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Abstract

Modern software applications rely on the execution and co-
ordination of many different kinds of tasks. Often overlooked
is the need to sometimes prematurely terminate or cancel
a task, either to accommodate a conflicting task, to manage
system resources, or in response to system or user events
that make the task irrelevant. In this paper, we studied 62
cancel-feature requests and 156 cancel-related bugs across
13 popular distributed and concurrent systems written in
Java, C#, and Go to understand why task cancel is needed,
what are the challenges in implementing task cancel, and
how severe are cancel-related failures. Guided by the study,
we generalized a few cancel-related anti-patterns and im-
plemented static checkers that found many code snippets
matching these anti-patterns in the latest versions of these
popular systems. We hope this study will help guide better
and more systematic approaches to task cancellation.

1 Introduction

Task cancellation is critical to the performance and availabil-
ity of modern concurrent and distributed systems. Unlike
fault handling, which reacts to the failure of a software or
hardware component, task cancellation proactively stops the
execution of a software component (i.e., a task) that no longer
needs to run. Concurrent applications use task cancellation
for better resource management, task coordination, and sys-
tem responsiveness [6, 7, 20, 22]. For instance, when a user
aborts a long-running operation, the underlying system may
want to cancel the relevant tasks to save resources; when
a high-priority request comes, a busy system may want to
cancel a low-priority task for the greater good. Task cancella-
tion is crucial for today’s systems that concurrently execute
a large number of complex and resource-consuming tasks
under stringent quality of service requirements.
Unfortunately, supporting efficient and correct task can-
cellation in modern applications is nontrivial. Tasks need to
be designed such that they can be aborted at certain points
of execution without undesirable side-effects (e.g., without
corrupting the system state). Moreover, the application needs
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to decide when to safely cancel a task, and once decided to
cancel, the decision needs to be correctly propagated to the
target task to be canceled.! Last but not least, a system may
contain dozens or hundreds of concurrent tasks, with com-
plex dependencies among the tasks as well as on the system
environment. If not carefully implemented, canceling a task
may break a dependency or introduce concurrency errors
such as races. It is therefore not surprising that implementing
task cancellation can be error-prone.

As it stands, there have been no studies on task cancel
problems in concurrent and distributed systems—how cancel
is used and implemented, the various types of cancel-related
bugs, the impact of those cancel-related bugs, and so on,
although various other types of bugs and problems have been
heavily studied for distributed systems [11, 16, 18, 26, 27].

This paper attempts to provide an in-depth analysis of
cancellation usage and problems in popular software appli-
cations across multiple languages, which we hope will help
guide cancellation-related systems research and design.

Why do applications cancel tasks? To understand why
cancellation may be desirable to system operation, we re-
viewed 62 feature requests in 13 popular open-source ap-
plications, such as HBase, Hive, Cassandra (Java); Roslyn,
ASP.NET Core (C#); CockroachDB, and InfluxDB (Go).

We found that about half of the cancel-feature requests
aim to terminate tasks that no longer produce useful results
upon a change in system or user state (e.g., the finish of a
related task and the end of a user session); close to half of the
requests aim to improve operational flexibility and enable
users to cancel a job, particularly the time-consuming ones, at
any time; a small number of requests aim to enable stopping
a low-priority task prematurely to support the launching
and running of other more important tasks.

Our study confirms our understanding that task cancel-
lation is a crucial feature that facilitates efficiency and op-
eration flexibility in concurrent systems. It shows that the
trigger of a cancel can be a variety of events (far beyond

I This is in contrast to fault-handling where the external environment de-
cides when a fault is generated.
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‘ Task Task Cancellation

C# | Task,Thread CancellationToken struct
Go | goroutine Context type
Java Thread interrupt() on Thread itself

Table 1. Task constructs and cancellation mechanisms

system shutdown and component failures), and the target
of cancellation is often a small number of selective tasks
(rarely bulk cancellation), which can all bring complexity to
the implementation of task cancellation.

What causes cancel-related bugs? To understand the
challenges in implementing task cancellation correctly, we
studied 156 bug reports across the same set of 13 popular
open-source applications in Java, C#, and Go to understand
what are common cancellation-related bugs.

Our study shows that problems routinely occur at all
phases of cancel: 1) deciding when and which task to cancel
(about one third of the bugs), 2) propagating the cancel re-
quest from the initiator to the target task (about one quarter
of the bugs), and 3) fulfilling the cancel in the target task
(about one third of the bugs). Some classes of problems are
particular to the type of mechanism used to issue cancel,
such as bugs in the use of Java’s interrupt API, and bugs
in passing cancellation tokens through function parameters
in C# and Go. Many other classes of problems are due to
the overall complexity of implementing cancel, such as de-
termining which tasks conflict, which system state changes
must be reverted before task termination, etc. For each type
of bugs, we discuss potential solutions to tackle them.

Impacts of cancel-related bugs. The impact of cancel
bugs varies, but can in some cases be severe. Among issues
with specified symptoms, a few common categories are re-
source leaks, performance issues, broken task APIs, data
corruption or loss, and incorrect user reporting.

Cancellation anti-patterns. Through the study above,
we have generalized and implemented static checkers for
five cancel-related anti-patterns using the CodeQL [1] static
analysis framework, including (1) missing interrupt handling
inside a loop (Java); (2) using the wrong built-in API to check
or reset the interrupt flag on threads (Java); (3) failure to
propagate cancel to child tasks (Java); (4) ignoring cancel-
token parameters (C#); and (5) not propagating cancel tokens
(C#)?. We find around 200 instances of these anti-patterns
across the latest versions of the 13 applications we studied,
which further motivates future work to improve the support
for correct cancel implementation.

2 Background

Task. This paper defines a task as a unit of concurrent ex-
ecution. As summarized in Table 1, in Java, all code that
implements a Runnable interface qualifies (e.g., Thread). In

2This particular checker is a re-implementation of an existing C# checker.

public void run() {

try { ...
} catch (InterruptedException e) {
// receiver handles the cance

}

request

if (Thread.currentThread().isInterrupted()) {
// receiver

}

handles the cancel request

Listing 1. Handling cancel requests in Java

C#, tasks are objects of type Thread or Task. In Go, execution
inside a goroutine is a task [4, 5, 22]. Tasks are not limited
to any specific programming model: for example, some is-
sues we study involve tasks as part of an event-driven design.
Some tasks execute with a clear end, like a user-request task
launched by a server application; some execute with an open
end and cease only on system shutdown or explicit request to
terminate, like a task that provides an in-memory cache ser-
vice for others. Tasks can also initiate work on other nodes,
e.g. by issuing an RPC call.

Task Cancel. Cancel is the deliberate attempt of one task
to terminate another task in a cooperative way. We will refer
to the former as the cancel initiator and the latter as the
cancel target. All the instances of cancel we study are co-
operative, which means that the target task, upon receiving
the request, chooses how and when to terminate [15]. Note
that the alternate way of task cancel - abortive, where the
initiator forces the target to terminate - is prone to semantic
errors and is not supported by the three languages that our
study focuses on (Java, C#, Go). For example, the abortive
Java Thread. stop() method is deprecated now.

