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ABSTRACT: Two spatial regions B and R are hyperentangled if the generalized entropy
satisfies S < Sp%,. If in addition all future (or all past) directed inward null shape
deformations of B decrease Sg’f;rfR, then we show that the causal development of B, with
R held fixed, must be incomplete. This result eliminates the Null Energy Condition
from the assumptions of a recently proven singularity theorem. Instead, we assume a
quantum version of the Bousso bound.

Taking R to contain the Hawking radiation after the Page time, our theorem pre-
dicts a singularity in the past causal development of the black hole interior. This is
surprising because the classical spacetime is nonsingular in the past. However, one finds
that Cauchy slices that are required to contain R do not remain in the semiclassical
regime. The quantum singularities predicted by our theorem are an obstruction to fur-

ther semiclassical evolution, generalizing the singularities of classical general relativity.
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1 Introduction

A spacetime M is singular if it contains an incomplete timelike or null geodesic [1]
(an inextendible geodesic of finite affine length). Physically relevant examples include
the past singularity in certain cosmological solution—the “big bang”—and the future
singularity that terminates time evolution inside a Schwarzschild black hole.

Singularities are generic in classical general relativity. A theorem by Penrose [2]
guarantees that at least one of the null geodesics orthogonal to a trapped surface is
incomplete. A surface is trapped if both sets of future-directed orthogonal null geodesics
have negative expansion.

Penrose’s theorem requires two crucial assumptions about the spacetime: M must
admit a noncompact Cauchy surface; and M must satisfy the Null Curvature Condition,
R.,k?k? > 0, where Ry, is the Ricci tensor and k% is any null vector.

A recent result [3] has established a connection between singularities and quantum
information: the noncompactness assumption can be eliminated from Penrose’s theo-
rem, if instead the spacetime is assumed to satisfy the Bousso bound [4] on the entropy
of matter.

The Null Curvature Condition can also be eliminated. This is important, because
it it is known not to hold in Nature. By Einstein’s equation, it is equivalent to the Null
Energy Condition, that T,,k%k® > 0, where Ty, is the stress tensor. Any relativistic
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Figure 1. The quantum Bousso bound (Conjecture 2.22): if the quantum expansion at 0B

in the direction of B’ is nonpositive then S’g%/n < S8

quantum field theory, such as the Standard Model, contains states in which the expec-
tation value of the stress tensor, (T,;), violates this condition [5]. Wall [6] eliminated
the Null Curvature Condition from Penrose’s theorem, by assuming instead that the
Generalized Second Law (GSL) holds in M. The GSL is the statement that the gener-
alized entropy—the sum of horizon area and von Neumann entropy of the matter fields
outside a causal horizon—cannot decrease. A causal horizon is the boundary of the
past of a timelike or null curve of infinite affine length; examples include black hole,
Rindler, and de Sitter horizons. Unlike for the NCC, there is no known counterexample
to the GSL. There is considerable evidence for its validity, and it has been proven to
hold on Killing horizons [7].

In this paper, we combine the advances of Refs. [3, 6], using a single assumption, a
quantum refinement of the Bousso bound [8]. This bound says that if the generalized
entropy outside a Cauchy-splitting null hypersurface L is decreasing towards the future
(resp. past) at some moment of time, then it must be lower at all future (past) times.
See Fig. 1; and see Conj. 2.22 below for a more precise statement. The quantum Bousso
bound implies the GSL as a special case.

We will prove that the quantum Bousso bound implies a singularity theorem for
hyperentangled regions, Theorem 3.1 below. See Fig. 2. We call a spatial region B
hyperentangled if B possesses a purification that reduces the entropy by more than the
Bekenstein-Hawking entropy of B. More precisely, B is hyperentangled if

SBUR  gi (1.1)
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for some spacelike-separated region or external system R, where Sgey is the generalized
entropy. We assume in addition that B U R has negative inward quantum expansion
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Figure 2. Quantum singularity theorem for a hyperentangled region B. (a) Collapsing star
entangled with a distant reference system. At late times the entanglement entropy exceeds the
surface area of the star and the theorem predicts a future singularity. This is the (ordinary)
singularity of the black hole. (b) Evaporating black hole after the Page time. The black hole
interior B and distant Hawking radiation R are hyperentangled, and the theorem predicts
both a future and a past singularity. The latter is a quantum singularity: it arises from the
breakdown of semiclassical evolution in the red region when R is held fixed.

at 0B, i.e., that Sg’zgR decreases under shape deformations of B along a past-directed
(or a future-directed) ingoing null congruence.

Under these assumptions, we prove that at least one null geodesic in the congru-
ence is incomplete, in any spacetime obtained from semiclassical evolution on Cauchy
surfaces that all contain R.

