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Abstract:

The precision cosmological model describing the origin and expansion history of the universe, with
observed structure seeded at the inflationary cosmic horizon, demands completion in the ultraviolet and
in the infrared. The dynamics of the cosmic horizon also suggests an associated entropy, again requiring
a microphysical theory. Recent years have seen enormous progress in understanding the structure of
de Sitter space and inflation in string theory, and of cosmological observables captured by quantum
field theory and solvable deformations thereof. The resulting models admit ongoing observational
tests through measurements of the cosmic microwave background and large-scale structure, as well as
through analyses of theoretical consistency by means of thought experiments. This paper, prepared
for the TF01 and TF09 conveners of the Snowmass 2021 process, provides a synopsis of this important
area, focusing on ongoing developments and opportunities.
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1 Introduction

The observed universe is very accurately described by a concordance cosmology in which inflation
prepares the initial conditions for the hot Big Bang and ⇤CDM cosmology governs the subsequent
evolution. The development of this precision model involved evolution from a well-motivated and
transformative theory of the quantum origin of structure [1–5], through detailed theoretical predictions
for observables [6], to observations confirming the predictions, most recently by the Planck mission
[7, 8]. The concordance cosmology is a remarkably deep and successful phenomenological model, but it
is not yet a microphysical theory. Instead, it is a starting point for more complete studies of early and
late universe physics, whose observables are ultraviolet-sensitive, i.e. dependent on high-energy physics
[9], and are also dynamically rich in the infrared, i.e. at low energies and late times. One of the cardinal
tasks for any complete formulation of quantum gravity is to give a microphysical explanation of the
accelerating expansion of the universe. The potential energy landscape of string theory provides a
framework for this problem, and recent years have seen significant progress, though not yet a complete
solution.
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Many reviews and white papers — see e.g. [10–12] and [13–19] — recount aspects of research at
the interface of modern string theory, quantum field theory, and cosmology, but none is entirely up
to date in this rapidly evolving field. In this white paper we summarize the status of this important
area along several axes, focusing on exciting recent advances and future prospects.

The rich and highly structured landscape of string theory yields well-developed mechanisms for
de Sitter spacetime, dark energy, and early universe inflation. This connection introduces meaningful,
but model-dependent, observational tests of ideas from string theory. Recent advances include new
classes of compactifications exploiting the rigidity properties of generic internal manifolds, as well as
derivation of explicit control parameters in these and previous de Sitter models. Below we detail these
developments and the new opportunities they raise. We also highlight key features of standard models
of de Sitter space, large-field inflation, and small-field inflation in string theory. In the process, we
emphasize the opportunities in axion physics broadly construed, both because of exciting near-future
observational opportunities and because of the apparent universality of axions within string theory.

Formal low energy e↵ective field theory (EFT) has also seen advances in characterizing infrared
physics in the accelerating universe, including nonperturbative aspects of the wavefunction and prob-
ability distribution for primordial perturbations, such as the strength of the tails. At the same time,
elegant calculations and constraints on correlators related to amplitude and bootstrap theory help to
organize the observables, particularly in highly symmetric versions of inflation. Moreover, deforma-
tions of quantum field theory involving T T̄ [20] and generalizations extend the solvable theory space
relevant for holographically formulating cosmological spacetimes.

In addition to making the connection to real observables, these developments also yield con-
crete progress on the abstract problem of cosmological quantum gravity. Advances here include four-
dimensional de Sitter uplifts of AdS/CFT, emergent geometry and microstate counts from a solvable
generalization of the T T̄ deformation, and new handles on Euclidean quantum gravity e↵ects.

The observational prospects remain bright. Cosmic microwave background (CMB) polarization
studies are progressing in space and on the ground, as are large-scale structure (LSS) surveys, bolstered
by the latest astrophysics decadal process. The latter yields a compelling theoretical challenge to
extract primordial information from LSS using e↵ective theories, simulations, and numerical methods
such as machine learning (ML). This program includes following through on standard sources of non-
Gaussianity in low point correlators, such as the equilateral shape, as well as nonperturbative aspects
related to higher n-point functions.

Finally, we note that even in this arena focused on the theoretical underpinnings of subtle cosmo-
logical and abstract quantum gravity observables, connections to industry are possible. A growing set
of numerical results appear in the current literature, applying ML to metrics and more general par-
tial di↵erential equations arising in string compactifications, and applying insights from cosmological
models into machine learning itself, e.g. in optimization.
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2 de Sitter space and inflation in string theory

2.1 General structure

String/M-theory exhibits a complex configuration space connecting regions with varying dimension-
alities D, topologies, geometries, and quantized fluxes. To model cosmology, we are interested in
dimensional reduction to four dimensions, with weak curvature yielding approximate Einstein gravity
and dynamics consistent with the observed ⇤CDM cosmology. The rich but constrained structure of
the string/M-theory configuration space yields a number of consistent mechanisms for de Sitter and
early universe inflation, some with novel signatures testable with CMB and LSS data. Moreover, there
exist solutions providing direct uplifts of AdS/CFT systems, giving insight into the microphysics of
de Sitter quantum gravity.

String theory famously contains gravity. Essentially as universal is the presence of axions [21–
23] in the four-dimensional e↵ective theories arising from string theory. Axion fields descend either
directly from the D > 4 dimensional theory, or via nontrivial internal topology threaded by gauge
fields of appropriate rank. Axions feature in all known weakly-interacting limits of the theory —
regardless of model-dependent properties such as the presence or absence of supersymmetry at low
energies — and admit observational testing in diverse parameter regions and datasets. Axions have an
underlying period that is small in Planck units [24], but couple to fluxes and branes so as to exhibit
a monodromy-extended potential with a branched structure. Compactifications with rich internal
topology give rise to a large number of axions (cf. [25]), with a multi-axion potential determined by
such couplings. In the early universe these fields provide natural inflaton candidates, and in the late
universe they provide dark matter candidates, as well as the possibility of incorporating the QCD
axion to solve the strong CP problem. In many cases they may even be ultralight in the late universe,
yielding additional phenomenological e↵ects.

The e↵ective potential for scalar and pseudoscalar (i.e., axion) fields in four dimensions is a central
object for studying cosmology in string theory. For a D-dimensional warped product

ds2 = u(y)ds24 + g(D�4)
ij

(y)dyidyj , (2.1)

the e↵ective potential in the four-dimensional Einstein frame takes the form [26]
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where C is a constant, `D is the D-dimensional Planck length, Tµ⌫ encodes the stress-energy sources
in the theory, and we have defined

huci :=

Z
dD�4y

p
g(D�4)e�2�uc . (2.4)
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A maximally symmetric solution to all of the equations of motion yields Ve↵ = C/4GN . The expression
(2.2) is applicable in perturbative string theory regimes, for which we have pulled out the dependence
on the string coupling gs = e�. In the M-theory limit of 11-dimensional supergravity, the formula is
the same but without the e� factors.

The sources of stress-energy appearing in (2.2)-(2.3), as well as the the internal curvature and
warp factor gradients, dilute at large radius and weak coupling [27], requiring at minimum a three-
term structure in those runaway directions in field space [28]. Most contributions to the potential are
positive, with the leading (tree-level and least dilute) source in Tµ

µ
being the term proportional to

D � Dc [28–32], with Dc the critical dimension. The next-to-leading terms in the potential are the
(generically negative) contributions of the internal curvature and warp factor variations, followed by
the e↵ects of branes and fluxes. Negative intermediate terms in the expansion about large radius and
weak coupling play a key role, and emerge from orientifold planes or quantum e↵ects (e.g. perturbative
Casimir energy [33] or nonperturbative instanton e↵ects [34]). The solutions of interest arise when
terms at di↵erent orders in the expansion can compete, which requires a large or small number in
the system, for example a large ratio of integers characterizing the topology or the configuration of
quantized fluxes (see e.g. [35]). In cases where quantum e↵ects govern the vacuum structure, the
stability of the extra dimensions of string theory proves analogous to the stability of ordinary matter
and of degenerate stars, both of which depend on quantum mechanics, as does the simplest theory of
the origin of structure in the universe [5].

Scalar and pseudoscalar fields in the four-dimensional e↵ective theory descend from geometric
deformations �gij , while pseudoscalars descend from potential fields C(p) [36]; collective coordinates of
branes, if present, also yield scalars or pseudoscalars. Geometric deformations enjoy several stabilizing
features: the warp factor buttresses the conformal mode of the internal metric, as explained in [26], and
many compactification manifolds are negatively curved and rigid, exhibiting a strong positive Hessian
for metric deformations [33, 37], along with simple mechanisms for stabilizing the overall volume.
Other well-studied cases such as Calabi-Yau compactifications exhibit moduli, i.e. scalar fields that
are massless at tree level. Such compactifications are amenable to treatment by means of algebraic
geometry, in part as a consequence of the supersymmetry that they preserve. Moduli in Calabi-Yau
compactifications can be stabilized via a combination of fluxes [38] and branes and nonperturbative
e↵ects [34, 39].

The pseudoscalar contribution to the potential arises via the structure of fluxes in string theory,
and the corresponding brane sources. Fluxes Fr+1 = dCr appear in combinations of the form F̃p+1 =
Fp+1 � Cq ^ Fp+1�q. The Tµ

µ
term in (2.2) includes a contribution from the squared generalized flux

F̃ ^?F̃ , leading to a direct dependence on the axions c =
R
⌃ C threading cycles ⌃. Importantly, higher

powers of generalized fluxes are suppressed at weak coupling and large radius,1 and hence are negligible
over a large, super-Planckian field range in many models. Although the leading axion dependence in the
potential appears quadratic, it very often flattens out due to the (frequently calculable) backreaction
of the axion energy on metric components [40, 41]. This backreaction a↵ects the masses of other
degrees of freedom, but basic calculations in the controlled regime of large radius in various models
show that this can be a small e↵ect over the O(10) Planck units required to model early universe
inflation.2 Similar comments apply to the brane couplings of axions. Nonperturbative e↵ects, on the

1
In addition to the dilution in space, Ramond-Ramond fluxes appear with a power of the string coupling.

2
We review particular examples of this shortly.
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other hand, contribute oscillatory axion-dependent terms in Ve↵; these are small corrections in many
parameter regimes.