Cancel vs Fault Handling. Task cancel and fault han-
dling have some similarities in that they both involve a task
finishing earlier than expected, but they also have fundamen-
tal differences. Cancel can be considered part of the regular
operation of the system: the conditions that cause cancel
to be issued are known and expected with some regularity,
such as to proactively prevent performance problems, as we
will discuss in Section 4; the cancel process involves the co-
operation between at least two running parties, the initiator
and the target; after the cancel is conducted, the system is
expected to remain functioning as normal or even at a higher
capacity. This is in contrast to failure handling, in which fail-
ure events are unexpected; the handling is reactive after a
component failure; and the expectation for system function-
ing may be lower - e.g. to function at reduced capacity, or to
terminate safely.

Cancel mechanisms. Although the built-in cancel mech-
anisms in C#, Go, and Java take different forms, as listed in
Table 1, they all essentially offer a "flag": the initiator sets
the flag when requesting cancel, and the target can check
the flag and respond to the cancel request.
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var tokenSource =
var token = tokenSource.Token;
var mytask = Task.Run(() => {
// the receiver checks the token before starting
// to handle

new CancellationTokenSource();

a potential cancel request

if (token.IsCancellationRequested) {
// receiver handles the cancel request
}

}, token);

Listing 2. Handling cancel requests in C#

Specifically, in Java, any thread can execute t. interrupt()
to set an internal flag of thread t. Any code executing in
thread t can use APIs like isInterrupted() to check this
flag and see if an cancel request has been delivered to it.
Alternatively, any execution of a blocking API, like sleep()
or poll(), will throw an InterruptedException upon the
setting of its thread’s cancel flag, as shown in Listing 1.

C# and Go offer more flexible ways of cancel. Instead of
limiting each thread to have one flag, they allow the software
to declare any number of CancellationToken structs (C#)
or Context variables (Go) that each contains a cancel flag. In
C#, a CancellationToken object, generated from a Cancel-
lationTokenSource is typically passed through function pa-
rameters. An invocation of Cancel() on the token’s source
would set the flag inside the token object, which is visible
to any task that has access to the token, as illustrated in
Listing 2. Cancel in Go is similar: the Context type provides
a CancelFunc to issue a cancel signal, which can be checked
via ctx.Done() on the Context ctx. Like CancellationToken,
Context is typically passed via function parameters. In the
remainder of the paper, we will refer to Context variables
also as cancellation tokens for simplicity.

The CancellationToken in C# also allows registering a
callback function to be called when the token is canceled.
This functionality is rarely used in the applications that we
study and hence will not be discussed in this paper.

Finally, developers can implement custom means of cancel.
In many Java programs, shared Boolean variables are used
as cancel flags. Threads explicitly read and write these flags
to carry out cancel. This essentially allows multiple cancel
flags for one thread and hence can embed more semantic
information inside each flag. However, it is also prone to
bugs, as we will discuss in Section 5.

3 Methodology

Application selection. We study applications written in
three different languages: Java, C# and Go, as shown in Table
2. These languages were chosen as they have widespread use
of different built-in cancel mechanisms, and as such provide
a useful point of comparison for this study.

In choosing which Java applications to study, we focus
primarily on the most popular, as indicated by GitHub stars,
open-source distributed applications in various categories,

Table 2. Applications included in our study

Application Category Stars Bugs CFR?
Java (distributed apps)
Cassandra Database 7K 14 2
Elasticsearch ~ Full-text search 57K 15 20
Hadoop! Distri. storage; 12K 10 3
distri. processing
HBase Database 4K 26 3
Hive Data warehousing 4K 21 5
Kafka Stream processing 20K 9 2
Solr/Lucene Full-text search 4K 9 2
Spark Data processing 31K 6 6
Java - subtotal 110 43

C# (single-instance apps)

ASP.NET Core Web framework 26K 6 1
Roslyn Compiler 15K 14 8
C# - subtotal 20 9
Go (distributed apps)
CockroachDB  Database 22K 12 6
eted Key-value store 38K 8 0
InfluxDB Database 22K 6 4
Go - subtotal 26 10
Total 156 62

! Including Hadoop Common, HDFS, YARN, MapReduce
2 Cancel-Feature Requests

as listed in Table 2. Our selection is more limited for Go and
C#, since there are much fewer applications written in these
two languages on GitHub. For Go, we study applications that
are analogous to categories studied in Java: InfluxDB and
CockroachDB (distributed databases), and etcd (distributed
application serving and coordination). For C#, there do not
exist any widely-used applications in those categories. So,
as an alternative, we chose the top 2 applications/frame-
works, out of the 50 most popular C# applications on GitHub,
that utilize cancel extensively: Roslyn (compiler suite) and
ASP.NET core (web framework).

Cancellation Issue Study. For these selected applica-
tions, we checked their Jira issue trackers or GitHub issue-
and-pull systems, if they do not use Jira. We searched for
resolved and valid issues, up to June 2021, using the following
keywords: abort, cancel, interrupt, and terminate. We then
manually checked the reports to exclude issues that do not
have a clear description or are unrelated to task cancel.

From the remaining, we get 156 issues that are labeled
by developers as “bug” or are clearly fixing a bug, although
not labeled. They will help us understand the root causes
and symptoms of cancel-related bugs, as presented in Sec-
tion 5 and 6. We should note that although an issue might
belong to multiple root causes or symptom categories, it
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Table 3. Reasons underneath Cancel-Feature Requests (CFR)

Why should a task T be canceled? #CFR
A. Efficiency: T no longer produces useful results 30
- Al. Upon system shutdown 5
- A2. Upon a user disconnection or time-out 6
- A3. Upon a system or user event 19
B. Flexibility: T is no longer wanted by users 28
- B1. Cancel through an API call 20
- B2. Cancel through user interface or keyboard 7
- B3. Cancel through timeout parameter
C. Priority: More important tasks need to run 4
Total 62

is classified by its primary category only, without double-
counting. In addition, we study 62 issues that are requests
to add the capability of canceling some tasks and are labeled
as “improvement” or “feature”, instead of “bug”, and con-
tain patches approved or already merged. They will help us
understand the motivation of task cancel, as in Section 4.

We believe cancel problems are under reported, as cancel
code can be difficult to exercise during testing. From the
discussion in cancel-feature requests, we also see that the
complexity in correctly implementing task cancel sometimes
drives developers away from implementing cancel, which of
course comes with performance and efficiency loss.

Threats to validity. Our study does not cover all task
cancel mechanisms, and may not generalize to those issues
and systems not covered in our benchmark suite. Particularly,
we have skipped those cancel-feature requests and cancel-
related bugs whose description is not clear enough for us
to conduct further categorization. We may also have missed
cancel-related requests or bugs whose reports do not contain
the search keywords used by us. Furthermore, since there
are many more issue reports and pull requests about adding
cancel features than those about cancel-related bugs, we limit
our study of cancel-feature requests to those that contain
cancel-related keywords in the issue/pull titles. Thus, we
likely have missed many requests that have those keywords
in the issue/pull body, but not the title.

