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Abstract. Goal reasoning agents can solve novel problems by detecting an anom-
aly between expectations and observations, generating explanations about plau-
sible causes for the anomaly, and formulating goals to remove the cause. Yet, not 
all anomalies represent problems. This paper addresses discerning the difference 
between benign anomalies and those that represent an actual problem for an 
agent. Furthermore, we present a new definition of the term “problem” in a goal 
reasoning context. This paper discusses the role of explanations and goal formu-
lation in response to the developing problems and implements it; the paper also 
illustrates the above in a mine clearance domain and a labor relations domain. 
We also show the empirical difference between a standard planning agent, an 
agent that detects anomalies, and an agent that recognizes problems. 

Keywords: Goal reasoning, cognitive architecture, case-based reasoning, ex-
planation, goal formulation. 

1 Introduction 

An intelligent, autonomous agent in a partially observable world should formulate its 
own goals, make plans to achieve those goals and successfully execute those plans. An 
agent can formulate its own goals based on an anomaly, i.e., the difference between an 
expected state and an observed state, by generating a hypothesis that explains this 
anomaly and generating new goals that respond to the hypothesis. However, many 
anomalies that arise in the real world do not represent a problem to an agent’s mission 
or goal. For example, the playing of unexpected loud music may or may not be a prob-
lem for roommates. If a roommate is preparing for an upcoming exam, the music is a 
problem. If, on the other hand, she is doing her laundry, it is not a problem. Generally 
speaking, an agent does not need to respond to every observed anomaly; an intelligent 
agent should be capable of distinguishing between those that signal a problem and those 
that do not. 
 The Goal Driven Autonomy (GDA) approach [5, 6, 20, 22] to agency represents an 
appropriate response for an autonomous agent’s anomalies. However, the existing re-
search does not formally address the issue of which anomalies should be considered 
problems; for example, ARTUE [20] motivations implicitly consider certain situations 
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to require new goals, but the system provides no formal basis for determining whether 
a certain situation is problematic. In this paper, we consider the task of recognizing 
whether an anomaly should constitute a problem for an agent. Performing this effi-
ciently will improve both the effectiveness and robustness of the agent. We use the term 
problem in this paper to refer to anomalies that require a response in order to meet the 
agent’s goals. Then, we present such an approach and further discuss the role of expla-
nations and goal formulation in recognizing and responding to problems. We show em-
pirical results illustrating the effectiveness of this approach as part of a GDA agent in 
two uncertain, dynamic environments. 
 The paper continues as follows. Section 2 defines the problem recognition task and 
presents a formalism to represent the problem. Section 3 describes explanation patterns 
(XP) and their role in understanding problems as well as the goals formulated when an 
agent detects a problem. Section 4 discusses the implementation of the problem recog-
nition task in two domains: mine clearance domain and labor relations domain. The 
evaluation of GDA agents and the presentation of the results follows in Section 5. We 
consider related research in Section 6 and conclude with Section 7 with a discussion 
about some ideas for future research. 

2 Formalities and Notation 

An anomaly occurs when the expected state of the agent does not match its current 
observed state, but a problem only occurs when the agent needs to address the above 
anomaly. As such, problem recognition refers to reasoning about the anomaly and de-
ciding whether it is something that the agent needs to handle. There might be different 
types of problems as well as different ways to recognize and address them. One such 
problem is the planning problem.  

 
2.1 Classical Planning Problem Representation 

A classical planning domain is defined as a finite state-transition system in which each 
state 𝑠 ∈ 𝑆 is represented by a finite set of ground atoms [14]. A classical planning 
problem is a triple 𝑃 = (S, 𝑠!, 𝑔), where S is a planning domain, 𝑠! is the initial state, 
and the goal 𝑔 is a conjunction of first-order literals. A state 𝑠"  satisfies a goal if 𝑠" ⊨ 
𝑔; in this situation we refer to 𝑠" as a goal state. A plan 𝜋"𝜖	П represents a solution to 
𝑃 if it consists of a sequence of plan steps (𝑎#,𝑎$,…	𝑎%) that incrementally changes the 
world, starting from the initial state 𝑠! and ending in a goal state. That is, it is a solution 
if 𝛾1𝜋", 𝑠!2 = 𝛾(. . . 𝛾(𝛾(𝑠!,	𝑎#),	𝑎$)…,	𝑎%) ⊨ 𝑔.  

