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Dark Matter In Extreme Astrophysical Environments

Abstract

Exploring dark matter via observations of extreme astrophysical environments —
defined here as heavy compact objects such as white dwarfs, neutron stars, and black
holes, as well as supernovae and compact object merger events — has been a major field
of growth since the last Snowmass process. Theoretical work has highlighted the util-
ity of current and near-future observatories to constrain novel dark matter parameter
space across the full mass range. This includes gravitational wave instruments and ob-
servatories spanning the electromagnetic spectrum, from radio to gamma-rays. While
recent searches already provide leading sensitivity to various dark matter models, this
work also highlights the need for theoretical astrophysics research to better constrain
the properties of these extreme astrophysical systems. The unique potential of these
search signatures to probe dark matter adds motivation to proposed next-generation
astronomical and gravitational wave instruments.
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1 Executive summary

Astrophysical searches for dark matter (DM) have historically focused on measuring the
cosmic-ray or photon products from the annihilation or decay of a DM particle. However,
DM interactions could alter the physical processes occurring in the interiors of stars or stellar
remnants, the dynamics of black holes, or the mergers of compact objects. These alterations
would imprint characteristic signals in electromagnetic (EM) and gravitational wave (GW)
observations. Exploring DM via observations of these extreme astrophysical environments—
defined here as heavy compact objects such as white dwarfs (WDs), neutron stars (NSs),
and black holes (BHs), as well as supernovae (SNe) and compact object merger events—has
been a major field of growth since the last Snowmass process.

In this white paper, we give an overview of the potential of observations of extreme
astrophysical targets to open sensitivity to novel DM parameter space across a broad mass
range (⇠ 50 orders of magnitude) in the coming decade. Exploiting these opportunities
relies on both advances in theoretical work and on current and near-future observatories,
including both GW instruments and instruments spanning the full EM spectrum, from radio
to gamma-rays. We organize these searches by the DM mass range that is probed: ultralight
dark matter (ULDM, < 1 keV), light dark matter (LDM, keV–MeV), and heavy dark matter
(&GeV). Despite this categorization, we emphasize that many of these probes overlap in
mass range, as summarized in Fig. 1 and Table 1. In addition, we note that in this white
paper the parameter space of the DM that is probed does not always saturate the relic
abundance; instead, DM is defined as matter which does not interact (appreciably) with
Standard Model (SM) matter.

Extreme astrophysical environments provide unique opportunities to probe ULDM. Ul-
tralight particles can be produced in the hot, dense cores of stars and stellar remnants and
a↵ect their evolution. ULDM—ambient in the environment or produced in the NS itself—can
convert in the high magnetic field environment of the NS into radio waves or X-rays that can
be searched for in telescopes. In the last decade, new ideas unique to bosonic dark matter
have been developed. Specific models of new ULDM can alter the shape of NS waveforms
through their coupling to the dense NS matter. Black hole superradiance is a process that
can extract energy and angular momentum from rotating astrophysical black holes and place
it into bound states of exponentially large numbers of ultralight bosons, as long as the Comp-
ton wavelength of the particle is comparable to the BH size. These systems yield signals
of coherent gravitational waves as well as BH spin down, which do not depend on particle
interactions but only on gravity. Finally, ULDM can form collapsed structures like compact
halos and boson stars which can be searched for in gravitational waves or electromagnetic
signals.

Opportunities to probe LDM exist from a variety of astrophysical situations: supernovae
explosions, the existence of neutron stars, neutron star temperatures, binary neutron star
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mergers, and black hole population statistics (made possible by gravitational waves from
binary inspirals). Key observational targets for dark matter in this mass range include
observation of gamma rays, neutrinos, and the populations of neutron stars and black holes
as observed electromagnetically and via gravitational waves. LDM produced in core collapse
supernovae can be constrained from limits of their supernova cooling, or lead to visible
signals in the x-ray or gamma-ray bands. LDM produced during a binary neutron star (BNS)
merger can lead to a bright transient gamma-ray signal. LDM produced in the cores of blue
supergiants can a↵ect stellar evolution, ultimately changing black hole population properties
including the location of the black hole mass gap. LDM scattering and annihilating in
exoplantets, brown dwarfs, Population III stars, and stellar remnants can be probed through
infrared and optical radiation, and through gamma rays. Neutron stars can be heated by
LDM via the Auger e↵ect, which is probed by telescopes in the UV, optical and IR ranges of
the electromagnetic spectrum. Lastly, accumulation of in particular bosonic LDM can lead
to the collapse of astrophysical objects. Most of the signals arise from couplings to Standard
Model photons and fermions.

Compact astrophysical objects such as neutron stars and black holes provide unique test
beds for heavy (> GeV) dark matter. Dark matter captured by neutron stars and their sub-
sequent heating can be observed by upcoming infrared and radio telescopes. High densities
of dark matter can collect in spikes around black holes causing enhanced annihilation rates.
A black hole - compact object binary can form a dark matter spike which can be observed
by future space-based gravitational wave observatories. Merging compact objects can also
give insight into a wide variety of dark sector particles that modify the dynamics of the
merger process. This includes fifth forces and modifications to gravity. Finally, su�cient
accumulation of dark matter around a compact object can cause the dark matter particles
themselves to collapse into a black hole. Upcoming pulsar searches and gravitational wave
observatories will be sensitive to this kind of dark matter signature.

Key Opportunities
In summary, the key opportunities of the coming decade to maximize the sensitivity of

these observations to novel dark matter phase space include:

• Collaboration with both observational and theoretical astrophysicists to constrain the
standard astrophysical properties of these extreme environments.

• Coordination with the collaborations responsible for the upcoming major observato-
ries: ground- and space-based gravitational wave interferometers, pulsar timing, radio,
infrared, X-ray, and neutrino instruments. The goal is two-fold: one, to ensure the
performance and capabilities of these future instruments are understood by particle
theorists; and two, that observational campaigns and the resulting datasets are opti-
mized as far as possible for the cutting-edge DM search strategies.

• Further theoretical development of DM signatures in extreme environments, including
theoretical uncertainties and interconnections between observables.
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Figure 1: Summary of the dark matter mass ranges probed by the di↵erent methods outlined
in this paper. The parenthetical numbers refer to specific sub-sections.
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Section Type of DM signal mass range coupling range

2.1.1
Product of
ALP coupling to
nucleons and photons

Hard X-rays
from magnetars

. 10�5eV
GaNNGa�� . 10�19GeV�2

factor ⇠ 7 improvement
with hotter core temperature

2.1.1
Axion DM
coupling to
photons

Radio lines
from neutron stars

⇠ 10�7eV � 10�5eV
Ga�� < 10�10

� 10�13GeV�1

(improving with
observing time)

2.1.2
ALP coupling
to nucleons

GWs from
binary neutron
star inspirals

. 10�11eV 1.6⇥ 1016 < fa
GeV < 1018

2.2 Ultralight bosons
BH superradiance
(GWs; BH spin
measurements)

⇠ 10�21 eV - 10�11 eV

gravitational only
(potential
extra signatures
if other couplings/
self-interactions
are present)

2.3.1 Ultralight bosons
Boson star inspirals
(GWs)

⇠ 10�20 eV - 10�9 eV

gravitational only
(potential
extra signatures
if other couplings/
self-interactions
are present)

2.3.2
ALP coupling
to photons

Modification of
cosmic distance
measurement

. 10�12 eV Ga�� . 10�11
� 10�12GeV�1

2.3.2
ALP DM coupling
to photons

Radio from DM
decay stimulated
by SN remnants

⇠ 10�6 eV - 10�5 eV Ga�� . 10�10
� 10�11GeV�1

2.4
ALP coupling
to photons/electrons

Low mass stars
evolution: Multiple

. a few keV
Ga�� ⇠ 10�11GeV�1

Gaee ⇠ 10�13

3.1
DM coupling
to photons or
SM fermions

SN: Multiple . 500 MeV 10�12 . Ga�� GeV . 5⇥ 10�5

3.2
DM coupling to
SM charged fermions

Gamma-rays
from BNS merger

⇠ 1-100 MeV
10�12 < ✏ < 10�9

(kinetic mixing)

3.3
LDM coupled
to photons/electrons
(ALPs, dark photons)

Location of the
BH mass gap

. 10 keV / . 1 MeV
↵26 & 1 (axion-electron)
g10 & 1 (axion-photon)
" & 10�7 (dark photon)

3.4
DM with scattering
and annihilation
processes

Stars and planets
overheating, or
producing gamma
rays/neutrinos

& O(keV)
(depending
on object and
particle model)

�n� & 10�47 cm2

(depending on object
and particle model)

3.5
DM mixing
with neutrons

NS overheating . 1.5 GeV 10�17
 ✏nn0/eV  10�9

3.6
DM coupling
to SM fermions

NS collapse to BH ⇠ eV-GeV �n� & 10�50 cm2
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Section Type of DM signal mass range coupling range

4.1 DM coupling to NS overheating 10 keV–1019 GeV �n� & 10�45 cm2

nucleons or leptons

4.2
DM spikes
around BH

GWs 10�6 eV - 1062 eV gravitational only

(⇠ 10�4 M�)
4.2 DM annihilation Gamma rays 1GeV - 10TeV thermal relics

around BH

4.3

Gravitational wave
signatures of
dark sector physics
from compact object
mergers

GWs

for axions:
. O(eV).
For light dark
sector particles:
. 10�10 eV.
For DM:
⇠ MeV – GeV

for axions:
couplings above
reduced Planck mass.
For light dark
sector particles:
g0 & 10�21

For DM: �n� & 10�45 cm2

.

4.5
DM coupling
to SM fermions
or PBHs

NS collapse to BH,
(sub)solar-mass BHs,
Max pulsar ages,
NS/BH mergers,
Kilonovae/FRB/GRB,
Neutrinos from
sun/earth,
511 keV signal,
r-process
nucleosynthesis

10 keV–1045 GeV
PBH: 1015 � 1022 g

�n� & 10�50 cm2

gravitational

Table 1: Summary of the type of dark matter probed, the expected signal, the dark matter
mass range, and the coupling range for the methods described in each section.

2 Ultralight dark matter (<keV)

2.1 Searches for ultralight bosons with neutron stars

The extreme astrophysical environments provided by neutron stars provide a powerful means
of searching for ultralight bosons, such as axionlike particles (ALPs). Through complemen-
tary probes via X-ray, radio, and gravitational wave observation, ALPs can be probed across
a wide range of masses with sensitivity comparable to or exceeding laboratory-based searches.
In Sec. 2.1.1, we discuss prospects for detection of µeV mass axions in radio and sub-neV
masses in X-ray. Sub-neV axions may also be detected through their imprints on the gravi-
tational wave signature of neutron star mergers, which we describe in 2.1.2. Each of these
search strategies will gain considerably enhanced sensitivity in the near future through the
upcoming Square Kilometer Array in radio, XRISM and ATHENA in X-ray, and LISA,
TianQin and Taiji gravitational wave observatories, motivating continued work on theory,
observation, and data analysis frontiers to optimize the power of these probes.
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2.1.1 ALP searches with radio emission & X-rays from neutron stars

Radio observations of NSs o↵er a promising opportunity to detect axion dark matter (DM)
through the distinct signature of the conversion of axions to photons in NS magnetospheres.
Though the conversion is typically weak, it is exponentially enhanced [1–3] by large NS
magnetic fields and the degeneracy of the unknown axion mass and the plasma mass of
the photon generated by charge density of the NS magnetospheres [4–6]. Recent e↵orts
using data from the GBT, E↵elsberg, and VLA telescopes have searched for the potentially
observable signal, which would appear as a monochromatic radio line at a universal frequency
set by the unknown axion mass, yielding leading constraints on axion DM [3, 7–10].