4 Why Do Applications Cancel Tasks?

To understand why tasks may require cancel and what trig-
gers a task cancel, we studied 62 cancel-feature requests in
Java, C#, and Go systems, following the methodology de-
scribed in Section 3, and generalized three main reasons for
task cancel as shown in Table 3.

Reason-A: Efficiency. Close to half of the cancel-feature
requests originate from developers’ efficiency concerns, as
the computation of a task T no longer produces useful results
upon (A1) a system shut-down, (A2) a user-session termi-
nation, or (A3) a particular system or user event. Among

these three different cancel-trigger scenarios, A3 is the most
common and triggers cancel at a finer granularity than A1
and A2. For example, when a user navigates away from a
web page P, the system still runs many tasks related to the
user, but can cancel all the tasks initiated by page P (e.g.,
influxdb-19029); when one attempt of a task finishes, all other
speculative or parallel attempts of this task can be canceled
(e.g., SPARK-25773 and roslyn-8050); when a job is canceled
or finished, its related tasks can be canceled (e.g., roslyn-
25620 and roslyn-51816). In all these cases, continuing the
execution of T does not affect functional correctness but
wastes system resources and affects request latency.

Reason-B: Flexibility. Another common reason is to of-
fer users the flexibility to prematurely terminate a user op-
eration and all its related tasks, which contribute to about
40% of the cancel-feature requests. In a number of cases, the
requests explicitly mention that the target task may take a
long time (e.g., elasticsearch-72644 and elasticsearch-73818
and SOLR-6122) or even hang for unknown reasons (e.g.,
KAFKA-1506), and hence should be cancellable. In other
cases, the exact reasons why a user may want to cancel a
task is not explained. The requested cancel features typically
get implemented as task-cancel commands or as handlers
of certain user interface events, like the Ctrl+C keyboard
combination.

Reason-C: Priority. Interestingly, sometimes, develop-
ers want to enable the system to sacrifice T for the benefit
of other more important tasks. For example, in HDFS-2507,
a feature is added to cancel an ongoing checkpoint task of a
standby NameNode when the active NameNode fails. This
would allow the standby NameNode to immediately start the
fail-over task instead of waiting for the long checkpointing
to finish, minimizing the system downtime. Similar decisions
of sacrificing long-running low-priority tasks for the ben-
efit of high-priority tasks also occur in other systems (e.g.,
CASSANDRA-14397, elasticsearch-56009).

Observations. Trigger variety. A task cancel can be trig-
gered by a variety of events, as shown in Table 3. This variety
adds complexity to the implementation of cancel: the pro-
gram may miss a trigger and fail to initiate the cancel. Even
when a trigger is sensed, the trigger information may not
be included in the cancel request, e.g., in Java’s built-in can-
cel mechanism, making it difficult for the cancel handler to
process the cancel request properly.

Fine granularity. Task cancel is often targeted; bulk cancel
scenarios like system shutdown are rare. This fine granular-
ity can make it difficult to decide which task to cancel.

Heavy coordination. In a system that involves many con-
current components, cancel may involve a lot of coordination
across tasks: a task’s cancel could be due to the launch, the
progress, or the termination of another task. This heavy co-
ordination requirement demands careful synchronization
and shared-state clean-up during task cancel.

130 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



Proactive instead of reactive. Unlike fault handling, task
cancel rarely reacts to an already exposed component failure.
It is more about the system efficiency, request latency, oper-
ational flexibility, and resource balancing, which, although
do not immediately precipitate system outages, are crucial
to the service quality and robustness.

5 Root Causes of Cancel-Related Bugs

We divide the whole procedure of cancel into three phases,
and categorize cancel bugs’ root causes accordingly:

1) Initiating Cancel - the cancel initiator senses a cancel-
trigger event and decides which task to cancel.

2) Propagating Cancel - the cancel request propagates from
the initiator to the target.

3) Fulfilling the Cancel - the cancel target responds to the
cancel request, releasing resources, restoring system states,
and ending its own execution.

Note that there are 9 bugs caused by miscellaneous se-
mantic errors that are not related to the core functionality
of task cancel. We put them in the “Other” category in Table
4 and skip discussion about them below.

5.1 Cancel-initiation bugs

As discussed in Section 4, a variety of conditions might trig-
ger a cancel. Deciding when to initiate a cancel to which
target task is complex and susceptible to problems, contribut-
ing to about 30% of cancel-related bugs (Table 4).

In some cases, a cancel is not initiated when it should
be, either because the system completely overlooks a can-
cel trigger ("Overlooking triggers") or because the system
checks the existence of a cancel trigger incorrectly ("Broken
trigger checking"). In other cases, a cancel is incorrectly or
unnecessarily initiated ("Excess cancel"). We describe each
type in more detail below.

5.1.1 Overlooking triggers. This type of bug occurs when
a cancel should be initiated upon a specific trigger, but no
logic exists to do so. This is the most common type of cancel-
initiation bug, contributing to more than 20% of all the cancel-
related bugs.

The most common scenario is that a running task T is can-
celed or has failed but a dependent task, which is no longer
necessary, is not canceled. As an example, in SPARK-21738,
expensive jobs would continue to run on a Spark cluster
even after a user session was closed, wasting computation
resources to produce irrelevant results. While Spark does
provide support for canceling jobs, the system did not realize
that a session closure should be treated as a trigger for job
cancel.

As another example, in roslyn-1086, the failure of a com-
pilation task will prevent a "completion” event from ever
being published to an event queue, while a task listening
to the queue, AnalyzerDriver, will continue to run and wait
for the event which will never arrive. The solution in this

Table 4. Cancel-related bugs: root causes

Root Cause Category Java C# Go
Buggy cancel initiation

- Overlooking triggers 22 3 9
- Broken trigger checking 7 0 0
- Excess cancel 7 1 0
Buggy cancel propagation

- Untimely delivery 5 3 4
- Dropped cancel 17 5 2
Buggy cancel fulfill

- Cancel not checked 8 0 4
- Cancel not carried out 6 0 0
- Defective cleanup 23 5 6
Other 5 3 1

case was to include a reference to the AnalyzerDriver in the
compilation task, which is canceled via cancellation token
upon compilation failure.

Other types of triggers could also be overlooked. For ex-
ample, in CASSANDRA-8805, developers realized that the
launch of high-priority tasks like repair often gets blocked
by long-running low-priority tasks like index-summary re-
distribution, as these tasks access sstables in a conflicting way
and cannot run in parallel. To solve this problem, developers
added the logic to allow any repair to check for and cancel
any running index-summary redistribution tasks.

Note that bugs of this type share similar root causes with
those cancel-feature requests for efficiency or priority rea-
sons, which were discussed in Section 4. The difference seems
to be the impact: the ones that cause more severe failure
symptoms are reported as bugs, instead of feature requests.

The patches to these bugs are straightforward: adding the
logic to initiate a cancel upon the occurrence of the trigger.