The methods used to achieve theoretical control in this class of problems are standard in theoret-
ical physics. Tools include perturbation theory (including large-N and large-D expansions), instanton
calculus, mathematical theorems (relevant examples include the existence of the Calabi-Yau metric
and the rigidity of the explicitly known hyperbolic metric), worldsheet methods (an example being
the timelike linear dilaton solution, exact on the worldsheet and tachyon-free and ghost-free for the
worldsheet-supersymmetric theory in 10+ 16k dimensions), and numerical methods. Additional tools
include supersymmetric constraints and integrability theory (as in the T T̄ deformation) where applica-
ble. These latter tools sometimes enable theoretical control of deformations extending far in coupling
space, keeping track of the e↵ect on energy levels and state counts, which is particularly useful for con-
ceptual problems and dualities, as we discuss in the cosmological context in §4. However, modeling de
Sitter space and inflation in the e↵ective, weakly-coupled description involves no such extrapolation,
and requires only perturbative control.

2.2 Power-law stabilization

In the regime of string/M theory near weak coupling and large radius, the contributions to the potential
energy in (2.2) organize themselves into expansions in powers of coupling(s) and inverse radii. From
the general setup of §2.1, one finds subsets of terms that consistently support accelerated expansion.
One example appeared soon after the discovery of the cosmological constant and the observation
that string theory contains a ‘discretuum’ of potential energy functions [42]. The leading positive
potential term / D � Dc, an exponentially strong negative contribution from orientifolds, and flux
su�ce to stabilize an asymmetric orbifold of supercritical string theory in a way amenable to a large-
D expansion in which the negative contribution scales exponentially in D [28, 31]. This vacuum
depends on a balance of forces including a flux-squared term competing with the leading string-scale
scalar potential, which is justified provided higher orders in flux are either suppressed at large D
(as suggested by preliminary calculations [43]) or in any case contribute net positively. Intervening
years have witnessed tightening constraints on low-energy supersymmetry and on deviations from
a positive cosmological constant. Advances on the theoretical side include the emergence of explicit
interpolations between string backgrounds of di↵erent dimensionality, connecting D > Dc and D = Dc

(e.g. [44, 45]), as well as further development of largeD methods in general relativity and string theory.
The supercritical mechanism remains viable both observationally and theoretically, warranting further
investigation of the behavior of the theory at large D, which is an evidently generic parametric limit.

Several classes of models appear at D = Dc, and the subject has been developed in a number of
works as referenced for example in [11, 12].3 An approach that incorporates strong internal gradients
is [48] and predecessors. The essence of the idea is to consider a five-dimensional system that would
have a single unfixed scalar � subject to a runaway potential V (�) ⇠ exp(�/Mpl). The internal
profile satisfies an ODE with solutions �(x5) that approach singularities at two ends of an interval. If
orientifold planes can consistently intervene before the singularity, one obtains a de Sitter solution.

The second-strongest positive term in the potential is the curvature term. Almost every manifold

3
Errors in some significant details of [46] were discovered by [47], though the general framework and methods remain

valid.
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is negatively curved, as is evident already in dimension 2, and this feature appears in the models
just discussed [48] as well as in [49] and in predecessors in the EFT literature [50]. Above dimension
2, such manifolds are rigid [37], as mentioned above. This fact underlies the newest class of de
Sitter models [33] in M-theory on irreducible hyperbolic 7-manifolds, dressed with varying warp and
conformal factors and with cusps Dehn-filled as in [51], and including 7-form magnetic flux. In these
models the automatically-generated Casimir energy contributes the intermediate negative term in the
overall volume stabilization. The net curvature term in the M-theory analogue of (2.2) scales as
the inverse square of the curvature radius, and admits tuning to a small value via explicit discrete
moves in concrete hyperbolic manifolds (see §4.1 of [33]). These features open up the possibility of
parametric control, in a system simpler than the closest such analogue, which is string theory on a
product of Riemann surfaces [49]. The construction of [33] can be viewed as a dS4 uplift of the M2-
brane AdS/CFT duality pair, with the internal S7 replaced by H7/�, providing a simpler and more
realistic example in the spirit of the explicit dS3 models [52] that uplift the D1-D5 system.

The associated literature exhibits transitions indicating the connectivity of the string/M-theory
configuration space. In string theory such transitions arise via condensation of winding modes [53], and
it would be very interesting to extend this phenomenon to M-theoretic regimes. In the same vein, there
are concrete calculations relating the two leading terms in the potential via a natural generalization of
T-duality [45]. Since D > Dc and negative curvature with its infinite sequences of topologies comprise
generic parametric limits of the theory, such connections deserve much further study.

Conversely, it is straightforward to write down string/M-theory backgrounds with limited stress-
energy and geometric features that do not describe accelerated expansion. In this vein, partial no-go
theorems such as [54, 55] can be useful if not overinterpreted. However, neither these nor their de-
scendants in the literature incorporate the leading positive terms in the potential, the full complement
of known branes and orientifold planes, or Casimir energy. As such, the configurations governed by
such no-go theorems are manifestly non-generic, even within the class of power-law stabilization con-
structions. It is important to recognize that more generic ingredients in fact often simplify aspects
of the analysis, enabling potential terms that contribute useful forces, and introduce rigidity of the
internal dimensions. Thus, existing no-go theorems do not have significant implications concerning
the existence of power-law stabilized accelerated expansion in the framework of string theory, nor do
they currently impact observational predictions.

Next, let us note that the power-law stabilization setting has provided some of the simplest
examples of axion monodromy, such as those in [33, 41, 56]. These scenarios illustrate the e↵ect
of backreaction on metric components, which flattens the potential to sub-quadratic powers. This
backreaction also adjusts the mass spectrum of other fields, but these fields do not become light over
the inflationary field range, as was specifically checked in the relevant literature starting from the
original models. As a simple example, consider the Vinflaton / �2/3 model summarized in equations
(4.10) and (4.13) of [41]. In this example, the underlying axion b is tied by the dynamics (backreaction)
to the size L of the space as b / 1/L4, and is related to the canonically-normalized inflaton field by
� / b3/2. During inflation, � evolves from 10Mpl to Mpl, rescaling by a factor of 1/10. Hence b
rescales by a factor of 10�2/3 and L rescales by a factor of 101/6. The change in L changes the Kaluza-
Klein masses, since MKK / 1/L, but rescaling these those by a factor of 10�1/6 is unimportant in
the dynamics. We stress that the leading backreaction of the inflaton on the other scalars, on the
(flattened) shape of the potential, and on the spectrum is included in the analysis of the model —
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the existence of this backreaction does not invalidate the model. Quite the opposite, it explicitly
illustrates why so-called plateau potentials arise from the e↵ects of the UV completion, as predicted
in [57]. In the large radius and weak coupling regime of the model, instanton e↵ects are suppressed.
See also [58, 59] and §2.3 below for a class of examples in nonperturbatively-stabilized spaces where
the analogous backreaction e↵ect can be negligible.

Generically there would be multiple fields, leading to a distribution of predictions for the tilt of the
power spectrum [60]. Moreover, additional e↵ects studied recently in [61–63] enrich the model space
in a way that relates to the Hubble tension. Analyzing this systematically in the top-down multifield
context is a very interesting task for the future.

To conclude this discussion of power-law stabilization, let us note additional future directions.
The general expression for the e↵ective potential (2.2) [26] in the context of explicit internal mani-
folds (e.g. those built from polygons, such as [64]) enables more general analysis, both analytic and
numerical, exploiting the known metric, the rigidity properties, and the parametric limits obtained
from sequences of manifolds (e.g. covers). One can formulate the slow roll figures of merit by taking
functional derivatives of Ve↵ with respect to the fields and descending in that landscape. Mathematical
theorems concerning systolic geometry and its relation to volume [65, 66] suggest interesting energy
theorems in this context. These directions interface with the material below in §6.

2.3 Nonperturbative stabilization

Calabi-Yau threefolds are a famous class of vacuum solutions of string theory [67] that have been
a wellspring of ideas in mathematics and theoretical physics. The richness of Calabi-Yau geometry
stems in part from special holonomy and the corresponding supersymmetry. Moreover, Yau’s proof of
the Calabi conjecture allows tools of algebraic geometry to be applied to the analytic problem of the
existence of a Ricci-flat metric, while duality results from string theory, particularly mirror symmetry,
have led to exact results and to insights into new invariants.

This arsenal of mathematical methods has seen heavy use in the construction of realistic vacua of
string theory built on compactifications on Calabi-Yau threefolds. These solutions bear the imprint
of the tools used to make them: qualitative properties of the e↵ective theories of Calabi-Yau com-
pactifications di↵er from those described in §2.2. Some such properties follow from supersymmetry
and the associated nonrenormalization theorems, while others are consequences of particularities of
Calabi-Yau geometry itself. In this section we will summarize recent progress in finding cosmological
solutions in Calabi-Yau compactifications.

In a compactification of type IIB string theory on an O3/O7 orientifold X of a Calabi-Yau three-
fold, the classical superpotential is determined by quantized fluxes F3 and H3, the axiodilaton ⌧ , and
the holomorphic (3, 0) form of X [68]:

Wflux =
q

2
⇡

Z

X

(F3 � ⌧H3) ^ ⌦ . (2.5)

For su�ciently generic choices of the flux quanta, the resulting potential for the complex structure
moduli has isolated minima, while the Kähler moduli remain unstabilized at leading order in the gs and
↵0 expansions [38]. The order parameter measuring supersymmetry breaking in these configurations
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is the expectation value
W0 := hWfluxi , (2.6)

where the brackets denote evaluation on the vevs of the complex structure moduli.

The classical flux compactifications of [38] do not yield realistic e↵ective theories, because the
unstabilized Kähler moduli encode instabilities, and are sharply constrained by fifth-force tests and
by cosmological limits on moduli. A natural idea is to compute quantum corrections order by order
in the gs and ↵0 expansions, and search for isolated local minima of the resulting quantum-corrected
potential energy. This approach of perturbative moduli stabilization may ultimately reveal cosmolog-
ical solutions, but at present the technical task of computing (rather than modeling, cf. e.g. [69, 70])
enough terms is out of reach: see [71].4

An alternative strategy [34] is to compute nonperturbative quantum e↵ects, and then find pa-
rameter regimes in which these e↵ects govern the vacuum structure and give rise to isolated vacua.
At first sight this computation sounds even more di�cult than determining perturbative corrections.
However, supersymmetry, nonrenormalization theorems, and properties of Calabi-Yau geometry make
the task of computing the leading instanton e↵ects a problem in computational topology that turns
out to be solvable.

The leading approaches to nonperturbative stabilization are the KKLT scenario [34] and the Large
Volume Scenario (LVS). Both rely on Euclidean D3-brane contributions to the superpotential [73] in
order to stabilize the Kähler moduli. The LVS vacuum structure also rests on a well-known correction
to the Kähler potential at order ↵03 [74], and, in general, on string loop corrections.