We shall see through the study of examples that the quantum Bousso bound,
and indeed the GSL, are surprisingly restrictive when Cauchy evolution is limited to
slices containing R. As a result, spacetimes that satisfy this bound admit a novel,
R-dependent notion of singularity. Our theorem captures such singularities. We be-
lieve that the notion of R-dependent singularities in semiclassical gravity has not been
discussed in the literature, so we will do so now.

In classical General Relativity, the inclusion of R in all Cauchy slices would be
a trivial restriction for the purposes of our theorem. As shown in Fig. 3, slices that
contain R foliate M — I(R), where I(R) is the union of the chronological past and
future of R. The Cauchy horizon H*(B) is a subset of M — I(R), so if it contains an



Figure 3. My (green) is a spacetime covered by nice slices that contain R. In general this
semiclassical region is a proper subset of the region M —I(R) (red+green) covered classically
by Cauchy slices that contain R. Generators of H*(B) may be incomplete in M g even if
they would be complete in M — I(R). This reflects a real obstruction to further semiclassical
evolution which we call a quantum singularity.

incomplete geodesic, then so does M.

However, in semiclassical gravity, Cauchy slices must be “nice.” That is, the data
on each slice must be compatible the validity of an effective field theory description
with a cutoff below the Planck scale.! The boundary of M — I(R) is null; therefore,
it contains distinct points with zero spatial distance, and nice slices that contain R
cannot approach it arbitrarily closely; see Fig. 3.

Thus, only a subset My C M — I(R) can be obtained by semiclassical evolution
along Cauchy surfaces that all contain R. Hence it is possible for H*(B) to contain a
geodesic that is incomplete in any semiclassically allowed spacetime My, even though
it would be complete in the (larger but semiclassically unattainable) M — I(R). We
call a singularity that arises in this manner a quantum singularity.

'We are not aware of a first-principles derivation of the precise inequalities that “niceness” implies
for scalar quantities extracted from the initial data on a slice. A plausible set of criteria was outlined
in Ref. [9, 10]. To understand the quantum singularities predicted by our theorem in the examples
we study here, we need only require a rather weak niceness condition on the trace of the extrinsic
curvature; see Sec. 4.



Outline In Sec. 2, we define a semiclassical spacetime as a globally hyperbolic man-
ifold M with metric g,, and quantum state p whose stress tensor expectation value
satisfies the Einstein equation, Go, = 87G (Ty,). In addition, M must admit a “nice
slicing.” That is, time evolution must be consistent with the validity of an effective
field theory description, with an ultraviolet cutoff A <« Mp, where Mp is the Planck
mass. We formulate the main assumption of our theorem, the quantum Bousso bound,
and we clarify that it applies to nice slices only.?

After proving our theorem in Sec. 3, we discuss two nontrivial applications. In
Sec. 4.1, we consider an evaporating black hole formed from regular initial conditions.
We apply our theorem to the black hole interior B after the Page time; R is the Hawking
radiation emitted so far. In this case a singularity is predicted along the black hole
horizon to the past of B.

This is a quantum singularity. It appears because we are holding R fixed, thus
excluding the region R from participating in the semiclassical evolution. On nice slices
that contain the Hawking radiation, the horizon cannot be evolved far into the past.
Hence the horizon generators are incomplete in Mp. The semiclassically allowed space-
time Mp, is substantially smaller than M — I(R), which contains the entire black hole
horizon.

In Sec. 4.2, we consider the Kerr-Newman solution in the Hartle-Hawking state. We
again consider the black hole interior B at a sufficiently late time, when it is entangled
with distant radiation R. Our theorem predicts a singularity before the inner horizon.
In the classical Kerr-Newman solution, the region between the inner and outer horizons
is regular, so this conclusion is of some interest. We discuss its potential relevance to
the strong cosmic censorship hypothesis.

2 Semiclassical Gravity

2.1 Causal Structure

Convention 2.1. Everywhere below, M will denote a time-orientable globally hyperbolic
spacetime. (M may be extendible.) We use an overdot to represent the boundary of a
subset of M.

Convention 2.2. Everywhere below, B will denote a closed subset of a Cauchy slice N
of M, such that 0B is a compact codimension 2 submanifold of M and B — 0B # .
Here 0B denotes the boundary of B in the induced topology of V.

2We also comment on Ref. [11], which asserts a different regime of validity of the quantum Bousso
bound (and, implicitly, of the GSL), and which arrives at conclusions different from ours.



Definition 2.3. The chronological and causal future and past, I*(K) and J*(K), of any
set K C M are defined as in Wald [1]. For K = {p}, we drop the set brackets. Key
consequences of these definitions include: p ¢ I (p) but p € J*(p), and I (K) is open.

Definition 2.4. For any set K C M, we define its domain of influence as the union of
K and all points that can be reached by a timelike curve from K: I(K) = IT(K) U
I"(K)UK.