Lessons learned. A fundamental challenge here is to track
the dependency relationship among all the concurrent tasks,
a daunting task in modern concurrent and distributed sys-
tems: which tasks conflict with each other and cannot run
in parallel; which tasks depend on which task and hence
should not continue if the latter is canceled; which tasks
are redundant copies of which task and hence should not
continue if the latter finishes successfully; etc. In all systems
that we have checked, this is conducted in an ad-hoc way.
There is an unmet need for coherent tool/framework and
possibly programming language support for capturing these
dependencies.

One particular type of dependency, the parent-child rela-
tionship, is feasible to track through static program analysis.
Consequently, we can build a static checker to automatically
identify code snippets where the parent task is canceled, and
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yet no cancel is initiated towards the children tasks. We will
present more details about this checker in Section 7.3.

Other types of dependencies, like repair versus index-
summary redistribution or a speculative task versus the orig-
inal task, depend on application-specific semantics and are
much harder to track systematically. We noticed that these
semantic-rich dependencies are often centered on some key
shared data, like the sstables that are updated by conflict-
ing tasks or the common job-ID shared between multiple
job attempts (e.g., HIVE-12307). Consequently, future work
may automatically infer task dependencies by analyzing ac-
cess patterns on key data.

5.1.2 Broken trigger checking. Sometimes, the program
anticipates the existence of a trigger. However, it checks the
trigger occurrence in a wrong way. For example, in SOLR-
10525, if a duplicate task is submitted while a previous in-
stance of a task is still running, the previous instance should
be canceled. However, the logic to recognize whether a previ-
ous instance of a task is running is incorrect and so a cancel
is never issued, leading to the execution of duplicate tasks.

Lessons Learned. Many bugs of this type are related to
checking whether a particular task is running. Often, the
task performing the check does not have a direct reference
to the task under check, and hence needs to refer to an
intermediary, like a shared collection of task status. The logic
to store and retrieve the task status information is custom
implemented in each system and hence prone to bugs: some
accesses to the task registry are not thread safe; different
types of tasks may store their information in different ways
in the collection and hence got mis-checked later; etc. Some
standard library support would help.

5.1.3 Excess cancel. Converse to "Overlooking triggers”,
sometimes triggers are correctly sensed and yet tasks are
wrongly or unnecessarily canceled. For example, upon the
launch of a task T, the software may incorrectly cancel tasks
that are actually not conflicting with T (CASSANDRA-13142,
CASSANDRA-15024) or tasks that are indeed conflicting
but have higher priority than T (HBASE-17674). Upon the
finish of a task T, the software may incorrectly cancel tasks
which are related to T but whose results are still needed
(roslyn-11470, HADOOP-6762).

Lessons Learned. Similar as “overlooking triggers”, these
bugs originate from the challenge of tracking the dependency
among tasks. Future research should study how to track
which tasks conflict with or depend on each other, potentially
through data dependency analysis.

5.2 Cancel-propagation bugs

Once a cancel trigger is correctly sensed and the cancel target
is correctly identified, the initiator issues a cancel request.
For about a quarter of the cancel-related bugs in our study,
the propagation from the initiator to the target went wrong.

1 // Cancel initiator

2 class Initiator {

3 Task myTask;

4 main() {

5 .

6 myTask.cancelFlag = true;
7%

8%

10 // Cancel recipient

11 class Task {

12 public boolean cancelFlag = false;
13 private BlockingQueue Bqueue;

15 run() {

16 while(cancelFlag == false) {

17 .

18 Bqueue.take(); // blocks until an element is
available

19 }

20 3

21 }

Listing 3. An example of late cancel (SPARK-1582)

5.2.1 Untimely delivery. It is important that a cancel can
be issued at any time to the cancel target without delays or
mis-handling. However, this is often not the case when a
custom cancel mechanism is used.

Cancel race. In many systems, a “task manager” is im-
plemented to coordinate tasks and relay cancel requests: the
cancel initiator notifies the task manager about its cancel re-
quest; the task manager then sends the request to the cancel
target. In several Java and Go systems, such as Cassandra
(CASSANDRA-9070), Spark (SPARK-4097), HBASE (HBASE-
13146), InfluxDB (influxdb-9018), and etcd (etcd-8443), the
implementation of task managers contain concurrency bugs
that manifest when cancel is issued at a special moment, like
shortly after the target task is submitted, or in parallel with
another cancel request towards the same target. As a result
of these bugs, cancel requests may be dropped.

Occasionally, such cancel-related concurrency bugs also
occur when a standard cancel mechanism is used. For ex-
ample, in aspnetcore-11757, a cancel initiator disposes a
CancellationTokenSource right after it requests a cancel
on the token. As a result, when the target task checks the
token, a use-after-disposal error occurs.

Lessons Learned. It is alarming that similar cancel-concur-
rency bugs occur in so many different systems. On one hand,
standard task-manager library support could help. On the
other hand, existing concurrency bug detection and test-
ing tools [10, 13, 14, 17, 19] should be applied to check the
correctness of cancel-related implementation.

Late polling. As discussed in Section 2, many custom
cancels are conducted through a shared flag variable. Un-
fortunately, without system support, such a cancel request
cannot be delivered timely when the target task conducts
frequent blocking operations. For example, Listing 3 illus-
trates a simplified version of bug SPARK-1582. A task checks
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1
2
3
b

5

// Cancel recipient
class Task {

run() {

commitSync() // interrupt lost inside commitSync

if (isInterrupted()) {
// cleanup steps here will not be

}

performed

3

commitSync () {
sleep(1000); // unsets interrupted flag

catch (InterruptedException ex) {

// does not reset flag, cancel gets dropped
3
}

3
Listing 4. An example of dropped delivery (KAFKA-4375)

class Task {
void checkStale() {

// current thread
} catch (InterruptedException e) {
- Thread.currentThread().interrupted(); // Wrong
+ Thread.currentThread().interrupt(); // Fixed

is interrupted somewhere

Listing 5. API Misuse Example (SOLR-8066)

whether a cancel is delivered to it at the beginning of every
work-loop iteration through a custom cancelFlag variable.
Unfortunately, since every iteration of the loop executes
a BlockingQueue: : take() operation, the flag may not be
checked for a long or even unlimited amount of time, causing
severe delays in Spark job cancellation. Similar issues also
exist in KAFKA-5697, KAFKA-5896, and others.

These problems are typically fixed by using a language
built-in cancel mechanism instead of, or in addition to, the
custom flag to carry out the cancel. In Java, the built-in
Thread. interrupt() would terminate blocking operations
suchas sleep(),BlockingQueue: : take(),and poll (), with
an InterruptException thrown. In C# and Go, many sys-
tem operations such as sleep() accept cancellation tokens
as parameters, allowing the timely delivery of cancel.

Lessons Learned. The key takeaway here is to avoid using a
custom cancel flag, particularly when the nearby code region
conducts blocking operations. We can use static program
analysis to identify these vulnerable custom-cancel loops
and warn the developers. Having said that, the pervasive use
of custom-cancel loops in Java programs is probably due to
the limitation of Java’s built-in cancel mechanism, which we
will discuss more in Section 5.4.