A type IIB flux compactification can contain a supersymmetric AdS4 vacuum of KKLT type only
if two conditions are met: there must exist enough rigid divisors supporting Euclidean D3-branes (or
gaugino condensates on seven-branes) to stabilize the Kähler moduli, and the flux superpotential W0

must be exponentially small in order for the minimum to exist in a parameter regime where the ↵0

expansion is well-controlled.

To check the former condition, one needs to compute the topology of divisors in a Calabi-Yau
threefold. When the number h1,1 of Kähler moduli is of order five or smaller, this can be accomplished
by the algorithm of [75], but vacua have not yet been found in this way. A tour de force analysis in [76]
established the existence of enough Euclidean D3-branes in a highly symmetric example with h1,1 = 51,
but generalization of this example is an open problem. More recent computational advances [77, 78]
(see [79–81] for related techniques) have enabled computation at arbitrary h1,1, and enumerating
Euclidean D3-brane superpotential terms in Calabi-Yau hypersurfaces is now fast and routine [35].
Moreover, the Pfa�an prefactors of such terms are increasingly well-understood [35, 82–84].

The second necessary condition, exponential smallness of W0, involves solving a Diophantine
equation for the flux quanta. It was shown in [85] (see the review in [86]) that in the approximation that
the fluxes are continuous, and for large enough h2,1, small W0 should exist. However, configurations
with small W0 are rare, and even with powerful methods an optimized search is di�cult [87].

Mirror symmetry provides a solution [88]. One can choose quantized fluxes to make all the terms

4
For a recent proposal to achieve stabilization in the perturbative regime via resummation of leading logarithms, see

[72].
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in Wflux that are polynomial in the complex structure moduli vanish exactly. What remains are
corrections that are exponentially small near large complex structure, and if these can be computed,
one can arrange to balance two terms against each other in a racetrack. From the perspective of
type IIA string theory on the mirror threefold the corrections in question are worldsheet instanton
contributions to the prepotential, while in type IIB they are purely geometric, and can be extracted
by computing the periods of ⌦ in an integral basis of three-cycles. The logic for such a computation is
well-established [89, 90], but performing it for h2,1 & 5 has been out of reach of published software. The
algorithms given in the software package CYTools [77] solve this problem. With the instanton series in
hand, one can find examples where the Gopakumar-Vafa invariants of curves, and the possible choices
of quantized fluxes, combine to yield a racetrack superpotential that in turn leads to exponentially
small W0. Many such examples have been studied [91–95], including cases with conifold regions [96, 97]
(see also the related works [98, 99]). Explicit solutions with W0 as small as 10�90 have been found
[35].

Combining the above advances in computing Euclidean D3-brane superpotentials and flux su-
perpotentials led to the first explicit, parametrically controlled incarnations of the KKLT scenario
[35, 100]. These vacua are supersymmetric AdS4 solutions, with all moduli stabilized, in which the
magnitude of the vacuum energy is exponentially small — in some cases, smaller than 10�123M4

pl.
Such configurations are a step toward specific de Sitter solutions of KKLT type, but several challenges
remain.

One issue is that breaking supersymmetry by means of an anti-D3-brane, as in [101], sources
corrections to the local field configuration [102]. Computation of the backreaction [103, 104], e↵ective
field theory arguments [105, 106], and analysis of temperature-dependence [107] give evidence for
metastability, and the constrained supermultiplet formalism provides a simple packaging of the anti-
D3-brane action [108, 109]. However, the anti-D3-brane is a small perturbation when the Klebanov-
Strassler throat region is large, and is supported by a large quantity of D3-brane charge, so one can
ask whether throats large enough for metastable anti-D3-branes can be engineered in compact models
[110], which necessarily allow only a finite D3-brane charge tadpole [111]. Related tadpole constraints
have been studied in [112, 113].

Furthermore, KKLT vacua with large throat regions have been argued to su↵er from singularities
caused by large negative D3-brane charge induced on stacks of seven-branes [114]. Evidence from a
N = 2 model in [115] suggests that the seven-branes in question are bound states of exotic branes,
whose rearrangement dynamically removes the singularity. Moreover, the extent of the problem of
gluing a throat into a non-singular bulk depends on the typical volume of a Calabi-Yau threefold with
h1,1

� 1 Kähler moduli. It was noted in [35], following [116], that at the point in moduli space where
the Kähler moduli are stabilized by Euclidean D3-branes, the threefold volume scales as a power of
h1,1, dramatically alleviating the problem of singularities.

A further question is the ten-dimensional field configuration corresponding to a KKLT vacuum.
The interplay between the classical flux energy and the quantum e↵ects of Euclidean D3-branes takes
a simple form in the four-dimensional e↵ective theory [34], whereas the e↵ects of anti-D3-branes on
fields other than the overall volume are most naturally analyzed in ten-dimensional supergravity (see
e.g. [104, 117, 118]). One can benefit from both perspectives by representing all sources of stress-energy,
including four-dimensional quantum e↵ects, in terms of a ten-dimensional solution.
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Early work established that the quantum e↵ects of Euclidean D3-branes, or gaugino condensation
on D7-branes, lead to a generalized complex geometry [119], with the gaugino bilinear sourcing fluxes
[118] and deformations of the metric [120]. Constructing a consistent global solution, following initial
steps in [119, 121], required further analysis [110, 122–129], particularly of four-fermion couplings
[123, 125, 127, 129] and generalized complex geometry [126, 127]. Upon including the gaugino bilinear
expectation value, the couplings of D7-brane gauginos to bulk fields couplings source a ten-dimensional
solution that corresponds to the vacuum of the four-dimensional e↵ective theory [125, 127]. The match
was made precise in [127] using nonperturbative corrections to the Killing spinor equations, and was
derived in a manifestly local manner in [129]. In summary, the ten-dimensional description meets all
consistency requirements and can be applied to study couplings in global models.

A qualitatively important feature of nonperturbatively-stabilized Calabi-Yau compactifications,
such as KKLT vacua, is the impact of nonperturbative couplings on inflationary observables. Such
couplings are essential for computing the vacuum energy, so it is not surprising that they might impact
other observables. Even so, exposing such e↵ects has proved subtle. An early example is D-brane
inflation, where leading contributions to the inflaton mass come from inflaton-dependent fluctuation
determinants [9], as computed in [117, 130, 131]: see [10].

Axion monodromy inflation is another case where nonperturbative couplings can a↵ect dynamics
around nonperturbatively-stabilized vacua. Displacing an axion through one period of monodromy
generally leads to the accumulation of one unit of a quantized charge. In models with moving D-branes,
this is often an induced charge on a D-brane, but in other cases it can be a bulk flux. The stress-energy
of this monodromy charge serves as a source term in the ten-dimensional Einstein equations, leading
to backreaction on the metric and on other fields. As explained in §2.2, in perturbatively-stabilized
models this e↵ect typically leads to computable flattening of the potential over a large inflationary field
range. However, in nonperturbatively-stabilized models the backreaction of monodromy charge can be
more problematic, because the actions of Euclidean D-branes depend sensitively on the fields sourced
by monodromy charge. Furthermore, in the subclass of models where the inflaton is a moving D-brane,
the relevant backreaction is that of a localized source in ten dimensions. The often-employed shortcut
of dimensional reduction in the probe approximation, followed by analysis of adjustments in the vevs
of fields much lighter than the Kaluza-Klein scale, captures only a subset of the leading backreaction
e↵ects, and so can understate the extent of the e↵ect. Indeed, the adjustment of heavy fields during
inflation is phenomenologically relevant in general, and is an example of the UV sensitivity of inflation
and its observables [40, 132] — this is both a challenge and an opportunity.

The issue of backreaction was addressed in early examples, indicating that model-building can
mitigate the problem in Calabi-Yau realizations of axion monodromy, as shown in [58, 59, 133]. How-
ever, no silver bullet solution is known, even in F-term models [56, 134, 135] and Higgs-otic models
[136]: in the latter case, induced charge on a moving D7-brane has a large e↵ect [137]. This general
phenomenon could limit embeddings of the relaxion idea [138] in Calabi-Yau compactifications [133].

Constraints of this sort can give useful structure to the space of cosmological models descending
from string theory: the small fundamental periods of axions in weakly-coupled limits of string theory
make oscillatory features a natural concomitant of primordial gravitational waves, while backreaction
leads to drifts in the frequency and amplitude of the oscillations [41, 59].5

5
The phenomenon of drifting oscillations in axion monodromy also occurs in the examples discussed in §2.2 [41].
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Future work on cosmologies in Calabi-Yau compactifications may be accelerated by improvements
in computation, both through computational algebraic geometry, as in [75, 77, 80, 139], and through
advances in machine learning (see §6.2). Computing all the leading superpotential terms in large
classes of flux compactifications is becoming feasible, even in cases with many moduli. This capability
makes it possible to discover new structures and new phenomena in this corner of the landscape. On
the other hand, controlling corrections to the Kähler potential remains an important open problem.

3 E↵ective field theory and cosmology

There is a long history of developments in cosmology and in quantum field theory tracing each other.
Insights from quantum field theory motivate new approaches to cosmological questions, and cosmology
provides a unique arena to study high energy physics in extreme situations. This connection is in turn
informed by insights and constraints from ultraviolet completion in string theory. As we recall below,
in several cases EFTs were generalized to incorporate phenomena that had been discovered initially
in the context of string theory, exposing hidden assumptions in the previous bottom-up theory.

The state of the primordial quantum fields is in general an unknown wave functional of a scalar
⇣, a tensor �, and additional fields �. The likelihood, or probability of the data given the theory, is
given by squaring and tracing over the non-observable fields:

L(⇣(x), �(x)|{�}) =

Z
D�| (⇣(x), �(x),�(x); {�})|2. (3.1)

Generic inflationary theories generate nontrivial contributions to the power spectrum, along with
non-Gaussian contributions at some level, with a wide variety of possible functional forms.

There is not yet a systematic understanding of the space of viable states and signatures. Re-
cent advances very roughly divide into two themes: in one direction, researchers introduce symmetry
assumptions enabling streamlined calculations of correlation functions and derivations of theorems
organizing their formal properties related to the unitarity and locality of the theory. In another direc-
tion, calculable contributions to the full probability distribution function (3.1) beyond perturbative
low-point correlators arise in a variety of well-motivated models with more generic interactions; in this
same vein of nonperturbative analysis one can address infrared issues in inflation. In this section we
briefly review these threads, along with important related results concerning initial conditions and the
robustness of inflation at early times, and IR dynamics at late times.