A key advantage to these searches is their sensitivity to axions across a broad range
masses of between 10�7 and 10�4 eV using existing and upcoming instruments. Moreover,
axion searches represent valuable incidental science as any radio observations of locations
with large densities in NSs and DM may contain a signal. Finally, these radio probes provide
important sensitivity to axions even if the majority of axion DM is gravitationally bound in
substructure, which may be expected from generic axion production mechanisms and would
reduce laboratory-based sensitivities [11–15]. Nonetheless, work remains toward reducing
the existing considerable theoretical and observational uncertainties in order to achieve the
full power of this search strategy using the upcoming Square Kilometer Array.

1. The precise structure of the NS magnetosphere is an active topic of research in the
pulsar community. Current constraints have been derived assuming simple plasma
profiles, though more robust predictions and possibly extended sensitivity in axion
mass may be realized with state-of-the-art NS models [16, 17].

2. The axion conversion signal is jointly determined by the conversion process and the
propagation of radio photons through the NS magnetosphere in strong gravitational
field of the NS. Accurately calculating this signal and its spectral morphology account-
ing for all relevant physical e↵ects is a problem of utmost importance and has only
begun to be addressed through ray-tracing codes [18–20]. Previously unappreciated as-
pects of axion-photon mixing that may enhance the conversion rate also require careful
consideration [21].

3. The Galactic Center (GC) is dense in NSs and DM so is an optimal environment to
detect conversion signals, albeit with large uncertainties, so improved modeling is crit-
ical. Other locations of large ambient DM density may also provide new observational
targets [22] .

4. As dense gravitationally bound substructure may arise in the axion DM scenario, un-
derstanding the dynamics of neutron-star-subhalo encounters will provide new prospects
of axion detection and require the development of new observational strategies to detect
the resulting transient conversion signal [23–25].

Simultaneous with work on these theoretical frontiers, continued observations with GBT,
E↵elsberg and the VLA alongside new e↵orts with the Parkes Observatory, the Sardinia
Telescope, MeerKAT, the Murchison Widefield Array, and HERA will lead to new constraints
on axion dark matter in the immediate future.

Apart from the radio signals resulting from cold ambient ALPs, another important di-
rection is the study of ALPs produced in the neutron star core subsequently converting to

8



Dark Matter In Extreme Astrophysical Environments

photons in the magnetosphere. ALP production by nucleon bremsstrahlung processes in the
core peaks at energies of a few hundred keV; the ALPs subsequently escape and convert
to photons, giving rise to emission in the hard X-ray and soft gamma-ray bands. Further-
more, ALPs escaping the core are e↵ectively cooling the neutron star, an e↵ect that can be
potentially observed in the luminosity data of old stars (see e.g. [26, 27]).

The parametric dependence of the ALP emissivity and conversion rate indicate that
young magnetars, with high core temperatures and strong magnetic fields, are ideal targets
for probing ALPs [28–30]. Upper limits on the product of the ALP-nucleon and ALP-
photon coupling can be derived by minimally demanding that the ALP-induced emission
does not exceed the actual experimentally observed emission from a target, regardless of
the astrophysical background. Data from NuSTAR, INTEGRAL, and XMM-Newton has
been utilized to place constraints on ALPs from a set of eight magnetars for which hard
X-ray data exists [31]; published quiescent soft-gamma-ray flux upper limits obtained with
CGRO, COMPTEL and INTEGRAL SPI/IBIS/ISGRI have been used to obtain constraints
on ALPs from five magnetars [32]. Future experiments like AMEGO covering the “MeV
gap” would place better constraints. Other systems – such as magnetic white dwarfs [33]
and the Magnificent Seven [34, 35] – have also been studied recently in the same framework.
Tantalisingly, [35] observed an excess of hard X-Ray emission in several of the Magnificent
Seven neutron stars which could be explained by axions [34]. There is no known astrophysical
explanation for this excess but its origin can be tested by future NuSTAR observations.

Challenges in modeling the magnetar heating mechanism makes it di�cult to precisely
know the temperature of the magnetar core, which is the quantity that most influences the
emissivity. Varying benchmark choices while keeping the core temperature fixed typically
results in less than a factor of three uncertainty in the ALP spectrum and subsequently the
upper limits on the product of ALP couplings [31].

On the observational side, improved limits can be obtained by incorporating the as-
trophysical background coming from resonant Compton scattering and discriminating the
ALP-induced emission. The morphology of the resonant Compton scattering background
depends on several factors, such as the electron Lorentz factor, surface temperature, and
magnetar viewing angle. While the magnetosphere is opaque to hard X-ray and gamma-ray
emission due to magnetic photon splitting and pair production, ALP-induced emission occurs
near the radius of conversion which is typically several thousand kilometers from the surface,
where such e↵ects are expected to be reduced. Moreover, a comparison of phase-resolved
spectra is expected to be particularly discriminating, as is a comparison of polarization pat-
terns. Experiments like X-Calibur and IXPE targeting hard X-ray polarimetry of neutron
stars are important in this regard [36].

2.1.2 Binary neutron star searches for axionlike particles

In the dense environment of a neutron star, light axions could receive finite density corrections
to their potential if they couple to nuclear matter in a similar way as the QCD axion. For
axions with a decay constant below 1018GeV, and lighter than the QCD axion, the finite
density corrections can cause a phase transition of the axion field, endowing the neutron star
with an axion charge [37]. In this case, the axion field mediates an additional force between
neutron stars, with a strength that could be as strong as gravity. The axion force can be
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either attractive or repulsive, depending on whether the axion field values are of the same
or opposite sign on the surfaces of the two neutron stars; in addition the axion field may
radiate axion waves during binary neutron star coalescence.

Changes to NS inspirals in the presence of the axion field have been investigated in
Refs. [38, 39]; e↵ects on the inspiral waveform from the axion field were calculated to the
first post-Newtonian order. Analysis of gravitational waves from the binary neutron star
inspiral GW170817 excludes axions with masses below 10�11eV and decay constants ranging
from 1.6⇥ 1016GeV to 1018GeV at the 3� confidence level [40].

The parameter space probed by binary neutron star inspirals can be improved with
future theoretical work and more observations. The analysis in Ref. [40] does not consider
the induced charge e↵ect [39], which could become important at the late inspirals for axions
with small masses. Taking into account the induced charge e↵ect could potentially extend
the detectable region to 1016GeV < fa < 1018GeV for ma  10�14eV [40]. Constraints from
binary NS inspirals can also be improved if the SNR of the merger event is enhanced, for
example by stacking multiple binary NS merger events or with the next generation of GW
detectors, such as Einstein Telescope and Cosmic Explorer.

2.2 Black hole superradiance searches for ultralight bosons

Black holes can serve as discovery engines for ultralight bosons [41, 42]. Through physics
akin to the classical Penrose process, spinning black holes may superradiantly amplify ex-
citations in a surrounding field, shedding some of their energy and angular momentum in
the process [43]. The nonzero mass of the boson allows the excitations (particles) to remain
confined close to the hole, exponentially driving the field amplification until the black hole
has lost enough angular momentum so that the process shuts down. In this way, rapidly
spinning black holes can spontaneously trigger the formation of a macroscopic bound state
of the boson field—a boson “cloud”—which could persist for a long time and lead to rich
phenomenology. Bosons in the cloud arrange themselves in discrete energy levels analogous
to those of the hydrogen atom. The cloud can have a mass up to ⇠10% [44] of the original
black hole, resulting in the emission of continuous, quasimonochromatic gravitational waves
that eventually drain the cloud and make it disappear. Before that happens, particle tran-
sitions between the energy levels of this “gravitational atom” can also produce gravitational
waves [41, 42, 45, 46]. On the other hand, if the bosons have additional interactions, new
processes can a↵ect the dynamics and evolution of the cloud [42, 45, 47–53]. All of these
phenomena lead to observational signatures that could allow us to detect the existence of
ultralight bosons, and establish (or constrain) their role as a constituent of dark matter.

The superradiant instability is only triggered when black holes spin fast enough, and
is most e�cient when the boson’s Compton wavelength is comparable to the black hole’s
horizon radius. Therefore the boson parameter space that can be explored by these means is
set by the astrophysical distribution of black-hole masses and spins. The requirement that
the boson wavelength match the horizon radius implies that stellar mass black holes in the
[1, 103]M� range could allow us to probe bosons with masses within [10�11, 10�14] eV; on
the other hand, supermassive black holes with mass [103, 108]M� could allow us to probe
bosons with [10�19, 10�14] eV [41, 42, 45, 54, 55]. The former (latter) can be explored by
present and future ground-based (space-based) gravitational-wave detectors, giving us access
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to a part of the ultralight boson parameter space that is di�cult to probe in other ways.
Besides gravitational-wave observations, mass and spin measurements of black holes inferred
through electromagnetic observations, such as the ones coming from stellar mass black holes
in X-ray binaries or supermassive black holes as measured through continuum fitting and
the K↵ iron line [56], can also be used to probe the existence of bosons in similar mass
ranges [42, 45, 54, 57–59].

In the subsections below, we elaborate on the exciting prospect of detecting ultralight
bosons through their gravitational-wave signals, or through their imprint on the distribution
of observed black-hole masses and spins. We also discuss open questions in our understanding
of superradiant boson clouds around black holes, and the numerical or theoretical avenues
to answer them.

2.2.1 Gravitational wave signals from ultralight boson clouds

As discussed above, the formation of macroscopic boson clouds around astrophysical black
holes would result in the emission of continuous, quasimonochromatic gravitational waves,
that slowly dissipate the energy stored in the cloud. In particle physics terms, those gravita-
tional waves arise due to the annihilation of the bosons in the cloud, and provide one of the
most exciting signatures from ultralight bosons that can be searched for with current and
future gravitational wave detectors [41, 42, 45, 54, 55, 60–63]. The typical frequency of the
gravitational waves emitted by these clouds falls in the most sensitive bucket of current [64]
and future Earth-based detectors [65] for bosonic fields in the range ⇠ 10�14 – 10�11 eV,
while planned space-borne gravitational wave detectors such as LISA [66] or TianQin [67],
will be sensitive to a complementary mass range ⇠ 10�19 – 10�14 eV. The gravitational wave
frequency is only very weakly dependent on the spin of the boson field, i.e. whether it is
a scalar, vector or even tensor field, however the radiated power, which a↵ects the signal
lifetime and the rate at which the frequency changes, can be significantly stronger for vector
and tensor fields compared to scalar fields [46, 54, 63]. In addition to the boson spin, if
su�ciently strong, self-interactions or couplings to other matter fields can also significantly
a↵ect the development of the superradiant instability and subsequent gravitational wave
emission [47–52, 68, 69].

Gravitational waves from boson clouds can be searched for by targeting known black
holes, such as black hole remnants formed from the merger of compact binary coalescences or
known X-ray binaries [54, 70–74], or performing blind all-sky searches for signals coming from
a population of unknown isolated black holes [45, 54, 55, 61, 62, 75–77], which is especially
promising given that just in the Milky Way we expect up to ⇠ 108 isolated black holes [62].
In addition to searching for individual sources, the expectation that a large number of sources
too faint to be extracted from noise should exist can also lead to a stochastic gravitational
wave background, which has been computed in Refs. [55, 61, 62, 78–80].

