
Bang is several orders of magnitude lower than the computation
time of S2 for our example boundaries. In addition, the com-
putation time of CuP and Bang-Bang appears to scale linearly
with w, requiring more time for estimates that contain more cut
edges, but providing a constant computation time per sample.
In contrast, the computation time of S2 increases polynomially
with respect to w for the same boundaries.

To further illustrate the advantages of CuP over existing
methods, we consider the actual costs incurred by sampling
the above wildfire boundaries with a particulate matter sensor
attached to a UAV. In particular, we consider sampling times of
8 s and 30 s, corresponding to the extremes of the settling time
of the Sensirion SPS30 particulate matter sensor [40], and travel
times of 32 km/hr and 65 km/hr, corresponding to the velocity
range of the DJI Matrice 600 UAV. The total sampling cost is
computed as

Ttot = TsN + TtD,

where Ts is the time required to obtain a single sample, Tt is the
time to travel one unit distance,N is the total number of samples
required, and D is the distance traveled.

Table I shows the total sampling cost incurred by the Bang-
Bang, S2, and CuP algorithms. As stated above, the adaptive
Bang-Bang steering policy provided no benefit over the non-
adaptive Bang-Bang policy on the real fire boundaries, and thus
its results are omitted from this table. We report results from each
algorithm with the best tuning in terms of average accuracy per
unit cost over the 159 fire boundaries. The results show that
CuP achieves the same (or lower) estimation error at a lower
cost than both the Bang-Bang and S2 algorithms in all sampling
scenarios, providing a 21% reduction in total cost compared to
the Bang-Bang policy for all sampling/travel times.

V. CONCLUSION

We have presented a graph-based approach to boundary
estimation with mobile sensors. We show that our proposed
algorithm uncovers all vertices lying adjacent to the boundary
while achieving order-optimal sample complexity and distance
traveled while requiring O(1) computation time per sample. To
the best of our knowledge, this is the first algorithm that achieves
a “zig-zagging” behavior that is both principled and practical
for the application of mobile sensing. In our future work, we
will consider alternate graph structures, including triangular and
hexagonal partitions, as well as non-regular partitions. On the
synthetic boundaries, we found that the Bang-Bang algorithm
with angle 60o was most frequently the best tuning in both
the adaptive and non-adaptive cases. In this configuration, the
Bang-Bang algorithm samples in a hexagonal pattern, indicating
that a hexagonal variant of CuP may be of particular interest.
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