3.1 EFT approach to inflation

A complementary approach to the top-down construction of ultraviolet realizations of inflation is to
develop an e↵ective description of the dynamics at the level of perturbations around the inflationary
background. In [140, 141], such a bottom-up ideology was beautifully developed, and goes under the
name of the E↵ective Field Theory of Inflation (EFTofI). Since observable e↵ects originate at energy
scales of order H, we may integrate out the UV to write down an EFT that captures a large class
of inflationary models and reveals their universal properties. This universality follows from viewing
inflation as a process of spontaneous symmetry breaking, which implies that the e↵ective description
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of inflation necessarily contains two light degrees of freedom: the scalar Nambu–Goldstone boson
for the broken symmetries, and the graviton. Additional fields can also appear, leading to a wide
variety of e↵ects, including non-adiabaticity and a rich space of phenomenological signatures. Even
mass scales � H can contribute significantly to observables, as we will discuss further below. Certain
e↵ects of light sectors have been incorporated in the e↵ective description [142–144], some of which can
be motivated by spontaneously-broken SUSY [145–147]. A particularly interesting possibility is that
there are degrees of freedom with masses of order the Hubble scale during inflation. These particles
cannot be integrated out and modeled by e↵ective interactions of the inflaton, and consequently they
would have striking signatures [143, 144, 148–150], providing an interesting probe of high-energy
physics. These signatures are challenging to compute with traditional techniques, motivating the
bootstrap approaches we discuss in the following. More generally, the EFT approach makes it possible
to systematically study the space of possible non-Gaussian signatures beyond the simplest slow-roll
models of inflation, and has motivated the search for the most symmetric of these shapes in data,
which is now standard. We note that this development illustrates the fruitful collaboration between
top-down and bottom-up ideas, as the former helped stimulate the more systematic EFT analysis
[59, 151–153].

Interestingly, not all observable e↵ects that are natural from the ultraviolet point of view can be
captured by a standard EFT Lagrangian with local interactions of the light fields. As inflation occurs,
the inflaton might travel a large distance in the field space, resulting in a significant change of the
relevant interactions. One manifestation of this is the flattening e↵ect discussed above [40]. Another
is that additional fields may become light, or lighter, at some moment in time and then become
heavy again. Such e↵ects generically lead to some level of ‘features’ in the correlation functions of
primordial fluctuations [16], often through resonant interactions [154]. In the string-theoretic models
described above, features can have a particular pattern governed by the discrete shift symmetry of
the inflaton [59]. One can incorporate such a symmetry in the EFT as in [151], although drifts in
the oscillations are important to capture the string-theoretic phenomenology [155]. An important
challenge is to understand how to approach apparent breakdowns of the e↵ective description from
the bottom up when they occur. A case of this sort described below in §3.5.2 has this character and
exhibits sensitivity to produced particles with mass ⇠ 100H [156].

3.2 The cosmological bootstrap

One reason the inflationary period is so mysterious is that we have no direct observational access to this
epoch. Instead, we infer the existence of a period of inflation by measuring correlations on its late-time
boundary, where the universe reheats. This suggests a di↵erent approach to understanding the physics
of inflation, where we directly construct boundary correlations, rather than following inflationary time
evolution. This approach harmonizes with EFT approaches to cosmological correlations (e.g., [157,
158]), and leverages developments in the study of scattering amplitudes, the conformal bootstrap, and
holography to import insights into the cosmological setting. Work in this area has mostly focused
on the simplified setting where de Sitter symmetry is either exact, or weakly broken, at the level of
the background, and gravitational fluctuations are treated only perturbatively. The high degree of
symmetry allows for analytic control, but it is important to understand how to move beyond such
simplifications. In the following we briefly review some recent progress and future directions.6

6
For a more comprehensive discussion, see the Snowmass white paper on the Cosmological Bootstrap [159].
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In perturbation theory, cosmological correlation functions, at least given the setup and simplifi-
cations noted above, are in large part controlled by their singularity structure [150, 160–167], which
encodes the locality of bulk interactions. One can then approach the construction of cosmological
correlation functions from a viewpoint that is spiritually similar to the flat space amplitudes pro-
gram [168]. The challenge is to systematically extend correlators away from their singularities, which
typically requires some additional input. One approach is to utilize de Sitter symmetry, which implies
di↵erential equations solved by cosmological correlators [150, 160, 163, 167, 169–171]. A complemen-
tary tack is to utilize constraints from the unitarity of bulk time evolution [172, 173], which can be
systematized into perturbative cutting rules for the cosmological wavefunction, similar to flat space
Cutkosky rules [174–178]. These relations take the schematic form

 n({ka}) +  ⇤
n
({�ka}) = �

X

cuts

 n , (3.2)

where  n is an n-point cosmological wavefunction coe�cient, and {ka} stands for the set of magnitudes
of momenta that the wavefunction depends on.7 In many cases of phenomenological interest involving
massless particles, information about these cuts is su�cient to reconstruct wavefunction coe�cients in
a de Sitter background (but allowing interaction vertices to violate the symmetries, as in the EFT of
inflation) [158, 178–182]. In cases involving massive particles, one must instead use the full di↵erential
equations that the correlators satisfy. Significant progress has been made in characterizing the possible
signatures of these particles [148, 150, 163, 170, 183], though the signals are expected to be weak where
the calculations are under control, so it is important to further develop these techniques.

A complementary approach that utilizes de Sitter symmetry in a more direct way is based on
the spectral decomposition of cosmological correlators with respect to conformal partial waves [184,
185]. This representation highlights di↵erent analytic properties of the observables, and establishes
a di↵erent condition following from unitarity of the cosmological evolution. For example, for the
four-point function of identical fields, unitarity implies positivity of densities ⇢J(⌫), which are defined
as

h�(x1)�(x2)�(x3)�(x4)i =
X

J

Z 1

0
d⌫⇢J(⌫)FJ,� , (3.3)

where FJ,� is the conformal partial wave of spin J and dimension � = d/2+ i⌫. It is natural to expect
that (3.2) and (3.3) are both manifestations of the same underlying unitarity of physics in de Sitter
space, but their relation has not yet been fully understood. Making such a connection is an important
direction for the future.

A useful practical tool for the calculation of correlators is the analytic continuation between
in-in dS observables and Euclidean AdS boundary correlators in a theory with the doubled set of
fields [183, 184, 186–188]. This continuation makes it possible to exploit many powerful AdS techniques
for cosmology.

A goal for the future is to sharpen the connections to ultraviolet physics from the bottom-up EFT
perspective. One facet of this connection manifests through dispersion relations obeyed by correlation
functions, and it will be very interesting to elucidate the structure of such relations in the cosmological
setting. This will require a more refined understanding of the analytic structure of correlators, and

7
See [172] for the precise analytic continuation of ka ! �ka.
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of the constraints of unitarity. It is also important to further develop nonperturbative techniques in
the cosmological setting, in order to place sharp bounds on the space of inflationary models and their
particle content, in a similar spirit to the conformal bootstrap in the AdS context. We expect that
insights from ultraviolet completions will play a crucial role in these developments, leading to a fruitful
interplay between UV and IR.

3.3 Initial conditions classically

Once inflation begins, it is extremely robust, but it is often stated that inflation has an ‘initial con-
ditions problem’ and only begins if the universe is homogeneous and isotropic over several Hubble
scales [189]. This problem is absent in models of chaotic inflation in which the inflationary period is
described by general relativity coupled to a scalar field and begins with nearly-Planckian energy den-
sity or equivalent [190–192]. Observations of the CMB disfavor the simplest version of this solution,
but certain modified models are still allowed [193]. In addition, in the context of a weakly coupled
UV completion of general relativity, additional scales appear below the Planck scale, so the e↵ective
description in terms of general relativity coupled to a scalar field only becomes valid well below the
Planck scale. As a consequence, both recent observations and theoretical considerations motivate a
closer look at inflation’s robustness to inhomogeneities.

To the extent that the potential energy density of the scalar field is well-modeled by a cosmological
constant, de Sitter no-hair theorems carry over to inflation. These theorems come in two flavors, one
for homogeneous cosmologies and one for inhomogeneous cosmologies. In the homogeneous case, the
possible cosmologies are typically referred to according to the Bianchi classification for the algebra of
their Killing vectors. Except for Bianchi IX, all homogeneous anisotropic cosmologies with positive cos-
mological constant asymptote to de Sitter space [194]. In the inhomogeneous case, provided the weak
energy condition holds, it can be shown that global recollapse can only occur if the three-dimensional
Ricci scalar is positive everywhere, which is topologically impossible for most 3-manifolds [195, 196].
Moreover, under the same assumptions it can be shown that there is always an open neighborhood
that expands at least as fast as de Sitter space [196]. More recently, it has also become possible to
show a stronger statement using mean curvature flow, namely that under additional assumptions the
spacetime asymptotically becomes indistinguishable from de Sitter space on arbitrarily large regions of
spacetime [197], and that this still holds if the cosmological constant is replaced by a scalar field with
a potential, provided the latter is bounded both above and below by positive cosmological constants
whose ratio is between unity and 3/2 [198].

In general, the field will explore regions of the potential that do not support inflation. Studies
of this regime currently rely on numerical simulations of general relativity coupled to a single scalar
field. This line of research has a long history and includes work in 1+1 dimensions [189, 199, 200]
and 3+1 dimensions [201, 202]. The advent of modern numerical general relativity codes and more
powerful computers has provided motivation to revisit this question. Importantly, it is now possible to
follow the time evolution in a regime in which black hole formation plays a significant role [203, 204].
The new simulations have shown that inflation is more robust than previously thought and can begin
even for classes of initial conditions for which the gradient energy density exceeds the potential energy
density by orders of magnitude, both for plateau models [203] and for models of chaotic inflation in
which the energy density is well below the Planck scale [204]. Additional classes of initial conditions
and shapes of the potential have been considered [205–207], leaving the conclusions unchanged but
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sharpening the picture. Models with convex potentials are found to be more robust to inhomogeneities
than those with concave potentials, and concave potentials that vary on super-Planckian scales are
significantly more robust than those that vary on sub-Planckian scales [206]. Notably, the classes
of models that appear robust to large initial inhomogeneities are the classes of models that predict
gravitational wave signals that are large enough to be detected with upcoming CMB experiments.
Therefore, in the absence of a detection of primordial gravitational waves, additional dynamics (such
as an additional scalar field that drives an earlier period of inflation, or a tunneling process) may be
required to prepare initial conditions appropriate for inflation in the remaining class of models with
sub-Planckian characteristic scales.

3.4 Initial conditions semiclassically

Above we reviewed the beginning of inflation from a large set of initial conditions at the classical level.
Ultimately, one would like to develop a theory that is capable of explaining the initial conditions for
the universe at the full quantum level. While this problem is notoriously hard, there exists an e↵ective
semiclassical approach that is conjectured to incorporate quantum gravity e↵ects relevant in the early
universe without using an explicit UV theory. The original proposal [208], now 40 years old, postulates
that at the early time the metric should be analytically continued to become Euclidean and smooth,
thus avoiding the curvature singularity that would be present if one evolves the universe back in time
and stays in the Lorentzian signature.

