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Abstract: Two spatial regions B and R are hyperentangled if the generalized entropy

satisfies SB[R
gen < SR

gen. If in addition all future (or all past) directed inward null shape

deformations of B decrease SB[R
gen , then we show that the causal development of B, with

R held fixed, must be incomplete. This result eliminates the Null Energy Condition

from the assumptions of a recently proven singularity theorem. Instead, we assume a

quantum version of the Bousso bound.

Taking R to contain the Hawking radiation after the Page time, our theorem pre-

dicts a singularity in the past causal development of the black hole interior. This is

surprising because the classical spacetime is nonsingular in the past. However, one finds

that Cauchy slices that are required to contain R do not remain in the semiclassical

regime. The quantum singularities predicted by our theorem are an obstruction to fur-

ther semiclassical evolution, generalizing the singularities of classical general relativity.ar
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1 Introduction

A spacetime M is singular if it contains an incomplete timelike or null geodesic [1]

(an inextendible geodesic of finite a�ne length). Physically relevant examples include

the past singularity in certain cosmological solution—the “big bang”—and the future

singularity that terminates time evolution inside a Schwarzschild black hole.

Singularities are generic in classical general relativity. A theorem by Penrose [2]

guarantees that at least one of the null geodesics orthogonal to a trapped surface is

incomplete. A surface is trapped if both sets of future-directed orthogonal null geodesics

have negative expansion.

Penrose’s theorem requires two crucial assumptions about the spacetime: M must

admit a noncompact Cauchy surface; andM must satisfy the Null Curvature Condition,

Rabkakb � 0, where Rab is the Ricci tensor and ka is any null vector.

A recent result [3] has established a connection between singularities and quantum

information: the noncompactness assumption can be eliminated from Penrose’s theo-

rem, if instead the spacetime is assumed to satisfy the Bousso bound [4] on the entropy

of matter.

The Null Curvature Condition can also be eliminated. This is important, because

it it is known not to hold in Nature. By Einstein’s equation, it is equivalent to the Null

Energy Condition, that Tabkakb � 0, where Tab is the stress tensor. Any relativistic
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Figure 1. The quantum Bousso bound (Conjecture 2.22): if the quantum expansion at @B

in the direction of B0 is nonpositive then S
B0
gen  S

B
gen.

quantum field theory, such as the Standard Model, contains states in which the expec-

tation value of the stress tensor, hTabi, violates this condition [5]. Wall [6] eliminated

the Null Curvature Condition from Penrose’s theorem, by assuming instead that the

Generalized Second Law (GSL) holds in M . The GSL is the statement that the gener-

alized entropy—the sum of horizon area and von Neumann entropy of the matter fields

outside a causal horizon—cannot decrease. A causal horizon is the boundary of the

past of a timelike or null curve of infinite a�ne length; examples include black hole,

Rindler, and de Sitter horizons. Unlike for the NCC, there is no known counterexample

to the GSL. There is considerable evidence for its validity, and it has been proven to

hold on Killing horizons [7].

In this paper, we combine the advances of Refs. [3, 6], using a single assumption, a

quantum refinement of the Bousso bound [8]. This bound says that if the generalized

entropy outside a Cauchy-splitting null hypersurface L is decreasing towards the future

(resp. past) at some moment of time, then it must be lower at all future (past) times.

See Fig. 1; and see Conj. 2.22 below for a more precise statement. The quantum Bousso

bound implies the GSL as a special case.

We will prove that the quantum Bousso bound implies a singularity theorem for

hyperentangled regions, Theorem 3.1 below. See Fig. 2. We call a spatial region B

hyperentangled if B possesses a purification that reduces the entropy by more than the

Bekenstein-Hawking entropy of B. More precisely, B is hyperentangled if

SB[R
gen < SR

gen (1.1)

for some spacelike-separated region or external system R, where Sgen is the generalized

entropy. We assume in addition that B [ R has negative inward quantum expansion
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Figure 2. Quantum singularity theorem for a hyperentangled region B. (a) Collapsing star

entangled with a distant reference system. At late times the entanglement entropy exceeds the

surface area of the star and the theorem predicts a future singularity. This is the (ordinary)

singularity of the black hole. (b) Evaporating black hole after the Page time. The black hole

interior B and distant Hawking radiation R are hyperentangled, and the theorem predicts

both a future and a past singularity. The latter is a quantum singularity: it arises from the

breakdown of semiclassical evolution in the red region when R is held fixed.

at @B, i.e., that SB[R
gen decreases under shape deformations of B along a past-directed

(or a future-directed) ingoing null congruence.

Under these assumptions, we prove that at least one null geodesic in the congru-

ence is incomplete, in any spacetime obtained from semiclassical evolution on Cauchy

surfaces that all contain R.

We shall see through the study of examples that the quantum Bousso bound,

and indeed the GSL, are surprisingly restrictive when Cauchy evolution is limited to

slices containing R. As a result, spacetimes that satisfy this bound admit a novel,

R-dependent notion of singularity. Our theorem captures such singularities. We be-

lieve that the notion of R-dependent singularities in semiclassical gravity has not been

discussed in the literature, so we will do so now.