Definition 2.5. For any closed achronal set K C M, the future domain of dependence,
DT (K), is the set of points p such that every past-inextendible causal curve through
p must intersect K. The past domain of dependence, D~ (K), is defined analogously.
The domain of dependence is D(K) = DT (K)UD™(K). The future Cauchy horizon is

HY(K)=D+(K)—I1"[D"(K)].
Definition 2.6. Let M be a spacetime with Cauchy surface N. (N or M may be
extendible.) Let B C ¥. We say that B is future singular in M if its Cauchy horizon

H™(B) contains an incomplete geodesic; i.e., a geodesic that is future-inextendible in
M but of finite affine length. Otherwise, we call B future complete in M.

2.2 Kinematics

Definition 2.7. A nice global slice is an inextendible Cauchy surface 3 whose intrinsic
and extrinsic geometry and quantum state p(%, A) can be fully described using a cutoff
scale A < Mp. In particular, curvature scalars and energy densities that can be
constructed from the normal vector to ¥ must be sub-Planckian.

Definition 2.8. Let X be a nice global slice of M, with associated cutoff scale A < Mp.
Let B be defined as in Convention 2.2. If the intrinsic and extrinsic geometry of 0B is
well resolved at the cutoff A (that is, when 0B is put on a lattice with characteristic
scale A1), then we call B a nice partial slice, and the quantum state on B is defined

p(B,A) =trs_p p(za A) ) (2'1)

Definition 2.9. We call N a nice slice if N is a nice global slice or a nice partial slice.

Definition 2.10. Let N be a nice slice with associated cutoff scale A. The generalized

entropy of N is
N _ Area(ON)

g = T4G(A)R

where G/(A) is the effective Newton constant at the scale A, and

+ ...+ S(N,A), (2.2)

S(N,A) = —try p(N, A)log p(N, A) (2.3)



is the von Neumann entropy of the quantum fields on N at the scale A. The area term
is the leading gravitational counterterm. The subleading gravitational counterterms
are indicated by “...”; see Ref. [12] for details.

Remark 2.11. Niceness of N is required in the above definition since otherwise G(A)
is not operationally defined, for example as the effective gravitational coupling in a
scattering process. The boundary of a nice global slice (N = X3) vanishes. The boundary
of a nice partial slice (N = B) is understood to be defined in a completion ¥ O N,
where X is a nice global slice. Neither the boundary area nor the generalized entropy
of N will depend on the choice of completion.

Congecture 2.12. The generalized entropy is cutoff-independent, in the following sense.
Suppose that the slice N is nice with respect to two different scales A and A’. Under
A — A’ both terms in Eq. (2.2) will change, but their sum will not. For references
supporting this claim, see the Appendix of Ref. [8].

2.3 Dynamics

Definition 2.13. A slicing of the spacetime (M, g) is a continuous map from an open
interval to achronal subsets of M, t — N(t), such that every point in M is contained
in at least one N(t), and N(¢') C JT[N(t)] for ¢’ > t. [Thus, a slicing is not a foliation.
Along a timelike curve =, the proper time of v N N(¢) increases monotonically with ¢,
but not strictly so.]

Definition 2.14. A Cauchy slicing of (M, g) is a slicing such that each N(t) is a Cauchy
surface of M.

Definition 2.15. A nice Cauchy slicing of (M, g) is a Cauchy slicing such that each N (t)
is a nice slice with the same associated cutoff A < Mp. A collection of nice Cauchy
slicings with cutoff A will be denoted Sj.

Definition 2.16. A semiclassical spacetime is a quadruplet (M, g,Sx,p). Here M is
a globally hyperbolic manifold with metric g. Sj is a nonempty set of nice Cauchy
slicings. For each slicing, p(N(t),A) solves the Schrodinger equation of the quantum
fields. The expectation values of local operators do not depend on the slicing. Finally,

Gap = 8TG(A) (Top) + ..., (2.4)

where G, is the Einstein tensor computed from g, Ty, is the stress tensor (viewed as
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an operator), and “...” stands for higher-curvature corrections.

Remark 2.17. The above definition ignores gravitons; this can be justified by taking
the number of matter fields to be large. The Cauchy slices of M may be partial and
hence extendible; and in any case M may be extendible.



Remark 2.18. Given a nice slice N(0), one can solve the quantum field theory and
Einstein’s equation iteratively in Gh, in some open neighborhood of N(0), and thus
generate a semiclassical spacetime.

Definition 2.19. Let N be a nice Cauchy slice in a semiclassical spacetime M, and let
R C N, R # N. A semiclassical spacetime with nice slicing Ny(t) will be called a
reduction of M by R and will be denoted My, if for every ¢, Ny(t) U R is a nice slice of
M. (See Fig. 3 for an example.)