This idea, referred to as the no-boundary proposal, has an important drawback in inflation.
Interpreted in the most straightforward way, it predicts the probability for the initial value of the
inflaton field, �0, which goes as p(�0) ⇠ exp 1/V (�0), thus peaking exponentially at the bottom of
the inflaton potential. Thus the no-boundary proposal predicts almost no inflation, in contrast with
observations. There have been multiple proposals to fix this problem, while maintaining the spirit of the
idea, including volume weighting [209], which changes the probability to p(�0) ⇠ exp 1/V (�0) + 3Ne.
In turn the tunneling initial state proposal (see [210, 211] for reviews) suggests that the probability is
p(�0) ⇠ exp�1/V (�0), thus predicting the start of the classical inflationary regime at the top of the
inflaton potential.

The recent revival of interest in the Euclidean Quantum Gravity (EQG) approach to cosmology
is motivated by the success of related ideas in understanding some of the salient features of the black
hole evaporation process [212]. In this case holography combined with the quantum information
understanding of the boundary theory allows one to confirm the EQG calculations, which in certain
cases include significant contributions from non-trivial topologies. These insights suggest that non-
trivial topologies should also be incorporated in the cosmological no-boundary proposal. These include
space-time connections between the bra and ket of the wave function of the universe [213], as well as
the appearance of ‘islands’ in the calculation of entropy in various regions of the inflating universe:
see e.g. [213–220].

So far, explicit computation of these new contributions to the gravitational path integral has been
possible only in simplified models of cosmology, mostly in lower dimensions. Whether analogous e↵ects
are present in realistic models, and if they can be observable, remains an intriguing direction for future
research.
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More generally, quantum gravity admits a multitude of states even in a closed system. Indeed, in
the previous section we elucidated the robustness of inflation in the presence of strong initial fluctua-
tions. The two dimensional quantum gravity theory on the closed string worldsheet is a clean example
illustrating the multiplicity of states, with production of strings (two-dimensional universes) arising
in generic target spacetimes. This can be considered with particular worldsheet models corresponding
to D = 2 de Sitter and inflationary physics, as in [221]; this would be interesting to connect to the
more recent developments in this section.

3.4.1 Spacetime singularities

The UV completion of gravity is required to understand spacetime singularities, including dynamical
topology-changing processes. A zoo of timelike singularities and some spacelike singularities admit
known string-theoretic resolutions, involving the condensation of wrapped branes or wound strings.
Some are perturbative but stringy, while others are nonperturbative. In the cosmological context, an
early review can be found in [222]. Related to the study of spacelike singularities is the additional
question of alternatives to inflation such as bouncing or cyclic cosmologies, which are more di�cult to
control.

3.5 Nonperturbative physics of inflationary EFT

In this subsection, we highlight recent advances in understanding nonperturbative physics of infla-
tionary observables and its interplay with UV physics. In these studies, one moves beyond low-point
correlators in highly symmetric models in order to understand more general aspects of (3.1). Re-
cent highlights include control of IR e↵ects, non-adiabatic e↵ects with signal/noise beyond low-point
correlators, and more general contributions to the tails of the distribution.

3.5.1 Strong IR e↵ects

Enhancement of IR e↵ects for light fields has long been an intriguing issue in inflationary cosmology.
In certain cases perturbation theory around the free-field vacuum breaks down at long distances and
times, making it possible to question the stability of the corresponding theories [223]. An approach
to deal with these IR e↵ects has been known for a long time [224], but has not been developed
systematically. For light scalars decoupled from gravity this was rectified in [225], and confirmed and
extended using related but di↵erent techniques in [226–231]. The main conclusion is that strong IR
e↵ects are physical, can be controlled and calculated, and can lead to nonperturbative e↵ects with
observable consequences. One such method, called Soft dS E↵ective Theory [231], was recently applied
to inflation, i.e. dynamical gravity was also incorporated. The conclusion of this paper is that strong
IR e↵ects can have interesting implications for eternal inflation and lead to a breakdown in the EFT
of perturbations if significant (but observationally viable) non-Gaussianities are also present in the
model.
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3.5.2 Non-adiabatic e↵ects

Inflation and its observational constraints are compatible with a wide range of interactions, including
direct, non-derivative interactions of the inflaton with other degrees of freedom, generically leading
to non-adiabatic e↵ects [232, 233]. Such interactions arise generically in top-down settings [12] and
may follow a regular [234] or random [235] pattern. Recent works [156, 236] established observational
sensitivity to production of particles with masses always greater than the Hubble scale during inflation.
(We already saw above in §2 at the level of the background model that massive degrees of freedom
adjust in a way that is energetically favorable, a↵ecting predictions for the tilt and tensor to scalar
ratio even with masses much greater than the Hubble scale.) This example is notable for two reasons:
(i) it goes beyond the naive EFT description, requiring inclusion of these massive degrees of freedom
given the precision of modern data, and (ii) it exhibits greater signal/noise in higher n-point functions
with n > 3, with the resummed optimal estimator for the simplest version of the signal derived in
[236].

This raises the more general question of the information content of high-point scalar correlators and
the tails of the primordial non-Gaussian probability distribution. We summarize recent developments
in this area next.

3.5.3 Tails of the primordial non-Gaussianity

A key research direction is to derive the information content in (3.1) that is encoded beyond low-point
correlation functions. Advances in this direction via analytic and numerical methods going back to
[237] include calculable models with heavy tails at the multifield [238–240] and single-field [241] levels.
One example with a very heavy tail explored in [238, 240] derives from the kinetic term for inflation on
a multidimensional field space with hyperbolic geometry, a possibility with theoretical underpinnings
[242, 243]. This model involves an interaction of the form �̇2exp(�/M⇤): expanding this coupling
around the background homogeneous �̇ evolution yields a term in the Hamiltonian proportional to
the field momentum for �, which generates a translation in its field space, leading to an explicit
nonperturbative expression for the non-Gaussian pdf with a heavy tail / exp

�
�(log(��2))2M2

⇤/H
2
 
.

Another class of examples concerns propagation of the inflaton on a landscape with saddle points,
leading to strong e↵ects of the temporarily tachyonic transverse scalars. Simulations yield interesting
phenomenology in ongoing work on this case [244] (see also [245]).

In general, these examples motivate a more systematic study of the full pdf and its optimal
estimation in data. This is a compelling theoretical challenge on two fronts, involving analysis of the
nonperturbative early universe quantum field theory as well as analysis of LSS, perhaps itself requiring
a nonperturbative treatment. In the examples covered in [236], a position space description of the
primordial signal is natural, and this may combine with the need to measure high-point correlators
and/or to work at the map level for the foreground in any case [246].
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4 Cosmological holography

Cosmology ultimately demands both a UV and an IR completion, with quantum gravity operating
in both regimes. In particular, the global spacetime(s) of interest that contain long-lived regions
of metastable de Sitter do not fully decouple from gravity at finite times, as a result of their finite
size. The metastability — a property most clearly derived via string theory [27, 247] — does enable
asymptotic decoupling of gravity and the development of infinite horizon entropy [57, 248]. Even in the
long-lived de Sitter phase, in addition to the EQG developments summarized above, various tools such
as solvable deformations that enable construction of emergent patches of spacetime, as well as other
developments in low-dimensional gravity and matrix models, have led to significant recent progress in
this area.

In this section, we summarize this renewed traction on these old problems, which opens many
novel research directions. A nice review of early developments in this area can be found in [249]; see
also [11] for some intermediate developments. Pre-existing approaches include dS/CFT [250, 251],
dS/dS [52, 252] and FRW/FRW [57], FRW/CFT [253] and various types of matrix models [254, 255]
(see also [256–258] for more recent discussions), as well as discussions of embedding dS (or a di↵erent
FRW solution) in AdS/CFT [259, 260] and uplifting AdS/CFT to cosmology via explicit gravity-side
ingredients [33, 52].

Gibbons and Hawking suggested an entropic interpretation of the de Sitter horizon area [261].
This classical entropy SGH = Area/4GN has been generalized to higher loop order in [262]. Together
these results suggest that as with black holes, there is a large set of microstates for which the cosmic
horizon represents a coarse-grained description.

In the black hole case, the corresponding microstates lie in a small band of energy levels with small
level spacings of order exp(�S). For a three-dimensional bulk, modular bootstrap methods enable
direct analysis of this band of energies on the dual two-dimensional side of the correspondence [263,
264], showing that the Cardy formula for their entropy — which matches the Area/4GN prediction
— extends down to the Hawking-Page transition.

In black hole physics, the count of microstates of BPS black holes [265] from brane degrees of
freedom was enabled by extended supersymmetry. Recently a new type of controllable deformation
enabling the tracking of energy levels and state counts has emerged [20, 266–272], and is based on
integrability ideas rather than supersymmetry. These integrable deformations — of in general non-
integrable ‘seed’ theories — address the leading count of states for the cosmic (de Sitter) horizon in
appropriate examples [273, 274].

In this vein, [273, 274] derives the dS3 geometry and the Gibbons-Hawking entropy— including a 1-
loop correction in [262] — from a solvable deformation of a CFT [271, 272] with a sparse light spectrum.
The seed CFT counts the � = c/6+O(1) BTZ entropy as in [263, 264], and this state count continues
to hold in the T T̄ deformed theory, whose gravity-side description consists of a bounded patch of the
corresponding BTZ black hole geometry [269]. Deforming this seed CFT on a cylinder of circumference
L as @� log(Z) ⇠

R
T T̄ until y = �/L2 reaches 3/c⇡2, and then by @� log(Z) ⇠

R
T T̄ � 2/�2 to a

final value y, yields a dressed energy formula for the � = c/6 + O(1) states matching precisely the
Brown-York energy of the cosmic horizon region of the observer patch, bounded by a cylinder of size
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L =
p
�/y. At the same time, the count of states matches the Gibbons-Hawking entropy, including

the logarithmic correction computed in [262].