In classical General Relativity, the inclusion of R in all Cauchy slices would be

a trivial restriction for the purposes of our theorem. As shown in Fig. 3, slices that

contain R foliate M � I(R), where I(R) is the union of the chronological past and

future of R. The Cauchy horizon H±(B) is a subset of M � I(R), so if it contains an
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Figure 3. M/R (green) is a spacetime covered by nice slices that contain R. In general this

semiclassical region is a proper subset of the region M � I(R) (red+green) covered classically

by Cauchy slices that contain R. Generators of H±(B) may be incomplete in M/R even if

they would be complete in M � I(R). This reflects a real obstruction to further semiclassical

evolution which we call a quantum singularity.

incomplete geodesic, then so does M .

However, in semiclassical gravity, Cauchy slices must be “nice.” That is, the data

on each slice must be compatible the validity of an e↵ective field theory description

with a cuto↵ below the Planck scale.1 The boundary of M � I(R) is null; therefore,

it contains distinct points with zero spatial distance, and nice slices that contain R

cannot approach it arbitrarily closely; see Fig. 3.

Thus, only a subset M/R ⇢ M � I(R) can be obtained by semiclassical evolution

along Cauchy surfaces that all contain R. Hence it is possible for H±(B) to contain a

geodesic that is incomplete in any semiclassically allowed spacetime M/R, even though

it would be complete in the (larger but semiclassically unattainable) M � I(R). We

call a singularity that arises in this manner a quantum singularity.

1We are not aware of a first-principles derivation of the precise inequalities that “niceness” implies
for scalar quantities extracted from the initial data on a slice. A plausible set of criteria was outlined
in Ref. [9, 10]. To understand the quantum singularities predicted by our theorem in the examples
we study here, we need only require a rather weak niceness condition on the trace of the extrinsic
curvature; see Sec. 4.
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Outline In Sec. 2, we define a semiclassical spacetime as a globally hyperbolic man-

ifold M with metric gab and quantum state ⇢ whose stress tensor expectation value

satisfies the Einstein equation, Gab = 8⇡G hTabi. In addition, M must admit a “nice

slicing.” That is, time evolution must be consistent with the validity of an e↵ective

field theory description, with an ultraviolet cuto↵ ⇤ ⌧ MP , where MP is the Planck

mass. We formulate the main assumption of our theorem, the quantum Bousso bound,

and we clarify that it applies to nice slices only.2

After proving our theorem in Sec. 3, we discuss two nontrivial applications. In

Sec. 4.1, we consider an evaporating black hole formed from regular initial conditions.

We apply our theorem to the black hole interior B after the Page time; R is the Hawking

radiation emitted so far. In this case a singularity is predicted along the black hole

horizon to the past of B.

This is a quantum singularity. It appears because we are holding R fixed, thus

excluding the region R from participating in the semiclassical evolution. On nice slices

that contain the Hawking radiation, the horizon cannot be evolved far into the past.

Hence the horizon generators are incomplete in M/R. The semiclassically allowed space-

time M/R is substantially smaller than M � I(R), which contains the entire black hole

horizon.

In Sec. 4.2, we consider the Kerr-Newman solution in the Hartle-Hawking state. We

again consider the black hole interior B at a su�ciently late time, when it is entangled

with distant radiation R. Our theorem predicts a singularity before the inner horizon.

In the classical Kerr-Newman solution, the region between the inner and outer horizons

is regular, so this conclusion is of some interest. We discuss its potential relevance to

the strong cosmic censorship hypothesis.

2 Semiclassical Gravity

2.1 Causal Structure

Convention 2.1. Everywhere below, M will denote a time-orientable globally hyperbolic

spacetime. (M may be extendible.) We use an overdot to represent the boundary of a

subset of M .

Convention 2.2. Everywhere below, B will denote a closed subset of a Cauchy slice N

of M , such that @B is a compact codimension 2 submanifold of M and B � @B 6= ?.

Here @B denotes the boundary of B in the induced topology of N .
2We also comment on Ref. [11], which asserts a di↵erent regime of validity of the quantum Bousso

bound (and, implicitly, of the GSL), and which arrives at conclusions di↵erent from ours.
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Definition 2.3. The chronological and causal future and past, I±(K) and J±(K), of any

set K ⇢ M are defined as in Wald [1]. For K = { p }, we drop the set brackets. Key

consequences of these definitions include: p /2 I+(p) but p 2 J+(p), and I+(K) is open.

Definition 2.4. For any set K ⇢ M , we define its domain of influence as the union of

K and all points that can be reached by a timelike curve from K: I(K) ⌘ I+(K) [
I�(K) [K.

Definition 2.5. For any closed achronal set K ⇢ M , the future domain of dependence,

D+(K), is the set of points p such that every past-inextendible causal curve through

p must intersect K. The past domain of dependence, D�(K), is defined analogously.