Definition 2.20. Let M be a semiclassical spacetime, and let B C M be a nice partial
slice. The future-directed ingoing quantum expansion of B at y € OB is the rate of
change of the generalized entropy under a shape deformation of B along the ingoing
future-directed null congruence orthogonal to 0B:

o8(y) = AGh_35elV]| 2.5

- \/h(y) 5V (y) OB

Here h is the area element of the induced metric on 0B. The functional derivative is

taken with respect to the affine parameter V' (y) along the congruence that specifies the
location of cuts of the congruence such as 0B.

The past-directed ingoing quantum expansion is defined analogously. Outgoing
quantum expansions are related to the ingoing ones by a change of sign and exchange
of past and future.

Remark 2.21. The functional derivative in Eq. (2.5) is an idealization that suppresses
the cutoff A. The quantum expansion is well-defined only if one of the nice Cauchy
slicings of M contains slices that contain B and its shape deformation. In particular,
this excludes deformations whose transverse support near y is localized to better than
A1 [13].
Conjecture 2.22 (Quantum Bousso Bound). Let M be a semiclassical spacetime, and let
N and N’ be slices in one of the nice Cauchy slicings of M. Let B C N be a nice partial
slice, and let 0B* (0B~) be the subset of B with positive (negative) future-directed
inward quantum expansion. Let B’ = D(B)NN'. If N'NI*t(0B") = N'Nl~(0B~) = &,
then

SB < g8 (2.6)

gen = Pgen
Remark 2.23. The above conjecture was originally obtained as a consequence of the
Quantum Focusing Conjecture [8]. However, its derivation was somewhat heuristic
and omitted a careful regularization of points where null generators leave I(C). Here
we will assume Conjecture 2.22 directly. The original Bousso bound [4] follows in the
limit where O is well approximated by the classical expansion and M satisfies the Null
Curvature Condition.



Remark 2.24. (Note added.) Compared to our Conj. 2.22, Rolph [11] imposes the
additional requirement that B’ # &, and more strongly that N’ must intersect every
connected component of D(B). We believe this restriction is too strong and also unnec-
essary. An important manifestation of the GSL is the fact that the generalized entropy
outside the horizon of a black hole is larger than the the (ordinary) entropy before the
black hole has formed. This key feature follows from the quantum Bousso bound only
if B' = @ is allowed. On the other hand, Ref. [11] does not restrict the application
of the bound and of the GSL to nice slices. We believe that this is too permissive,
even when combined with the restriction to nonempty B’ advocated in Ref. [11]. As
we discuss at the end of Sec. 4.1, the generalized entropy becomes negative and stops

making sense on slices allowed by this set of criteria.?

3 Singularity Theorem

Theorem 3.1 (Singularity Theorem for Hyperentangled Regions). Let M be a semi-
classical spacetime with nice Cauchy slice N. Let the disjoint union BUR C N be a nice
slice, with OB compact. Suppose that the future-directed inward quantum expansion of
B U R is negative everywhere on 0B:

08 (y) <0 foral ye B . (3.1)
Suppose moreover that B is hyperentangled with R, that is:
SBR gt - (3.2)

gen gen

Let My, be a reduction of M by R (see Def. 2.19). Assuming Conjecture 2.22 (Quantum
Bousso Bound), B is future singular in My, i.e., H*(B) N My contains an incomplete
null geodesic.

Proof. The Cauchy horizon H™(B) is topologically the direct product of 9B with the
future-inward directed null geodesics orthogonal to 0B, up to possible identifications
of their endpoints on H*(B). By Eq. (3.1), no null geodesic can remain on H*(B) for
infinite affine time [7].* Assuming for contradiction that B is future complete in M,

3With Rolph’s conditions on the GSL and the quantum Bousso bound, the “island finder” theo-
rem [14] would indeed have a loophole as claimed in Ref. [11]. With ours, it does not. In the case of
concern to Ref. [11], Conj. 2.22 would be violated, so a (possibly quantum) singularity must form. (In
the maximin formalism [15], it is necessary to assume that the maximin slice is repelled by singularities.
We propose that this feature extends to quantum singularities.)

“For if such a geodesic ~ did exist, then I~ () would be a causal horizon, and by the Generalized
Second Law, @S_F(’Y)QN)UR > 0. By construction, I~ (y) C B and dB touches I~ () at p = v N dB.

By Theorem 3 of Ref. [6], ©F“%(p) > @gi(’Y)mN)UR(p) > 0, which contradicts Eq. (3.1).



it follows that H*(B) contains the endpoints of all of its generators. Compactness of
OB then implies that H"(B) is compact.

Let Nyp(0) = N — R, and assume for contradiction that Ng(t) N H*(B) # 0 for
all £ > 0. Let t,, be a monotonically increasing sequence that converges to the upper
bound of the time interval for which the slicing Ny (t) is defined (or diverges to oo if
there is no upper bound), and let z,, € Ng(t,) " H"(B).” By compactness of H"(B),
the sequence z,, has an accumulation point p € H*(B). Let ¢ € I (p) and let Np(t,)
be a slice that contains ¢. Because a slicing moves forward in time monotonically by
Def. 2.13, there exists a small neighborhood O(p) that no slice with ¢ > ¢, can intersect.
This contradicts the fact that p is an accumulation point.