In more detail, the T T̄ + ⇤2 deformation for a theory on a cylinder of size L [271–273] yields a
di↵erential equation for the dimensionless energies E = EL

⇡yE(y)E 0(y)� E
0(y) +

⇡

2
E(y)2 =

1� ⌘

2⇡y2
+ 2⇡3J2 , (4.1)

where ⌘ = 1 for the pure T T̄ part of the trajectory and ⌘ = �1 for the T T̄ +⇤2 part. This has general
solution

E(y) =
1

⇡y

⇣
1±

p
⌘ � 4C1y + 4⇡4J2y2

⌘
, (4.2)

whose branch and constants are determined by the boundary conditions along the piecewise trajectories
in a given definition of the deformed theory. In the example just summarized, the matching between
the ⌘ = 1 and ⌘ = �1 parts of the trajectory occurs when the square root vanishes. Holographically,
the boundary of the patch of (A)dS3 skirts the horizon of a BTZ � ' c/6 black hole in the AdS
case, and the cosmic horizon in the dS case; such near-horizon regions are indistinguishable and the
deformed energy formulas match since ⌘ appears inside the (here vanishing) square root.8 These energy
levels dominate the real spectrum of the deformed theory, and their count of states S ⇠ A/4GN �

3 log(A/4GN ) remains constant through the entire integrable deformation [273]. The bounded patch
thus formulated may be viewed as a complete system (dS conditioned on the presence of the boundary,
perhaps viewed analogously to conditioning on the existence of an observer) or as a building block for
the global system [273].

The deformed theory is a specific matrix theory that precisely captures the pure-gravity features
— the geometry, Brown-York energy and entropy — that dominate at c � 1, but does not capture
the model-dependent details of local bulk physics, as stressed in the AdS case in [270]. The naturally
light bulk degrees of freedom are related to gauge fields and may require incorporating other currents
into the deformation (see e.g. [275] for a review.)

This set of results consolidates progress on many fronts by a wide variety of researchers, as is often
the case for new dualities — in this case ranging from integrability theory to quantum gravity. They
raise numerous directions for future work, not least the generalization to bulk dS4, perhaps leveraging
dimension-independent simplifications of the holographic RG [276].

Let us comment briefly on the relation to other approaches. The static patch Hamiltonian is
the modular Hamiltonian of the dS/dS patch, where the entropy just computed corresponds to an
entanglement entropy between the two sectors, confirming the interpretation proposed in [277]. Many
works stressed the role of matrix models, e.g. [254–256, 258], with the deformed theory providing an
explicit class of examples. Calculable recent models with interesting properties include [278, 279].
The particular matrix theory obtained by the integrable deformations is fully nonlinear in the original
seed CFT variables, suggesting connections to complexity [258], which is conjecturally related to

8
In a complete top-down model, such as uplifts of AdS to dS [33, 52], the internal dimensions change. This fits with

the indistinguishability of the systems when the boundary in the external dimensions skirts the horizon. For example,

in a canonical ensemble the high temperature near the horizon enables the system to explore all internal configurations

consistent with the horizon, including both types of internal compactifications related by internal topology-changing

processes.
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reconstruction of the region behind the horizon. Another approach going back to [280] is to embed
cosmological physics in AdS/CFT [259, 260, 281]. In that case, the theory is UV complete although
there are uncertainties in the dictionary extracting the cosmology from the dual theory. Related works
have used probes of microscopic physics such as quantum chaos, which has been fruitful in the context
of AdS/CFT, to constrain the holographic dual to de Sitter space [282–284].

Last but not least, a connection between AdS/CFT and de Sitter quantum gravity arises from
string-theoretic de Sitter models obtained by explicit uplifts of AdS/CFT systems [33, 52]. As a start,
to connect this relationship to the T T̄+⇤2 (or more general T 2+⇤d [285]) approach, one can determine
the conditions for a patch boundary in string/M-theory by generalizing the Hořava-Witten analysis
of [286] and determining the implications of the considerations of [287, 288]. This approach aims at a
top-down realization of the interpolation between a radially cut-o↵ AdS black hole and the bounded
cosmic horizon patch of de Sitter space. Recall from above that the T 2 and T 2+⇤d trajectories match
as the wall approaches the horizon, where in the external dimensions one cannot tell the di↵erence
geometrically between the near-horizon region of a black hole and the de Sitter cosmic horizon of the
same radius, and the dressed energy formula is continuous along the combined deformation. In a UV
complete model the internal dimensions are drastically di↵erent, e.g. being a sphere or hyperbolic
space for anti-de Sitter or de Sitter, respectively. But for the bounding wall skirting the horizon,
the diverging temperature forces the full system to sample internal configurations consistent with the
horizon geometry. In that sense, one cannot tell the di↵erence between the two, even including the
details of the UV completion at the matching point, so the deformation extends naturally to the
full theory. This interpretation relies on the top-down consistency of the bounded domain and the
existence of topology-changing processes analogous to those in [53], both features amenable to further
study.9

In addition to the ‘local’ approach to cosmological holography, centered around an observer internal
to the cosmological space, there is also the ‘global’ approach, in which the holographic theory is
formulated on the future spacelike boundary of a de Sitter or inflationary spacetime, and bulk time
evolution is a fully emergent phenomenon. As was emphasized in [289], a crucial step in this approach
is to go from the wavefunction of the universe, which can be described by a holographic CFT via
dS/CFT, to the correlation functions. Since this step involves a path integral over boundary metrics,
it requires the use of tools that go beyond the usual holography. Recent progress in this direction
includes, in particular, the study of higher-spin theories in dS, dual to the free O(N) model on the
boundary [290]. Recent developments in this interesting direction include [291]. Moreover, Euclidean
calculations starting from global low-dimensional de Sitter such as [262, 292] yield formulas expressible
as a sum over microstate contributions. These in turn may connect to lower-dimensional versions of the
T T̄+⇤ deformation generalizing [281] as in [273] to yield a Lorentzian microstate count as reviewed for
the bulk three-dimensional case above. Indeed, interesting works in this direction continue to emerge
(e.g. [293]).

9
Investigations of this question by some of the authors of [273] and [33] are in progress.
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5 Observational tests

5.1 Tests of inflation

Many of the recent developments we have highlighted will be tested through cosmological observations.
Most prominently, over the next decade precision measurements of the cosmic microwave background
polarization both from the ground [13] and from space [19] will begin to cross critical thresholds in the
search for primordial gravitational waves. These measurements will, for example, conclusively test the
class of models of axion inflation whose potentials are flattened by backreaction relative to a quadratic
potential. In this class of models the potential during the inflationary period is well-approximated by
a monomial V (�) ⇡ µ4�2p�2p, which predicts a spectral index and tensor-to-scalar ratio given by

ns = �
p+ 1

N?

and r =
8p

N?

, (5.1)

where N? measures the number of e-folds (counted from the end of inflation) at which the pivot
scale exits the horizon. The numerical value of N? depends on the model, the (unknown) physics of
reheating, and the choice of pivot scale. If reheating is highly e�cient, a typical value is N? ⇡ 60. If
reheating is delayed, N? takes a lower value, with the range often take to be N? ⇡ 50� 60, although
lower values are possible. For plausible values of p, the models predict r > 0.01. At face value this
class of models already appears nearly excluded at the single-field level [294], but it should be kept
in mind that this conclusion is predominantly based on constraints on the scalar spectral index ns,
and the theoretical prediction may be modified by the presence of additional degrees of freedom [60],
or may have to be reinterpreted [61, 62]. We note that as discussed above in §2, since axions arise
from the rich topology of the internal dimensions of string theory — topology that plays an important
role in facilitating the near-cancellation of the cosmological constant [42] — the multifield case is a
reasonable expectation and is important to test.

More generally, the threshold around r ' 0.01 is of interest because the distance traversed by the
inflaton during the inflationary period is bounded by the tensor-to-scalar ratio [295]

��

Mpl
&
⇣r
8

⌘1/2
N? &

⇣ r

0.01

⌘1/2
, (5.2)

where we have used a conservative lower limit N? & 30 for the last inequality. So a detection at or
above this threshold implies a super-Planckian excursion in field space. In any model of inflation in a
UV complete description of gravity, like string theory, there are states at sub-Planckian energies that
interact with the inflaton and lead to structure in the inflaton potential on sub-Planckian scales, unless
these interactions are forbidden by symmetries. So in the context of single-field models a detection
of primordial gravitational waves with r & 0.01 would provide strong support for the existence of an
e↵ective shift symmetry that protects the inflaton potential.

The absence of a detection of primordial gravitational waves with a tensor-to-scalar ratio at or
above r ' 0.01 does not imply that the inflaton traveled a sub-Planckian distance. However, over the
next decade CMB polarization measurements will cross another critical threshold around r ' 0.001
that provides related information about the structure of the inflationary potential rather than the field
displacement. The monomial models naturally explain the observed spectral index in the sense that
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the functional form of the spectral index is ns(N) = �(p+1)/N . There is a second class of single-field
models for which this is the case: hilltop and plateau models. To give concrete examples, this class
contains Starobinsky’s R2 inflation [2], models in which the Higgs boson is the inflaton [296, 297],
fibre inflation [298], ↵-attractors [299–301], and Poincaré disk models [302, 303]. A key quantity in
these models is the scale in field space over which the potential departs from its value on the hilltop
or plateau: this is known as the characteristic scale [13]. The absence of a detection at the threshold
around r ' 0.001 would exclude all models in this class with a characteristic scale that exceeds the
Planck scale.

In addition, the same CMB experiments will provide improved constraints on the statistical prop-
erties of the primordial density perturbations. Constraints on the spectral index of density pertur-
bations, its running, and on the amplitudes of the traditional shapes of bispectra denoted by fNL

will improve by a factor of two to three, significantly reducing the traditional model space. Three-
dimensional surveys, most notably of LSS, at face value allow access to significantly more Fourier
modes. However, extracting information about the primordial universe and in particular about depar-
tures from Gaussianity has proven challenging because clustering of matter is itself nonlinear, because
surveys observe the galaxy distribution rather than the matter field, because observations take place
in redshift space, and so on. Nonetheless, recent theoretical developments on an e↵ective field theory
of large scale structure (EFTofLSS) have matured enough for a first proof of principle constraint on
primordial non-Gaussianity [63, 304] from BOSS DR 12 data [305]. As these tools further mature and
data from larger surveys become available, constraints from LSS surveys should become competitive
with those from CMB observations, and ultimately improve on them. For additional discussion of
observational constraints on inflation both in a broader context and from a bottom-up perspective
see [306] and [307], respectively.

The string-inspired e↵ects we have described have already motivated [10, 12] and continue to moti-
vate additional analyses to make full use of the data, for example searches for imprints of non-adiabatic
e↵ects such as the production of particles or strings during inflation [156], and more generally observ-
ables beyond low order n-point functions to fully characterize departures from a Gaussian probability
distribution. The combined challenge of characterizing such e↵ects theoretically and testing them in
LSS provides a key goal for theoretical cosmology research in the near and medium term.

A number of other important empirical constraints a↵ect theoretical cosmology, ranging from
bounds on axion masses, as discussed in the next subsection, to constraints on low-energy super-
symmetry. Prospects for additional types of tests that could be important, such as new ideas for
cosmological gravitational wave sources and reheating e↵ects [308] deserve continued study.

