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Abstract

I was asked to give a brief review of the black hole-string correspondence [1] as a
warm-up for a longer SI'TP-group discussion of a recent paper by Chen, Maldacena,
and Witten [2]. Here are my notes in written form.



1 The Problem

In 1993 I was invited by the Rutgers string-theory group to give
a seminar on black holes and strings. I had thought about the
relation between the two subjects a lot in the previous months. My
picture was that the stretched horizon of a black hole is a thin layer
of wiggly strings and that the entropy of the black hole is simply
the entropy of those wiggles. I kept drawing the same picture which
looked something like this.

Figure 1

What I really wanted was to use this picture to give a microscopic
estimate of the entropy of a Schwarzschild black hole! and show
that it is proportional to the area of the horizon in Planck units. I
thought this would make a fine seminar. The problem was that I
had no idea how to do it.

I spent all week before the seminar trying to figure out a dynam-

LAt that time the idea that black hole entropy had a microscopic origin in some unitary quantum
mechanics was largely dismissed by most relativists.
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ical framework for the strings trapped by gravity just above the
horizon, but I didn’t see a way to do it. But at the last minute I
had an idea:

Adiabatically vary the string coupling constant, or if you like,
the background dilaton field until gravity gets so weak that it
can no longer hold the string onto the horizon. When that
happens the black hole should disappear and become a collection
of almost free strings. If done slowly enough the entropy should
not change during the course of the process (technically one
would say that entropy is an adiabatic invariant), and we can
calculate the original black hole entropy by using free string
theory.

Now while it was clear that when gravity was switched off the
black hole would have to become a collection of free strings, it was
less clear how many strings would appear in the final state. One
possibility was a large number of short strings, or maybe a mix
of short strings and longer ones. The prospect of figuring out the
quantum dynamics of the transition seemed very forbidding, but at
some point I recalled a paper from the early days of string theory—I
don’t remember who wrote it—showing that the number of states
of a single string of a given total energy is dominated by the states
of a single long string. This meant that on statistical grounds, the
final state of the adiabatic transition should be a single long string.
This should make the problem a lot easier.



2 Some Facts

Here are some facts from string theory and gravity that we will
need. In what follows we will hold the string length-scale fixed?

and work in (3 4 1)-dimensions.

The Couplings

The Newton constant and string coupling are related by,

G = g°l?
The Schwarzschild Radius
Rs = MG = Mg*I?

Ratio of Schwarzschild-radius to String Length

From (2.2),

Rs

2 = Mg*l,
ls
Black Hole Entropy
Area
S pr—
BH 4G
= M°G

(2.1)

(2.2)

(2.3)

2All equations are simplified by ignoring multiplicative factors of order unity. There would be no point
in keeping these factors because a chain is no stronger than its weakest link, and there is one step in the

argument that is only accurate to an order 1 numerical factor.



= M?%¢*l° (2.4)

Free String Entropy

It is a fact about strings that both the energy (mass) and entropy
S, are proportional to the length of the string L (measured along
the string). On dimensional grounds,

L
Yo
L
implying
Ss = Ml,. (2.6)

3 The Black Hole-String Transition

Here is what I imagined the transition from black hole to free string
looks like. As the string coupling decreases the Schwarzschild radius

in string units decreases (2.3). No matter what the initial mass M
and initial Newton constant GG, eventually the Schwarzschild radius
reaches the string scale, i.e., the size of the typical wiggles. That’s
what happens in the second picture of figure 2
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Figure 2: Proceeding from left to right: A large black hole with a stringy stretched horizon,
evolves, under adiabatic change of the coupling, to a black hole of string size, and then a
single free string.

The key assumption in 1993 was that any further decrease in
the coupling would result in the black hole being replaced by a
single string. Later, the guess that the transition takes place when
the Schwarzschild radius reaches the string scale was put on firm
footing by Horowitz and Polchinski [3].

