
 

WIP: Using Machine Learning to Automate Coding of Student 
Explanations to Challenging Mechanics Concept Questions 

 
Introduction 
This work-in-progress paper describes a collaborative effort between engineering education and 
machine learning researchers to automate analysis of written responses to conceptually 
challenging questions in mechanics. These qualitative questions are often used in large STEM 
classes to support active learning pedagogies; they require minimum calculations and focus on 
the application of underlying physical phenomena to various situations. Active learning 
pedagogies using this type of questions has been demonstrated to increase student achievement 
(Freeman et al., 2014; Hake, 1998) and engagement (Deslauriers, et al., 2011) of all students 
(Haak et al., 2011).  
 
To emphasize reasoning and sense-making, we use the Concept Warehouse (Koretsky et al., 
2014), an audience response system where students provide written justifications to concept 
questions. Written justifications better prepare students for discussions with peers and in the 
whole class and can also improve students’ answer choices (Koretsky et al., 2016a, 2016b). In 
addition to their use as a tool to foster learning, written explanations can also provide valuable 
information to concurrently assess that learning (Koretsky and Magana, 2019). However, in 
practice, there has been limited deployment of written justifications with concept questions, in 
part, because they provide a daunting amount of information for instructors to process and for 
researchers to analyze. 
 
In this study, we describe the initial evaluation of large pre-trained generative sequence-to-
sequence language models (Raffel et al., 2019; Brown et al., 2020) to automate the laborious 
coding process of student written responses. Adaptation of machine learning algorithms in this 
context is challenging since each question targets specific concepts which elicit their own unique 
reasoning processes. This exploratory project seeks to utilize responses collected through the 
Concept Warehouse to identify viable strategies for adapting machine learning to support 
instructors and researchers in identifying salient aspects of student thinking and understanding 
with these conceptually challenging questions. 
 
Machine Learning of Constructed Responses  
Machine learning has been leveraged in a number of educational applications (Zhai et al., 2020b, 
Zhai et al., 2021a, Burstein et al., 2020, Burstein et al., 2021), including analyzing constructed 
responses (short text) and essays (long text), diagnostic reasoning (Schulz et al., 2019), and 
studying learning processes through simulation and educational games (Zhai et al 2020b). In 
supervised learning, the machine learning model is trained using a training set (coded data) and 
is evaluated on a test set (uncoded data).  SVM, Naive-Bayes, Random Forest and Logistic 
Regression have been most commonly used for constructed-response assessments in STEM 
(Zhai et al., 2021, Zhai  et al., 2020a, Mao et al, 2018, Yik et al, 2021, Jescovitch et al., 2021, 
Rosenberg, 2021). Many studies also applied ensemble techniques like bagging, boosting on 
various text classification machine learning models to study student responses (Bertolini et al., 
2021, Zhai et al., 2020a). Several studies have also used neural network models (Jiang et al., 
2020; Luan et al., 2021; Rosenberg, 2021). However, to our knowledge, only a few studies for 



educational applications in general have leveraged Transformer-based machine learning models 
(Vaswani et al., 2017, Devlin et al., 2018, Raffel et al., 2019, Brown et al., 2020). And none of 
the work used these models for assessing constructed responses of STEM students.  
 
Transformer models, the current state of the art in natural language processing (NLP), are 
attention-based multi-layer neural networks pre-trained on large amounts of free text. The pre-
training process uses a language modeling objective, i.e. the model is asked to predict a word or 
token, given other words in contexts. Such models are then fine-tuned on specific language tasks, 
or are used out of the box for in-context learning, where the model is queried with a prompt and 
asked to generate some text along with its interpretation. These models typically use a large 
amount of trainable parameters, ranging between a hundred million and a hundred billion, with 
larger models capable of more sophisticated prompted in-context learning.   
 
While earlier studies required two to ten human coders to annotate 50 to 1000 samples of the 
data (Haudek et al., 2021, Mao et al., 2018, Jescovitch et al., 2021, Maestrales et al., 2021), the 
current state-of-the-art NLP models that leverage transfer learning can require substantially 
fewer annotated samples for fine-tuning and only a few annotated examples for in-context 
learning. In the present work, we leverage these capabilities and investigate the amount of 
annotated data needed to automatically analyze students’ constructive responses of complex 
conceptual questions. 
 