5.2 Limits on axions

As explained in §2, the e↵ective field theories descending from string theory that are relevant for
modeling cosmology almost universally feature axion fields. In the absence of certain fluxes that induce
axion masses, such fields enjoy all-orders shift symmetries, and acquire mass only nonperturbatively.
For this reason, many classes of constructions contain ultralight axions. The number of axion fields
is determined by the topology of the internal space, and the rich topologies found in contemporary
constructions often give rise to large numbers of axions: hundreds, in the case of Calabi-Yau threefolds.
These findings led to the notion of the string axiverse [25], which is the idea that the low-energy
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e↵ective theories resulting from quantum gravity will contain many axions distributed over a wide
range of mass scales.

Experimental and observational searches for axions are proliferating. Even if no evidence for axions
is found, these experiments will in time place limits over a wide parameter range. With su�cient e↵ort
on the theory side, near-future advances in axion experiment may serve to discriminate empirically
among qualitatively di↵erent classes of string vacua, and to exclude a range of constructions. In this
connection, we stress an important di↵erence between the scenarios reviewed in §2.2 compared to those
in §2.3. In the vacua of §2.2, perturbative e↵ects with characteristically polynomial dependence on
the canonically-normalized fields control the vacuum structure, and four-dimensional supersymmetry
plays no role. The generic choices of fluxes and branes invoked in this context typically induce a
potential for axions, via monodromy. As a consequence, even though axions are abundant in this
setting, ultralight axions need not be.

In contrast, in the vacua of §2.3, which involve Calabi-Yau compactifications with moduli stabi-
lized by perturbative and nonperturbative e↵ects, the imprint of supersymmetry is strong, and the
leading potential energy terms for some classes of axions result from instanton contributions to the
superpotential. Moreover, characteristic trends in the sizes of cycles in Calabi-Yau manifolds with
many moduli cause the typical instanton actions to be large whenever the ↵0 expansion is under con-
trol [116], and in this sense ultralight axions — with masses m ⌧ 10�33 eV — are generic in the
Calabi-Yau compactifications of §2.3, though not necessarily in string theory as a whole.

To capitalize on the connection to axion experiment, a first step is to construct ensembles of many-
axion e↵ective theories resulting from string compactifications — such theories are termed axiverses
— in enough detail so that the theory unknowns do not wash out potential signatures. In the case
of nonperturbatively-stabilized Calabi-Yau compactifications, considerable e↵ort has gone into con-
structing axiverses and exploring their phenomenology. Early works include [309, 310], while advances
in computation (e.g., [77]) have allowed the enumeration of large ensembles of axiverses in Calabi-
Yau compactifications [116] (more recent statistical analyses include [311]). A general framework for
analyzing the resulting axion landscapes, and a description of their phenomenology, appears in [312].

Evidence for or against an axiverse may come through gravitational wave signals [313], a multitude
of cosmic strings [314, 315], or the evaporation of primordial black holes [316]. Future constraints on
axion dark matter should probe some of the parameter space of string-theoretic models, and theories
with ultralight axions, including Calabi-Yau compactifications, may provide candidates [317] for fuzzy
dark matter [318]. Nonlinear dynamics of multi-axion dark matter [319] could allow detection of a
small sub-component.

Direct couplings of axions to the visible sector are tested by a range of astrophysical observations
and terrestrial experiments. In some parameter ranges, constraints from gamma ray and X-ray as-
tronomy, such as [320], are stronger than the limits obtained from laboratory tests of couplings to the
electron [321]. Moreover, helioscope limits already constrain a subset of models with many ultralight
axions [322]. An imprint of axions in cosmic birefringence is another intriguing possiblity [323].

The original motivation for introducing axions in quantum field theory was the strong CP problem.
The Peccei-Quinn mechanism [21, 22] is sensitive to Planck-scale physics [324–326], so a complete
solution requires information from quantum gravity. The fact that inflation depends on Planck-scale
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physics has been a key motivation for understanding inflation in string theory (see e.g. [10]), and for
expecting that probes of inflation could teach us about string theory. In just the same way, the strong
CP problem calls out for treatment in string theory. In the Calabi-Yau orientifold compactifications
of [116], the leading quantum-gravity contributions to the neutron electric dipole moment are due to
Euclidean D3-branes, and can be computed explicitly [327]. When the number of axions is & 20, the
rich topology of the internal space leads to large cycle sizes, and the Euclidean D3-brane corrections
to the neutron electric dipole moment become negligibly small, restoring the Peccei-Quinn solution of
the strong CP problem [327]. This axiverse incarnation of the Peccei-Quinn mechanism can be probed
through limits on axion dark matter and on axion emission in stars.

A particularly promising test of the axiverse picture comes from black hole superradiance. Near
a Kerr black hole, there is an instability to production of axions in a certain mass range, which can
gradually spin down the black hole. This process can occur in the vacuum, and because it does
not require axions to be present as a cosmological population, the resulting limits are insensitive to
assumptions about cosmic history. Equipped with the distribution of axion masses in axiverses arising
in Calabi-Yau compactifications, one can use the measured spins of astrophysical black holes to place
limits on these solutions [328], excluding some regions of moduli space and some ranges of topological
parameters.

A comprehensive review of axion phenomenology is beyond the scope of this white paper, and we
have highlighted only a few of the more recent connections to string theory. Further context can be
found in the review [329] and the white paper [330].

6 Connections to other areas

In this final section we describe several connections between the theory frontier in cosmology and other
areas of inquiry.

6.1 Mathematics

There are many links between mathematics and inflationary physics. In §3.3 we highlighted the
mathematical proofs of the robustness of inflation. It is also notable that only in the de Sitter case
has a full proof of stability of the Kerr black hole been achieved [331]. Integrability-based methods in
mathematical physics such as the exact solvability of certain deformations of quantum field theories
extend readily to the case with positive cosmological constant, as detailed above in §4.

Compactification geometry and topology, as described in §2, is another major area of intersection.
Methods include group theory, di↵erential geometry, algebraic geometry, and topology, depending on
the setting. Hyperbolic manifolds and more general negatively curved spaces are well-studied mathe-
matically. As stressed earlier, they are also well-motivated physically given their positive contribution
to the potential, and their rigidity [37]; the latter combined with warp factor dynamics [26] contributes
a strong positive Hessian for metric deformations. In particular, such manifolds do not have moduli
in the mathematical sense, analogously to the absence of exactly flat directions in most quantum field
theories. Powerful methods exist to analyze them [332] with the help of simple examples [64]. Another
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timely theme concerns systolic geometry [65, 66], relating the length of the minimal closed geodesic
to the overall size of the manifold. This UV-IR e↵ect has interesting physical implications [33]. The
infinite sequences of hyperbolic spaces contrasts with the conjecturally finite list of Calabi-Yau three-
folds, and enables parametric tunings of control parameters [33, 49]. These spaces participate in string
dualities and connect to other parts of the landscape [45, 53, 333] in ways tied to their rich topology
(e.g. the exponential growth of their fundamental group). Their generality, positivity, and rigidity fits
with current empirical constraints on particle physics and cosmology, motivating additional study. In
the case of Calabi-Yau compactifications, a recent highlight is the analytic derivation of K3 metrics
[334]. At the same time, constructions of cosmological vacua based on Calabi-Yau compactifications
have required advances in computational algebraic geometry [77]. The resulting tools have revealed
new structures in the geometry and topology of the underlying manifolds.

6.2 Machine learning

The enormity of the string landscape makes exhaustive searches or random sampling impractical. Even
restricting to presently-known classes of Calabi-Yau threefolds, the number of distinct vacuum geome-
tries may be as large as 10428 [335], while counting choices of fluxes in Calabi-Yau compactifications
gives as many as 10500 [336, 337] to 10272,000 [338] flux vacua. As noted above, other types of com-
pactifications come in infinite sequences of topologies and dimensionalities at bounded Kaluza-Klein
scale. The vastness of the landscape is exacerbated by computational complexity. Finding specific
string vacua appears to be NP-hard in many cases [339–341], though this measure of complexity is
based on brute force search, which can be vastly outperformed by optimization algorithms [342].10

Only a minute subset of the configurations mentioned above are expected to be phenomenolog-
ically viable. In search of realistic vacua, additional criteria are necessarily imposed — either to set
phenomenological properties, such as the observed vacuum energy and particle spectrum, or to ensure
theoretical control, for example with small couplings and large volumes. These additional criteria put
further structure on the landscape, with the optimization target being solutions of some constrained
systems of equations. The highly ordered structure of the landscape together with the discreteness of
the UV inputs (e.g, fluxes and topology of the compactification) leads to a rich topological structure
of voids and voxels in the landscape [343].

Given the scope and nature of the problem, it is natural to leverage advances in machine learning
to design e�cient optimization methods to search for realistic vacua that may at the same time reveal
hidden structure in the landscape. The question of interest is not only the construction of realistic
vacua but also the statistical distribution surrounding such vacua, which has implications for various
dynamics-based proposals for the measure problem [340, 342, 344]. In recent years, stochastic optimiza-
tion with Genetic Algorithms (GAs) [87, 112, 345–349] and Reinforcement Learning (RL) [350–353]
have been utilized to search for viable string vacua, outperforming searches based on Metropolis-
Hastings. A first comparison between GAs and RL in a string theory context [354] showed that both
broad approaches are e↵ective in searching for optimal vacua and discovering structures of the land-
scape, but in complementary ways. In general, one may work from the formalism (2.2) [26] to explore
the e↵ective potential, or descend in its functional derivatives related to slow roll parameters, starting

10
Limitations from computational complexity can also be evaded in constructions such as [35, 88], where the computa-

tional cost of enumerating vacua indeed appears to be exponential in a dimension-counting parameter N (corresponding

in [35, 88] to the Hodge number h2,1
of a Calabi-Yau threefold), but viable solutions already appear at N = 2.
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from a particular topology and fiducial geometry along with calculable stress-energy sources such as
Casimir energy, brane tensions and the like.

More broadly, a main goal of cosmology is to reconstruct the initial inhomogeneities of the universe
from current observations. Primordial non-Gaussianity provides valuable probes of the interactions
[153, 355–357] and particle content [143, 145, 148–150] during inflation, which can help break the
degeneracy of models. Unfortunately, the physical evolution from the primordial matter distribution to
the observations today is extremely complicated and non-linear. Di↵erent theories of the early universe
predict tiny non-Gaussian features in the primordial matter distribution, which underwent 13.8 billion
years of astrophysical evolution. Upcoming experiments will result in massive new datasets, but it is
not known whether they can be modeled precisely enough to probe these non-Gaussianities. Machine
learning (ML), with its ability to model highly non-linear phenomena, could be the crucial missing
ingredient to make this possible. Topological data analysis (TDA) is an ML and statistical method for
summarizing the shape of data. TDA extracts non-local information of position-space maps, which can
distinguish primordial non-Gaussianity from the non-linearities of gravity [358, 359]. More generally,
it was argued in [246] that a map-level analysis may significantly improve the constraining power over
previous forecasts. Thus, ML approaches such as simulation-based inference involving the forward
modeling of large-scale structure maps [360–369] may have the potential to dramatically impact the
search for primordial non-Gaussianity.