5.2.2 Dropped cancel. Depending on the different can-
cellation mechanisms, a cancel request could be dropped
before it propagates to the right target in different ways.

Cleared interrupt (Java). A tricky aspect of Java’s built-
in mechanism is that the interrupt received by a thread can
be silently unset by methods along the call chain. As a result,
the interrupt may fail to reach the code that is prepared
to fulfill the cancel request, contributing to about 15% of
cancel-related bugs in Java programs in our study.

For example, in KAFKA-4375, function run contains a
well written cancel handler that stops child tasks and exits.
Unfortunately, at run time, the cancel is often intercepted by
the sleep method inside its callee commitSync, as shown in
Listing 4. The Java sleep method, just like many other Java
blocking methods, silently unset the interrupt and throw an
Interrupted Exception. Without rethrowing the exception
or resetting the interrupt flag, the interrupt is dropped before
reaching the right handler in function run. Similar problems
also occur in other systems, like HBASE-5243, HIVE-13858,
HBASE-10650, HBASE-10651, HBASE-10652, etc. Patches for
these bugs simply re-throw the interrupt in the catch block.

A related mistake is that developers sometimes get con-
fused about a few similar Java APIs: t.interrupt() inter-
rupts a thread t; t.interrupted() checks whether t’s in-
terrupt flag is set and clears the flag; t.isInterrupted()
conducts the same checking but does not clear the flag. When
interrupted() is mistakenly used, the cancel could be dropped
before reaching the intended cancel handler, as illustrated in
Listing 5. This type of mistake occurred at multiple places
across different systems (KAFKA-9415, KAFKA-5665,HBASE-
10455, SOLR-8066). Patches for these problems are straight-
forward, as shown in Listing 5.

Lessons Learned. Many bugs of this type can be automati-
cally detected. As we will discuss in Section 7.1 and 7.2, static
checkers can search for the catch blocks of Interrupted-
Exception that neither terminate the execution nor re-throw
the exception, and search for incorrect use of the inter-
rupted() APL

Invisible token (C#/Go). In C# and Go, once a cancel is
issued on a cancellation token, the status of the token cannot
be reverted. Consequently, the type of mistaken clearance
in Java does not exist in C# or Go. However, a cancel re-
quest may still get dropped during its propagation: since the
cancellation token is typically not a global object, develop-
ers need to pass the token through function parameters to
ensure the token is available through the chain of method
calls. If the token is not passed to a long-running function f,
cancel would be greatly delayed until the execution returns
to a caller of f that has access to the token. This contributes
to close to 15% of cancel-related bugs in C# and Go.

Making things more complicated, unlike Java, C# and
Go allow canceling a thread through different cancellation
tokens, each representing different semantics—one token
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1 // Cancel recipient

2 class SomeTask {

3 private CancellationToken systemCancelToken;
4

5

void doWork(CancellationToken userCancelToken) {

7 libraryMethod (userCancelToken); //
systemCancelToken invisible to libraryMethod

s 3

9}

Listing 6. One type of invisible token (aspnetcore-5936)

might represent requests from end users; one might repre-
sent requests from a periodic timer; and so on. As a result,
programmers may pass some tokens to a function, but forget
some others, causing certain cancel requests to be dropped,
as shown in Listing 6. Note that, a function typically only
allows one cancellation-token parameter. Consequently, the
onus is on developers to be aware of what tokens exist in
the current context and when or how to combine them into
one token to pass to a callee function—not a trivial task.

Lessons Learned. This type of bug can be detected by static
checkers: if a function f has a cancellation-token parameter,
its caller function F should pass every cancellation token
tok visible in F to f. In fact, such a checker is included in
the NET SDK, a set of libraries that provide support for
development for C#[23]. We apply this checker to the latest
versions of ASP.NET Core and Roslyn, and report the results
in Section 7.5.

5.3 Cancel-fulfill bugs

Once a cancel is correctly initiated and propagated to the tar-
get, the target task must process the cancel request, stopping
its execution, releasing resources, and reverting or invalidat-
ing shared states so that other tasks, including a potential
re-submission of the current task, can proceed correctly.
This is unsurprisingly the most difficult aspect of cancel,
contributing to about one third of all the bugs in our study.

5.3.1 Cancel not checked. Sometimes, a successfully de-
livered cancel request is not immediately checked by the
target task, causing severe cancellation delays.

In Java, the complexity is that explicit cancel checking is
not always needed. Once the internal cancel flag is set by
the system, the target thread will throw an Interrupted-
Exception once it executes a blocking Java API like sleep,
poll, and others. Consequently, if the target thread invokes
some of these APIs from time to time, explicit checking is
not needed. However, if a long-running code-region, like a
loop, does not call any such APIs, explicit checks using APIs
like isInterrupted or interrupted are needed. Lacking
such explicit checks are the root causes behind several bugs
in Java systems, like HIVE-16078 and HBASE-10575.

In C# and Go, similar problems occur if a long-running
function never checks its parameter cancellation token.

Table 5. Cleanup issues breakdown

Count
What type of cleanup defect?
- Incorrect: wrong API or cleanup semantics 10
- Incomplete: did not clean up all data 14
- Missing: no cleanup performed 4
- Unordered: clean up data in a wrong order 3
- Other 3
Where is data requiring cleanup located?
- Heap 27
- Persistent data 7
How should data be cleaned up?
- Invalidate, revert or reset data 13
- Release resource (lock, thread, etc.) 13
- Delete file from disk 2
- Other 6

Lessons Learned. For C# applications, we have implemented
a static checker to detect this type of bug (Section 7.4). For
Go applications, implementing an accurate checker is diffi-
cult, as the Context variables contain many fields and could
be used for many different purposes other than cancel. Au-
tomatically detecting this type of bug in Java programs is
feasible. We leave this to future work.

5.3.2 Cancel not carried out. This type of bug occurs
when the target task makes no attempt to stop its execution
after it becomes aware of the delivered cancel request.

Our study has only seen this type of bugs in the con-
text of the Java built-in mechanism. Specifically, an Inter-
ruptedException is thrown by a Java library APL This ex-
ception is caught by the caller function but the handling
block is essentially empty. There are many bugs of this type
(e.g., HBASE-3064, HBASE-10472, HIVE-15997, KAFKA-5833,
KAFKA-1886).

Comparing with other cancel mechanisms, an Interrupted-
Exception contains the least semantic information—it is un-
clear which task initiated the cancel and for what reason.
This may be why some of these catch blocks are empty:.

Lessons Learned. Although the root cause here differs slightly
from the “Cleared interrupt” bugs in Section 5.2.2%, they both
can be detected by a checker that searches for problematic
catch blocks of InterruptedException, which we will dis-
cuss in Section 7.1.

5.3.3 Defective cleanups. When responding to a cancel
request, a task needs to not only stop itself, but also to release
resources that it acquired earlier and clean up changes it
made to shared data. Doing so in a coordinated, correct, and

3The cancel-target task has no cancel handling across the call chain for
bugs here, but has the right handling in a caller in “Cleared interrupt” bugs.
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efficient way is challenging. Unsurprisingly, bugs that occur
during this process are particularly common, contributing
to more than 20% of all the bugs in our study.