Di↵erent types of searches for these sources have already started to be carried out with
current gravitational wave detectors [62, 73, 76–79]. The lack of a detection so far is already
starting to disfavor parts of the parameter space for bosons with masses in the range⇠ 10�13–
10�12 eV [62, 73, 76–79]. With the increasing sensitivity of the next-generation of ground-
based detectors these constraints are expected to be greatly improved, or even possibly
lead to a detection [54, 70–72, 80]. Jointly with planned space-based detectors, which will
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be sensitive to gravitational waves at lower frequencies [45, 55, 61], in the next decades
gravitational wave observations will potentially constrain or detect ultralight bosons in the
whole mass range ⇠ 10�19 – 10�11 eV; for further details, see [81].

Besides gravitational waves emitted directly by the cloud, if the black hole-boson cloud
system is part of a binary, a wealth of other e↵ects can occur that lead to very distinct
and potentially detectable signatures in the gravitational waves emitted by the coalescing
binary [82]. Those include signatures induced by the tidal field of the companion object, such
as level mixing, ionization, tidal resonances and tidal disruption [82–88], non-vanishing tidal
Love numbers [82, 89], signatures induced by the multipolar structure of the boson cloud [82,
90] and e↵ects such as the accretion of the cloud by the companion object, dynamical friction,
and the impact caused by the self-gravity of the cloud itself [88, 91–96]. All those e↵ects
taken together can contribute to a potentially observable change in the gravitational signal
emitted by a binary black hole, if one or both black holes in the binary are surrounded by a
boson cloud.

2.2.2 Black hole spindown signals of ultralight bosons

As discussed above, clouds of ultralight bosons can form around a black hole of appropriate
mass if the black hole’s spin is large enough. The cloud will gradually reduce the spin
of the host black hole, with a timescale that depends on the strength of the bosons self-
interaction. If self-interaction is entirely ignored, the fastest-growing cloud can develop in a
matter of minutes for stellar-mass black holes. Ultralight bosons are thus expected to leave
a measurable imprint on the spin distribution of black holes old enough that superradiance
has had the time to act. Black holes in binaries, such as those with stellar masses detected
by ground-based gravitational wave detectors (LIGO, Virgo, KAGRA) are ideal sources to
search for ultralight bosons, as they generally inspiral for millions of years before merging
in the band of the detectors. That allows for the formation of the first few clouds to reduce
the spin (and the mass, though that is a smaller e↵ect) of the host black hole [45, 55]. In
general, black holes are not expected to be e�ciently spun-up again through accretion of the
surrounding material, since the spin-up time scale can be orders of magnitude longer than
the time scale of the superradiant instability, even at the Eddington accretion rate [97]. As
a result, a large number of low-spin black holes in a particular mass range might hint the
existence of the boson clouds.

As ground-based detectors will measure hundreds of stellar-mass binary black holes per
year, one can thus verify if this population has unusually small spins, which might indicate
that they have been spun-down by superradiance [70]. Unfortunately, such measurement
is made challenging by the fact that it is partially degenerate with the underlying (and
currently unknown) distribution of stellar mass black hole spins at formation originated
from astrophysical processes. On the other hand, it is much easier to exclude the existence of
ultralight bosons in some mass range, if one finds a few fast spinning black holes inconsistent
with having gone through superradiance. In this type of analysis, one must properly account
for the combined e↵ect of some astrophysical process (e.g. accretion) and the black hole age.
Ref. [98] used the 45 LIGO-Virgo detections from the first part of their third observing run,
to exclude the existence of ultralight scalar bosons in the mass range [1.3� 2.7]⇥ 10�13 eV.
In addition, by reducing the spin of individual black holes, superradiance could reduce the
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recoil velocity of merging binary black holes, and thus increase the retention fraction of
hierarchical merger remnants, leaving an imprint on the population of black holes in dense
stellar environments [99].

In the next 10-15 years, existing constraints will become significantly tighter, and dis-
covery may be possible. The sensitivity of ground-based detectors will increase significantly
with the upgrade of LIGO, Virgo, and KAGRA to their “plus” configurations in the next 5
years [64] promising hundreds of binary black hole merger measurements per year, and thus
increasing the statistical power of population-based analyses. Indeed, Refs. [70, 100] have
shown that hundreds of high signal-to-noise ratio sources are required for a highly significant
detection of a boson with mass between ⇠ 10�13

� 10�11 eV. In the 2030s, next-generation
detectors such as Cosmic Explorer and Einstein Telescope will yield up to ⇠ 105 signals per
year [101], some of which with very high signal-to-noise ratio and exquisite spin measure-
ments [102]. By that time we will also know more about the astrophysical formation channels
of binary black holes, which might reduce correlations between astrophysical uncertainties
and the dark matter parameters we would like to constrain by studying superradiance.

In a di↵erent mass range, supermassive black holes can be used to probe lighter bosons.
LISA is expected to collect data from supermassive black hole binaries in the mid 2030s, and
to set constraints on a wider boson mass range. Specifically, early studies indicate that black
hole spin measurements with LISA will probe boson masses in the complementary range
⇠ [10�18, 10�14] eV [55]. To fully benefit from this wealth of data we need a better theoret-
ical and numerical understanding of boson clouds in black hole binaries. This will ensure
that systematical uncertainties in our modeling of the emission process will not become the
limiting factor.

2.2.3 Numerical and theoretical opportunities in superradiance

Much progress has been made in understanding the superradiant instability of ultralight
bosons around spinning black holes, including calculating the instability growth rates and
gravitational wave signals using techniques from black hole perturbation theory, and studying
the growth and saturation of the instability in the absence of non-gravitational interactions
using nonlinear simulations. However, a number of open problems remain. A major limi-
tation in accurately modelling the gravitational wave signals from the oscillations of boson
clouds is the lack of a robust calculation of the frequency evolution which will occur as the
cloud dissipates. Currently, the change in frequency is estimated based on the Newtonian
gravitational self-energy of the bosonic cloud [46, 51, 54], which is not accurate for the loud-
est signals. This limits the amount of time over which one coherently integrates a putative
signal, and hence the sensitivity of current searches.

Another forward direction is the study of how ultralight boson self-interactions or cou-
plings to other matter may a↵ect the superradiant instability and subsequent gravitational
wave emission. Scalar or vector self-interactions modify the cloud’s dynamics, possibly lead-
ing to instabilities, multi-mode configurations and premature interruption of the growth of
the cloud, as well as suppressed gravitational and new scalar wave signals [50, 51]. It also
has been suggested that a coupling between the Standard Model photon and a superradi-
ant scalar boson with an axionic interaction [48, 49, 68, 69, 103, 104], or a kinetic mixing
between the photon and a dark massive photon [105], may lead to potentially observable
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electromagnetic emission and signatures in the polarimetric imaging of supermassive BHs
through EHT-like observations [103, 104]. However, most of the current studies have relied
on simplified models or taking a non-relativistic limit to make the nonlinear calculations
tractable, while nonlinear solutions of the full equations have been restricted to purely grav-
itational interactions and the relativistic regime [106–108]. There are only a few studies of
simplified models showing the possible impact of spatially varying plasmas [109–112], and
finding better techniques to tackle the disparate timescales in the problem while capturing
all relevant nonlinear and back-reaction e↵ects (e.g. [113, 114]) is an important direction for
future work. An outstanding question is in what, if any, circumstances a so-called “bosen-
ova” may occur, where nonlinear e↵ects lead to a violent collapse/explosion of the ultralight
boson cloud [42, 47, 51–53].

As alluded to above, another opportunity is studying the e↵ect of the cloud on a binary
inspiral. The gravity of the companion perturbs the cloud [82], which in turn induces a
backreaction on the orbit in the form of resonant (“floating” or “kicked”) orbits [83, 84], as
well as a continuous friction [88, 93, 94] which speeds up the inspiral. Both of these e↵ects
can have a dramatic impact on the dynamics of the system, which can di↵er significantly
from the expectations in vacuum. Moreover, finite size e↵ects change the measurable tidal
response and the quadrupole moment of the central black hole [82, 89, 90], and a↵ect the
mass and momentum of the companion, if it is a black hole [88]. To leverage these promising
channels of detection, however, we need a combined and consistent treatment of this wealth
of interconnected phenomena to achieve a full understanding of the phenomenology. This
work is a necessary preliminary to the systematic modelling of gravitational waveforms.

2.3 Novel signals of bosonic dark matter

Driven by gravity, ultralight bosons can form bound states—boson stars (BSs)—comparable
in mass and compactness to neutron stars and black holes. Boson star binary inspirals
emit gravitational waves detectable by LIGO, Virgo and KAGRA for boson masses within
10�9

�10�13 eV, and by space-based gravitational wave detectors like LISA for masses within
10�20

� 10�14 eV. Beyond their gravitational wave emissions, stars made of axions coupling
to the photon can leave observational electromagnetic imprints as well as send out axion
bursts, when exploding or merging with neutron stars. These could be detected by axion
DM detectors in the mass range 10�15

� 10�7 eV.

2.3.1 Boson stars

Boson stars are gravitationally bound clumps of condensates of ultralight scalar or vector
particles [115–117]. Provided an abundance of ultralight bosons [118, 119], gravitational
interactions lead to the formation of condensed structures with large occupation numbers
[120] – boson stars. Typical spherically symmetric configurations in linear models can attain
astrophysical masses ⇠ (10�11eV/mb)M�, given a boson mass mb. Scalar or vector self-
interactions, as well as angular momentum strongly a↵ect this relation and open up a wide
range of possible configurations [121]. For the purposes of gravitational wave observations,
this large set of stars can be classified by their compactness, i.e., the mass in relation to their
radius, C = GM/Rc2. The latter varies from the Newtonian regime C ⇠ 10�6 (comparable
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to our sun), to the ultra compact regime with C ⇠ 0.5 (comparable to black holes).
Across the BS parameter space, gravitational wave observations of binary BSs (making

no assumptions about potential couplings of the bosonic field to the Standard Model) are
ideally suited to find evidence for the existence of these objects, and therefore, also evidence
for a new ultralight boson. For binary BSs with constituent compactnesses comparable or
above those of neutron stars, C > 0.1,

gravitational waves from the merger and post-merger phases are promising for a confident
detection. In those scenarios, the signals are highly dependent on the internal structure of the
compact object, and hence, signatures left by binary black holes or binary neutron stars are
expected to be readily distinguishable from those of BSs with the Einstein Telescope/Cosmic
Explorer and LISA [122]. The gravitational wave signals can probe the global structure of
the non-linear potential of the dark sector through its imprints on the mass profile of the
BSs [123] as well as through the stochastic gravitational wave production [124].

The smoking gun gravitational wave signals range from slowly decaying oscillations of a
BS remnant [125, 126] to echos [127, 128]. Despite their promise, however, only a handful
of necessary numerical simulations of merging BSs and resulting gravitational waveforms
exist [129–135], greatly reducing detectability prospects with matched-filtering techniques.
Furthermore, while the dynamical stability and formation of non-spinning stars is well-
understood [136–143], corresponding studies for rotating stars [144–146] revealed only scalar
BSs with self-interactions are stable [147, 148]; how rotating BSs form dynamically is still an
open problem. Isolated rotating BSs may undergo an ergoregion instability [149] and leave
observational imprints on the stochastic gravitational wave background [150]. Even during
the early binary inspiral, less compact BSs with C < 0.1 can be distinguished by their tidal
interactions from black hole and neutron star binaries with current generation gravitational
wave observatories, while the Einstein Telescope/Cosmic Explorer and LISA will enable to
distinguish compact BSs during the inspiral [151]. Additionally, these stars may undergo
inspiral resonances that lead to potentially detectable variations in the gravitational wave
power emitted [152, 153]. Finally, gravitational waves from BSs with C < 10�2 orbiting
supermassive black holes are expected to be detectable with LISA [154]. Once detected, the
form of the non-linear potential can be probed analogous to neutron star equations of state
from their mass-radius relationships [123]. Microlensing allows for significant synergy in
compact object searches associated with new physics, including boson and axion stars [155–
157], axion miniclusters [158] as well as primordial black holes (e.g. [159–161]).