Methods 
Context and setting 
This study occurs in the context of a larger investigation which studies the propagation of the 
Concept Warehouse to mechanics courses in a diverse set of two- and four- year institutions 
(Koretsky et al., 2019; Nolen & Koretsky, 2020). Such service-oriented mechanics courses build 
foundational skills for upper-level engineering courses and develop students’ problem-solving 
capabilities. The participants were consenting students from statics courses at different 
institutions. The instructors used the Concept Warehouse as part of their active learning course 
delivery. Eight questions were delivered by the participating instructors in Fall 2021. All 
questions are single correct-choice, qualitative conceptually challenging problems with little to 
no calculation involved. They all test the application of critical statics concepts to physical 
systems.  The incorrect multiple-choice responses (distractors) are all conceptually significant, 
providing students the opportunity to carefully reason through the questions. The range correct 
from the eight questions (31% - 58.6%) indicates these questions are conceptually challenging 
for students. Thus, the associated written explanations are good candidates for machine learning 
analysis to reveal student reasoning.  
 
Qualitative analysis 
For the preliminary analysis reported here, one question, CW5703 - shown in Figure 1, was used 
for initial manual coding and machine learning coding. Using a combination of a priori and 
emergent approaches described in Creswell & Poth (2018), a coding scheme was developed to 
classify elements of student explanations and provide categories to train the machine learning 
algorithms. These elements were used to construct narratives of students’ reasoning processes 
particular to each question or isomorphic question pair. The final code categories for question 
CW5703 are shown in Appendix A.1 



 

 
Figure 1.  Student view of a sample statics concept question (CW5703) used in this study. 

Students need to select an answer choice and justify their choice in writing.  
 
Machine Learning 
The machine learning task was formulated as a sequence labeling problem where the source is a 
student written explanation and the target is the human-coded response. INCEpTION (Klie et al., 
2018) was used to translate manual coding to test spans in a tsv format for use in algorithm 
training. Transfer learning via fine-tuning and in-context learning techniques were used to 
respond to a prompt containing coding examples. Initial experimentation was carried out using 
Text-to-Text Transformer (T5) (Raffel et al., 2019) with fine-tuning employing Huggingface’s 
transformer library and GPT3 (Brown et al., 2020) with in-context learning utilizing OpenAI 
GPT3 API. Experiments with T5 followed a prompt format from Raffel et al. (2019) with 
alterations that include an instruction sentence and prompt keywords. Examples of the 
instruction sentence and prompt keywords are shown in Appendix A2.1. In T5, every text 
processing task is reformatted as a text-to-text problem i.e. taking in a text as input and 
producing a new text as output. In our preliminary study, we reformatted our task into a text-to-
text format and fine-tuned T5-base (220M parameters) and T5-large (770M parameters) with 20 
to 240 human coded responses.  



 
Experimentation with GPT-3 followed prompt instruction from Brown et al. (2020) and does not 
include fine-turning. It involved the use of the GPT3-davinci-instruct (175 billion parameters) 
model which is the biggest model available that also works best with these kinds of instruction 
prompts. Two formats were used to support in-context learning and annotate several answers at 
once. The first format utilized an individual response and its annotation and the second format 
used group responses and group annotations. Examples of the prompt keywords are shown in 
Appendix A2.2. 
 
Preliminary Results 
After iteratively refining manual coding of student explanations, a narrative of students’ 
reasoning processes was created that led to categorization according to three main, sequential 
cognitive processes: identification, comparison, and inference. Table A1 in Appendix A.1 shows 
the three processes, the 11 code categories that resulted, and some common language used to 
describe these concepts. Once all hand-coded spans were translated via INCEpTION, the 
machine learning models were run for both a training set and testing set. An example from the 
test set is shown in Table 1, with the results from various models. For this case, the models 
shown in Table 1 all identified the first two codes correctly, while the last two codes were only 
correctly identified by the T5 base models.  
 
Table 1:  Example of human-coded example (ground truth) with outputs from 3 out of 8 machine 

learning models run in initial experimentation. All codes are in red. 
ground truth gpt3-davinci-instruct ft_large_ft_150 t5_base_ft_200 

Max static friction is 14 N 
<Identification> <Static 
Friction Initial> so the box 
remains at rest <Inference> 
<Box Movement>. It will 
perfectly match the force of 
10N <Inference> 
<Newton's Laws> 

Max static friction is 14 N 
<Identification><Static 
Friction Initial>, so the box 
remains at rest 
<Inference><Box 
Movement>. It will 
perfectly match the force of 
10N <Comparison><Static 
Friction to Applied Force>. 