What went wrong? There are mainly four types of mis-
takes in a cancel cleanup, as shown in Table 5.

First, the cancel handler changes the values of some vari-
ables in an attempt at cleanup, but the resulting values lead
to failures (10 bugs in our study). For example, in SOLR-8372,
upon the cancel of a recovery task, the update log this recov-
ery task has been working on should remain in "inactive"
state until recovery is restarted. However the cleanup logic
mistakenly puts the update log into "active" state, which had
the serious consequence of potential data loss. The fix was
simply not to make that state change.

Next is incomplete cleanup, where the task attempted to
clean up data but did not do so comprehensively (14 bugs).
For example, in CASSANDRA-7803, compaction result files
were written during the compaction task. The files could
be written in a regular location or a temporary location,
depending on the configuration. The cleanup logic removed
the regular files but not the temporary ones, which could
quickly fill the disk and make the application unusable.

Completely missing cleanup, where no steps are taken to
clean up any data related to the task, occurred in 4 bugs. In
HBASE-13877, a TableFlushProcedure task is canceled. How-
ever the task simply ceases execution without any additional
steps taken. The data modified by the task (Memstore Snap-
shot) is not invalidated and may get reused by subsequent
tasks, causing data corruption or data loss.

Finally, there are 3 bugs where the cleanup routine works
on shared variables in an incorrect order, causing coordina-
tion problems with other tasks.

What data is at the center of defective cleanup? Un-
like crash handling, cancel handling is carried out by the
cancel target, an actively running task, and hence needs to
clean up not only persistent but also heap data it has touched.
In fact, for the majority of clean-up bugs (80%), heap, instead
of persistent data, is the target of defective cleanup.

In our study, a canceled task T typically does not hold
a close dependency with other running tasks—otherwise,
T typically would not be canceled, or its dependent tasks
would be canceled altogether. Consequently and fortunately,
there is typically not too much heap data to clean. What
needs to be cleaned are mainly low-level resources, such as
locks or thread pools; or shared data structures related to sys-
tem activities or persisted information. The latter includes
things like task tracking, i.e. what tasks are running, have
run, or about to run in the system, e.g. the ZoneSubmission-
Tracker object in Hadoop; pointers to persisted user data
e.g. the DataTracker object in Cassandra, which maintains
references to all database tables; and other system metrics
or metadata, such as the StorageMetrics object in Cassan-
dra which tracks disk usage, and the RoutingNode object
in Elasticsearch, which maintains shard status information.

This relatively focused target of cleanup may help future
research to automate data cleanup.

Occasionally, a task which produces a large amount of in-
termediate results needs to be canceled. Fortunately, in most
cases we have seen, the system already has a transaction-
style design, where all intermediate data is buffered in a
cache. The cleanup only needs to update the cache meta-
data correctly.

In the cases where persistent data is the target of defective
cleanup, most often the data are temporary files local to
a task, which are not properly deleted or invalidated. In
three cases, however, the persistent data are shared by other
system activities, and defects in cleaning up this data prevent
the broader system from performing correctly.

What does the patch do? Most commonly, the patch re-
leases resources, invalidates or reverts the data modified by
the task. Releasing resources, such as locks, threads, and can-
cellation tokens, is straightforward. Often, the original task
already has the correct resource release routine. However,
upon a task cancel, that routine is short circuited. The patch
simply makes sure the complete release routine is followed.

How to correctly invalidate or revert the data varies from
case to case. Sometimes, the task needs not keep track of the
modifications it has performed: for example, in CASSANDRA-
5481, a task needs to reset a shared connection/cursor object
on cancel, which does not require information about the
history or the state of the task. But in other cases, a task
must track information about modifications it has made: in
CASSANDRA-15674, a task makes a single modification to
totalDiskSpaceUsed on the shared SystemMetrics object, and
should remember to decrement by this same value upon
cancel. One challenge in performing this type of clean up is
knowing, among the various heap data modified by a task,
which requires cleaning and which type of cleaning.

Lessons Learned. As evidenced by the examples above, de-
fective cleanups have severe consequences and are common.
It is important to tackle these bugs.

Detecting the complete absence of cleanups is relatively
easy. Whenever a cancel handler only ceases the execution
and performs no cleanup, a warning should be issued. Some
of these bugs can even be automatically fixed: in many cases,
one just needs to re-throw the interrupt to the caller that
contains the correct clean-up logic (e.g., HBASE-7711).

Some incomplete cleanups are caused by short-circuiting
a correct clean-up routine. Particularly, exceptions may be
thrown during the clean up, either due to unexpected task
states or a system API hitting the original interrupt signal
again. Incorrect handling of such a double-exception may
skip the remainder of the cleanup routine, causing incom-
plete cleanups (HIVE-15997). Automated checkers can be
developed to search for this type of bug.

Existing tools that detect resource leaks during exception
handling [25] and cancellation-token leaks [21] can be ap-
plied to detect those resource leak problems.
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Detecting incorrect cleanup or general missing cleanup is
the most challenging and requires more research. One possi-
ble research direction is to consolidate cleanup steps to help
detect and fix defective cleanups. In many bugs, the related
cleanup steps were interspersed across the task. However,
when they were combined or compared together, it was clear
that they were not comprehensive or correct. Sometimes
cleanup for one task should have been identical to another.
For example, in SPARK-1396, a scheduler had two methods,
handleCancel and abortStage. These should have performed
the exact same cleanup steps, but for each method steps were
implemented separately and non-comprehensively. The fix
was to combine the cleanup logic so that it was shared. Or,
the cleanup on task cancellation was very similar to the steps
performed on task completion (e.g. removing a task from a
registry when it is completed or canceled), and deficiencies
were clear on consolidation.

Finally, given our observation that the target of cleanup is
often a small set of system data structures, future research
may use data-flow analysis to remind developers about what
data should be cleaned, and to potentially synthesize in-
validating/reverting methods for the small number of data
structures that are the target of most cleanup.

5.4 Discussion: cancel mechanisms

5.4.1 Built-in mechanisms. A natural question to ask is
whether different built-in cancel mechanisms cause different
cancel usage issues. Some types of bugs are common no
matter what mechanism is used. For example, “overlooking
triggers” contribute to 19% and 26% of bugs in Java and
C#/Go, respectively; “defective cleanup” contribute to 20%
and 24% of bugs in Java and C#/Go, respectively.

However, there are also many types of bugs that occur
particularly often in Java systems, reflecting limitations of
Java’s built-in cancel mechanism:

1) “Cleared interrupt” bugs (Section 5.2.2) only occur in
Java programs, as neither C# nor Go allows clearing an al-
ready issued cancel request. Note that, it is natural for Java to
allow clearing a cancel signal received by a thread, because
each thread has only one internal cancel flag no matter how
many different cancel initiators and how many different can-
cel contexts there might be. This limitation also influences
the next two types of bugs in Java.

