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Abstract 

 

The emphasis on conceptual learning and the development of adaptive instructional design are 

both emerging areas in science and engineering education. Instructors are writing their own 

conceptual questions to promote active learning during class and utilizing pools of these 

questions in assessments. For adaptive assessment strategies, these questions need to be rated 

based on difficulty level (DL). Historically DL has been determined from the performance of a 

suitable number of students. The research study reported here investigates whether instructors 

can save time by predicting DL of newly made conceptual questions without the need for student 

data. In this paper, we report on the development of one component in an adaptive learning 

module for materials science – specifically on the topic of crystallography. The summative 

assessment element consists of five DL scales and 15 conceptual questions This adaptive 

assessment directs students based on their previous performances and the DL of the questions. 

Our five expert participants are faculty members who have taught the introductory Materials 

Science course multiple times. They provided predictions for how many students would answer 

each question correctly during a two-step process. First, predictions were made individually 

without an answer key. Second, experts had the opportunity to revise their predictions after being 

provided an answer key in a group discussion. We compared expert predictions with actual 

student performance using results from over 400 students spanning multiple courses and terms. 

We found no clear correlation between expert predictions of the DL and the measured DL from 

students. Some evidence shows that discussion during the second step made expert predictions 

closer to student performance. We suggest that, in determining the DL for conceptual questions, 

using predictions of the DL by experts who have taught the course is not a valid route. The 

findings in this paper can be applied to assessments in both in-person, hybrid, and online settings 

and is applicable to subject matter beyond materials science. 

 

Introduction 

 

In the 21st century, educators are responding to a rapidly changing context that includes shifts in 

the social circumstances of learners [1] and the technology tools available for instruction [2]–[5]. 

With increases in online, remote, and hybrid delivery, tools are needed that both support 

instructor-student interactions as well as accommodate growing class sizes and a more diverse 

student body. Including an adaptive instruction and feedback system in courses, for instance, 

would benefit not only students from receiving resources as and when required, but also benefit 

instructors to easily support the large group of diverse students [6]. To address these issues, we 

are developing a set of conceptually-based adaptive learning modules. 

 

Our initial proof-of-concept centers on the topic of crystallography for an introductory course in 

Materials Science and Engineering as shown in Figure 1. The module contains videos with 

interactive questions, formative and summative assessments through conceptually-oriented 

multiple-choice questions, more detailed interactive instructional tools, and supplemental 

instruction for students who need it. 



 
Figure 1 Simplified structure diagram of the adaptive learning module. 

 

The research study reported in this paper is part of this larger project and focuses on the last 

highlighted adaptive component, the summative assessment. This element was designed as a 

progressive assessment process, where students who answered a question correctly would be 

directed to a more challenging conceptual question and those who did not select the correct 

answer would be steered to an easier question. Hence, we needed to rate the difficulty of the 

question – which became a challenging task in itself [7]. 

 

The fundamental question then became how good expert faculty who teach the course are at 

estimating conceptual question difficulty, and how do their estimates compare with student 

performance. Specifically, we address this research question: 

 

“Do expert predictions of the difficulty level for challenging conceptual questions 

in crystallography match student performance?”  

 

While we studied this question in the context of developing the adaptive learning module, this 

fundamental question is of interest for educators seeking to use conceptually challenging 

questions in their instruction of assessment. If instructors can rely on their own predictions, they 

can provide students with questions of appropriate difficulty. 

 

Background and theoretical framework 

 

For Materials Science and Engineering, there is a growing focus on conceptual understanding. 

To this end, the use of concept questions has become common [8], [9]. However, when an 

instructor makes a new question, it is useful for them to have an idea of the question’s DL. The 

common method to obtain a valid and reliable DL is by collecting sufficient student performance 

data and report an Item Difficulty Level [10], [11] and a Discrimination Index [10]. Automated 

methods such as the accumulative test by Sokolova et al. [12], the Question Classifier Engine by 

Narayanan et al. [13], or the algorithm based on a Monte-Carlo approach by Sud et al. [14] 

require actual student performance as input data. Therefore, it would be more efficient if we 

could rely on expert predictions of DL from. We term an expert as a person with deep content 

knowledge and considerable experience teaching that content in the classroom. 