 
2.2 Extended Planning Problem Representation 

Our extended definition of planning problems is intended for usage during execution. 
New problems arise during problem solving and execution, and necessitating updated 
solutions. These iterated online planning problems therefore incorporate an agent’s 
prior expectations and knowledge about the execution context. The extended problem 
also considers whether an agent should formulate new goals in response to the changing 
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world. Solutions to the extended problem comprise, in addition to a plan, an explanation 
of an encountered anomaly and an updated goal agenda. Critically, the plan need not 
solve every goal in the goal agenda. Formally, we define an extended planning problem  
𝒫& = (𝑠' , 𝑠( , 𝐵𝑘, 𝐻') where: 

• 𝑠' ∈ 𝑆 is the current state of the environment, 
• 𝑠( ∈ 𝑆 is the state the agent previously expects to hold at this point in time, 
• 𝐵𝑘 is the agent’s background knowledge, 
• 𝐻' is an episodic history. 

A solution 𝛹&	to a problem 𝒫& is of the form 1𝐺:' , 𝑔%, 𝜒' , 𝜋'2 where: 
• 𝐺:' is an updated goal agenda (set of pending goals for the agent to accom-

plish), 
• 𝑔% is a goal from the agenda (i.e., 𝑔% ∈ 𝐺:') chosen to address next, 
• 𝜒' is an causal explanation that accounts for any discrepancy between 𝑠' 

and 𝑠(, and 
• 𝜋' is a plan that will accomplish 𝑔), at least one goal, 𝑔 ∈ 𝐺:' in at least one 

possible world. 
Note that the subscript “c” refers to the current iteration throughout this definition 

and later in this section; as the extended planning problem is iterative, this explicitly 
links present outputs to future inputs. 
 The agent’s background knowledge 𝐵𝑘 is a tuple (𝛴, 	∆) consisting of the planning 
domain 𝛴 as defined in the classical planning problem along with a set ∆	of goal oper-
ation models d	 = 	 (ℎ𝑒𝑎𝑑(d), 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(d), 𝑝𝑟𝑒(d), 𝑟𝑒𝑠(d)). In a goal operation 
𝑝𝑟𝑒(d) and 𝑟𝑒𝑠(d) are a set of preconditions and a result. The transformation’s identi-
fier is ℎ𝑒𝑎𝑑(d), and its input goal argument is 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(d). Any goal operation 
model d	with no input goal (written 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(d) = ∅) models a goal formulation 
operation. Otherwise, d	represents goal change operations. Collectively, the agent’s 
goal operation models ∆ define an interpretation function 𝛽: 𝑆 × 𝐺®	𝐺 that transforms 
an earlier goal into a desired goal [5, 6]. See prior work for additional detail on the 
function 𝛽.  
  The episodic history 𝐻' is a tuple (𝐺:*, 𝜋*, ԑ*, 𝜒*)	that includes the agent’s memory 
of past goal agendas 𝐺:* = (𝐺:#, 𝐺:$, …𝐺:'+#), plans 𝜋* = (𝜋#, 𝜋$, …𝜋'+#), and causal 
explanations 𝜒* = (𝜒#, 𝜒$, …	𝜒'+#), as well as the execution history containing states 
and actions ԑ* = (𝑠!, 𝑎#, 𝑠#, 𝑎$, … 𝑠'+#, 𝑎'). 

 
2.3 Problem Recognition Subproblem 

We describe three subproblems we address: problem recognition, goal formulation and 
change, and replanning. Problem recognition requires the agent to determine what prob-
lem, if any, occurred. Specifically, given the extended planning problem tuple 
(𝑠' , 𝑠( , 𝐵𝑘, 𝐻'), problem recognition outputs a problem, root cause, and explanation 
pair (𝑑, 𝜔' , 𝜒') such that: ∃𝑑, 𝑔):	𝑠' ⊨ 𝑑 ∧ 𝑠( ⊭ 𝑑 ∧ 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑠	(𝑔) , 𝑑, 𝛴) ∧ 𝑔) ∈ 𝐺:'+# ∧
𝜔' ,!
→ 𝑑 ∧ 	𝜔 ∉ 𝐺:'+# 