2) The “Late polling” bugs (Section 5.2) in theory could
exist in programs written in any languages, but were only
seen in Java programs by us: the use of custom cancel-flag
loops is very common in Java programs and yet very rare
in C#/Go programs, probably due to the limitation of Java
built-in cancel mechanism as discussed above.

3) “Cancel not carried out” bugs (Section 5.3) in theory
could exist in programs written in any language, but were
only seen by us in Java programs. We believe this is again
related to the above limitation of Java cancel mechanism.
In C# and Go, a nice effect of using a CancellationToken

as one of a task’s function parameters is that it makes clear
from the function protocol that the task is designed to be
cancellable. The rich semantics behind cancel tokens also
helps developers decide how to treat each cancel request.
In contrast, in Java, interrupt() is available on threads
by default but there is no guarantee threads respond to the
interrupt, and indeed often do not.

Of course, the mechanisms in C# and Go are not perfect
either. In addition to the common problems they face, such
as “defective cleanup”, they are particularly susceptible to
“invisible token” problems (Section 5.2.2). Furthermore, the
design of mixing cancel signals with other information in the
Context variable in Go introduces challenges for both devel-
opers and researchers in designing cancel-related analysis
tools.

5.4.2 Custom mechanisms. Some of the systems we stud-
ied contain components specially built to assist with cancel
functionality. These components offer features that may mit-
igate root cause cancel issues discussed previously, and so
may be of interest. We share examples of a few such con-
structs here.

Cancellable Task interfaces. While Java threads by de-
fault provide a method to cancel tasks, i.e. built-in inter-
rupt(), a few systems provide an alternative interface to be
used by cancellable tasks. At a bare minimum these inter-
faces declare a “cancel” method that task developers must
implement, in some cases encouraging developers to side-
step built-in “interrupt” and associated problems.

For example, the Interruptible interface in Cassandra’s
“concurrent” package declares, in addition to the main task
method run(), a method named interrupt() that requires
implementation by developers. Though simple, this design
advantageously makes explicit the task should be cancellable
and actively requires cancel implementation, whereas for
other task constructs, for example a generic thread, the need
for cancel might not be apparent, and developers might not
check for interrupts or passively ignore interrupt exceptions
as we have seen. (And, an examination reveals all existing
implementers of this interface do indeed handle cancel).

Some interfaces go further and include partial mecha-
nism implementation. The abstract class CancellableTask in
Elasticsearch’s tasks package provides a non-overridable,
pre-implemented cancel method which sets a member field
cancel flag isCanceled to false (and which task execution
code should check). The class also includes the status method
isCanceled(), which may help avoid misuse problems that
occur when using the built-in API to check interrupted status.
We must note, however, there is a downside to side-stepping
built-in interrupt entirely: if the task uses built-in blocking
Java methods - e.g. sleep - it will not be able to exit these
methods prematurely, as we have seen.

Interfaces may also include post-cancellation methods
that developers can implement to perform cleanup or other
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related tasks. LifecycleTransaction in Cassandra’s db package
provides, in addition to a cancel method, an onAbort () hook
which is called after cancellation is processed. This may
encourage developers to implement or consolidate cleanup
logic, helping prevent missing or incorrect cleanup issues.

"Uninterruptible" interfaces. Conversely one system
provides an “uncancellable” interface that allows users to
run code sections without interruption: the Uninterrupt-
ibleThread abstract class in Spark’s “util” package allows
users to define “uninterruptible” code sections that will com-
plete in their entirety - if interrupt() is called on the thread,
it will be suppressed until the uninterruptible code section
completes. One area where this might be useful is for cleanup
steps which must be executed in their entirety after the task
is canceled: some issues we have seen arise from cleanup
steps failing to complete due to interrupt during cleanup
itself. An examination reveals that some implementations
of this interface indeed use this functionality for cleanup.
However, this design is susceptible to problems if not used
carefully: if an uninterruptible code section uses an opera-
tion that blocks indefinitely, the thread may never respond
to a cancellation request.

Task dependency tracking. One of the biggest cate-
gories of cancel issues is overlooking triggers, of which a
common trigger is cancellation of a parent or associated task.
Thus using constructs that track related or dependent tasks
and help propagate cancel between them may be valuable.

For example, some systems provide a task tracking ser-
vice or “task manager” that maintains a list of scheduled or
running tasks, usually by requiring that all task executions
be launched through the manager. The task manager may
additionally be designed to track task dependencies: e.g. the
TaskManager shared class in Elasticsearch’s "tasks" package
require that submitted Tasks contain an “id” and “parentld”.
All task executions are initiated through the task manager us-
ing the manager’s register or registerAndExecute meth-
ods. Running tasks and their children can thus be tracked and
cancellations, which must also go through the manager (via
cancelTaskAndDescendants method), can be propagated
to all dependent tasks.

6 Symptoms of Cancel-Related Bugs

Not all the bug reports specify the exact failure symptoms.
We categorize the ones that describe the symptoms in Table
6. As we can see, the symptoms vary, and can be severe.
Resource leaks. Resources acquired during task execu-
tion, including locks, buffers, and others, might not be re-
leased due to defective cleanup (Section 5.3.3). Furthermore,
if a cancel does not take effect, the task thread itself may be
leaked, which may be especially problematic if the thread
pool has a fixed size. For example in SPARK-1582, work done

Table 6. Cancel-related bugs: symptoms

Symptom Category Issues

Resource leaks 30
Performance issues 29
Broken task API 17
Data corruption/loss 5

Incorrect reporting 10
Unspecified 65
Total 156

by a Spark Executor thread was no longer needed, but a can-
cel was delayed (sometimes indefinitely) and the thread was
not made available to perform other work.

Broken Task API. Unsurprisingly, incorrect cancellation
might break the API used to submit or manage tasks. For ex-
ample, in HDFS-12518, a critical task cannot be re-executed,
due to the task not cleaning up its status when canceled. In
SPARK-8132, no subsequent task for a multi-stage user job
is able to be launched due to incorrect cleanup.

Data corruption/data loss. Many tasks might perform
operations on user data, and a broken cancel can corrupt in-
memory data used to service user requests, as well as cause
persistent data to be lost - a very serious issue. For example,
a silently dropped cancel signal in a callee led a caller to
put incomplete (i.e. corrupted) in-memory values of user
computations into a shared cache. Later user jobs would use
these invalid values and give wrong results. (SPARK-1602).

Performance issues. While cancellation itself should
generally lead to improved performance, as resources pre-
viously used by a task can be freed for other work, broken
cancel handling can put the system in an unanticipated state
that causes degraded performance or unresponsiveness.

In HIVE-13858 an interrupt signal was dropped, leading to
an infinite loop in a task, which made access to a portion of
system I/O impossible. This could cause unavailability of the
entire cluster. Similarly, in CASSANDRA-11373, incomplete
cleanup led to an infinite loop and CPU saturation.

In elasticsearch-75316, how frequently cancel would be
used was underestimated, and inefficient cancel handling led
to a 50x increase in latency for normal user requests. The
patch was to make cancel handling more efficient.