Therefore My, admits a nice slice such that Ng(tapove) N HT(B) = 0, tapove > 0,
and by Def. 2.19, M admits a nice slice

N’ = Ny(tabowe) U R (3.3)

that contains R and fails to intersect D(B). N’ satisfies the assumptions of the quantum
Bousso bound as applied to BU R C N. (In Conjecture 2.22, substitute B — B U R.)
Hence

R BR
Sgen < Ogen (3.4)
which contradicts Eq. (3.2). Hence B must be future singular in M. O

Remark 3.2. Note that the assumption (3.2) cannot be satisfied if R = @, so any
nontrivial application of the theorem requires a nonempty choice of R. However, R can
be arbitrarily far from B. After a straightforward adaptation of the relevant definitions,
R can even be treated as a nongravitating quantum system that is external to the
spacetime. In that case, My can be an inextendible spacetime.

Remark 3.3. The singularity theorem for hyperentropic regions [3] emerges in the limit
as h — 0. In this limit, ® — 6, so the quantum expansion is well approximated by the
classical expansion. Moreover, nice slices will cover all of M — I(R) in this limit. If
the entropy in B is not purified by some disjoint region R then an appropriate external
purification can be added.

Remark 3.4. By the previous remark, Theorem 3.1 applies to all of the examples dis-
cussed in Ref. [3], which include several settings where Penrose’s theorem would not
apply. In all cases we must first introduce an external purification R of the matter
entropy in B;. In the following section, we study examples of singularities predicted by
Theorem 3.1 that have no classical analogue.

5This step invokes the axiom of choice; perhaps this can be eliminated.

— 10 —



4 Hyperentangled Black Holes

The conditions of Theorem 3.1 can be satisfied by choosing B to be a region in an
evaporating black hole after the Page time, with R a region containing the Hawking
radiation. One can arrange that both quantum expansions are negative, 8|5 < 0,
so the Theorem predicts a singularity both along H*(B) and along H~(B) when R is
held fixed.

Let us discuss this in more detail. A slice of the black hole interior after the Page
time is by definition hyperentangled with the Hawking radiation emitted so far; let R
be the region containing this radiation. By picking B to be the interior of a sphere
which is slightly outside of the horizon one can arrange ©F“F|5 < 0.

Alternatively, one can obtain a region B with these properties by deforming the
island I [16, 17] associated to R. By quantum maximin [18], islands generically satisfy
0,09 = 0,0, < 0, where k and ¢ are null future-directed orthogonal vectors fields on 91
outward and inward to [ respectively. Therefore, by slightly deforming the island in the
future-outward and past-outward null directions, one obtains a hyperentangled region
which satisfies the conditions of Theorem 3.1 both in the future and past directions.
One can also use this method in an eternal black hole coupled to a bath [19] to find a
region B with these properties.

Naively, both the future and the past applications of Theorem 3.1 to such a region
are quite puzzling. Schwarzschild black holes have a singularity along H*(B); but for
a Schwarzschild black hole formed from regular initial conditions, H~(B) is complete
by construction. At the classical level, even H*(B) is complete when charge or angular
momentum is present. Small classical perturbations are believed to produce a spacelike
singularity before the inner horizon, but the conditions of our theorem are satisfied in
the unperturbed Kerr-Newman solution (see Fig. 4).

However, the spacetime My covered by nice slices that all contain R is smaller
than M — I(R). We will now argue that this implies that the null generators of both
H*(B) and H™(B) are incomplete in the semiclassically allowed spacetime Mp, as
predicted by Theorem 3.1. In particular, we demonstrate that any Cauchy slicing of
the spacetime M with slices that contain R, the slices that probe the region beyond
the endpoints of H*(B) necessarily have exponentially large extrinsic curvature.

In this section, we speculate on why the semiclassical spacetime My might be
smaller than M — I(R) leading to the incompleteness of the generators of both H*(B)
and H~(B), upholding Theorem 3.1. We demonstrate that any Cauchy slicing of the
spacetime M with slices that contain R, the slices that probe the region beyond the
endpoints of H*(B) necessarily have exponentially large extrinsic curvature.

- 11 -



Figure 4. Kerr-Newman black hole. The inner and outer horizons are shown as dashed
lines. In the Hartle-Hawking state, the conditions of the singularity theorem can be satisfied if
R is a large enough region near null infinity containing Hawking radiation and B the interior
of the black hole containing the purification of the radiation. This is puzzling since all null
generators of both Cauchy horizons H*(B) contain their endpoints in the classical spacetime.
However, semiclassically, H~ encounters a quantum singularity when R is fixed; HT does too,
or else quantum corrections significantly alter the geometry near the inner horizon.