This is read: There is some discrepancy, a literal conjunct 𝑑, that was observed (i.e., 
entailed by 𝑠') but not expected  (i.e., not entailed by 𝑠(). The discrepancy 𝑑 restricts 
how the agent can address a goal 𝑔) in its legacy goal agenda 𝐺:'. The discrepancy 𝑑 
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was caused by a root cause 𝜔' (a literal conjunct) according to explanation 𝜒'. Finally, 
the root cause 𝜔 was not intended (i.e., not in the legacy agenda 𝐺:'). In the above, a 
goal 𝑔) 	is restricted by a discrepancy 𝑑 if there is no plan π that can accomplish the goal 
𝑔) without first eliminating discrepancy 𝑑. The explanation 𝜒'	is a logical derivation or 
proof tree. When this condition is met, the discrepancy 𝑑 is considered a problem. 

 
2.4 Goal Formulation and Change Subproblem 

Once a problem is recognized, the agent must update its goal agenda to respond. Given 
a current state 𝑠', problem cause 𝜔' ,	explanation 𝜒', and legacy goal agenda 𝐺:'+#; goal 
formulation and change must find a new goal agenda (𝐺:' , 𝑔%) that responds “appropri-
ately”. Currently, no recognized definition of what constitutes a correct or strong goal 
agenda outside of a particular target problem exists. 

 
2.5 Replanning Subproblem 

The replanning subproblem finds a revised or new plan to accomplish the newly for-
mulated goal 𝑔%. This problem is much the same as the classical planning problem, 
adding only a legacy plan. It is defined by the tuple (Σ, 𝑠' , 𝑔%, 𝜋'+#), and the solution is 
the new plan 𝜋'. We do not further consider replanning within the scope of this paper, 
choosing to reuse results of other research. 

3 Explanation and Goal Formulation 

In this work, an explanation is a causal structure that represents a hypothesis about the 
cause of an anomaly. Problem explanations hypothesize the cause of an anomaly that 
limits an agent’s goals. In a nutshell, explanations help an agent to decide whether an 
anomaly is a problem or not, while goal formulation helps an agent to resolve a prob-
lem. 
To implement our ideas, we modified Meta-AQUA [7] an open-source story under-

standing system, to generate grounded explanations. In prior work, Meta-AQUA was 
supplied with a case-base of explanation patterns that explain anomalous actions per-
formed by actors in a story. In our work, we extended Meta-AQUA to retrieve an ex-
planation from memory and adapt it for goal formulation whenever an agent encounters 
a problem.  

 
3.1 Explanation Pattern 

In our work, we use a case-base of problem explanations engineered manually to fit the 
domain. Approaches to learning such explanations are outside the scope of this paper, 
but [25] has sketched out a detailed approach on learning explanation patterns. Each 
explanation in our case-base is an abstract explanation pattern (XP) [26]. An XP is a 
data structure that represents a causal relationship between multiple states and/or ac-
tions; variables adapted during or after case retrieval abstractly define each action/state.  
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3.2 Retrieving an Explanation Pattern 

When an agent observes an anomalous state or action, a retrieval process outlined in 
[15] gets a problem explanation from the case-base. In general, the agent might retrieve 
zero, two, or more explanations. However, for the purpose of this paper we assume the 
agent retrieves exactly one problem explanation if an anomaly is a problem. However, 
in the future, we would like to address this assumption by select one problem by eval-
uating multiple explanations. 
 

3.3 Goal Formulation 

Goal formulation is essential for an intelligent agent to respond to unpredictable events. 
We perform formulation by chaining backward on each of the antecedents of a retrieved 
explanation until we reach all the causes to which the agent can respond [15, 16]. The 
causes in an explanation pattern include actions and states; therefore, when the agent 
wishes to prevent an undesired consequent from recurring, it considers as potential 
goals the elimination of the actors or objects that cause the anomalous state. The re-
moval mapping function that takes in the agents or objects and outputs the goals that 
eliminate them create potential goals.  

4 Domains  

To illustrate these concepts in this paper and to assess the performance of the resulting 
GDA agents, it will be useful to consider them in the context of the following concrete 
examples from the mine clearance domain and the labor relations domain. 
 