Max static friction is 14 N 
Identification> Static 
Friction Initial> so the box 
remains at rest. Inference> 
Box Movement> It will 
perfectly match the force of 
10N. Inference> Newton's 
Laws> 

Max static friction is 14 N 
Identification> Static 
Friction Initial> so the box 
remains at rest. Inference> 
Box Movement> It will 
perfectly match the force of 
10N. Inference> Newton's 
Laws> 

 
Overall, 290 responses were manually coded. To investigate which model performed the best, we 
evaluated model outputs for 50 held-out responses in comparison to the human-coded “ground 
truth.” Table 2 shows results obtained with T5 and GPT3.  We report precision, recall and F1 
score for model-generated outputs. Precision is the percentage of correct model-generated codes, 
relative to the total number of model-generated codes. Recall is the percentage of human codes 
which the model was able to generate correctly. The F1 score is the harmonic mean of precision 
and recall. Ground truth is comprised of 175 human-assigned codes with 50 codes held-out for 
evaluation. T5-large fine-tuned on 150 samples performed best, with an F1 score of 0.73. T5-
base fine-tuned on 240 codes had recall comparable to T5-large and second best F1 score, but 
had low precision. To gain further insight into the successes and failures of each model, we 
manually analyzed model-generated codes that did not match ground truth to determine what 
percentage of these codes in fact made sense.  The breakdown between reasonable and 
meaningless model-generated codes is shown in columns 7 (“Misses but makes sense”) and 8 
(“Does not make sense”) in Table 2. While GPT3 did not match as many ground truth responses 
as t5-large, in many cases, it generated meaningful responses. In fact, responses generated by 



GPT3 turned out to be more creative and generated some new codes which were not present in 
the in-context examples, while T5 generated codes very similar or close to that of the fine-tuning 
dataset. Note that GPT3 also over-generated annotations, which explains the negative number of 
missed codes in the last column (“Codes missed’). 
 
Table 2:  Comparison of ground truth and model-generated responses. Best result is in bold. 

Model Correct 
codes 

Total 
codes 

Precision  Recall F1 Misses but 
makes sense 

Does not 
make sense 

Codes 
missed 

Ground truth 175        
t5-base-f20 0 0 0 0 0 0 0 175 
t5-base-f50 40 49 0.82 0.23 0.36 2 7 126 
t5-base-f100 60 90 0.67 0.34 0.45 14 16 85 
t5-base-f150 80 92 0.87 0.46 0.60 7 5 83 
t5-base-f200 93 126 0.74 0.54 0.62 19 14 49 
t5-base-f240 105 133 0.79 0.60 0.68 14 14 42 
t5-large-f150 107 118 0.91 0.61 0.73 6 5 57 
gpt3-davinci-
Instruct 

89 189 0.47 0.51 0.49 52 48 -14 

*We use t5-base-fXXX to indicate that t5-base was fine-tuned with XXX examples. 
 
Implications 
Our work shows promise for further application of machine learning in education. We seek to 
further characterize the feasibility of integrating machine learning tools into the Concept 
Warehouse to support instruction and research and to address the challenges faced during these 
preliminary experiments. Some of these goals include fine-tuning minimum data size, testing the 
ability to transfer to isomorphic questions, determining accuracy ranges of machine learning, and 
developing an automatic evaluation method for machine coded responses.  
 
We envision that for instructors, such machine learning algorithms can enable processing of 
large amounts of data regarding student explanations to provide information on patterns, trends, 
and general ideas of student thinking that they could utilize in their instructional practices and 
pedagogical decision-making processes. For educational researchers, the machine learning 
algorithms could provide ways to determine the narrative of understanding students have in 
various institutional contexts at a scale not feasible with manual coding.  
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Appendix A: Manual and Machine Learning Coding Processes 
 
A.1 Manual Coding 
After several iterations of qualitative coding, the final reasoning categories and codes were 
developed. Table A1 also describes the definitions of these codes as well as some examples of 
common language students use to describe their reasoning.  
 
Table A1. Final list of categories and conceptual codes for CW5703. 

Reasoning 
Category Code Code Definition Common Language 

Identification 

Friction (General) 
student describes what it is qualitatively 
or quantitatively 

- Maximum Static Friction 
- Kinetic Friction 
- Normal Force (N) 
- Formulae: μ_kN ,μ_sN , etc. 
- Force 
- Friction 

Initial Assumptions 
Miscellaneous 

any other assumptions identified by the 
student in the beginning 

Kinetic Friction 
Initial 

student describes what it is qualitatively 
or quantitatively 

Normal Force 
student describes what it is qualitatively 
or quantitatively 

Static Friction Initial 
student describes what it is qualitatively 
or quantitatively 

Comparison 

Compare Kinetic 
Friction Force to 
Applied Friction 

Force 

Student makes clear that they take the 
concept of kinetic frictional force and 
compare it to the applied force. 