2.3.2 Axion astronomy with transient sources

Boson (axion) stars can generally contribute a variety of distinct signatures, allowing for
new detection opportunities beyond conventional cold dark matter as well as multimessen-
ger prospects beyond just gravitational waves. With axion-photon coupling, electromag-
netic signatures can appear from resonant photon production associated with collapsing
axion stars [162] or neutron star-axion star collisions [163]. Explosions of axion stars and
other transient sources can naturally lead to a new class of observables [164] in terrestrial
experiments associated with burst emission of relativistic axions [165, 166]. For the QCD
axion, bursts from collapsing axion stars lead to potentially detectable signals over a wide
range of axion masses 10�15 eV . ma . 10�7 eV in future experiments, such as ABRA-
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CADABRA [167], DMRadio and SHAFT [168]. Unlike conventional cold axion DM searches,
the sensitivity to axion bursts is not necessarily suppressed as 1/f for large decay constants
f . More so, unlike traditional cold dark matter searches, axion potential self-interactions
sensitively a↵ect axion burst emission signals as well as their spectra. Thus, intriguingly,
the detection of axion bursts could provide new insights into the fundamental axion po-
tential [164] that is challenging to probe otherwise. Furthermore, in analogy with neutrino
astronomy (e.g. [169]), emission of relativistic axions from historic transient sources results
in yet another class of signatures - the di↵use axion background - distinct from conventional
cold axion dark matter [164]. As experimental searches typically focus primarily on detec-
tion of conventional cold dark matter, they can miss these new types of signatures. It is
thus imperative to expand the experimental analysis toolbox in the future to cover a broader
range of observables.

Beyond the BSs themselves as a transient source, axions with a photon coupling could
lead to signatures observable in other transient sources. During the propagation of photons
emitted by transient sources such as supernovae, the photon flux could be either suppressed
or enhanced depending on the axion mass range.

For axions with massm . 10�13eV, the conversion of photons to axions during the photon
propagation through the magnetic field background leads to a dimming of the magnitude of
sources such as Type IA SNe and galaxy clusters. This in turn alters the inferred cosmic
distance and can be constrained by cosmic distance data sets [170]. This puts constraints on
the axion-photon coupling to be below Ga�� . 10�11

� 10�12GeV�1. Future improvements
in the understanding of the magnetic field in the Inter-Galactic Medium (IGM) and Intra-
Cluster Medium (ICM) could potentially tighten these constraints.

On the other hand, if the axion DMmass is around 10�6
�10�5 eV, the decay of axion dark

matter stimulated by the radio photon waves (i.e. that from ancient supernova remnants)
results in radio echos that are observable at SKA Phase I and FAST radio telescope [171, 172].
This results in a constraint on the coupling between axion DM and photons to be Ga�� .
10�10

� 10�11GeV�1. Better understanding of faint radio sources background and denser
short baselines (such as SKA Phase II) could potentially further improve the bounds.

Lastly, axions are expected to be copiously produced at the core of SNe. When they
propagate through the galactic magnetic field, the conversion to gamma ray photons leaves
imprints on the gamma ray spectrum. This in turn puts strong bounds on the coupling
between axions and photon. Some of the bounds include that from SN1987A [173–175], and
more recent constraints obtained using AGN and Chandra observations [176], Fermi-LAT
spectral analysis of NGC 1275[177], and search of extraglactic core-collapse SNe with Fermi-
LAT [178]. Using the gamma ray burst data, one can also constrain axions produced inside
the core-collapse SNe [179, 180].

2.4 Stellar evolution signatures of ultralight bosons

Stellar evolution o↵ers powerful ways to study the physics of ultralight, weakly interacting
particles [181, 182]. In fact, stars are sensitive to extremely rare processes, which are often
prohibitively di�cult to be observed in colliders. Axions and ALPs are a notorious example.
Only very recently were terrestrial experiments able to probe the axion parameter space
in regions not excluded by stellar evolution [183, 184], and very promising outcomes are
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expected in the near future [185].
In this section, we focus on signatures derived from the evolution of low mass stars.

Furthermore, we will refer entirely to the case of axion and ALPs, although several results
apply also to dark photons and other weakly interacting particles (see Ref. [182]). Notice
that the stellar arguments discussed in this section do not require ALPs to be a fraction of
the dark matter in the universe, since they are produced directly in the stellar core.

Among the most valuable observables to understand the properties of ALPs and other
weakly coupled particles are the tip of the red giant branch (RGB) and the R-parameter,
which corresponds to the number ratio of horizontal branch (HB) versus RGB stars in globu-
lar clusters. The RGB tip has been used in the past decades to constraint the axion-electron
coupling. The most stringent bound on this coupling, Gaee . 1.5⇥10�13, was derived in two
independent contributions [186, 187] in 2020, taking advantage of the new cluster distances
determination from the GAIA DR2 data [188]. Concerning the axion-photon coupling, the
strongest bound Ga��  6⇥ 10�10 GeV�1, was derived in Ref. [189, 190], using observations
of the R-parameter in several globular clusters. Both bounds apply to axion masses up to
a few 10 keV. At higher masses, the constraints relax, due to the Boltzmann suppression of
the production rate. A reliable extension of the RGB bound at high masses is still missing,
though a preliminary study can be found in Ref. [191]. The HB bound on the axion-photon
coupling has been extended to higher mass only very recently, in Ref. [192].1

An intriguing aspect of stellar evolution observations is a series of independent observa-
tions of stellar population that have shown unexpected behaviors explainable in all cases as
an excessive energy loss. This led to speculations about new physics in the form of an exotic
weakly interacting particle which could e�ciently contribute to the stellar energy loss (see
Refs. [185, 195–199] for recent reviews). The first of these anomalies was originally reported
in the analysis of the period change of the white dwarf variable (WDV) G117-B15A, inter-
preted in terms of axions in Ref. [200]. Other independent observations have, since then,
confirmed the trend in other WDV stars [201]; the WD luminosity function (WDLF) [202–
205]; red giant branch (RGB) stars [186];2 horizontal branch (HB) stars [189, 190]; red
clump stars [206]; helium burning intermediate mass stars [207, 208]; and supernovae (SN)
progenitors [209] (see also discussion in Sec. 3.4.3 of Ref. [210]). The axion case is especially
compelling since, contrarily to other new physics candidates, fits particularly well all the
observations [211]. In this case, the combined analysis of observations from HB and RGB
stars, the WDLF, and all the WDV for which the rate of the period change was measured,
indicates a preference for a non-zero axion-electron coupling, Gaee ' 10�13, and axion-photon
coupling, Ga�� ' 2 ⇥ 10�11 GeV�1, with a significance of roughly 3� [185]. These results
should be taken with caution.3 However, they do show a systematic problem with the present
understanding of stellar cooling and demand further investigations.

Rapid advances in experimental astrophysics promise a significant improvement in our
understanding of ultralight weakly interacting particles and it is likely that, if such particles
exist and have masses below a few keV, their impacts on stars might be revealed with high

1See Refs. [193, 194] for earlier attempts.
2Notice, however, that the hint in this case has very little significance and has not been reported in the

analysis of Ref. [187].
3Another source of uncertainty could be the presence of magnetic fields in stellar cores, which can a↵ect

the production of both neutrinos and axion-like particles [212–214].
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significance in stellar observations. This fact, combined with the enormous interest in new
dedicated terrestrial experiments, promises considerable improvements in our understanding
of the physics of light, weakly interacting particles in the coming decade. Data from the
GAIA survey, particularly the new cluster distances available through the Gaia DR2 data,
have already allowed to revise the analysis of the impact of ALPs on Red Giant stars [186,
187]. These analyses have reinforced the bound on the axion-electron coupling and reduced
the significance of the hint. A further improvement is likely to follow, in the near future,
thanks to the increased angular resolution of the next-generation space-based missions, such
as JWST [215], which will enlarge the statistical sample of RGB members near the cores
of GCs. An even more substantial improvement is expected in the case of the WDLF. The
current analyses of the impact of axions on the WDLF are based on old and often inconsistent
data [202]. The largely increased WDs catalog, with precisely measured distances available
through the GAIA data, will enable a considerable improvement of the WDLF in the coming
years. Such improvement will also gain a significant boost with the starting of operations
of the Vera Rubin Observatory, expected to detect WDs that are 5 to 6 magnitudes fainter
than those detected by Gaia and to increase the census of WDs to tens of millions [210].

Dedicated axion experiments of the next generation, particularly axion helioscopes [216,
217] will also be able to access at least sections of the parameter space relevant for stellar
evolution, o↵ering a complementary way to study the impact of axions on stars [185]. More-
over, a population of ALPs or dark photons can be produced in the core and accumulate in
gravitationally bound orbits around the sun (and other astrophysical bodies). Such basin can
increase the prospects of both direct and indirect detection for some mass ranges [218, 219].

3 Light Dark Matter (keV–MeV)

3.1 Constraining LDM through core-collapse supernovae

Core collapse supernovae, originating from stars with mass larger than 8M�, are extremely
e�cient factories of feebly interacting particles, e.g. neutrinos, axions and ALPs, and dark
photons [181, 220]. At the end of its life cycle, the compact core of an evolved star becomes
unstable and collapses to nuclear density. The standard picture (see e.g. [221–223]) is that
a shock wave forms, moves outward, and—rejuvenated by the neutrino flux—ejects most of
the mass in the form of a SN explosion, leaving behind a cooling proto-neutron star (PNS)
which eventually becomes a neutron star (NS). Within a few seconds, the gravitational
binding energy of the NS, Eb ⇠ 3⇥ 1053 erg, is released in the form of neutrinos—an energy
comparable to that released by all stars in the Universe within the same period. This energy
is mostly emitted in the form of neutrinos (99%), as � and e± interact so strongly that they
contribute little to energy transfer. As a result, only ⇠ 1051 erg are emitted as kinetic energy
of the expelled material, and ⇠ 1048�49 erg is emitted as photons.

The standard picture of the neutrino fluxes, energies and emission time-scale was con-
firmed on 23 February 1987 by the neutrino burst from SN 1987A [224–226]. Beyond the
Standard Model particles, produced in the dense and hot matter of the PNS, can leave many
signatures which depend on the mass and interactions of such particles. For example, the
existence of axions and ALPs with coupling to nucleons (e.g. [181, 227, 228]) and photons
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(e.g. [229, 230]) can be constrained. Recently, the coupling to muons of heavy ALPs has
been explored [230–232]. Owing to the high temperature and density of the PNS, they are
the only astrophysical environments where particles with mass of up to several hundreds
MeV can be abundantly produced. If ALPs exist, the PNS may lose energy fast, a↵ecting
the duration of the neutrino signal of SN 1987A. The SN cooling argument excludes the
existence of ALPs, unless their couplings are so small they are not produced e�ciently (free
streaming-regime) or they are so strongly interacting that they cannot escape, so that no
additional cooling channel exists (trapping regime) [227, 233, 234]. In the free streaming
regime, a simple criterion is that the new energy loss should not exceed 1019 erg g�1 s�1, or
an overall luminosity of around few times 1052 erg s�1, to be calculated at nuclear density
⇢ = 3 ⇥ 1014 g cm�3 and T = 30 MeV [181]. For a critical take on the SN 1987A cooling
bounds, see [235].

