
Infinite Temperature’s Not So Hot

Henry Lina and Leonard Susskindb

a
Jadwin Hall, Princeton University, Princeton, NJ 08540, USA
a
Institute for Advanced Study, Princeton, NJ 08540, USA

b
Stanford Institute for Theoretical Physics and Department of Physics,

Stanford University, Stanford, CA 94305-4060, USA

Abstract

It has been argued that the entanglement spectrum of a static patch of de Sit-
ter space must be flat, or what is equivalent, the temperature parameter in the
Boltzmann distribution must be infinite. This seems absurd: quantum fields in de
Sitter space have thermal behavior with a finite temperature proportional to the in-
verse radius of the horizon. The resolution of this puzzle is that the behavior of some
quantum systems can be characterized by a temperature-like quantity which remains
finite as the temperature goes to infinity. For want of a better term we have called
this quantity tomperature. In this paper we will explain how tomperature resolves
the puzzle in a proposed toy model of de Sitter holography—the double-scaled limit
of SYK theory.
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1 The Temperature of De Sitter Space is Infinite

The probability for a fluctuation to take place in de Sitter space
is given by e

��S, where the entropy deficit �S is the decrease in
entropy accompanying the fluctuation [1]. For this to make sense
the entropy deficit must always be positive. It follows that the
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entropy of the de Sitter vacuum must have the maximum possible
value. Recently Chandrasekharan, Penington, and Witten have
observed an important consequence: the entanglement spectrum of
a static patch must be flat: equivalently the density matrix of the
static patch must be maximally mixed. To put it another way, the
formal temperature in the Boltzmann distribution must be infinite1.

1.1 Global and Proper Temperature

Consider quantum field theory in a background de Sitter space.
The metric in static coordinates is given by,

ds
2 = l

2
�
�(1� r

2)dt2 + (1� r
2)�1

dr
2 + r

2
d⌦2

�
(1.1)

where l is the characteristic de Sitter length scale. We assume that
there is a Hamiltonian generating time-translations,

H = l
�1
@

@t
. (1.2)

The factor l�1 is to give H the units of energy.
The definition of global temperature is through the usual Boltz-

mann distribution,

1

Z
e
�H/T =

1

Z
e
��H

.

For quantum field theory in a de Sitter background the global tem-

1Chandrasekharan, Penington, and Witten express this in terms of Von Neumann algebras: the op-
erator algebra of the static patch should be of type II. The same physical conclusions were reached long
ago by Banks [3] and Fischler [4], and more recently by Dong, Silverstein, and Torroba [5] on the basis of
di↵erent arguments.
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perature is given by,

TdS =
1

2⇡l
(1.3)

One can also consider the local proper temperature—the temper-
ature that would be registered by a static thermometer at spatial
coordinate r. One can also think of it as the local Hawking tempera-
ture of radiation emitted from the horizon. The proper temperature
is related to the global temperature by a red-shift factor,

Tproper =
p
1� r2 TdS. (1.4)

At the center of the static patch where r = 0, the proper tempera-
ture is the same as the global temperature.

However, according to [2] when dynamical gravity is “turned
on” the Boltzmann distribution must become flat, and the global
temperature infinite. But if the global temperature is infinite then
by (1.4) the proper temperature must also be infinite—everywhere.

O↵ hand this sounds nonsensical. If the proper temperature were
infinite we would be burned to a crisp by the radiation from the
cosmic horizon.

1.2 Tomperature

We will resolve this puzzle by showing that systems of discrete
degrees of freedom (qubits for example) at infinite temperature
can behave thermally with an e↵ective temperature which remains
finite as T ! 1. The e↵ective temperature, denoted T will be
called tomperature [6]. We will define tomperature, and then show
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that in a toy model of de Sitter space field correlations have thermal
form, with the e↵ective temperature being the tomperature.

The example we will concentrate on is the infinite temperature
limit of double-scaled SYK.