4.1 Quantum Singularity On a Classically Regular Horizon

For concreteness, consider a maximally extended Schwarzschild black hole of radius
rs in the Hartle-Hawking state, in 3+1 spacetime dimensions. Advanced and retarded
time are defined by u = t—7* and v = t+7r*, where r* = r+rglog|(r/rs)—1|. The near
horizon zone is the region rg < r < 3rg/2; its outer boundary will be denoted Z. Below,
we will also use Kruskal coordinates, U = —2rge!~%/?"s and V = 2rge'™¥/?"s which
cover the entire spacetime. (These are slightly nonstandard to match the standard
Rindler coordinates.) We define T'= (U + V)/2 and X = (U = V)/2.

Let R be the union of a right asymptotic bulk region and its left mirror image; see
Fig. 5. On the right, R is given by the portion U < —Uj, of a constant ¢ slice, with ¢
chosen large enough for R to be far from the black hole. We choose Uy, past the Page
time, that is, Uy < rge™"® where S is the Bekenstein-Hawking entropy of the black

hole and v; ~ O(1). The boundary of the past of R intersects the boundary of the
near-horizon zone at vj(g);. Choosing B to be the black hole interior at the same (or

- 12 —



Figure 5. Schwarzschild black hole. In the Hartle-Hawking state, B and R can be chosen
such that the conditions of the theorem can be satisfied towards the past of B. This is a
quantum singularity: Cauchy slices containing R which intersect the horizon around a Page
time in the past of B (red lines) have exponentially large extrinsic curvature.

slightly earlier) value of v, Theorem 3.1 predicts a singularity along H~(B).

Since the spacetime is classically regular in the past of B, this must be a quantum
singularity. We will now verify this prediction.

For v < vjpnz, I~ (R) lies within the Rindler region where the metric is well-
approximated by

ds® = —dT? +dX? + rzdQ® + O(T?, X?) (4.1)

Intuitively, this leaves little room between I(R) for spacelike slices that contain
R and enter the horizon very early. We will now argue that there exist no nice slices
containing R that intersect the horizon at or earlier than

Vo = Vi(r)nz — 72 lPage » (4.2)

where o ~ O(1).

One of the necessary conditions for niceness is that the trace of the extrinsic curva-
ture, K, is not too large. The precise condition is not clear to us. The early literature
on nice slices [9, 10] suggests |K| < 1/lp, but this may be too stringent. (In four or
more spacetime dimensions, it would exclude slices that contain the Hawking radiation

— 13 —



R and its entanglement island.) We shall use the more lenient necessary condition

K| <~ (ﬁ) (4.3)

Ir \Up

where n > 0 is an unknown fixed constant, and ¢ is a characteristic scale of the geometry
(here, ¢ ~ rg). We will see that even this rather weak niceness condition cannot be
satisfied for any n, because | K| becomes exponentially large at early times.

Let ¥ be a left-right symmetric smooth Cauchy slice. (Thus, we assume that
niceness cannot be rescued by using a slicing that spontaneously breaks the left-right
symmetry.) X is fully determined by a function 7' = T%(X). I(R) is given by T =
| X| — Up. For ¥ to contain R we must have Ty > |X| — Up. In the Rindler region, the
extrinsic curvature is well approximated by

T//

Ky = (1—T72)3/2°

(4.4)
So long as Y is spacelike, this quantity is real.

Let 3 intersect the horizon at (U = 0,V}). The timelike proper distance between
the intersection and (—Uy, —Up) is given by +/(Vj, + Uy)Up. The smaller this distance,
the larger |Ky| needs to be if 3 is not to become spacelike separated from R. To see
this, first consider the special case where Tx(0) is small enough to be in the Rindler
region, with 77(0) arbitrary. Given an upper bound K., on the magnitude of the
extrinsic curvature, one finds for | X| > 1/Kax:

1 1

Tx(X) < Tx(0) - T 700 Ko [1 = T"(0)sgn(X)] + | X] . (4.5)