New particles can also generate visible light signals in the x-ray or gamma-ray bands [236].
This is possible if the new degrees of freedom are allowed to decay to SM photons. Such
signal can also be used to probe ALPs with couplings to fermions, as the decay happens
through a fermion loop [230].

If the decay time is short, a beyond the Standard Model (BSM) particle can decay in the
mantle around the PNS, which acts as an astrophysical calorimeter. As the kinetic energy
of the expelled material is small, stringent bounds can be obtained. This argument, first
advanced by Falk and Schramm [237], was recently rediscovered [238], and applied to muon-
philic bosons [230]. It has been shown that muon-philic scalars, a simple solution to the ob-
served discrepancy between the measured and predicted muon magnetic moment [239, 240],
are therefore excluded by SN energetics arguments. Similarly, the “cosmological triangle”,
the only viable region in the parameter space for MeV ALPs coupling to photons [241], is
hardly reconciled with SN physics [230]. Very recently, it has been shown that SNe with
particularly low explosion energies are the most sensitive calorimeters to constrain particle
depositing energy in the mantle [242].

Dark vectors, such as dark photons with a kinetic mixing with SM photons, can be con-
strained with similar arguments, so SNe provide guidance for their experimental searches [243,
244]. Also dark fermions, such as heavy millicharged fermions, can be constrained by SN
cooling [245, 246] and detection at Earth [244, 247]. SN 1987A has been also used to put
bounds on CP-even scalars mixing with the Higgs boson [248, 249]. On the other hand,
the case of sterile neutrinos (for early approaches see e.g. [250, 251]) is more complicated,
since particular care should be paid to the modeling of the SN evolution in the presence of
active-sterile mixing [252, 253].

In some cases, strong constraints can be obtained using the di↵use x-ray and gamma-ray
background, an idea dating back back to an early paper by Cowsik [254]. All collapsing stars
in the visible universe, a few per second, provide the di↵use supernova background of dark
particles (similar to the di↵use supernova neutrino background [223]), that can later decay
(see e.g. [230, 255]).

The enthusiasm for SNe as laboratories for astroparticle physics has grown in recent years,
thanks to both advancements in numerical simulations [256, 257] and the development of
new neutrino detectors, as well as gamma-ray detectors (INTEGRAL, Fermi). Proposed
future detectors like e-ASTROGAM and AMEGO are promising avenues to detect potential
signals. The next nearby SN will provide a bonanza of astrophysical and particle-physics
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information, being a factory of particles with mass up to several hundreds MeV. It will be
observed in a large number of detectors of di↵erent size, ranging from Super-Kamiokande
to IceCube, although in the latter case without event-by-event recognition [222, 258, 259].
Upcoming large detectors such as Hyper-Kamiokande or DUNE also provide promising de-
tection perspectives [222, 259]. On the theoretical side, our understanding of nuclear matter
in the extreme conditions of PNS and NS is still limited, and the particle production rates are
still a↵ected by theoretical uncertainty, though development has been on-going [260, 261].
Moreover, improvements in the simulations and self-consistent inclusion of new strongly cou-
pled degrees of freedom would also be welcomed. The most extreme astrophysical events like
hypernovae [262], though rare, could speak volumes about ALPs, SN explosion mechanisms,
and more [263].

3.2 LDM constraints from binary neutron star mergers

Binary neutron star mergers are a new promising environment to probe weakly interacting
light particles. Immediately after the merger, these remnants reach temperatures in the
30 � 100 MeV range, and densities above 1014g/cm3, similar to the proto-neutron stars
formed in core-collapse supernovae which have been used to place constraints on a wide
range of scenarios (see Sec. 3.1). The large temperature and density of these objects makes
them very e�cient at producing feebly interacting dark sector particles, which can escape
this environment and lead to observational signals [264–266]. Two key distinctions between
BNS and SN are that the former allows the use of the associated gravitational wave signal as
a trigger and a timing measurement to help distinguish signal from background fluctuations,
and the environment around the remnant is much less baryon rich, which leads to a cleaner
signal from decaying dark sector particles.

In a recent study [266], it was shown that dark photons with masses in the 1� 100 MeV
range would be copiously produced and that for a large range of unconstrained couplings
they would lead to a very bright transient gamma-ray signal originating from the dark photon
decay. This new signature can be used to test most of the unconstrained parameter space
in which the dark matter abundance is obtained through the freeze-in mechanism via dark
photon mediated interactions, for dark photon masses smaller than 100 MeV. There are two
distinct regimes for the signal, depending on whether the decay products thermalize or not
after they are produced. When the decay products thermalize, which correspond to larger
couplings, most of the energy gets converted to photons following a thermal spectrum with
apparent temperature around 100 keV. The parameter space for which this happens should
already be probed by current instruments, such as the Gamma-ray Burst Monitor (GBM)
in the Fermi satellite, once new BNS mergers are observed. The reach for the lower coupling
scenario, when the decay products do not thermalize, has not been worked out in detail
yet, and presents theoretical and experimental challenges. From the theory side, one needs
to compute the fraction of the energy that gets converted to photons, and the spectrum of
those photons. The experimental challenges stems from the fact that in this scenario most
of the energy will remain in the leptons, and so the expected photon luminosity will be
lower, and should also be more concentrated at larger energies, comparable to the remnant’s
temperature.

Future improvements in gravitational wave detectors will allow for early warning and
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localization of neutron star mergers, potentially allowing for instruments with narrower
fields of view to observe the event. New proposed gamma-ray telescopes , such as e-
ASTROGRAM [267], AMEGO [268] and GECCO [269] will improve the sensitivity to tran-
sient gamma-ray signals over a wide range of energies by at least an order of magnitude. In
addition, they will have better photon angular resolution, which will help reduce background
from di↵use gamma-rays. Both developments will make neutron star mergers an exciting
target to search for light dark sectors in the upcoming decade.

3.3 Constraining LDM using black hole population statistics

The mass function of astrophysical black holes measured through LIGO/Virgo/KAGRA
gravitational wave observations of binary black hole mergers [270] can be a complimentary
LDM due to its e↵ects on BH formation from massive stars [271–275]. Some BH progeni-
tors reach core temperatures and densities where they experience the Pair-Instability [276].
Thermal production of electron-positron pairs softens the equation of state (EOS) resulting
in a gravitational contraction that raises the core temperature and ignites oxygen explo-
sively. The explosion either results in a series of mass-shedding pulsations — a Pulsational
Pair-Instability Supernova (PPISN) — that leaves less bound mass to form the final BH,
or, in heavier objects, unbinds the star entirely leaving no BH remnant — a Pair-Instability
Supernova (PISN). The absence of BHs with masses M & 50M� is referred to as the Upper
Black Hole Mass Gap (UBHMG). Future GW data can be used to determine its existence
and location [270, 273, 277–279].

Weakly coupled LDM particles e.g. axions and dark photons can be produced in the cores
of massive stars. They subsequently free-stream, acting as a novel source of energy loss that
is compensated by an increased rate of nuclear burning. This shortens the lifetime of core
helium burning, leaving less time for the (subdominant) 12C(↵, �)16O reaction to proceed
resulting in less 16O present at the onset of the pair-instability and consequentially less violent
explosions. Heavier BHs can be formed as a result, and BH mass as a function of initial
mass becomes more sharply peaked [271, 272]. In some LDM models e.g. dark photons, the
pulsations may be absent completely. Heavy DM (MDM & 10 keV) can also alter the physics
of PPISN/PISN either through its contribution to the EOS [272], gravitational capture [275],
or via energy injected from annihilations [274]. LDM with significant interactions with stellar
matter, such as axions in the cosmological triangle, can a↵ect the EOS in such a way that a
new instability exacerbates pair-instability. This can significantly alter late stellar evolution
and ultimately both the location of the UBHMG and the luminosity of resulting supernovae
[280].

Predictions for the BHMF can be made using the stellar structure code MESA [281],
suitably modified to include LDM e↵ects [271, 272, 280, 282]. Constraints on the model
parameters may be extracted from GW observations of the black hole mass function (BHMF)
using a novel three-parameter fitting function developed by [273] and comparing with MESA
predictions. To set competitive constraints, precise determination of the BHMF is needed.
Information from the shape of the BHMF and the location of the UBHMG can be used
to mitigate stellar modelling uncertainties e.g. metallicity and nuclear reaction rates, and
can distinguish between competing LDM models. Anticipated LIGO/Virgo/KAGRA data
releases will enable the first constraints to be placed using this technique.
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3.4 Heating and gamma rays from astrophysical objects through
LDM scattering and annihilation

DM can be captured in astrophysical objects, by scattering and losing su�cient energy to be
gravitationally bound. Once captured, depending on the particle model, DM may annihilate
to SM products. If the annihilation is su�ciently prompt, the annihilation products are
absorbed by the astrophysical object, increasing its temperature, which can be detectable.
It has been pointed out that exoplanets [283], brown dwarfs [283], population III stars [284–
287], white dwarfs and neutron stars [288–291] can all be excellent dark matter heating
detectors in complementary scenarios. Assuming the scattering process, which is necessary
for capture, is in equilibrium with the annihilation process, which is necessary for su�cient
heating in all objects except neutron stars (see below), the annihilation heat provides a new
probe of the DM scattering rate.

Each of these objects can probe sub-GeV dark matter scattering, though the scenario in
which they are most optimal DM detectors varies. Neutron stars are incredibly dense, and so
generally o↵er the best cross-section sensitivity reach. However, the DM-heating luminosities
of neutron stars can be very low, as they are tiny objects. Their DM heat therefore cannot
be as easily detected, especially at large distances. On the other hand, e.g. Jupiter-like
exoplanets are about 1,000 times larger in radius, and so their DM-heating signal can be
detected far into the Galactic center. As the amount of DM available directly correlates
with the DM-heated temperatures of the exoplanets, this allows for a new probe of the DM
density distribution throughout the Galaxy. This exoplanet search is unique in its ability to
potentially provide the first non-gravitational probe of the DM density distribution in our
Galaxy. This DM-heating signal may also be detectable at upcoming infrared and optical
telescopes, JWST, Roman and Rubin [283].

Another large object whose DM-heating can potentially be detected at large distances,
is a white dwarf. However, they have relatively high background temperatures, such that
a large amount of DM is required to heat them above backgrounds. For this reason, they
are often studied in a globular cluster called Messier 4, which could potentially have large
DM content, though this is not known yet and has considerable astrophysical uncertainty.
Limits based on the assumption that there is a large amount of DM in Messier 4 were set in
e.g. Refs. [289, 291, 292]. The robustness of these bounds can be improved in future with
more accurate determination of the DM content in globular clusters and reduced systematic
uncertainties.

In addition to the DM heating signature discussed above, LDM can also be probed
using gamma rays. In the case that the DM annihilation products are produced via decay
of a su�ciently long-lived or boosted mediator, the annihilation products can be detected
directly. The strong constraining power has been pointed out for sub-GeV DM scattering
using Fermi-LAT data of Jupiter [293], as well as Galactic center gamma-ray data for a
Galactic population of brown dwarfs [294] (see also solar gamma-ray constraints [295–297]).
Going forward, better determination of the Galactic distribution of brown dwarfs and neutron
stars, as well as more accurate understanding of the DM density profile, is required to improve
the accuracy of the inner Galaxy gamma-ray searches.