The domain of dependence is D(K) ⌘ D+(K)[D�(K). The future Cauchy horizon is

H+(K) ⌘ D+(K)� I�[D+(K)].

Definition 2.6. Let M be a spacetime with Cauchy surface N . (N or M may be

extendible.) Let B ⇢ ⌃. We say that B is future singular in M if its Cauchy horizon

H+(B) contains an incomplete geodesic; i.e., a geodesic that is future-inextendible in

M but of finite a�ne length. Otherwise, we call B future complete in M .

2.2 Kinematics

Definition 2.7. A nice global slice is an inextendible Cauchy surface ⌃ whose intrinsic

and extrinsic geometry and quantum state ⇢(⌃,⇤) can be fully described using a cuto↵

scale ⇤ ⌧ MP . In particular, curvature scalars and energy densities that can be

constructed from the normal vector to ⌃ must be sub-Planckian.

Definition 2.8. Let ⌃ be a nice global slice of M , with associated cuto↵ scale ⇤ ⌧ MP .

Let B be defined as in Convention 2.2. If the intrinsic and extrinsic geometry of @B is

well resolved at the cuto↵ ⇤ (that is, when @B is put on a lattice with characteristic

scale ⇤�1), then we call B a nice partial slice, and the quantum state on B is defined

as

⇢(B,⇤) = tr⌃�B ⇢(⌃,⇤) , (2.1)

Definition 2.9. We call N a nice slice if N is a nice global slice or a nice partial slice.

Definition 2.10. Let N be a nice slice with associated cuto↵ scale ⇤. The generalized

entropy of N is

SN
gen =

Area(@N)

4G(⇤)~ + . . .+ S(N,⇤) , (2.2)

where G(⇤) is the e↵ective Newton constant at the scale ⇤, and

S(N,⇤) = � trN ⇢(N,⇤) log ⇢(N,⇤) (2.3)
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is the von Neumann entropy of the quantum fields on N at the scale ⇤. The area term

is the leading gravitational counterterm. The subleading gravitational counterterms

are indicated by “. . .”; see Ref. [12] for details.

Remark 2.11. Niceness of N is required in the above definition since otherwise G(⇤)

is not operationally defined, for example as the e↵ective gravitational coupling in a

scattering process. The boundary of a nice global slice (N = ⌃) vanishes. The boundary

of a nice partial slice (N = B) is understood to be defined in a completion ⌃ � N ,

where ⌃ is a nice global slice. Neither the boundary area nor the generalized entropy

of N will depend on the choice of completion.

Conjecture 2.12. The generalized entropy is cuto↵-independent, in the following sense.

Suppose that the slice N is nice with respect to two di↵erent scales ⇤ and ⇤0. Under

⇤ ! ⇤0, both terms in Eq. (2.2) will change, but their sum will not. For references

supporting this claim, see the Appendix of Ref. [8].

2.3 Dynamics

Definition 2.13. A slicing of the spacetime (M, g) is a continuous map from an open

interval to achronal subsets of M , t ! N(t), such that every point in M is contained

in at least one N(t), and N(t0) ⇢ J+[N(t)] for t0 > t. [Thus, a slicing is not a foliation.

Along a timelike curve �, the proper time of � \ N(t) increases monotonically with t,

but not strictly so.]

Definition 2.14. A Cauchy slicing of (M, g) is a slicing such that each N(t) is a Cauchy

surface of M .

Definition 2.15. A nice Cauchy slicing of (M, g) is a Cauchy slicing such that each N(t)

is a nice slice with the same associated cuto↵ ⇤ ⌧ MP . A collection of nice Cauchy

slicings with cuto↵ ⇤ will be denoted S⇤.

Definition 2.16. A semiclassical spacetime is a quadruplet (M, g,S⇤, ⇢). Here M is

a globally hyperbolic manifold with metric g. S⇤ is a nonempty set of nice Cauchy

slicings. For each slicing, ⇢(N(t),⇤) solves the Schrödinger equation of the quantum

fields. The expectation values of local operators do not depend on the slicing. Finally,

Gab = 8⇡G(⇤) hTabi+ . . . , (2.4)

where Gab is the Einstein tensor computed from g, Tab is the stress tensor (viewed as

an operator), and “. . .” stands for higher-curvature corrections.

Remark 2.17. The above definition ignores gravitons; this can be justified by taking

the number of matter fields to be large. The Cauchy slices of M may be partial and

hence extendible; and in any case M may be extendible.
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Remark 2.18. Given a nice slice N(0), one can solve the quantum field theory and

Einstein’s equation iteratively in G~, in some open neighborhood of N(0), and thus

generate a semiclassical spacetime.

Definition 2.19. Let N be a nice Cauchy slice in a semiclassical spacetime M , and let

R ⇢ N , R 6= N . A semiclassical spacetime with nice slicing N/R(t) will be called a

reduction of M by R and will be denoted M/R, if for every t, N/R(t)[R is a nice slice of

M . (See Fig. 3 for an example.)