Now consider the situation of interest: a slice 3 which intersects the horizon at (U =
0, Vi) with Uy < rge™% and Vj, < TU—ie_WS. (This corresponds to ug past the Page time
and vy, < vy with vy given by Eq. (4.2).) In the Rindler region, the sphere (U = 0,V})
is related by a boost to the sphere (X = 0,7°(0)) with 7°(0) = —Uy + +/ (Vi + Up) Up.
By Eq. (4.5), there exists no solution for ¥ with subexponential extrinsic curvature.
The only alternative to the presence of a quantum singularity is that the theorem
fails, which means that one of its assumptions must fail. Indeed, if there were no
restriction on the extrinsic curvature on a semiclassical slice, then the example in this
subsection could be viewed as a violation of the quantum Bousso bound. Moreover,
in the special case where B is precisely the black hole interior, the example would
furnish a violation of the Generalized Second Law of thermodynamics. Our viewpoint
is that these assumptions are valid in the semiclassical regime, and that the theorem
has simply uncovered a (possibly surprising) limitation of the semiclassical regime.
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In simple models models where the entropy is approximated by a two dimensional
CFT (see e.g. [16, 17, 19, 20]), it is easy to show that the quantum focusing conjecture
is satisfied along H~(B), even if we ignore the restriction to nice slices. In particular,
the quantum expansion formally exists and remains negative along H~(B). However,
the quantum Bousso bound is still violated by the (non-nice) slice that stays below the
black hole. It is important to emphasize that starting with Sge, on a nice slice, and then
integrating the quantum expansion, is a valid method for computing the generalized
entropy of any other nice slice. In particular one is permitted to continue past caustics
and self-intersections. Such features are generic, so this is a crucial ingredient in im-
portant semiclassical generalization of classical theorems. The problem in the present
example is different: the slices do not stay nice.

If one ignores this limitation, integration of ©2“% formally yields negative values of
Sgen Well before the tip of the event horizon is reached, followed by a discontinuity when
the slices no longer intersect H~(B). (To see this for an evaporating black hole, note
that the quantum expansion along the horizon is to a good approximation independent
of whether slices end at spatial infinity or at null infinity, and hence, so is the integrated
change in Sgen. But the latter can be much greater than the generalized entropy of the
complement of B U R when R is the Hawking radiation sufficiently far past the Page
time.) Sgen < 0 has no interpretation as a von Neumann entropy in a fundamental
theory, so this would be a nonsensical conclusion.

One might be tempted to “save” the GSL and the quantum Bousso bound for
non-nice slices, by observing that the exact von Neumann entropy of R receives non-
perturbative corrections, which cause it to be bounded above by the Bekenstein-
Hawking entropy of the black hole. This is not correct.

First, the quantum Bousso bound is a semiclassical bound and is expected to
apply to the semiclassical state, not to the nonperturbatively correct state. The same
is true for the generalized second law. Calculating the generalized entropy outside of an
evaporating black hole using the exact von Neumann entropy of radiation results in the
violation of the generalized second law after the Page time, but in the semiclassical state
the entropy of radiation increases throughout the process of evaporation, upholding the
generalized second law.

Secondly, the conditions of our theorem can be satisfied even when there is no
difference between the semiclassical and exact von Neumann entropy of R. For example,
take Uy to correspond to a few scrambling times, rather than the Page time. Then there
exists a nonminimal quantum extremal surface associated to R. Now, consider moving
this surface in the outward past null direction towards I(R). In simple 141 models
with CFT matter, one finds that the generalized entropy of the enclosed region union R
decreases without bound. Therefore, at some point along the deformation the regions
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become hyperentangled. Furthermore, one can check that the quantum expansion also
has the correct sign needed for the singularity theorem. However, again any Cauchy
slice containing R and dipping below the past tip of the event horizon necessarily has
exponential extrinsic curvature. We view this as additional evidence for our nice slice
criterion. (In fact, the above construction fails to yield a region that satisfies the
assumptions of our theorem on a nice slice.)

4.2 Classical vs. Quantum Singularity in Kerr-Newman Black Holes

Here we will discuss the singularity theorem applied to the future of B. In the
Schwarzschild solution, the generators of H™(B) are obviously incomplete due to the
curvature singularity at r = 0, validating the prediction of our theorem. In charged
or rotating black holes, however, the generators of H(B) contain their endpoints, ap-
parently violating Theorem 3.1. For simplicity, we will discuss this in detail for the
Hartle-Hawking state of the maximally exteneded Reissner-Nordstrom black holes of
nonzero charge, though we expect the main lessons to generalize to Kerr and Kerr-
Newman black holes. The metric is given by:

ds? = — f(r)de® + f(r)dr® 4 r2d% (4.6)

where

fr) = ( - T—*) (1 - T—‘) . (4.7)

T r

We pick R to be the union of the asymptotic region similar to subsection 4.1 and B a
late time slice of the interior such that B is hyperentangled with R. Furthermore, the
quantum expansion of BU R along H"(B) can be easily arranged to be negative since
the area variation towards the interior is large and negative. Therefore, it is easy to
satisfy the conditions of our theorem towards H*(B). See Fig. 4.

In the classical Reissner-Nordstrom background, the generators of H*(B) contain
their endpoints (see Fig. 6). These lie on a sphere p near the inner horizon bifurcation
surface, of radius r_ +dr. The region B is located around the Page time at the earliest,
which implies

4
or S Lexp (—%) , (4.8)

where L is some function of ;. and r_, and « is an order one coefficient. Therefore,
is exponentially close to the inner horizon bifurcation surface.