Lastly, DM annihilation to neutrinos can be observed within some of these objects, as
neutrinos are su�ciently weakly interacting to escape the object’s cores. In the case that DM
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annihilates to long-lived particles, more energetic neutrinos can escape which would otherwise
be heavily attenuated [295, 298]. Improvements to the existing sensitivity to neutrinos with
Super-K [299], IceCube [300], and ANTARES [301], can be achieved with KM3Net [295],
and as well as other upgraded neutrino detectors in future.

3.5 Heating of neutron stars through Auger e↵ect

Dark sectors containing GeV-mass states carrying baryon number could explain the long-
standing neutron lifetime anomaly [302] and the recent XENON1T excess [303], and feature
in solutions to baryogenesis (see, e.g., [304, 305]). One consequential species is the dark
neutron, which mixes with the standard neutron and could arise as an elementary parti-
cle [302] or as a composite in mirror world scenarios [306]. For tiny mixing, the dark neutron
is su�ciently long-lived to constitute the dark matter of the universe.

Dark neutrons � may be produced in neutron stars in neutron-nucleon scattering pro-
cesses nN ! �N and neutron decay n ! ��. If these proceed at high rates, the presence
of the � fluid in chemical equilibrium with nucleons would generically soften the equation of
state of NS matter, which is incompatible with observations of high-mass NSs [307–311]. But
if these processes occur on timescales longer than NS lifetimes (typically Myr-Gyr), over-
lapping with parametric regions where they also constitute DM, they would leave a visible
astrophysical signature: NS overheating. As nucleons leave behind holes in their Fermi sea,
either via conversion to � or upscattering, surrounding nucleons of higher energy rush to
fill them in, releasing heat in the form of electromagnetic and kinetic energy. This “nucleon
Auger e↵ect” could prevent NSs from cooling down, and Hubble Space Telescope observa-
tions of the coldest (40,000 K) pulsar PSR J2144-3933 [312] already place strong constraints
on dark neutrons [313, 314]. These sensitivities could be improved with current and upcom-
ing telescopes in the ultraviolet, optical and infrared that are suited to measure colder NSs:
LUVOIR [315], Rubin [316, 317], DES [318], Roman [319], JWST [215], TMT [320], and
ELT [321]. Dark neutrons, along with DM capture described in Sec. 4.1, provide compelling
fundamental physics motivations for these campaigns to undertake systematic measurements
of NS luminosities.

3.6 LDM-driven collapse of astrophysical objects

A number of studies have identified sub-GeV mass asymmetric DM models that cause neu-
tron stars and other astrophysical objects to collapse through accumulation of dark matter,
followed by the internal collapse of the captured DM, and the resulting formation of a small
black hole which grows to consume the astrophysical object/NS [288, 289, 322–335]. The
relevant dark matter dynamics, associated signatures, and potential astrophysical searches
are detailed in Section 4.5. Here we review considerations specific to LDM that collapses as-
trophysical objects. The LDM models which have been identified as leading to the collapse of
accumulated DM in NS interiors include bosonic dark matter or fermionic dark matter with
substantial attractive self-interactions. Fermions would require some additional attractive
force, because sub-GeV mass fermions without attractive self-interactions would require the
accumulation of more than a solar mass of DM to initiate collapse, since fermions are sta-
bilized by Fermi degeneracy pressure. In the case of light bosonic DM, DM self-interactions
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e↵ect change in capture rate applicability reference

EoS of star e↵ects
O(1): BSk20 ! 21 all m� [332]

none: QMC-2 ! BSk24 all m� [338]
mass-radius configuration O(100) as 1 ! 2.2M� all m� [339]

nuclear self-energies
30�100

m� > 100 MeV, any EoS [340]
nucleon structure O(103) for 2 M� NSs [338]

non-elastic scattering subdominant � [338]
“collective” e↵ects O(1� 103) 2 M� NS, [341]

m� < 100 MeV,
A0 mediator

superfluidity: energy gap maybe O(1) m� . 35 MeV, [342]
single phonon excitation [343]

NS opacity/ extinction factor O(1) m� > GeV [339]

relativistic kinematics
⇠ 4 m� > GeV [339]
⇠ 10 m� < GeV [339]

gravitational focusing < 2 all m� [339]

light mediator kinematics
O(1) m�/µred < 10�1

[344]
voided m�/m� < 10�4

Table 2: A non-exhaustive list of e↵ects that modify the rates of dark matter capture in
neutron stars via nucleon scattering.

can substantially alter the amount of DM required for collapse inside a NS, since these can
result in a substantially repulsive force between the bosons [328, 329, 336]. For the case
of light fermionic DM with attractive self-interactions, it has been shown that, for certain
Yukawa interactions mediated by a light scalar, the formation of a small black hole is in-
hibited during collapse by relativistic e↵ects [337]. For most LDM parameter space, the
signatures associated with e.g. neutron star collapse, are similar to signatures from heavier
dark matter discussed at length in Section 4.5.

4 Heavy Dark Matter (& GeV)

4.1 Capture in neutron stars: heating signatures

By virtue of their extreme densities, steep gravitational potentials, and typically cold temper-
atures, neutron stars are excellent captors and thermal detectors of particle dark matter. The
capture of DM in NSs and its subsequent thermal relaxation was first treated in Ref. [288]. It
was recently realized that a simple probe of dark matter scattering on Standard Model (SM)
states is the heat generated in the NS from the transfer of DM kinetic energy to the NS’s
constituent particles during the infall of DM at semi-relativistic speeds [290]. It was also real-
ized that upcoming infrared telescopes, e.g., the James Webb Space Telescope (JWST) [215],
the Thirty Meter Telescope (TMT) [320], and the Extremely Large Telescope (ELT) [321]
are sensitive to this “dark kinetic heating” mechanism [290]; a dedicated sensitivity study at
the recently launched JWST can be found in Ref. [345]. These observations could be made
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following the discovery of old, isolated neutron stars in radio telescopes such as FAST [346]
and CHIME [347].

Furthermore, in cosmological scenarios where DM collects predominantly in subhalos,
for instance when the small-scale power is enhanced by an era of early matter domination,
encounters between subhalos and NSs could brighten a fraction of Galactic NSs to optical
and ultraviolet luminosities. This would be observable in all-sky surveys by current and
imminent telescope missions such as Dark Energy Survey [318], Rubin [316, 317], and LU-
VOIR [315]. Further to NS heating by dark neutrons via the Auger e↵ect outlined in Sec. 3.5,
kinetic heating by DM capture gives another important motivation for these collaborations
to perform precision measurements of NS luminosities.

Much e↵ort has been concentrated in recent years on the particle physics implications of
this probe. It has been shown that orders-of-magnitude improvement over terrestrial direct
detection searches may be achieved for DM with scattering that is spin-dependent and/or
velocity-dependent [348], inelastic [290, 349], and on electrons [350–353]. Additionally, DM
with muon-philic interactions [354] and self-interactions [355] may be extensively probed.

The sensitivity of neutron star heating to elastic dark matter-nucleon scattering greatly
complements direct detection searches in both the light and heavy limits, and could probe
regions below both the spin-independent and spin-dependent xenon neutrino floors arising
from irreducible neutrino backgrounds these experiments would run into in the near-future.
These features are qualitatively preserved even if the NS core, whose exact composition
and phase transition history is unknown due to uncertainties in the state of QCD matter
at extreme densities, does not allow DM capture due to suppressed scattering interactions.
In that case the NS crust, a much more robustly understood stellar region, still serves as a
sensitive thermal detector with DM capturing via quasi-elastic nucleon scattering in the pasta
layer and via superfluid phonon excitations in the inner crust [342]. Further studies related
to the nuclear astrophysics of candidate NSs may be found in Refs. [332, 338–341, 356, 357].
In Table 2 we collect various e↵ects mentioned or explored in the literature that may modify
the cross section sensitivities; much of these is ripe for future theoretical investigation.

Another important particle physics aspect is the possibility of dark matter annihila-
tions [323, 358]. If the captured DM comes from a symmetric population, it could self-
annihilate to SM final states within the NS and raise its luminosity, thereby saving telescope
integration times by up to an order of magnitude [290, 348]. This is however contingent
on the captured DM sinking down to a small thermal volume within the NS lifetime and
annihilating e�ciently; the thermalization of DM inside the NS is a non-trivial and model-
dependent process [359, 360]. It has been noted that a thermal Higgsino of 1.1 TeV mass,
a true electroweak WIMP that has survived all constraints (see, e.g., Ref. [361]), would
thermalize with the NS crust quickly enough and thus show up in annihilation-induced NS
heating [342]. Other models explored in this context are given in Refs. [344, 362–365].

4.2 Signatures of DM spikes around black holes

Depending on how they are formed, black holes may be surrounded by spikes of particle
DM, which can reach enormous densities far exceeding those typically found in smooth
galactic halos. The annihilation rate of DM particles scales with the square of the number
density, meaning that such high densities would significantly enhance any electromagnetic
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signatures of annihilation. Alternatively, if such a ‘dressed’ BH forms a binary with another
compact object (such as a BH or NS), the dynamics of the binary will be influenced by
the spike, or ‘dark dress’. Tracing out the binary dynamics through gravitational wave
observations should therefore allow us to detect the presence of such dark dresses and probe
their properties in such an extreme environment almost independently of whatever particle
interactions the DM may have, assuming their interactions do not destroy the spike [366].
Future GW observatories such as Einstein Telescope [367], Cosmic Explorer [368], LISA [66]
and TianQin [67] therefore have the ability to probe a range of particle-like and compact
object DM candidates with masses heavier than roughly ma ⇠ 10�6 eV.

The mechanisms for DM spike formation depend on the nature of the BH. For astro-
physical BHs, the most feasible scenario occurs through the adiabatic growth of a small BH
seed at the centre of a DM halo [369, 370] (as may happen for direct collapse or Population
III black holes [371]). In this case, intermediate mass BHs (MIMBH = 103 � 106 M�) are be-
lieved to be the most promising candidates for observing a DM spike today, as the baryon-
and stellar-rich environments around SMBHs are expected to disrupt the spike [372, 373].
If the astrophysical conditions are such that DM spikes do persist around some SMBHs,
and if we detect an extreme mass ratio inspiral (EMRI) signal in the near future, then one
can constrain various well motivated DM models like ultralight bosons, sterile neutrinos,
annihilating DM, and primordial black holes (PBHs) [374, 375]. For primordial black holes
(PBHs) [376], the formation of a DM spike is inevitable: as the early Universe benal influence
of the PBH grows. By matter-radiation equality, the DM spike will have a mass comparable
to the PBH itself, and will survive unless dynamically disrupted by other black holes until
lower redshifts [377–380]. DM spikes are expected to have a power-law density profile down
to radii close to the inner-most stable circular orbit (ISCO), with the exact normalisation
and power-law slope � (typically � ⇠ 2.25�2.5) depending on whether the BH is astrophys-
ical or primordial, and on the environment in which the spike formed [370, 381]. The shape
of the DM spike may therefore provide important clues to its formation mechanism.

Annihilation rates of interacting particle dark matter as well as resulting radiation can
be significantly enhanced in the vicinity of DM density spikes around supermassive black
holes (e.g. [382]) and intermediate-mass black holes (e.g. [383]). Indeed, the prediction
that dense DM spikes should form around PBHs has led to the conclusion that PBHs and
WIMP DM are incompatible [384, 385], since WIMP DM spikes around PBHs would give
rise to huge gamma-ray fluxes which are ruled out by observations. Assuming that a DM
spike survives around the supermassive black hole M87*, ref. [386] used the Event Horizon
Telescope observations to constrain DM annihilation. Ref. [387] studied the motion of the S2
star around the Galactic Center to constrain the parameters of the DM spike around Sgr A*.
Ref. [388] argues that it is unlikely that a near future observation by an EHT-like array can
detect the signature of a DM spike around Sgr A* via the measurement of the BH shadow
radius.