NOTE

The double-scaled SYK theory (DSSYK) [7][8] is usually defined as
the limit

N ! 1, q ⇠ N
1/2

In this paper, as in [9] and [10] we will mean something a bit more
general; namely the limit

N ! 1, q ⇠ N
p (1.5)

with

0 < p <
1

2

.
The value of p will not be important in this paper but it may be

constrained when 1/N corrections are considered.
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2 Tomperature in DSSYK

2.1 Conventional SYK Scaling

The SYK model [11] is defined by the following equations,

H = i
q/2

X

1i1<i2...iqN

ji1i2....iq i1 i2... iq (2.6)

{ a, b} = �ab (2.7)

hj2i = 2q�1(q � 1)!

qNq�1
J 2 (2.8)

By rescaling the fermion degrees of freedom

�i =
p
2 i.

the annoying factors of 2q in (2.8) can be removed.

2.2 Scaling for DSSYK

To keep the Hamiltonian finite in the double-scaled limit we must
rescale H by multiplying it by q. With these changes equations
(2.6)(2.7)(2.8) become,

H = i
q/2

X

1i1<i2...iqN

ji1i2....iq�i1�i2...�iq (2.9)
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{�a,�b} = 2�ab (2.10)

hj2i = q!

Nq�1
J 2 (2.11)

The rescaling of the Hamiltonian by a factor q is equivalent to
rescaling time by the inverse factor. In using results from other
papers we will have to take this re-scaling of time into account. In
particular when comparing with [12] wherever t appears it will be
replaced by with qt (see for example section 5.1).

In the standard SYK theory with fixed q the rescaling of H
would trivially rescale the units of time and energy. But in DSSYK
the re-scaling is essential for the Hamiltonian (and other important
quantities) to remain finite as the double-scaled limit is taken. This
theme will recur throughout the paper.

3 Infinite Temperature

3.1 A System of Particles

Let’s begin with an ordinary gas of N weakly coupled particles.
The temperature is defined by the parameter in the Boltzmann
distribution,

⇢ =
1

Z
e
��H

Z = Tr e
��H
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T = 1/� (3.12)

At high temperature the system behaves classically. The energy
per particle goes to infinity,

E

N
! 3

2
T ! 1. (3.13)

Time scales, such as the mean time between collisions, the ther-
malization time, di↵usion time, and scrambling time all go to zero.
The time-scale for the decay of correlation functions also goes to
zero.

3.2 A System of Qubits

Let’s compare this with a system of N/2 qubits interacting through
q-local all-to-all couplings, as exemplified by the SYK system. For
such systems the temperature is still defined by (3.12) but the en-
ergy per qubit remains finite at T ! 1. The time-scales all go
to finite limits and correlation functions decay at finite rates. The
question we address is whether there is a single finite temperature-
like quantity which characterizes the energetics and time scales.
Our answer is yes. For want of a better name we call that quantity
“tomperature” and denote it by T . We claim that the quantity
which is usually identified with the temperature of de Sitter space
is actually the tomperature.
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3.3 What We Are Not Saying

To be clear about what we are saying we first explain what we
are not saying. Consider a box of particles B in contact with a
system of qubits H, located at the walls of the box: the entire
system is assumed to be in equilibrium. For such a system the
temperature of the two subsystems must be the same. If H is
at infinite temperature B must also be at infinite temperature.
Anyone who comes in contact with B will get burned. There is no
sense in which B has an finite e↵ective temperature T .

How is this di↵erent from de Sitter space with its horizon at
infinite temperature, and its bulk at an e↵ective low tomperature?
The answer is that in the first case B and H are independent
subsystems described by a product Hilbert space, and commuting
degrees of freedom. In the second case the horizon system is all
that there is. The bulk is not a second subsystem; it’s a holographic
construct made of the horizon degrees of freedom. As we will see,
a bulk can emerge at finite e↵ective tomperature, from a hologram
at infinite temperature.

4 Tomperature in SYK

4.1 Definition of Tomperature

The definition of tomperature is inspired by the analogous definition
of temperature. From the first law,

T =
dE

dS
.
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In other words the temperature is the change in energy when the
entropy is changed by one unit. In this definition it is assumed
that the parameters of the system, namely the number of degrees
of freedom N , and the couplings j are held fixed. Obviously, under
these restrictions, at infinite temperature dE/dS is infinite. In
defining tomperature we will consider a di↵erent way of varying
the entropy that leads to a finite result for Tomperature.