4.1 Mine Clearance Domain 

To prepare a harbor for use during maritime operations, it is essential to conduct mine 
clearance activities to ensure that ships can operate safely as they transit between the 
open sea and the port in the harbor. As searching and clearing mines in the entire harbor 
is likely to be a time-consuming and expensive undertaking, a network of safe shipping 
lanes is typically established to reduce the size of the area within the harbor that needs 
clearing. Such a system is known as a Q-route [19]. 
 For experimentation, we created simulated scenarios with a fixed Q-route that con-
sists of a single shipping lane. In simulation, an Autonomous Underwater Vehicle 
(AUV) controlled by an agent performs both mine detection and clearance. In each 
scenario, the agent knows of two previously identified areas within the Q-route – green 
area one (GA1) and green area two (GA2) – where mines are expected. As such, any 
mines encountered which do not lie within GA1 or GA2 constitute anomalies. How-
ever, only anomalous mines within the Q-route are classified as problems, because 
mines outside the Q-route will not pose a hazard to shipping. It is the role of the agent 
to determine how to respond to these anomalous mines in each scenario. 
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Figure 1 illustrates the mine clearance domain. The cylindrical object in the top left 
corner represents the AUV named Remus and each triangle represents a ground truth 
mine position, not given to the agent a priori. The area between the two horizontal lines 
represents the Q-route, and the octagons on the left and right represent GA1 and GA2 
respectively. In each scenario, the mines are uniformly distributed throughout the 
transit area (used by Remus to enter and exit the Q-route) and the Q-route. 
 

Example Mine Clearance Problems In this section, we give a series of example ex-
tended planning problems in the Mine Clearance domain and their solutions. In the 
Mine Clearance domain, the initial goal agenda (𝐺:') includes the following goals: clear 
the mines in GA1, clear the mines in GA2, and head back to its initial position (home). 
Let us assume that the agent selects the goals in the provided order they so the current 
goal of the agent would be to clear the mines in GA1. Therefore, initially 𝑔! = cleared-
mines(remus,ga1) is the goal. The expectation of the agent is that the mines are present 
only in GA1. The initial plan (𝜋!) is comprised of several steps to achieve the first of 
its initial goals (𝑔!); some of which are the following: 
𝜋 = { 𝑎# =move_to_the_location (remus, home , location-a),	𝑎$ =move_to_the_loca-
tion (remus, location-a , location-b),	𝑎- =move_to_the_location (remus, location-b , 
ga1),	𝑎. =survey (ga1),	𝑎/ =identify-mines (ga1),	𝑎0 =clear-mines (ga1)} 
Here location-a and location-b are locations of waypoints outside the Q-route that 

describe a path to GA1 from “home”, the agent’s launching point. After reaching GA1, 
the plan directs the Remus to survey locations in GA1, locate/identify any mines and 
clear them. In the initial state (𝑠!), GA1 is expected to (likely) contain one or more 
unknown mines. After 𝑔! is satisfied, however, the agent has cleared all mines in GA1. 
The agent detects a mine at location-b after it completes the action 𝑎#. This is an 

anomaly because in the observed current state (𝑠'), there is a mine at location-b, but not 
in the expected state (𝑠(). This triggers problem recognition. However, no explanation 
pattern is found therefore the problem remains false as the detected mine is outside of 
the Q-route. The anomalous mine is therefore not considered a problem, and goal for-
mulation does not occur.   As such, the new solution is 𝛹& =	1𝐺:!, ∅, ∅, 𝑡𝑎𝑖𝑙(𝜋!)2, con-
taining the unchanged initial goal agenda, no new goal or explanation, and the remain-
ing actions in 𝜋!. The history	𝐻' 	=  1𝐺:*, 𝜋*, ԑ*, 𝜒*2 is updated with the unchanged 
goal agenda, updated plan, state, action, and explanation.  

Figure 1: Simulation of the mine clearance domain in Moos IvP. 
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After the agent achieves 𝑔!, it travels towards GA2 to achieve the next goal, 𝑔# = 
cleared-mines(remus,ga2). Its new plan visits intermediate locations location-d and lo-
cation-e in the route to clearing mines in GA2. In the expected state (𝑠(), the Remus is 
at location-e between GA1 and GA2, where there are no mines. However, in the current 
state (𝑠'), a mine is observed. As described previously, this anomaly triggers problem 
recognition. This time, the anomaly is a problem, as the situation matches the problem 
pattern from explanation, producing an explanation 𝜒' with a root cause 𝜔' = mine-
at(location-e) ∧ in-qroute(location-e). Goal formulation then generates a new goal 𝑔% =
¬mine-at(location-e), and replanning produces a plan 𝜋' that achieves 𝑔%; the updated 
goal agenda adds this new goal: 𝐺:' = 𝐺:'+# ∪ {𝑔%}. This completes the solution 
1𝐺:' , 𝑔%, 𝜒' , 𝜋'2 , which is used to update the history 𝐻' as before. The agent then 
switches to the new plan 𝜋'. 
 