Spikes of particle DM around individual PBHs may have a minor impact on the overall
PBH-PBH merger rate [389], which could be detectable through GW observations. If they
survive, the larger DM spikes surrounding supermassive black holes could impact the merger
rates of PBH binaries embedded within them. Depending on competing e↵ects and spike
profiles, PBH-PBH merger rates could be modified by orders of magnitude compared to the
galactic halo merger rates [390]. On the other hand, the merger rates of PBH-NS binaries
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embedded in a spike are negligibly a↵ected due to weaker dependence on DM density and
that DM spike spans a very limited volume [391].

Moreover, the gravitational waveform of a binary black hole system embedded in a dark
matter spike looks di↵erent to that of a system inspiralling in vacuum. The dynamics of the
system are influenced by the changing enclosed mass of the DM spike during the inspiral;
by possible DM accretion onto the compact object; and by dynamical friction [91, 153, 392].
This latter case – in which DM particles form a wake behind the companion compact object
(black hole or neutron star) driving through the cloud – is typically expected to dominate
over the other two [393]. This dynamical friction drag force slows down the orbital velocity
of the companion, which causes it to drop into a lower orbit earlier than it would have in
vacuum. This accumulates as a ‘dephasing’ in the gravitational waveform with respect to the
vacuum signal, or equivalently as a di↵erence in the number of cycles between a given entry
frequency and merger. This dephasing e↵ect was first studied in detail in Refs. [394, 395],
which predicted an O(1) change in the number of GW cycles for intermediate mass-ratio
inspirals (IMRI) systems observable with LISA.

However, the motion of the companion object will inject energy into the DM spike per-
turbing it. These feedback processes have been modelled with, for example, the HaloFeedback
code [396]. This more realistic modelling decreases the amount of dephasing with respect to
the case of a static spike that remains undisturbed, leading to a percent-level e↵ect (rather
than an O(1) e↵ect) on the number of GW cycles. In order to detect this dephasing, then,
order millions of cycles of the systems need to be observed, so that the di↵erence in the
number of cycles from the vacuum case is non-negligible.

The GW frequency corresponding to the ISCO of an intermediate mass ratio binary con-
sisting of an IMBH with mass 1000M� and a 1.4M� companion is approximately 4Hz. In
the case of LISA, with around 5 years of data, observing such a system between approxi-
mately 10�2 Hz and ISCO will enable us to confidently distinguish the system as inspiralling
through a dark matter spike as opposed to vacuum, and even enable us to characterise the
density profile of the spike [397].

The potential of terrestrial detectors to search for DM spikes has so far not been explored.
For example, while most of the inspiral of a binary with masses (1000, 1.4)M� would take
place in the LISA band, the merger would occur in the band of Einstein Telescope and
Cosmic Explorer, opening up the possibility of multiband searches [398]. Such searches
would combine LISA’s sensitivity to the early part of the inspiral (where dynamical friction
has a large impact) with a terrestrial detector’s ability to precisely measure the late part
of the merger (where dynamical friction matters less). This strategy has the potential to
substantially improve prospects for discovering and measuring DM spikes [397].

Certain PBH formation scenarios could produce black hole binaries with solar or even
subsolar component masses with an intermediate mass ratio. As discussed above, PBHs are
guaranteed to have DM spikes. Such a system with component masses near (1, 0.001)M�
would predominantly emit GWs in the frequency band of terrestrial detectors, suggesting it
could be possible to measure their DM spikes with terrestrial detectors alone.

The observation of a spike through GW dephasing would provide important clues to the
nature of the DM particles. A number of classes of DM cannot form su�ciently dense spikes
to be detected and so would be immediately ruled out by a confirmed spike detection. These
include ultralight bosonic ‘fuzzy’ DM, keV-scale degenerate fermions, self-annihilating DM,
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and DM which is itself formed of light compact object [374]. Instead, the non-observation
of a spike would be harder to interpret. It may be that the system under observation did
not form under the right conditions to form a spike, or that the spike was formed and later
destroyed by dynamical e↵ects. It may still be possible to draw conclusions on the nature
of DM from a large number of binary systems in the absence of DM dephasing; however,
this would require a more detailed understanding of the prevalence of DM-dressed binaries
in our Universe.

Initial investigations have demonstrated that DM spikes should be detectable with future
GW detectors and should provide us with crucial clues about the nature of DM if they are
detected. This motivates further work on the formalism for modelling DM-induced dephasing
in IMRI systems. A number of refinements are required before this formalism can be reliably
used to generate accurate GW waveforms:

• Analyses in the literature typically assume Newtonian dynamics for the binary. The
influence of DM needs to be coupled with a relativistic description of the evolution of
the binary, which in itself remains a challenge (e.g. [399]).

• Signals from non-circular orbits need to be calculated self-consistently. While non-zero
eccentricities have been considered by a number of authors (e.g. [400, 401]), the impact
of eccentric orbits on the feedback on the DM spike has not yet been implemented.

• It will be necessary to understand the dephasing e↵ects which are produced by other
environmental factors [91], such as baryonic accretion disks. With this, we can under-
stand whether a DM overdensity can be reliably distinguished from other e↵ects.

• GWs templates for searches with future detectors such as LISA will need to be accurate
at the level of just a few cycles over the full inspiral. Thus, all of the above e↵ects (even
those which are subdominant) will need to be incorporated into a full self-consistent
description. This will include not only dynamical friction, but also accretion and the
changing mass in the portion of the DM spike enclosed by the binary’s orbit.

• Once such a formalism has been developed, it will be necessary to accelerate the calcu-
lations. Since the waveforms for binaries with DM spikes can be substantially dephased
relative to GR-in-vacuum ones [397], searching for them will likely require searches dis-
tinct from those designed for black hole binaries in vacuum. While LISA will not use
the same type of matched filtering searches as existing GW detectors, rapid genera-
tion of a large number of waveforms will be required to create a dedicated DM spike
search pipeline. Possible approaches include surrogate models for approximating the
evolution of the system.

4.3 Gravitational wave signatures of dark sectors in compact ob-
ject mergers

The extreme environments of compact object mergers present unique opportunities to probe
dark sector species, and many scenarios can be probed via their e↵ects on the gravitational
waves produced in these events. The population distributions and waveforms of gravitational
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radiation from mergers are sensitive to any new physics that modifies the dynamics of the
merger process, encompassing a wide variety of dark sector physics. Any GW detector that
is sensitive to compact binary mergers can be used to probe this physics. The mass range
that can be probed by these types of searches depend on the particle type: for axions, the
sensitive mass range is . O(eV). For other dark sector particles, the mass range probed is
. 10�10 eV.

One of the most direct gravitational wave signatures arises from beyond–Standard-Model
long-range forces between merging compact objects. Near the end of the inspiral process,
the evolution of a compact-object binary is driven by the emission of gravitational radiation.
Thus, non-gravitational contributions to the potential or to energy loss of the binary can
give rise to large corrections to the gravitational-wave spectrum. This has been studied in
the context of NS–NS mergers by Refs. [37, 402–404]. Alternatively, similar e↵ects can arise
from modified gravity [38, 405].

Compact object binaries probe fifth forces roughly on the length scale of the binary
separation. Thus, di↵erent classes of binary systems enable complementary constraints at
di↵erent scales. The waveforms of NS–NS and NS–BH mergers are already constrained
by LIGO observations of transients [406], and probe fifth forces between 101 and 105 km.
Many more such systems will be observed with future gravitational-wave facilities, including
Einstein Telescope [367], Cosmic Explorer [368] and BBO [407], which will enable tight con-
straints on fifth forces in this regime. A similar search can be performed with measurements
of the stochastic gravitational-wave background [408], which may enable comparable probes
of fifth forces with longer e↵ective ranges using massive binaries with data from LISA [409]
or from pulsar timing arrays [410–412]. NS–NS and NS–BH binary mergers are also sensitive
to long-range forces which couple to the muon that is present inside a NS [413, 414].

Another class of signals arises from the presence of captured DM in and around neutron
stars. Such DM components can constitute a significant fraction of the neutron star’s total
mass, and thus make a substantial contribution to the gravitational waves produced in a
merger, with a distinctive spectrum and time dependence [415–417]. More generally, the
presence of DM or other new physics e↵ects can manifest as a modification to the equation
of state of the neutron star interior, with implications for e.g., the mass–radius relation and
the e↵ective tidal deformability. These observables are sensitive to the presence of a captured
DM core [310, 418] or possibly even to new contributions in the neutron–neutron potential
[311].

Axions and light BSM scalars may be copiously produced by nucleon bremsstrahlung
processes in the merger environment and subsequently free-stream through the dense nuclear
matter or be trapped [265, 419]. In the free-streaming case, these particles provide an extra
channel to cool down the merger remnant; while this cooling only has minor changes on the
dynamics of the merger at the level of the GW simulations conducted in [264], it should be
noted that the emitted particles may subsequently decay to produce exotic photon signals
[266]. In the trapped regime, scalars can contribute a larger thermal conductivity than
the trapped neutrinos in some parts of the parameter space [419], thereby leading to faster
thermal equilibration than expected. Future observations of the early post-merger phase of
a neutron star merger could e↵ectively probe a unique range of the scalar parameter space.
Numerical relativity simulations of the post-merger phase predict a transient GW signal on
dynamical timescales ⇠ tens of milliseconds, with complex morphology and a characteristic
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peak frequency in the range 2-4 kHz. Observations of this phase may be possible with
third generation detectors like Einstein Telescope [420] and Cosmic Explorer [368] or new
proposals such as NEMO targeting the kHz range [421].

Finally, now that GW detectors have assembled a sizable catalog of events, it is possible
to probe new physics and dark sectors via the parameter distributions of the detected objects.
This includes detailed statistical analyses of the black hole mass and spin distribution testing
possible new physics origins of these compact objects [see e.g. 422–424]. Additionally, since
standard astrophysical arguments give rise to restrictions on the mass spectrum of compact
objects, the detection of even a small number of objects in particular mass ranges can point
to beyond–Standard-Model physics. GW observations to date have already yielded at least
one such surprise: one of the component masses of GW190521 lies within the ‘pair-instability
mass gap’ [425], a regime in which the formation of black holes by standard astrophysical
mechanisms is challenging. Such objects are readily accommodated by new physics that
modifies stellar evolution. In particular, new weakly-coupled light particles (such as axions
or dark photons) would a↵ect the cooling rates of stars, perhaps allowing for the astrophysical
formation of BHs in mass ranges which would not otherwise be possible [see e.g. subsection
3.3 and 271, 272, 280, 282].

Further, in dissipative dark matter scenarios, black holes with exotic masses may form
directly from dark matter that cools through dark radiative processes at z . 30. In that
case, the dark sector contains both light and heavy particles, and the black hole mass is
proportional to the coldest temperature the gas can reach [426, 427]. This is possible if,
for example, dark matter consists of two fundamental fermions oppositely charged under a
dark U(1), mediated by a massless photon. Such a dark sector has all of the usual cooling
processes of hydrogen gas [428, 429]. Early estimates of the black hole population produced
in this scenario [430] found a significant population of sub-solar mass dark black holes may be
produced when the heavier dark fermion has a mass above that of the standard model proton.
The black hole population observed in mergers has been used to bound this scenario under
the assumption that none of the black holes have a dark matter origin or that the unusual
low-mass event GW190425 [431] was a dark black hole merger [432]. The null subsolar mass
search results also constrain dissipative models [433–435]. Recent work on the molecular
chemistry of the dark gas [429, 436, 437] will allow the estimated population of [430] to be
revised using numerical studies of the cooling of a dark hydrogen gas. Other scenarios for
black hole formation from dark matter, including super-massive black holes, were considered
in [438–441]. Dark matter may form other compact objects as well. Dark neutron stars were
considered in [442], and dark white dwarfs in [443]. All of these objects present potential
targets for future GW observations.