 

We have found only one other similar study. Pinter et al. [15] have compared student 

performance and their subjective estimations of the question difficulty with expert estimations. 

That study focused on basic programming knowledge and compared data among different years 

in bachelor’s degree by using expert estimations as a standard. Indirect results from the study 

show some inconsistency between the expert estimations and student performance, however, no 

clear discussion or conclusions were made. 
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Elements of the adaptive learning module for crystallography 

 

The adaptive learning module we are designing focuses on three core constructs in 

crystallography: crystal structures, atomic packing factor (APF), and theoretical density. We seek 

to develop student connected knowledge of atomic radius, atomic weight, lattice parameter, 

number of atoms per unit cell, coordination number, and basic crystal structure. Four types of 

basic crystal structures are used in the module: simple cubic, body-centered cubic, face-centered 

cubic, and hexagonal close-packed structures. 

 

Figure 1 (in the Introduction section) presented the foundational elements of the adaptive 

learning system. Both the post-assessment logic of the formative assessment and the summative 

assessment are adaptive. In this paper, we focus only on the process of developing effective 

summative assessment (the highlighted component in Figure 1). As shown in Figure 2, the 

summative assessment is adaptive with possible paths students may take. The assessment in this 

module consists of three sets of questions. Each set represents a specific construct (crystal 

structure, APF, theoretical density) with five different questions. Each concept question in this 

assessment is a multiple-choice question. Each question is labeled with a different DL 

corresponding to the level of difficulty. Students start at the middle difficulty (DL3). A harder 

question is presented to the student based on a previous correct answer (indicated with “Y” as 

correct answer) or an easier question based on a previous incorrect answer (indicated with “N”). 

Thus, each student will answer three different questions per construct, but the questions will 

differ based on the demonstrated mastery. Results are recorded for further feedback on their 

overall performance. 

 

 
Figure 2  A diagram shows different possible paths in the summative assessment.  

Solid green arrows show a sample student path. Dashed arrows show other possible paths. 

 

Methods and participants 

 

We report results from creating the adaptive summative assessment. Using convenience 

sampling, we collected data from students enrolled in an Introductory Materials Science course 
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at a large, public institution as they were learning crystallography. Students in this class are 

mostly undergraduates in their junior or senior year pursuing a mechanical engineering degree. 

The Concept Warehouse (CW) [16] was used to assign the concept questions and collect student 

responses. All students were presented with a consent form when they first logged on to CW. For 

comparison with the expert data, we collected question responses from 439 students from 8 

courses over 7 terms. These courses were delivered in either synchronously in-person, 

synchronously online, or asynchronously online formats. In all delivery modes, the same 

curriculum was used. The experts in this study were five professors who taught the Introductory 

Materials Science course in the past at this university. Their experiences varied from teaching 

three terms to about 40 terms, and the last term they taught the course varied from less than a 

year to over five years before this study. 

 

The 15 conceptual questions studied are multiple choice questions with four answer choices, 

except two questions (ID 5247 and 5248), which have three and seven answers, respectively. 

After obtaining student results from the first term (121 students), all questions were revisited, 

and two questions were revised for future use based on their lack of clarity. 

 

Measured and predicted DL refer to the actual student performance data and the expert 

predictions, respectively. For measured DL, a standard course grading scale was used as a 

criterion, as shown in Table 1. The measured DLs were obtained from actual student data using 

assumptions of a normal distribution curve with equal z-value bins. The predicted DLs were 

obtained from the experts who were asked to predict how they thought the majority of students 

would perform using the criteria in Table 1. The questions were provided in a random order but 

grouped together from the same construct. For the first round of prediction, all experts received 

the same no-answer-key package of these conceptual questions. They had time to work on these 

questions individually. After all data were collected, they joined a video conference meeting with 

the first author to look at the answer key, one question at a time. The experts had a chance to 

modify their previous predictions. During this conference, the experts could discuss the questions 

and provide suggestions about the questions and answers without revealing their initial 

predictions and whether they changed their predictions or not. Final predictions from each expert 

were collected at the end of the meeting. 

 
Table 1 Compare the proposed DL with a standard course grading scale. 

Difficulty Level (DL)  

(1 easiest – 5 hardest) 

Standard course grading scale 

Lower limit Upper limit 

1 90%  100% 

2 80% < 90% 

3 70% < 80% 

4 60% < 70% 

5   0% < 60% 

 

In this paper, we report and compare expert predictions, both without and with an answer key. 