4.2 Labor Relations Domain 

This domain describes a virtual institution, consisting of an institute head, employees, 
and customers. The institution starts with an initial reputation and a budget represented 
by numeric values. The head of the institute enacts policies; implementing a policy 
takes a known fixed amount of budget and increases the institute’s reputation value by 
a fixed amount. Disagreements about enacted policies may occur between the head and 
the employees with certain intensity. Intensity is a numeric value; high intensity disa-
greements may lead to a strike. Intensity values vary for each disagreement and are 
unpredictable. Disagreements can be resolved by negotiating. Negotiating to solve a 
disagreement also requires a budget, which varies with respect to the intensity of the 
disagreement. Moreover, negotiations also decrease the reputation value by a function 
of intensity.  
 The agent acts as the head of the institute with a goal to increase the reputation of the 
institute, and, in order to achieve that goal, the agent must implement some policies. 
The expectation is that the employees agree to the policy, but, if the employees disagree 
then this is considered an anomaly, and only those disagreements that can lead to a 
strike are considered as problems. Therefore, the intelligence of the agent lies in iden-
tifying the anomalies that might lead to strikes and working on them. This domain is 
not related to trading and marketing agents in artificial intelligence, and is not simulated 
using third-party software. 

5 Evaluation of the Implementation in the Domains 

In both domains, in order to perform the evaluation we have introduced two other agents 
along with our GDA agent, namely an eager agent and a baseline agent. They each 
respond differently to anomalies. The GDA agent detects all anomalies, but only works 
on those perceived as problems. In contrast, the eager agent addresses all anomalies 
that it encounters, i.e., it tries to fix every anomaly it encounters. The baseline agent 
plans only for its original goals and ignores all anomalies. The performance of the three 
agents is assessed and the results are presented by varying the environment and aver-
aging the results for 10 different runs for each mine scenario.  
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5.1 Empirical Results in Mine Clearance Domain 

The performance of the agents is calculated based on the number of the ships that reach 
the other side of the harbor safely in various mine density scenarios that include a total 
of six ships and three mine densities: low, medium, and high. We also introduced dead-
lines ranging from 0 to 2 seconds in the domain with increments of 0.5 seconds. Please 
note that the seconds indicate the simulation time, not a real world time. These dead-
lines specify the time gap between the agent starting from home to clear the mines and 
the ships starting their journey from one end side of the shore to other.  

 Figure 2 shows the scores achieved by the three different agents in all mine density 
(average of low, medium, and high density) scenarios for the varied deadlines. The X-
axis depicts the delay with which the ships start and the Y-axis indicates the number of 
ships that safely traverse the Q-route. Here, when we start looking at the values from 
the left side of the graph, at the delay of 0, very few ships were able to traverse the Q-
route successfully, for all three agents. Those that were able to reach the other side were 
able to cross the Q-route in the low mine density scenarios, while very few or no ships 
made it across in the medium and high mine density scenarios. 
 To understand what a delay of 0.5 seconds means, consider what each agent can 
accomplish within that timeframe in a characteristic scenario. After 0.5 seconds, the 
baseline agent clears the mines in GA1 and is on its way to clear the mines in GA2. At 
the same point in time, the GDA agent has cleared the mines in GA1 as well as some 
mines within the Q-route; the eager agent has cleared mines outside of the Q-route and 
in GA1. After 1 second, the baseline agent has cleared the mines in both green areas 
and is headed towards home, the GDA agent has cleared some mines within the path 
from GA1 to GA2 and some mines within GA2, whereas the eager agent is working on 
the mines within the Q-route after clearing the ones in GA1. In these conditions (delay 
of 0.5 and 1 seconds), the difference between the performance of the GDA and eager 
agents does not seem very large. This is because the average of the various mine density 
scenarios also contains low mine density fields where the two agents perform almost 
identically, since the eager agent only has a few mines to clear outside of the Q-route. 
However, the difference in performance for medium and high mine density scenarios 

Figure 2: Scores obtained by the agents in mine clearance domain 
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is two ships. At a delay of 1.5 seconds or greater, all agents have performed all clear-
ance tasks intended; thus, performance does not change for delays greater than 1.5 sec-
onds. 
 