Definition 2.20. Let M be a semiclassical spacetime, and let B ⇢ M be a nice partial

slice. The future-directed ingoing quantum expansion of B at y 2 @B is the rate of

change of the generalized entropy under a shape deformation of B along the ingoing

future-directed null congruence orthogonal to @B:

⇥B
+(y) =

4G~p
h(y)

�Sgen[V ]

�V (y)

����
@B

. (2.5)

Here h is the area element of the induced metric on @B. The functional derivative is

taken with respect to the a�ne parameter V (y) along the congruence that specifies the

location of cuts of the congruence such as @B.

The past-directed ingoing quantum expansion is defined analogously. Outgoing

quantum expansions are related to the ingoing ones by a change of sign and exchange

of past and future.

Remark 2.21. The functional derivative in Eq. (2.5) is an idealization that suppresses

the cuto↵ ⇤. The quantum expansion is well-defined only if one of the nice Cauchy

slicings of M contains slices that contain B and its shape deformation. In particular,

this excludes deformations whose transverse support near y is localized to better than

⇤�1 [13].

Conjecture 2.22 (Quantum Bousso Bound). LetM be a semiclassical spacetime, and let

N and N 0 be slices in one of the nice Cauchy slicings of M . Let B ⇢ N be a nice partial

slice, and let @B+ (@B�) be the subset of @B with positive (negative) future-directed

inward quantum expansion. Let B0 = D(B)\N 0. IfN 0\I+(@B+) = N 0\I�(@B�) = ?,

then

SB0

gen  SB
gen . (2.6)

Remark 2.23. The above conjecture was originally obtained as a consequence of the

Quantum Focusing Conjecture [8]. However, its derivation was somewhat heuristic

and omitted a careful regularization of points where null generators leave İ(C). Here

we will assume Conjecture 2.22 directly. The original Bousso bound [4] follows in the

limit where ⇥ is well approximated by the classical expansion and M satisfies the Null

Curvature Condition.
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Remark 2.24. (Note added.) Compared to our Conj. 2.22, Rolph [11] imposes the

additional requirement that B0 6= ?, and more strongly that N 0 must intersect every

connected component of D(B). We believe this restriction is too strong and also unnec-

essary. An important manifestation of the GSL is the fact that the generalized entropy

outside the horizon of a black hole is larger than the the (ordinary) entropy before the

black hole has formed. This key feature follows from the quantum Bousso bound only

if B0 = ? is allowed. On the other hand, Ref. [11] does not restrict the application

of the bound and of the GSL to nice slices. We believe that this is too permissive,

even when combined with the restriction to nonempty B0 advocated in Ref. [11]. As

we discuss at the end of Sec. 4.1, the generalized entropy becomes negative and stops

making sense on slices allowed by this set of criteria.3

3 Singularity Theorem

Theorem 3.1 (Singularity Theorem for Hyperentangled Regions). Let M be a semi-

classical spacetime with nice Cauchy slice N . Let the disjoint union B[R ⇢ N be a nice

slice, with @B compact. Suppose that the future-directed inward quantum expansion of

B [R is negative everywhere on @B:

⇥B[R
+ (y) < 0 for all y 2 @B . (3.1)

Suppose moreover that B is hyperentangled with R, that is:

SBR
gen < SR

gen . (3.2)

Let M/R be a reduction of M by R (see Def. 2.19). Assuming Conjecture 2.22 (Quantum

Bousso Bound), B is future singular in M/R, i.e., H
+(B)\M/R contains an incomplete

null geodesic.

Proof. The Cauchy horizon H+(B) is topologically the direct product of @B with the

future-inward directed null geodesics orthogonal to @B, up to possible identifications

of their endpoints on H+(B). By Eq. (3.1), no null geodesic can remain on H+(B) for

infinite a�ne time [7].4 Assuming for contradiction that B is future complete in M/R,

3With Rolph’s conditions on the GSL and the quantum Bousso bound, the “island finder” theo-
rem [14] would indeed have a loophole as claimed in Ref. [11]. With ours, it does not. In the case of
concern to Ref. [11], Conj. 2.22 would be violated, so a (possibly quantum) singularity must form. (In
the maximin formalism [15], it is necessary to assume that the maximin slice is repelled by singularities.
We propose that this feature extends to quantum singularities.)

4For if such a geodesic � did exist, then İ
�(�) would be a causal horizon, and by the Generalized

Second Law, ⇥(I�(�)\N)[R
+ � 0. By construction, I�(�) ⇢ B and @B touches İ

�(�) at p = � \ @B.

By Theorem 3 of Ref. [6], ⇥B[R
+ (p) � ⇥(I�(�)\N)[R

+ (p) � 0, which contradicts Eq. (3.1).

– 9 –



it follows that H+(B) contains the endpoints of all of its generators. Compactness of

@B then implies that H+(B) is compact.