- force applied is 
less/more/higher/lower 
- force has not broken the 
static friction barrier 
- P is not large enough to 
overcome 
- P is less than the maximum 
force of static friction 
- maximum static friction 
force is larger/higher than 10 
N/P 

Compare Static 
Friction Force to 
Applied Friction 

Force 

Student makes clear that they take the 
concept of static frictional force and 
compare it to the applied force. 

Solve for Own 
Coefficient of 

Friction 
Student uses a coefficient they calculate 
and use the parameter for comparison 

Inference 
Box Movement 

Student explicitly states what will or will 
not happen to the box. 

- the block is not in motion 
- the block won't slide 
- push back the same amount 
- the frictional force is only 
10 N 
- equal and opposite 
- friction force and P must be 
equal 
- maintain static equilibrium 

Application of 
Newton's Laws 

Student either quantifies the force on the 
box as 10 N or mentions the concepts of 
“static equilibrium” and needing the 
push/pull forces to be equal 

 Uncertainty   
 
 
  



A.2 Machine Learning 
A.2.1 T5 Instruction Format and Prompts 
The T5 model was used to support machine learning via fine-tuning and in-context learning. We 
largely used the input prompt formats described by Raffel et al. (2019). However, some 
alterations were made to better fit the nature of the student explanations. This included adding 
instruction keywords and prompt keywords to better have the model understand the task.  This 
input format is shown below with the added source prompts in blue and manual coding in red. 
 
Source : “Given the question, annotate the answer. question: Force P = 10 N is applied to the 
block of mass m = 5 kg on a horizontal rough surface with μs = 0.3 and μk = 0.25. If g = 9.81 
m/s2, what is the force of friction on the block?. answer: The maximum force of static friction 
(.3*5*9.81) is larger than the applied force in the x direction. This means that the force of static 
friction will be equal and opposite to the applied forces x component.” 
Target : “The maximum force of static friction ( .3 * 5 * 9.81 ) <Identification> <Static Friction 
Initial> is larger than the applied force in the x direction . <Comparison> <Static Friction to 
Applied Force> force of static friction will be equal and opposite to the applied forces x 
component . <Inference> <Newton's Laws>” 
 
A.2.2 GPT-3 Instruction Format and Prompts 
 
Inputs for the GPT-3 analysis were done in a different manner than T5. This was done to support 
both individual and group analysis of the text. The prompt and inputs to the algorithm are 
modeled below with instruction in purple, individual format in orange, and group format in 
blue. The prompt included four examples in individual format and four in group format.  
 
“Instructions: Given the question and answers, annotate the span of the answers. The 
annotation should be wrapped within <> brackets .  Each sentence can have a maximum of 3 
annotations. Question: Force P = 10 N is applied to the block of mass m = 5 kg on a horizontal 
rough surface with μs = 0.3 and μk = 0.25. If g = 9.81 m/s2, what is the force of friction on the 
block?. 
### 
Individual 
Answer: Because friction is only as much as is needed to keep the box at rest when using static 
friction. 
Annotation : Because friction is only as much <Inference><Newton's Laws>, is needed to keep 
the box at rest <Inference><Box Movement>, when using static friction <Identification><Static 
Friction Initial>. 
### 
…. 
### 
Group 
Answer Text 
1.Answer: Newton's third law states that for every action, there is a reaction. In this case, a force 
of 14.7N is required to overcome static fricition which it doesn't because there is only a 10N 
force acting on it. So there is another 10N frictional force reacting to the force P. 
2.Answer:  Fs max would be 14.715 N (0.3*9.81*5), which is greater than the applied force. 



Therefore, the box will remain at rest, and the friction force would be equal to the applied force. 
…. 

Annotations 
1.Annotation: Newton's third law states that for every action , there is a reaction . <Inference> 
<Box Movement> a force of 14.7N <Identification> <Static Friction Initial> is required to 
overcome static fricition which it doesn't because there is only a 10N force acting on it . 
<Comparison> <Static Friction to Applied Force> So there is another 10N frictional force 
reacting to the force P <Comparison> <Static Friction to Applied Force>. 

2.Annotation: Fs max would be 14.715 N ( 0.3 * 9.81 * 5 ) <Identification> <Static Friction 
Initial> which is greater than the applied force . <Comparison> <Static Friction to Applied 
Force> the box will remain at rest <Inference> <Box Movement> the friction force. 
… 
 