For easier presentation, expert predictions of the percentage of students that should get the 



question correctly for all 15 conceptual summative questions (including two revised questions) 

were changed into DL values using the criteria from Table 1. We also report actual student 

performance for each course as well as the cumulative result of all 8 courses. We then compare 

expert final prediction with the cumulative result of the student performance. 

 

Findings 

 

Comparing initial and final expert predictions 

 

The initial and final average predicted DL of experts are shown in Table 2, as well as standard 

deviations. The table also includes the number of changes in predictions after they saw the 

answer key for that question and the differences of the average predicted DL (final – initial). The 

negative values indicate that after they saw the correct answers, the experts mostly changed their 

prediction to easier (more students answering correctly). The last (right) column shows the 

record of discussions as experts did not discuss all questions. 

 

Excluding questions before revision (ID 5256, 5261), the experts suggested small corrections to 

five of the 15 questions during the discussion session. Four of these questions (ID 5247, 5248, 

5253, 5259) have figures showing multiple unit cells, so the experts suggest that adding an 

explanation to the question would make the question clearer. Two out of these four questions (ID 

5253, 5259) refer to both the allotropic and polymorphic terms, and the experts suggested using 

only “allotropic”.  nother suggestion was to add the term “ ibrating sur ace” to  uestion     , 

titled “box on a shaking plat orm.” In addition, one o  the experts mentioned that  uestions with 

a lot of information, such as the shaking platform, are not normally used in their course. 

 

From Table 2, we can see that the number of changes in predictions varied between zero and 

one, except for only one question (ID 5248) that has two changes. Nine (60%) out of these 15 

questions have at least one change. Four out of the five questions that have discussions (except 

ID 5255) have one or two changes in predictions. Three (60%) out of five experts did not change 

any of their predictions for these 15 questions. 

 

When we take a closer look at these changes from Table 2, five (55%) out of nine questions have 

higher standard deviation, compared to the initial round. Most of the changes of the average 

predicted DL evaluate the difficulty of the questions as easier than their initial prediction. Having 

the answer key with these conceptual questions might make some of these experts believe that 

the questions are not as hard as when they must figure out the answers by themselves during the 

first round. 

 

Next, we compare these predictions with actual student performance. For further comparison, we 

present only the final prediction of the average predicted DL. 

 

 

 

 



Table 2  The average predicted DL (initial and final), standard deviations, changes in predictions,  

the differences between initial and final predictions, and discussions from five experts  

for the summative assessments. (Note: DL1 = easiest to DL5 = hardest) 

C
o

n
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CW ID 
 Initial predicted DL  Final predicted DL 

Differences  

in average 

predicted DL 

(final – initial) 

Number of 

changes in 

prediction 

Discussion 

(Y/N) 

Average Std. Dev.  Average Std. Dev. 

C
ry

st
al

 s
tr

u
ct

u
re

 5247 2.0 0.63 2.2 0.75   0.2 1 Y 

5248 3.0 1.10 3.0 0.63   0.0 2 Y 

5249 2.8 0.75 2.6 0.80 - 0.2 1 N 

5250 3.2 0.75 3.0 0.89 - 0.2 1 N 

5251 3.0 0.63 3.0 0.63   0.0 0 N 

A
P

F
 

5252 1.8 0.75 1.4 0.49 - 0.4 1 N 

5253 2.6 0.80 2.4 0.49 - 0.2 1 Y 

5254 2.4 1.02 2.2 0.75 - 0.2 1 N 

5255 3.4 1.20 3.4 1.20   0.0 0 Y 

 5256* 3.0 0.63 3.2 0.40   0.2 1 N 

  5374** 2.4 1.20 2.4 1.20   0.0 0 N 

T
h
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l 
d
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 5257 1.8 0.75 1.6 0.80 - 0.2 1 N 

5258 3.8 0.98 3.8 0.98   0.0 0 N 

5259 3.4 0.80 3.2 0.98 - 0.2 1 Y 

5260 2.4 0.49 2.4 0.49   0.0 0 N 

 5261* 4.2 0.75 4.0 0.89 - 0.2 0 Y† 

  5382** 3.8 0.98 3.8 0.98   0.0 0 N 

Total 10 Y = 5 
* Questions before revision. 
** Revised questions. 