Let N/R(0) = N � R, and assume for contradiction that N/R(t) \ H+(B) 6= ; for

all t � 0. Let tn be a monotonically increasing sequence that converges to the upper

bound of the time interval for which the slicing N/R(t) is defined (or diverges to 1 if

there is no upper bound), and let xn 2 N/R(tn) \H+(B).5 By compactness of H+(B),

the sequence xn has an accumulation point p 2 H+(B). Let q 2 I+(p) and let N/R(tq)

be a slice that contains q. Because a slicing moves forward in time monotonically by

Def. 2.13, there exists a small neighborhood O(p) that no slice with t � tq can intersect.

This contradicts the fact that p is an accumulation point.

Therefore M/R admits a nice slice such that N/R(tabove) \ H+(B) = ;, tabove > 0,

and by Def. 2.19, M admits a nice slice

N 0 ⌘ N/R(tabove) [R (3.3)

that contains R and fails to intersectD(B). N 0 satisfies the assumptions of the quantum

Bousso bound as applied to B [R ⇢ N . (In Conjecture 2.22, substitute B ! B [R.)

Hence

SR
gen  SBR

gen , (3.4)

which contradicts Eq. (3.2). Hence B must be future singular in M/R.

Remark 3.2. Note that the assumption (3.2) cannot be satisfied if R = ?, so any

nontrivial application of the theorem requires a nonempty choice of R. However, R can

be arbitrarily far from B. After a straightforward adaptation of the relevant definitions,

R can even be treated as a nongravitating quantum system that is external to the

spacetime. In that case, M/R can be an inextendible spacetime.

Remark 3.3. The singularity theorem for hyperentropic regions [3] emerges in the limit

as ~ ! 0. In this limit, ⇥ ! ✓, so the quantum expansion is well approximated by the

classical expansion. Moreover, nice slices will cover all of M � I(R) in this limit. If

the entropy in B is not purified by some disjoint region R then an appropriate external

purification can be added.

Remark 3.4. By the previous remark, Theorem 3.1 applies to all of the examples dis-

cussed in Ref. [3], which include several settings where Penrose’s theorem would not

apply. In all cases we must first introduce an external purification R of the matter

entropy in Bi. In the following section, we study examples of singularities predicted by

Theorem 3.1 that have no classical analogue.
5This step invokes the axiom of choice; perhaps this can be eliminated.
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4 Hyperentangled Black Holes

The conditions of Theorem 3.1 can be satisfied by choosing B to be a region in an

evaporating black hole after the Page time, with R a region containing the Hawking

radiation. One can arrange that both quantum expansions are negative, ⇥B[R
± |B < 0,

so the Theorem predicts a singularity both along H+(B) and along H�(B) when R is

held fixed.

Let us discuss this in more detail. A slice of the black hole interior after the Page

time is by definition hyperentangled with the Hawking radiation emitted so far; let R

be the region containing this radiation. By picking B to be the interior of a sphere

which is slightly outside of the horizon one can arrange ⇥B[R
± |B < 0.

Alternatively, one can obtain a region B with these properties by deforming the

island I [16, 17] associated to R. By quantum maximin [18], islands generically satisfy

@`⇥k = @k⇥` < 0, where k and ` are null future-directed orthogonal vectors fields on @I

outward and inward to I respectively. Therefore, by slightly deforming the island in the

future-outward and past-outward null directions, one obtains a hyperentangled region

which satisfies the conditions of Theorem 3.1 both in the future and past directions.

One can also use this method in an eternal black hole coupled to a bath [19] to find a

region B with these properties.

Naively, both the future and the past applications of Theorem 3.1 to such a region

are quite puzzling. Schwarzschild black holes have a singularity along H+(B); but for

a Schwarzschild black hole formed from regular initial conditions, H�(B) is complete

by construction. At the classical level, even H+(B) is complete when charge or angular

momentum is present. Small classical perturbations are believed to produce a spacelike

singularity before the inner horizon, but the conditions of our theorem are satisfied in

the unperturbed Kerr-Newman solution (see Fig. 4).

However, the spacetime M/R covered by nice slices that all contain R is smaller

than M � I(R). We will now argue that this implies that the null generators of both

H+(B) and H�(B) are incomplete in the semiclassically allowed spacetime M/R, as

predicted by Theorem 3.1. In particular, we demonstrate that any Cauchy slicing of

the spacetime M with slices that contain R, the slices that probe the region beyond

the endpoints of H±(B) necessarily have exponentially large extrinsic curvature.

In this section, we speculate on why the semiclassical spacetime M/R might be

smaller than M � I(R) leading to the incompleteness of the generators of both H+(B)

and H�(B), upholding Theorem 3.1. We demonstrate that any Cauchy slicing of the

spacetime M with slices that contain R, the slices that probe the region beyond the

endpoints of H±(B) necessarily have exponentially large extrinsic curvature.
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Figure 4. Kerr-Newman black hole. The inner and outer horizons are shown as dashed

lines. In the Hartle-Hawking state, the conditions of the singularity theorem can be satisfied if

R is a large enough region near null infinity containing Hawking radiation and B the interior

of the black hole containing the purification of the radiation. This is puzzling since all null

generators of both Cauchy horizons H±(B) contain their endpoints in the classical spacetime.