The Transition Curve

According to the key assumption the transition occurs at % =1,

or from (2.3), s

1
g

M

I've shown this as the red curve in the diagram of figure [3]



Figure 3: The red curve is where the black hole-string transitions take place. The purple
hyperbolas to the right of the red curve (the black hole region) are the lines of constant
entropy, i.e., the adiabats.

This transition curve defines the values “matching points,” i.e., the
values of M and g where the black hole and string descriptions
coexist.



The Adiabats

Next let’s construct the “adiabats.” Adiabats, as I learned when I
was a mechanical engineering student, are the curves along which
entropy is constant. Let’s begin to the right of the transition
curve—the black hole phase—where the entropy is given by (2.4).
The adiabats are clearly curves of constant M g, in other words the

purple hyperbolas on the M, g chart.

What happens to the adiabats when they pass to the left of the
transition curve? That’s when the system becomes a free (or almost
free) string. In that limit the entropy becomes independent of the
coupling. The adiabats become flat.

M

g

Figure 4: The adiabats may be extended into the almost free string region where they
flatten out. The reason is that when the coupling becomes very small the mass of a free
string becomes insensitive to g.



The simplest assumption was that the adiabats follow the hy-
perbolic trajectories until they intersect the transition curve and
then flatten out. With that assumption the mass of a given adia-
bat when it hit g = 0 is easy to compute—it’s just the mass where
the adiabat intersects the transition curve.

Tracking a Black Hole

Now to the point: start with a black hole whose entropy we want
to compute. The mass of the black hole is M, the string coupling
is go and the Newton constant is Gy = g3l2. I've plotted that point
as a green dot in figure |

M
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Figure 5: Tracking a black hole: Start with a black hole of mass M; in a background with
the string coupling being gy shown as a green dot. We may track it along an adiabat until
it arrives at the transition point shown as a green cross.



Next, adiabatically decrease g, and follow the black hole along its
adiabat until it reaches the transition curve at the green cross. We
want to know the mass and coupling constant at that point. Here
are the equations for the transition curve and the adiabat:

1
M =
92l
Mg = Mygo (3.8)

Solving them simultaneously gives the matching point (called the
“correspondence point” by Horowitz and Polchinski [4]),

, 1
N VFTe)
Ml = Mgyl (3.9)

The first equation for g tells us that at the correspondence point it
is extremely small if the black hole mass is large in Planck units.
This is important in justifying the free string approximation.

The Result

The second equation of (13.9) is especially interesting. Using ([2.1)
and ([2.6) it tells us that the entropy on the adiabat containing the
point (My, go) is given by

S = M3G. (3.10)

This of course is precisely what we hoped to get: the black hole
entropy is given by the Hawking-Bekenstein formula written in the
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form of the middle equation in @
To summarize, what I did is to match the black hole to a free

string by adiabatically transporting the black hole parameters to
the matching or correspondence point, and then calculate the en-
tropy using free string theory. And it worked, giving the right
relation between entropy and black hole mass.

At the time this was the first calculation to show that black hole
entropy really does arise from the counting of quantum states.

4 Entropy and Area

So far I have not even mentioned the area of the horizon. Can we
see that the entropy is related to the area by matching the area of a
string (to be defined) to the entropy at the correspondence point?
With the right interpretation we can. I'll give a very short intuitive
explanation.

Let’s recall a very general fact about black holes: the area of
the horizon is exactly the zero-energy absorption cross section for
a massless scalar particle incident on a black hole. Even away
from zero energy the absorption cross section is proportional to the
classical horizon area but with an order 1 coefficient that varies
modestly with energy:.

If we ignore the long-range Newtonian elastic scattering (which
leads to infinite cross section) then by the optical theorem the ab-
sorption cross section (and therefore the horizon area) is propor-
tional to the imaginary part of the forward scattering amplitude.
We can use this relationship as a definition of the area and extrap-
olate it to the correspondence point where we can compute it using
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string perturbation theory. This was done in [5]. In this note I'll
give a crude but effective way of estimating the result.