At infinite temperature the entropy is simple the half the number
of fermionic coordinates (each coordinate counts as half a qubit),

S = N/2. (4.14)

Definition:

Tomperature is the change in energy if we remove one qubit,
i.e., two fermionic degrees of freedom, while keeping fixed the
couplings involving all other fermions.

4.2 Calculation of Tomperature

We will now calculate the tomperature. Naively all we have to do is
to compute the energy per fermion (relative to the ground state) in
the infinite temperature ensemble and multiply by 2. For p < 1/2
the energy per fermion is given by,

E

N
=

J
q

(4.15)

(see [11], equation 2.32) so that removing two fermions would give
an energy change 2J /q. But this calculation assumes that the nor-
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malization of the couplings changes according to (2.11) when N

goes to N � 2. The right rule is that those couplings—all the ones
not involving the deleted fermions, should not change when the
qubit is deleted. So we need to correct the new energy by a multi-

plicative factor
�
N�2

N

�q�1
2 .

Taking this into account,

�E =
NJ
q

� (N � 2)J
q

✓
N � 2

N

◆q�1
2

(4.16)

which for large N and q is given by,

�E ⇡ 2J .

Thus the tomperature is,

T = 2J . (4.17)

Remarkably it depends only on J .

In the proposed correspondence with de Sitter space the energy
scale J is identified with the Hubble scale l

�1
. The tomperature

is both the energy cost of removing a fermion, and the energy of a
single Hawking quantum with a wavelengh ⇠ l.

4.3 Hawking Temperature Equals Tomperature

Earlier we explained that the claim of infinite static-patch temper-
ature was motivated by the formula for the probability for fluctua-
tions:

Prob = e
��S

. (4.18)
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Let us consider an example—the probability that a single qubit
becomes disconnected from the horizon degrees of freedom. This
is exactly the situation that was envisioned in the definition of
tomperature. Thus we may write,

�E = T �S (4.19)

where �E is the change in the energy of the horizon when a qubit
is emitted. It is also the energy carried o↵ by the qubit. Combining
(4.18) and (4.19), the probability for the emission of a qubit from
the horizon is,

Prob = e
��E

T . (4.20)

This is what one expects for the emission of Hawking radiation–if
one identifies the Hawking temperature with the tomperature.

In the proposed correspondence with de Sitter space the energy
scale J (and therefore T ) is identified with the Hubble scale l�1

.

Thus the tomperature is both the energy cost of removing a fermion,
and the energy of a single Hawking quantum with a wavelengh ⇠ l.

5 Correlation Functions

5.1 The Two-Point Function from SYK

Let us consider the two-point function G = h�(0)�(t)i in SYK. At
large q and infinite temperature it was computed in [12]. In quoting
the result we must remember to take account of the re-scaling of
time by a factor of q. With that taken into account the result of
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[12] is,

G(t) =

✓
1

cosh (qJ t)

◆2/q

. (5.21)

In the limit of large q, G tends to a simple form,

G(t) = e
�2J |t| (5.22)

or from (4.17),

G(t) = e
�T |t| (5.23)

It was not obvious that G should tend to a q-independent func-
tion. The fact that it does so is an essential requirement for a cor-
respondence between DSSYK and de Sitter space. The behavior of
correlation functions in the vicinity of a horizon is a manifestation
of the existence of quasi normal modes. The result (5.23) is char-
acteristic of the exponential decay of quasi normal modes with the
rate being proportional to the Hawking temperature2.

5.2 The Bulk Two-Point Function

We now consider a typical two-point function in the bulk, i.e., the
portion of the static patch between the stretched horizon and r = 0.
The holography of Sitter space assumes that the holographic de-
grees of freedom live on the stretched horizon. Therefore to com-
pare with (5.23) we will calculate the field-field correlation function

2We could try to apply the same logic to the fixed-q case at infinite temperature as a model for a
far-from-extremal black hole. In that case we find a mismatch between the tomperature and the behavior
of correlation functions. This may not be surprising since the analysis of the operator algebras of black
holes does not lead to a flat spectrum.
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between two points on the stretched horizon but in the bulk theory.
In figure 1 the de Sitter Penrose diagram is shown with the

stretched horizon indicated in red. The stretched horizon is a sur-
face at a distance ⇢ from the true horizon. The holographic SYK
degrees of freedom and Hamiltonian may be visualized as living
on the stretched horizon. The function (5.23) was computed by
studying the of evolution of the SYK system with no reference to
the existence of a bulk.