However, semiclassically, H� encounters a quantum singularity when R is fixed; H+ does too,

or else quantum corrections significantly alter the geometry near the inner horizon.

4.1 Quantum Singularity On a Classically Regular Horizon

For concreteness, consider a maximally extended Schwarzschild black hole of radius

rS in the Hartle-Hawking state, in 3+1 spacetime dimensions. Advanced and retarded

time are defined by u = t�r⇤ and v = t+r⇤, where r⇤ = r+rS log |(r/rS)�1|. The near
horizon zone is the region rS < r < 3rS/2; its outer boundary will be denoted Z. Below,

we will also use Kruskal coordinates, U = �2rSe1�u/2rS and V = 2rSe1+v/2rS , which

cover the entire spacetime. (These are slightly nonstandard to match the standard

Rindler coordinates.) We define T = (U + V )/2 and X = (U � V )/2.

Let R be the union of a right asymptotic bulk region and its left mirror image; see

Fig. 5. On the right, R is given by the portion U < �U0 of a constant t slice, with t

chosen large enough for R to be far from the black hole. We choose U0 past the Page

time, that is, U0 . rSe��1S where S is the Bekenstein-Hawking entropy of the black

hole and �1 ⇠ O(1). The boundary of the past of R intersects the boundary of the

near-horizon zone at vİ(R)\Z . Choosing B to be the black hole interior at the same (or
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Figure 5. Schwarzschild black hole. In the Hartle-Hawking state, B and R can be chosen

such that the conditions of the theorem can be satisfied towards the past of B. This is a

quantum singularity: Cauchy slices containing R which intersect the horizon around a Page

time in the past of B (red lines) have exponentially large extrinsic curvature.

slightly earlier) value of v, Theorem 3.1 predicts a singularity along H�(B).

Since the spacetime is classically regular in the past of B, this must be a quantum

singularity. We will now verify this prediction.

For v < vİ(R)\Z , İ
�(R) lies within the Rindler region where the metric is well-

approximated by

ds2 = �dT 2 + dX2 + r2Sd⌦
2 +O(T 2, X2) (4.1)

Intuitively, this leaves little room between İ(R) for spacelike slices that contain

R and enter the horizon very early. We will now argue that there exist no nice slices

containing R that intersect the horizon at or earlier than

v0 = vİ(R)\Z � �2 tPage , (4.2)

where �2 ⇠ O(1).

One of the necessary conditions for niceness is that the trace of the extrinsic curva-

ture, K, is not too large. The precise condition is not clear to us. The early literature

on nice slices [9, 10] suggests |K| ⌧ 1/lP , but this may be too stringent. (In four or

more spacetime dimensions, it would exclude slices that contain the Hawking radiation

– 13 –



R and its entanglement island.) We shall use the more lenient necessary condition

|K| ⌧ 1

lP

✓
`

lP

◆n

(4.3)

where n > 0 is an unknown fixed constant, and ` is a characteristic scale of the geometry

(here, ` ⇠ rS). We will see that even this rather weak niceness condition cannot be

satisfied for any n, because |K| becomes exponentially large at early times.

Let ⌃ be a left-right symmetric smooth Cauchy slice. (Thus, we assume that

niceness cannot be rescued by using a slicing that spontaneously breaks the left-right

symmetry.) ⌃ is fully determined by a function T = T⌃(X). İ(R) is given by T =

|X|� U0. For ⌃ to contain R we must have T⌃ > |X|� U0. In the Rindler region, the

extrinsic curvature is well approximated by

K⌃ =
T 00

(1� T 02)3/2
. (4.4)

So long as ⌃ is spacelike, this quantity is real.

Let ⌃ intersect the horizon at (U = 0, Vh). The timelike proper distance between

the intersection and (�U0,�U0) is given by
p

(Vh + U0)U0. The smaller this distance,

the larger |K⌃| needs to be if ⌃ is not to become spacelike separated from R. To see

this, first consider the special case where T⌃(0) is small enough to be in the Rindler

region, with T 0(0) arbitrary. Given an upper bound Kmax on the magnitude of the

extrinsic curvature, one finds for |X| � 1/Kmax:

T⌃(X) < T⌃(0)�
1p

1� T 0(0)2
1

Kmax
[1� T 0(0)sgn(X)] + |X| . (4.5)

Now consider the situation of interest: a slice ⌃ which intersects the horizon at (U =

0, Vh) with U0 . rSe��1S and Vh . rS
U0
e��2S. (This corresponds to u0 past the Page time

and vh  v0 with v0 given by Eq. (4.2).) In the Rindler region, the sphere (U = 0, Vh)

is related by a boost to the sphere (X = 0, T (0)) with T (0) = �U0 +
p

(Vh + U0)U0.

By Eq. (4.5), there exists no solution for ⌃ with subexponential extrinsic curvature.