5.2 Empirical Results in Labor Relations Domain 

To assess the performance of the three agents in this domain, we compare the reputation 
values of all agents after they implement a certain number of policies. There are some 
numerical values in this domain: Initial reputation is 500, Total budget is $4000. Im-
plementing any policy reduces the budget by $25.  
 The intensity value of a disagreement is a random number between (1, 100). When a 
disagreement arises, the employees can demand a budget amount which is a random 
number between (1, 25). Providing the budget amount of any amount within 40% to 
60% of the amount demanded by employees solves the disagreement.  
 If there is no disagreement when a policy is implemented then the reputation of the 
institution is increased by five. However, if the agent encounters a disagreement, then 
it has two options ahead of it: to solve the disagreement or to ignore the disagreement 
and strictly adhere to its initial policy. In the first option that addresses the disagree-
ment, the reputation is neither decreased nor increased, i.e., the change in reputation is 
zero. If the agent does not address the disagreement, then the reputation value is de-
creases as a function of intensity value. So, if the intensity is <=34 then Rep = -Int/100 
and, if the intensity is >=35 then Rep = -[(n+2)*Int]/100 where n = integer((I-35)/5). 
The integer() acts as a rounding function. There is an interest value added to the budget 
after implementing every 50 policies with a rate of 2.5%. Reputation values can become 
negative if the agent does not address disagreements.  

 Figure 3 shows the reputation achieved by the three different agents over 200 poli-
cies. The X-axis depicts the number of policies implemented and the Y-axis indicates 
the reputation value scaled to 10. All the agents have an initial reputation of five. Each 
point on the lines contains average of 20 policies and the reputation value is cumulative 
and can reach a max value of 10. In this experiment if any agent is out of budget then 
it starts to behave as a baseline agent as the debt should be as minimum as possible 
when the agent implements all policies. 

Figure 3: Scores obtained by the agents in labor relations domain 
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 Starting with the baseline agent, at the completion of 50 policies the baseline agent 
already has a negative reputation because it does not address any of the disagreements, 
so the reputation value drops and keeps on decreasing monotonically. 
 The GDA agent gets a little behind the eager agent from 50 to 120 policies because 
the GDA agent will not address the anomalies with lower intensity values, whereas, the 
eager agent addresses all the anomalies and spends its budget on every anomaly. How-
ever, this means the eager agent is out of its budget much sooner than the GDA agent. 
 The eager agent is out of budget at 140 policies and starts behaving as a baseline 
agent, and begins to drop its reputation, while the GDA agent preserves its budget and 
continues on its increment streak of the reputation value for around 150. The baseline 
agent’s reputation value is still sinking to much lower values but the scale is adjusted 
such that the negative values are only visible up to -10. These results indicate that the 
GDA agent should perform better overtime and maintain a higher reputation than the 
eager agent by a significant amount. The GDA agent underperformed by a negligible 
amount for a period of time when compared to eager agent because of the higher amount 
of resources. A smart agent is not needed if the amount of resources present are infinite, 
but this is not very realistic and as long as resources have a limit, then there will be a 
need for the GDA agent to use them sustainably. 

6 Related Research 

Statistical anomaly detection has been the subject of extensive research because of its 
applications to a variety of detection tasks such as network intrusion [18], credit card 
fraud [2], and malignant tumors from MRIs [27] among many others [4]. Those works 
rely on large volumes of data to build statistical models of expected patterns. In that 
context, anomalies correspond to outlier patterns deviating from expected patterns. In 
our work, our models are planning models and anomalies correspond to deviations of 
those models. One of the most challenging problems of statistical anomaly detection is 
the potentially large number of false positives, which trigger unnecessary alarms. In 
our work, in contrast to the previously mentioned works, explanations for an anomaly 
is generated to determine the nature of the anomaly and decide if the agent must deal 
with it. Cox, [8] also presents similar, work on the importance of distinguishing an 
anomaly from a problem. 
The concept of anomaly detection has played a central role in GDA research. In this 