The orange and blue colors are presented for easier comparison in either increasing/decreasing in standard deviation 

and the differences in average DL. 
† Discussion from the experts is the same reason why the question was revised. 

 

Comparing student performance with expert predictions 

 

Following the criteria from Table 1, measured DL for each summative question for 8 courses 

over 7 terms are shown in Table 3 along with the number of students. The correct percentages for 

each course are shown in the Appendix. There are a total of 439 responses for each of the 13 

original summative assessment questions and 318 responses for the two revised questions. The 

measured DL from cumulative data (not averages from 8 courses) is used for the comparison 

with expert predictions. The last (right) column shows the average final predicted DL and the 

discussions data from Table 2 for easier comparison. 

 



Table 3  The number of students and used data and the measured DL of the summative assessments 

for each of the 8 Introductory Materials Science courses (7 terms). 
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Number enrolled 173 175 40 44 26 37 42 42 579 

5 
Number of  

(complete) responses 
121 135 37 33 23 29 33 28 439 
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CW ID 
Measured DL  

(1 easiest – 5 hardest) 
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 5247 2 3 2 3 4 3 2 2 3     2.2 Y 

5248 3 2 1 2 2 3 1 2 2     3.0 Y 

5249 2 3 1 1 1 1 1 1 2 2.6 

5250 4 4 2 4 5 4 3 4 4 3.0 

5251 3 4 3 3 3 3 2 4 3 3.0 

A
P

F
 

5252 1 2 1 1 1 2 1 1 1 1.4 

5253 2 2 1 2 2 2 1 2 2     2.4 Y 

5254 4 5 3 4 2 5 3 3 4 2.2 

5255 5 5 5 4 5 5 5 5 5     3.4 Y 

 5256* 5 N/A N/A N/A N/A N/A N/A N/A  5* 3.2 

  5374** N/A 5 5 5 5 5 5 5   5** 2.4 

T
h
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re
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 5257 2 2 1 1 1 1 1 2 2 1.8 

5258 2 2 1 2 1 2 1 1 2 3.8 

5259 2 3 1 2 2 3 2 3 2     3.4 Y 

5260 5 5 5 5 4 5 5 5 5 2.4 

 5261* 3 N/A N/A N/A N/A N/A N/A N/A  3*      4.0 Y† 

  5382** N/A 4 1 1 2 2 1 1   2** 3.8 

* Questions before revision. Used only one term with 121 responses. 
** Revised questions. Used for all other courses with 318 responses. 

For the last (right) column, the orange and blue colors are presented for predictions with changes that are the 

deviated away or closer to the measured DL compared to the initial predictions, respectively. No change in 

prediction is represented with black color. 
† Discussion from the experts is the same reason why the question was revised. 



When comparing measured DL from cumulative data (Table 3) and predicted DL (Table 2), the 

average final predicted DL is closer to the measured DL than the initial one. Out of 10 changes 

in predictions, only three (in question ID 5250, 5254, and 5257, labeled the last right column in 

Table 3 by orange color) – one per construct – deviated away from the measured DL. In other 

words, seven (70%) of the experts’ changes led to more accurate predictions of the actual student 

performance. In addition, four out of six questions that have discussions (indicated with “Y” and 

blue color) result in closer predictions. 

 

The measured DL for each course (Table 3) shows fluctuations. Although using the same 

curriculum, other factors such as different settings (in person/synchronous online/asynchronous 

online), different instructors, student populations, and background in different terms might affect 

the variation between courses. This variation makes it harder for experts to predict with a small 

interval criterion (10%, Table 1). 

 

To visualize this phenomenon, we plot between the measured DL from students and the (final) 

predicted DL from experts in Figure 3 (a), along with standard deviation error bars. The 

correlation plot of the same data is shown in Figure 3 (b) with a trend line only for the APF 

construct. The separated plots for each construct with standard deviation error bars and trend 

lines are shown in the Appendix. 

 

  
(a) (b) 

Figure 3  (a) A comparative plot and (b) a correlation plot between the measured DL and the average 

final predicted DL for the 15 summative assessment questions, separated by construct.  

The error bars on plot (a) are standard deviations for the average predicted DL.  