ML also finds applications in computing Calabi-Yau metrics numerically [370–372] and more gen-
erally in solving partial di↵erential equations [373] arising in string compactifications. While many
quantities of interest in Calabi-Yau compactifications can be computed without explicit knowledge of
the internal metrics, thanks to Yau’s theorem, this is not the case for the general compactifications
outlined in §2.2. Moreover, even for Calabi-Yau compactifications, non-holomorphic quantities — in-
cluding the inflation potential and the kinetic terms of fields — are not amenable to algebraic geometry
methods. For example, computation of inflation potentials in D-brane inflation so far utilizes local
Calabi-Yau metrics [374] and parametrizes models in terms of boundary conditions compatible with
these metrics’ approximate isometries [118, 375, 376]. Further advances in ML techniques for com-
puting compact Calabi-Yau metrics may allow us to determine the boundary conditions and quantify
the breaking of local isometries, as in [377]. Such advances are also needed for addressing metric-
dependent questions in D-brane inflation, such as the process of reheating [378–380]. In the case of
the negatively curved compactifications discussed in §2.2, the fiducial (hyperbolic) metric is known, in
contrast to the case of Calabi-Yau manifolds. There it is interesting to move on to numerically analyze
the internal PDEs for the warp and conformal factors using a neural network as a function ansatz, as
was done as a proof of principle in a hyperbolic polygon in [33] (though analytic and simpler numeric
methods su�ced so far). Aside from classical PDEs, interesting connections between quantum fields
and neural networks are under active development (see e.g. [381, 382]).

Finally, we may turn this connection around and apply ideas from cosmology to design algorithms
for machine learning and other numerical methods. This approach is related to a very active general
program of research applying physics methods to improve and better understand the process, see
e.g. [383]. A new class of optimizers under development [373] was inspired by the field-dependent
speed limit in [153]; identifying the squared speed limit with the loss function and working in the
non-gravitational, energy-conserving limit yields a frictionless dynamics that nonetheless slows the
evolution near vanishing loss. The energy conservation in this and many similar examples yields some
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favorable properties and calculable predictions for the performance, with large phase space measure
near the desired regime of small loss. A future direction is to flesh out this and other cosmology-based
ideas in large-scale numerical problems.

Acknowledgements

The work of R.F. was supported in part by the Department of Energy under Grant No. DE-SC0009919,
the Simons Foundation/SFARI 560536, and by NASA under Grant No. 80NSSC18K1487 and 80NSSC18K0561.
The work of L.M. was supported in part by National Science Foundation grant PHY-1719877. The
work of G.S. was supported in part by Department of Energy grant DE-SC0017647. The work of
E.S. was supported in part by a Simons Investigator award and National Science Foundation grant
PHY-1720397.

References

[1] A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,

Phys. Rev. D 23 (1981) 347.

[2] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91

(1980) 99.

[3] A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness,

Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389.

[4] A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced

Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220.

[5] V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett.

33 (1981) 532.

[6] J.R. Bond and G. Efstathiou, The statistics of cosmic background radiation fluctuations, Mon. Not.

Roy. Astron. Soc. 226 (1987) 655.

[7] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641

(2020) A6 [1807.06209]. [Erratum: Astron.Astrophys. 652, C4 (2021)].

[8] Planck collaboration, Planck 2018 results. V. CMB power spectra and likelihoods, Astron. Astrophys.

641 (2020) A5 [1907.12875].

[9] S. Kachru, R. Kallosh, A.D. Linde, J.M. Maldacena, L.P. McAllister and S.P. Trivedi, Towards

inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055].

[10] D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical

Physics, Cambridge University Press (5, 2015), 10.1017/CBO9781316105733, [1404.2601].

[11] E. Silverstein, TASI lectures on cosmological observables and string theory, in Theoretical Advanced

Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 545–606,

2017, DOI [1606.03640].

[12] E. Silverstein, The dangerous irrelevance of string theory, 1706.02790.

[13] CMB-S4 collaboration, CMB-S4 Science Book, First Edition, 1610.02743.

– 27 –

https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1093/mnras/226.3.655
https://doi.org/10.1093/mnras/226.3.655
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://doi.org/10.1051/0004-6361/201936386
https://doi.org/10.1051/0004-6361/201936386
https://arxiv.org/abs/1907.12875
https://doi.org/10.1088/1475-7516/2003/10/013
https://arxiv.org/abs/hep-th/0308055
https://doi.org/10.1017/CBO9781316105733
https://arxiv.org/abs/1404.2601
https://doi.org/10.1142/9789813149441_0009
https://arxiv.org/abs/1606.03640
https://arxiv.org/abs/1706.02790
https://arxiv.org/abs/1610.02743


[14] S. Shandera et al., Probing the origin of our Universe through cosmic microwave background

constraints on gravitational waves, Bull. Am. Astron. Soc. 51 (2019) 338 [1903.04700].

[15] P.D. Meerburg et al., Primordial Non-Gaussianity, 1903.04409.

[16] A. Slosar et al., Scratches from the Past: Inflationary Archaeology through Features in the Power

Spectrum of Primordial Fluctuations, Bull. Am. Astron. Soc. 51 (2019) 98 [1903.09883].

[17] K. Abazajian et al., CMB-S4 Science Case, Reference Design, and Project Plan, 1907.04473.

[18] NASA PICO collaboration, PICO: Probe of Inflation and Cosmic Origins, 1902.10541.

[19] LiteBIRD collaboration, Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background

Polarization Survey, 2202.02773.

[20] A.B. Zamolodchikov, Expectation value of composite field T anti-T in two-dimensional quantum field

theory, hep-th/0401146.

[21] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38

(1977) 1440.

[22] R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons,

Phys. Rev. D 16 (1977) 1791.

[23] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40

(1978) 279.

[24] T. Banks, M. Dine, P.J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP

06 (2003) 001 [hep-th/0303252].

[25] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys.

Rev. D 81 (2010) 123530 [0905.4720].

[26] M.R. Douglas, E↵ective potential and warp factor dynamics, JHEP 03 (2010) 071 [0911.3378].

[27] M. Dine and N. Seiberg, Couplings and Scales in Superstring Models, Phys. Rev. Lett. 55 (1985) 366.

[28] E. Silverstein, (A)dS backgrounds from asymmetric orientifolds, Clay Mat. Proc. 1 (2002) 179

[hep-th/0106209].

[29] R.C. Myers, New Dimensions for Old Strings, Phys. Lett. B 199 (1987) 371.

[30] S.P. de Alwis, J. Polchinski and R. Schimmrigk, Heterotic Strings With Tree Level Cosmological

Constant, Phys. Lett. B 218 (1989) 449.

[31] A. Maloney, E. Silverstein and A. Strominger, De Sitter space in noncritical string theory, in Workshop

on Conference on the Future of Theoretical Physics and Cosmology in Honor of Stephen Hawking’s

60th Birthday, pp. 570–591, 5, 2002 [hep-th/0205316].

[32] J.J. Friess and S.S. Gubser, Non-linear sigma models with anti-de Sitter target spaces, Nucl. Phys. B

750 (2006) 111 [hep-th/0512355].

[33] G.B. De Luca, E. Silverstein and G. Torroba, Hyperbolic compactification of M-theory and de Sitter

quantum gravity, 2104.13380.

[34] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68

(2003) 046005 [hep-th/0301240].

[35] M. Demirtas, M. Kim, L. McAllister, J. Moritz and A. Rios-Tascon, Small cosmological constants in

string theory, JHEP 12 (2021) 136 [2107.09064].

[36] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on

Mathematical Physics, Cambridge University Press (12, 2007), 10.1017/CBO9780511618123.

– 28 –

https://arxiv.org/abs/1903.04700
https://arxiv.org/abs/1903.04409
https://arxiv.org/abs/1903.09883
https://arxiv.org/abs/1907.04473
https://arxiv.org/abs/1902.10541
https://arxiv.org/abs/2202.02773
https://arxiv.org/abs/hep-th/0401146
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1088/1475-7516/2003/06/001
https://doi.org/10.1088/1475-7516/2003/06/001
https://arxiv.org/abs/hep-th/0303252
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.81.123530
https://arxiv.org/abs/0905.4720
https://doi.org/10.1007/JHEP03(2010)071
https://arxiv.org/abs/0911.3378
https://doi.org/10.1103/PhysRevLett.55.366
https://arxiv.org/abs/hep-th/0106209
https://doi.org/10.1016/0370-2693(87)90936-1
https://doi.org/10.1016/0370-2693(89)91445-7
https://arxiv.org/abs/hep-th/0205316
https://doi.org/10.1016/j.nuclphysb.2006.05.008
https://doi.org/10.1016/j.nuclphysb.2006.05.008
https://arxiv.org/abs/hep-th/0512355
https://arxiv.org/abs/2104.13380
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://arxiv.org/abs/hep-th/0301240
https://doi.org/10.1007/JHEP12(2021)136
https://arxiv.org/abs/2107.09064
https://doi.org/10.1017/CBO9780511618123


[37] A.L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, New York (1987).

[38] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys.

Rev. D 66 (2002) 106006 [hep-th/0105097].

[39] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in

Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058].

[40] X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys.

Rev. D 84 (2011) 026011 [1011.4521].

[41] L. McAllister, E. Silverstein, A. Westphal and T. Wrase, The Powers of Monodromy, JHEP 09 (2014)

123 [1405.3652].

[42] R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the

cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134].

[43] H. Wang, unpublished notes, 2013.

[44] S. Hellerman and I. Swanson, Dimension-changing exact solutions of string theory, JHEP 09 (2007)

096 [hep-th/0612051].

[45] J. McGreevy, E. Silverstein and D. Starr, New dimensions for wound strings: The Modular

transformation of geometry to topology, Phys. Rev. D 75 (2007) 044025 [hep-th/0612121].

[46] E. Silverstein, Simple de Sitter Solutions, Phys. Rev. D 77 (2008) 106006 [0712.1196].

[47] G. Gur-Ari, Brane Inflation and Moduli Stabilization on Twisted Tori, JHEP 01 (2014) 179

[1310.6787].
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