The only alternative to the presence of a quantum singularity is that the theorem

fails, which means that one of its assumptions must fail. Indeed, if there were no

restriction on the extrinsic curvature on a semiclassical slice, then the example in this

subsection could be viewed as a violation of the quantum Bousso bound. Moreover,

in the special case where B is precisely the black hole interior, the example would

furnish a violation of the Generalized Second Law of thermodynamics. Our viewpoint

is that these assumptions are valid in the semiclassical regime, and that the theorem

has simply uncovered a (possibly surprising) limitation of the semiclassical regime.
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In simple models models where the entropy is approximated by a two dimensional

CFT (see e.g. [16, 17, 19, 20]), it is easy to show that the quantum focusing conjecture

is satisfied along H�(B), even if we ignore the restriction to nice slices. In particular,

the quantum expansion formally exists and remains negative along H�(B). However,

the quantum Bousso bound is still violated by the (non-nice) slice that stays below the

black hole. It is important to emphasize that starting with Sgen on a nice slice, and then

integrating the quantum expansion, is a valid method for computing the generalized

entropy of any other nice slice. In particular one is permitted to continue past caustics

and self-intersections. Such features are generic, so this is a crucial ingredient in im-

portant semiclassical generalization of classical theorems. The problem in the present

example is di↵erent: the slices do not stay nice.

If one ignores this limitation, integration of ⇥B[R
� formally yields negative values of

Sgen well before the tip of the event horizon is reached, followed by a discontinuity when

the slices no longer intersect H�(B). (To see this for an evaporating black hole, note

that the quantum expansion along the horizon is to a good approximation independent

of whether slices end at spatial infinity or at null infinity, and hence, so is the integrated

change in Sgen. But the latter can be much greater than the generalized entropy of the

complement of B [ R when R is the Hawking radiation su�ciently far past the Page

time.) Sgen < 0 has no interpretation as a von Neumann entropy in a fundamental

theory, so this would be a nonsensical conclusion.

One might be tempted to “save” the GSL and the quantum Bousso bound for

non-nice slices, by observing that the exact von Neumann entropy of R receives non-

perturbative corrections, which cause it to be bounded above by the Bekenstein-

Hawking entropy of the black hole. This is not correct.

First, the quantum Bousso bound is a semiclassical bound and is expected to

apply to the semiclassical state, not to the nonperturbatively correct state. The same

is true for the generalized second law. Calculating the generalized entropy outside of an

evaporating black hole using the exact von Neumann entropy of radiation results in the

violation of the generalized second law after the Page time, but in the semiclassical state

the entropy of radiation increases throughout the process of evaporation, upholding the

generalized second law.

Secondly, the conditions of our theorem can be satisfied even when there is no

di↵erence between the semiclassical and exact von Neumann entropy of R. For example,

take U0 to correspond to a few scrambling times, rather than the Page time. Then there

exists a nonminimal quantum extremal surface associated to R. Now, consider moving

this surface in the outward past null direction towards İ(R). In simple 1+1 models

with CFT matter, one finds that the generalized entropy of the enclosed region union R

decreases without bound. Therefore, at some point along the deformation the regions

– 15 –



become hyperentangled. Furthermore, one can check that the quantum expansion also

has the correct sign needed for the singularity theorem. However, again any Cauchy

slice containing R and dipping below the past tip of the event horizon necessarily has

exponential extrinsic curvature. We view this as additional evidence for our nice slice

criterion. (In fact, the above construction fails to yield a region that satisfies the

assumptions of our theorem on a nice slice.)

4.2 Classical vs. Quantum Singularity in Kerr-Newman Black Holes

Here we will discuss the singularity theorem applied to the future of B. In the

Schwarzschild solution, the generators of H+(B) are obviously incomplete due to the

curvature singularity at r = 0, validating the prediction of our theorem. In charged

or rotating black holes, however, the generators of H+(B) contain their endpoints, ap-

parently violating Theorem 3.1. For simplicity, we will discuss this in detail for the

Hartle-Hawking state of the maximally exteneded Reissner-Nordstrom black holes of

nonzero charge, though we expect the main lessons to generalize to Kerr and Kerr-

Newman black holes. The metric is given by:

ds2 = �f(r)dt2 + f(r)�1dr2 + r2d⌦2
d�1 , (4.6)

where

f(r) =
⇣
1� r+

r

⌘⇣
1� r�

r

⌘
. (4.7)

We pick R to be the union of the asymptotic region similar to subsection 4.1 and B a

late time slice of the interior such that B is hyperentangled with R. Furthermore, the

quantum expansion of B [R along H+(B) can be easily arranged to be negative since

the area variation towards the interior is large and negative. Therefore, it is easy to

satisfy the conditions of our theorem towards H+(B). See Fig. 4.

In the classical Reissner-Nordstrom background, the generators of H+(B) contain

their endpoints (see Fig. 6). These lie on a sphere µ near the inner horizon bifurcation

surface, of radius r�+�r. The region B is located around the Page time at the earliest,

which implies

�r . L exp

✓
�
↵r4+
r2�G

◆
, (4.8)

where L is some function of r+ and r�, and ↵ is an order one coe�cient. Therefore, µ

is exponentially close to the inner horizon bifurcation surface.