(Note: DL1 = easiest to DL5 = hardest) 

 

From looking at the measured DL, questions in the APF construct covered the most DLs (four 

out of five). Measured DL for seven (47%) out of 15 questions lies within deviation ranges of 



predicted DL with only one question (ID 5251) that matches with the average. Interestingly, this 

matched question had no discussion nor change in prediction by the experts (Table 3). As can be 

seen from both Figure 3 (a) and (b), there is no clear correlation between expert prediction and 

student actual performance - answering our research question (“Do expert predictions of the DL 

for challenging conceptual questions in crystallography match student performance?”). 

 

Conclusions 

 

Identifying the difficulty level (DL) of conceptual questions is challenging. This project focused 

on the difficulty of new conceptual questions for crystallography to be used in the context of 

adaptive assessment. However, DL would also be useful for instructors to know if they plan to 

use this type of question for a classroom learning activity, or for an assessment of student 

understanding such as during course exams. 

 

Five experts who have taught the course participated in our two-step prediction o  the  uestions’ 

DL – individually without an answer key followed by reviewing their predictions with an answer 

key in a group discussion setting. Actual student performance was collected for comparison from 

439 students in 8 introductory Materials Science courses over 7 terms. 

 

 ata comparison between experts’ initial and  inal predictions as well as number o  changes in 

predictions were discussed. Comparing expert predictions of the DL with the measured DL from 

student performance shows no clear correlation, suggesting that it is not appropriate to depend 

only on the expert predictions. Discussion among the experts seemed to improve their 

predictions, but more study on the influence of discussion is warranted. In the context studied 

here, there was fluctuation among the student performance, even though the same curriculum 

was used across courses. We conclude that, for a limited number of experts, it is best to collect 

actual student performance instead of only using expert predictions to determine the level of 

difficulty for new conceptual questions, but that expert review can help refine the questions for 

clarity. 
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Appendix 

 
Appendix Table 1  The number of students and used data and the correct percentage of the summative 

assessments for each of the 8 Introductory Materials Science courses (7 terms).  
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Number enrolled 173 175 40 44 26 37 42 42 579 

Number of  

(complete) responses 
121 135 37 33 23 29 33 28 439 

Construct CW ID Correct Percentage 

C
ry
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 S
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u
ct

u
re

 5247 80% 76% 81% 76% 70% 76% 88% 89% 79% 

5248 75% 81% 97% 85% 83% 72% 91% 86% 82% 

5249 86% 70% 97% 94% 91% 97% 91% 96% 85% 

5250 64% 60% 86% 67% 48% 66% 73% 61% 65% 

5251 76% 65% 73% 76% 78% 76% 82% 64% 72% 

A
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5252 97% 88% 97% 91% 91% 90% 91% 96% 92% 

5253 89% 81% 97% 88% 87% 86% 94% 86% 87% 

5254 68% 56% 73% 70% 87% 59% 79% 75% 67% 

5255 37% 26% 27% 61% 52% 52% 48% 43% 38% 

 5256* 21% N/A N/A N/A N/A N/A N/A N/A  21%* 

  5374** N/A 13% 30% 30% 30% 14% 27% 25%    21%** 

T
h

eo
re

ti
ca

l 
D

en
si

ty
 

5257 88% 81% 95% 97% 91% 93% 100% 89% 88% 

5258 88% 80% 95% 88% 100% 86% 91% 96% 87% 

5259 83% 76% 92% 88% 83% 76% 85% 71% 81% 

5260 46% 30% 38% 48% 70% 31% 45% 57% 42% 

 5261* 78% N/A N/A N/A N/A N/A N/A N/A  78%* 

  5382** N/A 70% 92% 94% 83% 86% 91% 93%    81%** 

*
 Questions before revision. Used only one term with 121 responses. 

**
 Revised questions. Used for all other courses with 318 responses. 

 

 



 

(a) 

  

(b) (c) 

Appendix Figure 1  Correlation plots between the measured DL and the average final predicted DL 

for the 15 summative assessment questions with trend lines of  

(a) crystal structure construct, (b) atomic packing factor construct, and  

(c) theoretical density construct. The error bars are standard deviations for the 

average predicted DL. (Note: DL1 = easiest to DL5 = hardest) 
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