4.4 Formation of black holes from dark matter capture in neutron
stars

Neutron stars in binaries could capture certain types of dark matter particles that thermalise
and collapse to form mini black holes [359]. For example, in the asymmetric dark matter
scenario [327, 444] dark matter particles do not self-annihilate due to the assumed asymmetry
between the number density of particles and antiparticles. In the case of bosonic dark
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matter, the Chandrasekhar limit is much greater than that for fermions [445]. Consequently,
bosonic dark matter could undergo gravitational collapse sooner than fermionic dark matter.
Eventually, accretion of such dark matter particles could lead to the implosion of one or
both the companion neutron stars to black holes before they merge [327, 446]. Thus, the
universe might contain three distinct populations of compact binary mergers in the mass
range ⇠ 1–3M�: one containing only neutron stars, a second population of only black holes,
and a third consisting of a neutron star and a black hole. The mixed binary population of
neutron stars and black holes, however, is not expected to be significant since either both
neutron stars will implode before they merge or neither would.

The relative fractions of the di↵erent populations depend on the implosion time-scale tc
and the delay-time td between the formation of neutron stars in a binary and their merger
[447]. If typical implosion time scales are larger than typical delay times then implosions will
be rare and the binary black hole merger population in this mass range will be small. On the
other hand, if the collapse time scales are small compared to delay times then the Universe
might have a significant fraction of binary black hole mergers in this mass range. Currently,
neither of these time scales is known very well but gravitational-wave observations might
determine both.

Future gravitational-wave detector networks, including upgrades [64] of Advanced LIGO
[448], and Virgo [449] and new facilities such as the Cosmic Explorer [368] and Einstein
Telescope [420], can discriminate between the di↵erent populations of compact binaries in
the mass range of neutron stars by measuring their e↵ective tidal deformability ⇤̃ [450].
The e↵ective tidal deformability of binary black holes is zero [451], while that of binary
neutron stars is nonzero [450]. Thus, gravitational-wave observations can infer the relative
fractions of the di↵erent merger populations and hence the distribution of the collapse time
for the neutron stars to implode to black holes. The implosion time-scale can in turn be
used to constrain a combination of the mass, interaction cross-section and the local density
of dark matter particles. Thus, from the relative fraction of the observed population of
compact binaries in the 1–3M�, gravitational wave detectors can set limits or constrain the
properties of dark matter [447].

4.5 Formation of (sub)solar mass black holes from DM capture
inside compact objects

Accumulation of DM inside compact astrophysical objects via interactions between DM and
constituents of compact astrophysical objects have been studied for some time [288, 322].
For large regions of well-motivated particle DM parameter space, it is possible that the
accumulation of DM particles will result in a su�cient bulk of DM such that the accumulated
DM particles collapse to form a black hole at the center of a star or planet. Essentially
all observatories with sensitivity to the dynamics and properties of compact objects like
neutron stars and black holes can be utilized for this DM detection strategy. This includes
upcoming pulsar searches at FAST [346], SKA [452], and CHIME [347], gravitational wave
observations at detectors like LIGO/Virgo/KAGRA [434, 435, 453], along with associated
optical transient searches for NS(/BH) mergers at wide-field observatories like BlackGEM,
LS4, and the Zwicky Transient Factory [454–456].
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A small BH formed from DM at the center of a star grows by accretion of stellar material,
and can consume the entire star in this process [289, 323, 325–329, 332–335, 338, 340, 353,
358, 403, 422, 446, 457–467]. The DM models discover-able with this scenario include both
bosonic and fermionic asymmetric DM with masses in the range ⇠ keV � 1010 GeV, and
for composite DM this mass range extends further to ⇠ 1045 GeV. The processes relevant
for BH formation in stellar interiors include capture of DM in the star, a period of DM
thermalization within the stellar interior, collapse of the collected DM inside the star, and
growth of the resulting small BH, which depends upon the rate for BH accretion of nearby
material and Hawking radiation. While compact stars have excellent sensitivity to a variety
of asymmetric DM models, it has also been shown that main sequence stars and planets like
the Sun and Earth [335], along with high redshift Pop III stars [275], can also be used to
search for DM through the formation of BHs in their interiors, including IceCube searches
for neutrinos [335], along with JWST and EELT searches for Pop III stars [215, 321].

If DM destroys a compact star in the process detailed above, the resultant BH has a
mass which is very similar to that of the compact astrophysical object [422, 460, 461]. This
process is most e�cient in dense stellar objects like neutron stars and white dwarfs, since
these compact object result in collected DM forming a smaller, gravitationally bound clump
inside the dense stellar interior of a compact star. In the case of DM that is captured and
forms a small core within a WD, the resulting collapse of the DM core can cause a white
dwarf supernova explosion either prior to or after the formation of a small BH made of DM
[333, 334, 458, 465]. In the case of NSs, there are many signatures of NSs which have been
converted to BHs, including an absence of pulsars near the centers of galaxies, an associated
“pulsar maximum age curve” extending outward from the galactic center [331, 446], the
distribution of Fast Radio Bursts, NS merger kilonovae, and resulting r-process metals in
galaxies [459], and an unexpected population of around solar mass black holes in galaxies
[422]. Since the masses of objects formed from DM-induced collapse of stars are between ⇠

0.2 M� and 3 M� [468, 469], this implies that the masses of these BHs, sometimes called
“transmuted black holes” (TBHs, [470]) are in the above mentioned range.

In other motivated theories, DM can be composed of asteroid-mass PBHs, formed through
variety of mechanism in the early Universe (e.g., [161, 471–473]). Such PBHs can be e�ciently
captured by compact objects, white dwarfs and neutron stars [474]. Captured PBHs will
settle within and devour the host stars. Ejection of neutron-rich material from neutron
stars being consumed by PBHs sets a favorable environment for r-process nucleosynthesis,
and such events can help address the origin of heavy elements such as gold [475]. More
so, the destruction of neutron stars by small PBHs, contributing to the DM, is consistent
with the under-abundance of observed pulsars in the Galactic Center [475]. A multitude of
astrophysical signatures accompany these violent events, including fast radio bursts [475–
477], 511 keV radiation [475], formation of a new class of microqusars [478] as well as
“orphan” gamma-ray bursts [478] and kilonovae [422, 475] without accompanying strong
gravitational wave emission. Devoured compact objects, neutron stars [422, 470] as well as
white dwarfs [470], will leave behind ⇠ 0.2 � 3M� TBH remnants. Such (sub)solar-mass
TBHs are distinct from (sub)solar-mass PBHs, which were formed in the early Universe prior
to star formation.

BHs with mass . 2.5M� are not expected from conventional stellar evolution due to neu-
tron star Tolman–Oppenheimer–Volko↵ stability limit (e.g. [479]), analogous to the Chan-
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drasekhar limit for white dwarfs. Thus, detection of such (sub)solar-mass BHs constitutes a
smoking gun and attractive target for new physics. Gravitational wave detectors are sensitive
to sub-solar mass BHs [434, 435, 453]. However, discrimination with GWs between compact
objects of the same mass, such as a BH and a neutron star, is challenging without electro-
magnetic counterparts and determination of higher order GW e↵ects. TBHs can contribute
to a variety of merging binary events [422, 470]. In fact, one can consider such possibil-
ity for the first and only confirmed multi-messenger merger event, GW170817 [480]. The
excellent environmental information of the host galaxy of GW170817, NGC 4993, provides
an opportunity for detailed considerations of such scenario [462], including the DM and NS
distribution. These scenarios are distinct from PBH binary formations, PBH-PBH [481–483]
and PBH-NS [391] systems.

Recent LIGO/Virgo/KAGRA GW observations of binary merger events provide some
guidance for how to identify the origin of detected (sub)solar-mass BHs. In particular,
the observation of GW190425 [431] and GW190814 [484], consistent with BH masses in
the range ⇠ 1.5 � 2.6M�, highlight the capabilities of these observatories. TBHs formed
as remnants of devoured compact objects by DM will have the original compact object
mass distribution, which is known from astrophysics such as supernovae models. A reliable
statistical method for distinguishing the origin of such BHs based on BH mass-function has
been put forth in [463], which demonstrated that BH events with mass & 1.5M� are unlikely
to stem from neutron star implosions. Employing this method, data analyses of upcoming
GW observations will be able to distinguish between solar-mass BHs and NSs with high
confidence. Merger rates as a function of redshift constitute another important handle to
distinguish between PBHs and TBHs in identifying the origin of detected BH events. Using
an analytical calculation of the merger rate in a simplified scenario, ref. [464] showed that the
merger rates at various redshifts for the TBH-TBH binaries depend on the underlying particle
physics parameters (which are responsible for the formation of the TBH) and is completely
di↵erent compared to merger rate v/s redshift distribution of PBHs. This distinct redshift
distribution can be understood easily: TBHs are formed from neutron stars or white dwarfs
which form at much later times compared to PBHs. It was shown that, depending on the
particle physics parameter space, near future gravitational wave telescopes, like Einstein
Telescope and Cosmic Explorer, can detect TBH mergers at large rates. One by-product of
this discovery will be that we can probe new parts of the DM - Standard Model interaction
strength parameter space, which cannot be probed by laboratory experiments [464].

The above calls for further detailed studies across a multitude of complimentary di-
rections, including stellar evolution, mechanisms of formation of astrophysical black holes,
emission, and nucleosynthesis associated with compact objects and their dynamics as well
as reinvigorated observational campaigns for distinct and multi-messenger signatures.

5 Conclusion

Over the last decade, astroparticle physics has become a rich research field through which a
variety of dark matter candidates can be probed. In this white paper, we have focused on
opportunities relating to extreme astrophysical environments, including the cores of stars,
the neighborhoods of compact objects such as black holes and neutron stars, compact object
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binary mergers, and supernova explosions.
One class of astrophysical opportunities for particle physics relates to new particles which

couple to electrons, nucleons, and photons which are present in extreme environments. The
high temperatures and densities in these environments are far beyond what can be created in
lab-based experiments, allowing enhanced production of and increased sensitivity to weakly-
coupled new particles.

An entirely di↵erent class of opportunities relies only on the gravitational interaction
of the new particles, and can be used to search for new sectors with arbitrarily feeble SM
couplings. This includes black hole superradiance searches for ultralight bosons, which leads
to BH spindown and GW emission. Other directions include imprints on gravitational wave-
forms left by concentrated environments of dark matter or by mergers of exotic compact
such as boson stars.

The next decade will see continued development in this field. Theoretical understand-
ing of the underlying astrophysical processes and the new particle production mechanisms
are rapidly improving. Experimental progress is expected in observations across the EM
spectrum (including radio, optical, X-ray, and gamma ray observation), observations of neu-
trinos from astrophysical objects, and ever-increasing sensitivity and broadening frequency
coverage of gravitational wave experiments. The development of multi-messenger astronomy
gives rise to the tantalising prospect that multiple scenarios can be probed concurrently.
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