Depict the excited string as a closed random walk on a lattice in
the x, y plane.

I
]

Figure 6: A crude theory of the interaction between a highly excited string (blue) and a
massless scalar string (purple).

Each link has a length [, and the total length of the string is L.
By a standard argument the total mass of the string is,

L
M = E (4.11)

Now imagine a scalar particle represented by a small string of
length ~ 1. I'll draw it as a purple square. The scalar particle
moves along the z axis, perpendicular to the x,y plane. In figure
6] the setup is illustrated with the excited string in blue and the
scalar particle in purple.

Since at the correspondence point the coupling g is very small we
can assume that cross section is just the sum of the cross sections for
the scalar to collide with the individual links of the excited string.

The individual cross sections are obviously of order g®l2. The
factor [2 must be there for dimensional reasons. The factor g°
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represents the strength of the coupling. It follows that the total
cross section is,

o= (zé) (4°2) .. (4.12)

Now using (2.1) and (4.11)) we can write the cross section as,

o= MI,G. (4.13)

But according to (2.6) Ml is nothing but the entropy of the string,
so (4.13)) becomes,

o=5G,

or, dividing by G and identifying the cross section with the area
of the horizon at the correspondence point, the result is just the
Bekenstein relation,

S~ AJG. (4.14)

This may seem far from a rigorous demonstration that the cross
section is related to the entropy in the right way, but perturbative
string theory allows a rigorous calculation of the absorption cross
section. The calculation was carried out in [5] and gives the same
answer.

5 Limits of the Method

The method I used in 1993 was not up to the task of computing the
numerical coefficient in the entropy-mass relation of the entropy-
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area relation. The main obstacle was the lack of detailed knowledge
of how the mass of the system evolved over the transition region.
In crossing the red line in figure [ the adiabat might jump one way
or the other which would introduce a multiplicative uncertainty in
the final outcome. What was needed was a quantitative approach
to the details of the transition. The rough arguments I gave were
not sufficient for this purpose, so the precise coefficient of 1/4 in
the Bekenstein-Hawking formula was out of reach.

One approach to the problem was immediately suggested by Vafa
right after seminar in Rutgers. Vafa pointed out that if we applied
similar reasoning to supersymmetric extremal BPS black holes we
could be sure that the adiabats are exactly flat. That approach
took a few years to work, primarily because there was no good
example until Strominger and Vafa cooked up the D1-D5 system.
That famously gave the factor of 1/4 but only for extremal black
holes.

Shortly after, Horowitz and Polchinski used the same method
that I outlined to successfully estimate the entropy of a wide variety
of non-extremal string theory black holes, with and without charge
or angular momentum, and in various dimensions [4], but again, the
method was too crude to produce the factor of 1/4. The reason was
the same: lack of a precise theory of the transition region. This led
Horowitz and Polchinski to attempt to build a dynamical theory of
the transition [3].

I won’t describe their theory here except to say that it added
an ingredient to string dynamics that had been previously left out.
The ingredient was the Newtonian gravitational attraction between
different parts of the long excited string. The thermal fluctuations
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of the string (which tend to spread it out in space) were coun-
teracted by gravitational attraction that tended to pull the string
together. All of this was done in a largely classical description of
the string.

Taking account of these competing effects Horowitz and Polchin-
ski gave a better account of the transition, good enough to justify
where the transition takes place, but still not good enough to com-
pute the numerical factor of 1/4 with any precision.

It was the HP theory [3] that was the subject of the Chen, Mal-
dacena Witten paper [2] and the group discussion at SITP that I
mentioned earlier. As I understand the situation Chen, Maldacena
Witten argued that the HP self-gravitating string is consistent in
heterotic string theory, but there is some obstruction in type II
string theory. The paper is technical but the bottom line is clear—
there is still lots more to do to understand the entropy of generic
black holes in string theory. I hope these notes will be useful to
anyone who wants to pursue the subject further.
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