Figure 1: Two points on the stretched horizon separated by a boost angle ⌧

In the holographic description the dynamics is described by degrees of freedom and a

Hamiltonian which live on the stretched horizon. The shaded grey region has to be

reconstructed from the holographic degrees of freedom .

The shaded grey region in figure 1 is the portion of the static
patch which must be reconstructed from the hologram. If such
a reconstruction is actually possible then it must also be possible
to understand the correlation function G(⌧ ) in terms of a signal
propagating through the bulk. Figure 2 shows a path through the
bulk connecting the two horizon points.
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Figure 2: The horizon-horizon correlation probes the bulk of the static patch.

In the bulk description the two-point function would be dominated by paths that go

through the bulk of the static patch.

To compute bulk propagators between the two horizon points
for t < l it is su�cient to use the Rindler approximation to the
geometry. In the Rindler approximation the proper geodesic time
between the two points is,

d = ⇢ cosh ⌧ (5.24)

As an example consider a bulk field in the static patch with bulk
dimension � = 1. The correlation function is,

C =

✓
1

d

◆2

⇠ 1

⇢2 cosh2 ⌧

=
1

⇢2
e
�2|t/l|

. (5.25)
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The prefactor 1/⇢2 can be removed by re-scaling the bulk field in
which case,

C = e
�2|t/l| (5.26)

Using T = 1/l (see 7.33), the similarity of (5.26) and (5.23) is
obvious.

To emphasize the point, the correlator in (5.26) describes the
propagation of a signal through the bulk. It can be visualized as a
sum over paths that jump out from the past horizon, pass through
the static patch, and then fall back into the future horizon. The
fact that it qualitatively agrees with (5.23) indicates that DSSYK
correlation functions know about, the bulk geometry of the static
patch.

6 Operator Growth

We will briefly review the results of [9][10]. The operator growth—
aka scrambling—behavior of SYK at infinite temperature can be
understood in terms of the epidemic model. For the q-local ver-
sion the epidemic model for operator growth is described by the
equation,

P (⌧ + ✏) = P (⌧ ) + ✏[1� P (⌧ )] [1�
�
1� P (⌧ )

�q�1
] (6.27)

where P is the probability that a given qubit is infected, and ✏ is
the probability of transmission at an encounter. The time-variable
⌧ is the so-called circuit time.

By taking the limit ✏ ! 0 the equation can be converted to a
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di↵erential equation and solved. The solution is,

P (⌧ ) = 1�
⇣
1 +

q

N
e
(q�1)⌧

⌘ �1
q�1

(6.28)

For fixed q and small ⌧,

P (⌧ ) = e
((q�1)⌧ (6.29)

for large q this early exponential growth is very fast. The reason is
obvious: at each encounter an infected qubit infects (q � 1) other
qubits. But in the limit we will be interested in, the exponential
growth shuts down after a period which shrinks to zero as q grows
[9][10].

Now let us compare this with the result of [12] for scrambling.
The initial exponential growth predicted in that paper is

P = e
J qt (6.30)

where the factor of q (which does not appear in [12]) is once again
due to the re-scaling of time. By comparing (6.29) with (6.30), in
the large q limit we find,

⌧ = J t. (6.31)

Going back to (6.30) we see that the exponential growth of P (t)
is extremely fast and diverges in the double-scaled limit. But as
explained in [9][10], as q grows, the time-interval over which (6.30)
is correct shrinks to zero. In the double-scaled limit this interval
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disappears altogether and and (6.28) uniformly tends to

P (⌧ ) = 1� e
�⌧

or

1� P (t) = e
�J t

= e
�T t (6.32)

As in the case of two-point correlation functions, operator growth
has a well defined behavior in the double-scaled limit. In both cases
the tomperature T replaces the conventional Hawking temperature
in correlation functions and decay rates, as well as in quantities like
the energy per degree of freedom.