We do not expect that any nice slice containing R reaches the future of µ. As

evidence for this, consider a constant r slice which crosses µ or its future. Its extrinsic
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Figure 6. In the Kerr-Newman geometry, the region which is exponentially close to the inner

horizon in area radius (shown in red) has the property that any Cauchy slice intersecting it

necessarily has exponentially large extrinsic curvature somewhere. In the classical geometry,

the generators of H+(B) come to an end on a sphere µ inside the red region. Therefore, a

Cauchy slice (shown in black) which is nowhere to the past of H+(B) has exponentially large

extrinsic curvature.

curvature satisfies

K &

2

4

⇣
r+
r�

� 1
⌘

L r�

3

5

1
2

exp

✓
↵r4+
2r2�G

◆
. (4.9)

There is a second, seemingly independent reason why the semiclassical geometry

may not contain µ, and hence will satisfy the prediction of a singularity by Theorem 3.1.

Quantum corrections to the matter stress tensor are known to become important near

the inner horizon for a generic set of black hole parameters [21–25].6 For a simple toy

model in which this can be shown, consider conformal matter in a 1+1 dimensional

Reissner-Nordstrom background. The metric is

ds2 = �f(r) du dv , (4.10)

with u = t� r⇤ and v = t+ r⇤ where dr⇤ = dr/f(r). Setting the infalling flux to zero,

6For rotating BTZ, the stress tensor at leading order can be regular at the inner horizon [26].
However, it has been argued that subleading corrections lead to a divergence [27].
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the trace anomaly and conservation of the stress tensor imply:

hTµ⌫k
µk⌫i ⇠ c

2
� � 2

+

r2
, (4.11)

where kµ = @v, + and � denote the outer and inner horizon surface gravities and c

denotes the central charge of the CFT. Here we have added powers of r by dimensional

analysis to turn (4.11) into an equation for 3+1 dimensions. A detailed derivation of

the stress tensor can be found in [24] where it is shown that the coe�cients in Eq. (4.11)

are more complicated. We assume here that Eq. (4.11) is valid qualitatively for all d,

though the detailed dependence on r± may be more complicated.

The stress tensor given in Eq. (4.11) seems regular because in (u, v) coordinates the

inner horizon is at infinity. In coordinates which are regular in a neighborhood of the

inner horizon, the stress tensor can be shown to diverge. Here it is important to show

that Eq. (4.11) will cause a large deviation of the metric from the classical geometry

in a neighborhood of the inner horizon. The location r at which the geometry gets

O(1) corrections from this stress tensor can be estimated by inspecting Raychaudhuri’s

equation for a spherically symmetric congruence near the inner horizon:

@v✓v = v✓v �
✓2v

d� 1
� 8⇡GhTvvi (4.12)

where v is the ina�nity. The quantum stress tensor becomes comparable to the other

terms for r � r� . rmax where

rmax � r� ⇠
G
⇣
1� r4�

r4+

⌘

r4�
(4.13)

Therefore as long as r+ � r� is not exponentially small in 1/G, it is clear that the

generators of H+(B) exit the region which is well-approximated by the classical solu-

tion (4.6). To further understand the nature of the incompleteness of H+(B) would

require knowledge of the correct geometry which is beyond the scope of this work. A

natural guess would be that the geometry terminates at a spacelike singularity, directly

upholding theorem 3.1. See Fig. 7.

Our analysis has shown that quantum singularities blurs the line between an or-

dinary singularities and a Cauchy horizon. Even if quantum backreaction does not

create an ordinary singularity, a quantum singularity forms before a Cauchy horizon

can be reached. This may have some bearing on the strong cosmic censorship hy-

pothesis, that physically reasonable spacetimes are globally hyperbolic. Strong cosmic

censorship appears to be violated in the final stages of black hole evaporation and of

the Gregory-Laflamme instability. These violations are in some sense small [28] and
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Figure 7. (a) Generically the expectation value of the quantum stress tensor diverges near

the inner horizon, causing large backreaction (grey). The generators of H+(B) encounter

this region, and our singularity theorem predicts that they are incomplete. The quantum-

corrected geometry is not known, but the singularity theorem predicts that it either fails to

admit nice slices or has a curvature singularity as shown in (b).

should perhaps be ignored. The classical Kerr-Newman solution is of greater concern.

The fact that our theorem treats quantum singularities on the same footing as classical

singularities encourages us to think of the evolution near the inner horizon as becoming

singular, since no nice slices are available. We should treat this quantum singularity no

di↵erently than a classical one. Hence we need not rely on arguments that the backre-
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action from quantum e↵ects would invalidate the classical Kerr-Newman solution near

the inner horizon. Let N be the past neighborhood of the inner horizon that cannot

be reached by nice global Cauchy slices. We should treat N the same as the small past

neighborhood N of the Schwarzschild singularity in which scalar curvature invariants

approach or exceed the Planck scale: N should not be part of the physical spacetime,

the semiclassical geometric description terminates at the past boundary of N , and any

geometric extensions of M �N that we could consider are physically meaningless.
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