work, we are focusing on environmental failures since the anomalies are the result of 
the partial observability in the environment. In Munoz-Avila et al. [22], observed that 
not all anomalies require triggering a new goal. In that study, the GDA agent is operat-
ing in an adversarial environment with a reward function (i.e., the score of the game). 
A reward function is also used in Jaidee et al [17] which uses reinforcement learning 
techniques to show GDA knowledge. With both of these, when the current plan is re-
sulting in a positive reward rate, the agent will ignore anomalies. In contrast, in our 
work, we do not assume a reward function; instead, we generate a causal linkage to 
determine if a problem underlies the anomaly. 
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ARTUE [20] is a GDA system that was used to provide control in a Naval strategic 
simulation of an adversarial and partially observable environment. In this work, expla-
nations were generated using a truth maintenance system that identifies plausible 
worlds that are consistent with the observations made by the agent and triggers a new 
goal as a result. ARTUE explains all anomalies, whether problematic or not; goal for-
mulation is responsible for determination of whether the agent should respond. The 
initial version of ARTUE used rule-based knowledge; extended versions incorporated 
learning of goal selection knowledge [24] and domain-independent motivations [28] 
responsible for identifying situations that require response. However, these techniques 
modified the goal formulation process, rather than incorporating a separate problem 
recognition step prior to explanation generation. 
Other kinds of explanations also exist; external explanations describe an agent’s 

anomalous behavior to others [12], while internal explanations hypothesize the cause 
of an anomaly for its own needs [1, 21]. In our work we use a variant of the internal 
explanations called problem explanations. 
More recently, the notion of GDA agent’s expectations has been extended to con-

sider only the necessary effects of the plan executed so far as opposed to considering 
the whole state [9]. Our work can use this form of expectations. 
Our work is motivated by work on introspective reasoning, where the agent reasons 

about the decisions that lead to actions taken and how these actions affect the environ-
ment. Meta-AQUA [7] reasons about the processes that lead to a decision which re-
sulted in an anomaly and considers three types of anomalies: novel situations, incorrect 
background knowledge and mix-indexed knowledge structure; the difference between 
the last two is that in the latter the agent has the knowledge but it is not retrieved in the 
appropriate circumstances. Fox and Leake [13] present a mechanism to fix these re-
trieval mechanisms using introspective reasoning techniques. In our work, we are fo-
cusing on novel situations when there is an expectation failure. 

7 Conclusion and Future Research 

We have described a formalism for agents that enables them to distinguish between 
those anomalies that they must deal with from those that they do not. Real world sce-
narios often deal with deadlines and it is practically impossible for an agent to worry 
about all the anomalies it comes across, reason, react and achieve its prime goals within 
the given deadline. Although our experiment setting is simulated, adding a deadline to 
our experiment clearly shows that the performance of the GDA agent is better than the 
eager and the baseline agents. 
 For future work, we would like to work on several different enhancements that can 
improve the performance and reasoning capabilities of the GDA agent in our future 
research. First, adding an importance factor to the problem formalism would help the 
agent to prioritize anomalies that are classified as a problem with the goals it possesses. 
Moreover, given that an agent only has finite resources, prioritizing the anomalies could 
also assist an agent to delegate goals to other agents. Second, adding goal monitors [10] 
after formulating goals could help an agent to adapt as the world changes. For example, 
during mine clearance, if the establishment of a Q-route changed from one location to 
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another then it is highly likely that it would not need to continue to clear mines along 
the originally proposed Q-route, or if the budget can be created through profits or do-
nations. Finally, if the number of anomalies flagged were excessive given what might 
be anticipated in a particular context, then this could serve as a cue for the agent to 
generate a goal with a broader scope than the current goal. For example, our experi-
mental setting has around ten mines within the proposed Q-route. Instead of clearing 
just the mines on the agent’s path from GA1 to GA2, if the number of mines encoun-
tered were too great, then the agent could generate, or delegate to another agent, a goal 
to survey the entire region between GA1 and GA2. Finally, in the labor relations do-
main, we would like to explore adding other factors such as customer satisfaction, prof-
its, or time and possibly go a step further and create a multiagent scenario. 
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