7 Comparison with De Sitter

Equations (4.17) (5.23) and (6.32) illustrate the central point of this
paper; that quantities of physical significance in de Sitter space have
good limits in the infinite temperature double-scaled limit:

1. Equation (4.17) shows that, although the temperature diverges,
the tomperature is finite in the limit. This was not obvious; it
might have diverged or tended to zero as q ! 1.

2. Equation (5.23) shows that the two-point function and the de-
cay constant for quasi normal modes have good limits; some-
thing which was also not obvious. Moreover the decay constant
is the tomperature which parallels the fact that in the semiclas-
sical theory the decay constants for quasi normal modes are,
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to within numerical constants, the conventional de sitter tem-
perature.

3. Finally (6.32) shows that the functional form for hyperfast
scrambling [9][10], has a good limit.

But not all quantities have limits; for example in (6.30) the
Lyapunov exponent for operator growth is J q, which diverges as
q ! 1. However that exponent has no meaning in de Sitter space,
or for that matter in DSSYK. As explained in [9][10] a theory in
which the holographic degrees of freedom are at the horizon is
not a fast scrambler–it is a hyperfast scrambler. A finite period of
Lyapunov growth would be incompatible with this, but as [9][10]
show, the period of Lyapunov behavior shrinks to zero as q ! 1.

The final result is a hyperfast behavior with a perfectly finite limit
(6.32).

Another quantity that doesn’t have a finite (non-zero) limit is
the energy per qubit (4.15). Unlike the tomperature, which has an
interpretation as the Hawking temperature, this quantity has no
meaning in semi-classical de Sitter space.

These facts support the interpretation of DSSYK as a holo-
graphic model in which the degrees of freedom lie at the horizon,
not on some distant boundary. A natural candidate for this kind
of holography is de Sitter space.

There is a single dimensional parameter in the classical de Sitter
metric; namely the horizon radius l. Similarly in the double-scaled
limit of SYK at infinite temperature there is a single dimensional
parameter, J . In the correspondence between the two theories these
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parameters must be related,

l = 1/J . (7.33)

We see that we can also express this as a relation between the de
Sitter radius and the tomperature.

T = 1/l. (7.34)

8 Summary

To summarize: Explicit calculations [5], as well as general principles
[2], require the entanglement spectrum of a static patch to be flat,
or equivalently the temperature to be infinite. Nevertheless we
require that field correlations in de Sitter space behave thermally
with e↵ective temperature 1/(2⇡l). One might have thought that
all the degrees of freedom would come to equilibrium at the same
temperature, but we have seen by the specific example of DSSYK
that the finiteness of the e↵ective temperature and the infinite value
of the mathematical temperature coexist quite comfortably; the
e↵ective temperature being the tomperature, defined by an analog
of the first law,

�E = T �S. (8.35)

Remarkably the physically relevant quantities in de Sitter space
such as the Hawking temperature, correlation functions, QNM de-
cay rates remain finite in the infinite temperature double-scaled
limit, and are given in terms of the tomperature. Other quantities
that have no obvious meaning for de Sitter space diverge or vanish.
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On the role of the parameter p in (1.5): so far p has not appeared
in our analysis except in so far as it tells us to take q ! 1. Any
value of p in the range 0 < p <

1

2
will give the same results.

We expect that this will change when 1

N
corrections are taken into

account. We will leave this for another time.

A Caveat:

At best DSSYK is a toy model of de Sitter holography. Like its
usual low-temperature AdS(2) counterpart it lacks the ingredients
that are needed for locality on scales smaller than J �1. Roughly
speaking it is analogous to string theory in which the Planck scale is
microscopic but the string scale is comparable to the cosmological
scale.

How is it that the cosmological scale, measured in Planck units,
is stable without fine-tuning? The DSSYK model seems to be an
example of “set it and forget it.” Why is there no need for fine-
tuning? This question is not unique to de Sitter space; the same
issue comes up in the conventional SYK theory, except that the
cosmological constant is negative.

The answer is not that SYK has found a way around the fine-
tuning argument. It’s just that the cuto↵ scale (the string scale) is
the same as the cosmological scale, namely l. A theory that is so
non-local would not generate significant “radiative corrections.”
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