We do not expect that any nice slice containing R reaches the future of u. As
evidence for this, consider a constant r slice which crosses p or its future. Its extrinsic
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Figure 6. In the Kerr-Newman geometry, the region which is exponentially close to the inner
horizon in area radius (shown in red) has the property that any Cauchy slice intersecting it
necessarily has exponentially large extrinsic curvature somewhere. In the classical geometry,
the generators of H(B) come to an end on a sphere p inside the red region. Therefore, a
Cauchy slice (shown in black) which is nowhere to the past of H*(B) has exponentially large
extrinsic curvature.

curvature satisfies

T+

K> g éexp<o”i ) . (4.9)

~ Lr_ 2r: G

There is a second, seemingly independent reason why the semiclassical geometry
may not contain y, and hence will satisfy the prediction of a singularity by Theorem 3.1.
Quantum corrections to the matter stress tensor are known to become important near
the inner horizon for a generic set of black hole parameters [21-25].5 For a simple toy
model in which this can be shown, consider conformal matter in a 1+1 dimensional
Reissner-Nordstrom background. The metric is

ds* = —f(r)dudv , (4.10)

with w =t — r* and v =t 4+ r* where dr* = dr/f(r). Setting the infalling flux to zero,

SFor rotating BTZ, the stress tensor at leading order can be regular at the inner horizon [26].
However, it has been argued that subleading corrections lead to a divergence [27].
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the trace anomaly and conservation of the stress tensor imply:

2 2
K2 — K7

(T kK" ~ c , (4.11)

r2
where k* = 0,, k. and k_ denote the outer and inner horizon surface gravities and ¢
denotes the central charge of the CF'T. Here we have added powers of r by dimensional
analysis to turn (4.11) into an equation for 3+1 dimensions. A detailed derivation of
the stress tensor can be found in [24] where it is shown that the coefficients in Eq. (4.11)
are more complicated. We assume here that Eq. (4.11) is valid qualitatively for all d,
though the detailed dependence on 74+ may be more complicated.

The stress tensor given in Eq. (4.11) seems regular because in (u, v) coordinates the
inner horizon is at infinity. In coordinates which are regular in a neighborhood of the
inner horizon, the stress tensor can be shown to diverge. Here it is important to show
that Eq. (4.11) will cause a large deviation of the metric from the classical geometry
in a neighborhood of the inner horizon. The location r at which the geometry gets
O(1) corrections from this stress tensor can be estimated by inspecting Raychaudhuri’s
equation for a spherically symmetric congruence near the inner horizon:

2

0,0, = K0, — dev T~ 8mG(Tyy) (4.12)

where k, is the inaffinity. The quantum stress tensor becomes comparable to the other
terms for r — r_ < rpa where

4
P — T~ ——— (4.13)

Therefore as long as ry — r_ is not exponentially small in 1/G, it is clear that the
generators of H1(B) exit the region which is well-approximated by the classical solu-
tion (4.6). To further understand the nature of the incompleteness of H*(B) would
require knowledge of the correct geometry which is beyond the scope of this work. A
natural guess would be that the geometry terminates at a spacelike singularity, directly
upholding theorem 3.1. See Fig. 7.

Our analysis has shown that quantum singularities blurs the line between an or-
dinary singularities and a Cauchy horizon. Even if quantum backreaction does not
create an ordinary singularity, a quantum singularity forms before a Cauchy horizon
can be reached. This may have some bearing on the strong cosmic censorship hy-
pothesis, that physically reasonable spacetimes are globally hyperbolic. Strong cosmic
censorship appears to be violated in the final stages of black hole evaporation and of
the Gregory-Laflamme instability. These violations are in some sense small [28] and
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Tmax

Figure 7. (a) Generically the expectation value of the quantum stress tensor diverges near
the inner horizon, causing large backreaction (grey). The generators of HT(B) encounter
this region, and our singularity theorem predicts that they are incomplete. The quantum-
corrected geometry is not known, but the singularity theorem predicts that it either fails to
admit nice slices or has a curvature singularity as shown in (b).

should perhaps be ignored. The classical Kerr-Newman solution is of greater concern.
The fact that our theorem treats quantum singularities on the same footing as classical
singularities encourages us to think of the evolution near the inner horizon as becoming
singular, since no nice slices are available. We should treat this quantum singularity no
differently than a classical one. Hence we need not rely on arguments that the backre-
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action from quantum effects would invalidate the classical Kerr-Newman solution near
the inner horizon. Let N be the past neighborhood of the inner horizon that cannot
be reached by nice global Cauchy slices. We should treat N the same as the small past
neighborhood N of the Schwarzschild singularity in which scalar curvature invariants
approach or exceed the Planck scale: N should not be part of the physical spacetime,
the semiclassical geometric description terminates at the past boundary of N, and any
geometric extensions of M — N that we could consider are physically meaningless.
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