Incorrect reporting to users. Lastly, mistakes in cancel
functionality might lead to incorrect reports to users. For
example a system might report to the user that a job has been
canceled when in fact it was not (HIVE-14942, SPARK-18665,
influxdb-13681). Or, conversely, the system might report that
a job has not been canceled when indeed it has (SPARK-2666).

7 Task Cancel Anti-Patterns

Root causes of cancel bugs are varied and sometimes com-
plex, but we find that a few types of bugs are associated

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 137



Table 7. Anti-pattern instances found in Java and C# applications

HBase Hive Spark Kafka Solr Cassandra Hadoop es ASP.NET Core Roslyn
Unhandled IE in loop (Java) 5 2 0 0 1 13 0 - -
API misuse (Java) 3 2 0 5 0 0 0 - -
Uncanceled child tasks (Java) 1 2 0 0 0 9 0 - -
Ignored tokens (C#)’ - - - - - - - 34/112 120/179
Tokens not passed (C#)~ - - - - - - - 9 9

" Our analyzer result / CodeRush analyzer (simulated) result
" NET analyzer (simulated) result

with clear anti-patterns that are detectable by static code
analysis. This section presents our experience of designing
and evaluating a few anti-pattern checkers.

We have implemented a checker for each of the anti-
patterns below using CodeQL [1], a publicly available static
analysis tool. CodeQL takes as input queries which are a set
of conditions on the application source code’s call graph, con-
trol flow, dataflow graph and other information (e.g. object
hierarchies). Queries are language specific, so for each anti-
pattern and language, we have constructed a single query
that describes the anti-pattern and can be run on all applica-
tions of that language, using CodeQL’s command line tool
or web interface. The results of queries are references to
problematic section of source code (file and line number).
The queries associated with each anti-pattern can be viewed
at a publicly available repository [3].

Note that, code snippets that match an anti-pattern may
not all cause severe failures, but are frequently harmful to
the software in the long run if not fixed. We will discuss
this in detail when we comment on the severity of each
anti-pattern.

Also note that, these checkers mainly tackle low hanging
fruits of cancel-related bugs, with more complicated bugs
waiting to be tackled by future work. We are aware of sim-
ilar checkers for the two C# anti-patterns, which we will
discuss in details in Section 7.4 and 7.5. There may be similar
checkers for the Java anti-patterns, although we are cur-
rently not aware of them. Our main goal here is to show that
it is feasible to detect cancel-related code defects through
simple static checking, and that many cancel-related defects
exist even in the latest versions of these popular Java and C#
applications.

7.1 Unhandled Interrupt Exception (Java).

Anti-pattern. An InterruptedException is caught inside
a loop body, but in the catch block there is no handling -
no control flow to exit the loop (i.e. no break statement,
return statement or rethrown exception in the AST), and
the interrupt flag is not reset via t.interrupt() on thread
t. In addition, we also check via dataflow analysis that the
thread is indeed interrupted somewhere in the codebase.

Rationale. This anti-pattern is closely related to “cleared
interrupt” bugs (Section 5.2.2) and “cancel not carried out”
bugs (Section 5.3.2). Its severity has been explained in these
earlier sections. Note that, in this anti-pattern, we partic-
ularly look for problems inside a loop, as it is especially
problematic there: without proper cancel handling inside a
loop, a task may never cease execution or incur particularly
long delays (HADOOP-6221,HBASE-3064).

Severity. There is one scenario where the impact of this
anti-pattern may be mitigated: the program may use a cus-
tom cancel flag together with an interrupt call to cancel
a task. In that case, an unhandled interrupt exception may
not have a big impact, as long as the remainder of the loop
iteration does not take long time to execute. Having said that,
this type of implementation is still problematic and makes
code maintenance difficult: what if an expensive operation
is added near the end of the loop iteration? What if the task
initiator deems the use of flag redundant in the presence of
the interrupt call and removes the former?

Results. Our checker finds 21 cases of this anti-pattern in
the latest versions of 4 Java applications in our benchmark
suite (Table 7). Our manual checking of these 21 cases shows
that 14 of them are truly instances of this anti-pattern; 2 of
them are false positives (a corner case in CodeQL control-
flow analysis misses the fact that the exception handler does
stop the task execution); 5 of them may be considered false
positives: the exception handler sets a flag, which defers the
actual handling to a later point in the loop, which may or
may not cause perceivable delay in the cancel handling.

7.2 Interrupt API Misuse (Java).

Anti-pattern. A thread calls Thread. interrupted() inside
an InterruptedException catch block.

Rationale. This anti-pattern is inspired by a few API-misuse
bugs discussed in Section 5.2.2 (e.g., Listing 5). When an
InterruptedException is triggered by a library method
in thread t, the interrupt flag is almost always cleared and
should be reset by invoking t.interrupt() if the excep-
tion is to be handled by the caller. If a t.interrupted()
is invoked instead, this is frequently a typo, as this API is
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designed to clear the interrupt flag, effectively a no-op in-
side the catch block. It may also be used inside a condition
check, as it returns the status of the flag before clearing - e. g.
if (t.interrupted()), - but when such checking occurs
inside the catch block it is even worse, as library methods
likely will have unset the flag before the check, and the logic
inside the condition will never execute.

Severity. This API misuse can cause an interrupt to be
dropped. Consequently, handling/cleanup logic that exists
elsewhere may not be executed, causing functional problems.

Results. Our script finds 17 instances of this anti-pattern in
4 applications, as shown in Table 7. Our manual examination
did not find any false positives.

7.3 Cancel not propagated to dependent tasks (Java)

Anti-pattern. A task instantiates a Java Timer and starts a
child task (wrapped in a TimerTask interface) using a Java
Timer object but does not cancel the Timer and TimerTask:
either it does not maintain the reference to the Timer or it
does not explicitly call cancel () onthe Timer or TimerTask.

Rationale & Severity. This anti-pattern is related to some
of the “Overlooking triggers” bugs discussed in Section 5.1.1.
Java’s built in Timer is one of the mechanisms used for sched-
uling single or periodic task executions on a separate thread.
If the child task launched using the Timer (or Timer itself)
is not canceled when the parent is canceled, then at a mini-
mumn, this lack of cancellation will leak resources. Note that,
this anti-pattern focuses on Timer-based parent-child task
dependency, because these type of child tasks are typically
scheduled periodically and hence lead to more severe impact
if not properly canceled.

Results. Our script finds 12 instances where a timer and
associated tasks are started but not canceled. Three of these
instances are false positives: in 2 cases, the reference to the
Timer is embedded in a nested class, and hence is missed by
our CodeQL-based static checking; in one case, the Timer
task is only started during system shut down, and hence its
leakage does not really cause problems.

7.4 Ignored cancellation tokens in loop (C#)

Anti-pattern. A method containing a loop accepts a Cancel-
lationToken parameter ct, but does not check the token
via ct.IsCancellationRequested, ct.CanBeCanceled or
ct.ThrowIfCancellationRequested(), anywhere inside
a loop. Nor does it pass the token as an argument to any
function calls inside the loop.

Rationale & Severity. The rationale of this anti-pattern
has been discussed in Section 5.3.1. For a similar reason
as discussed in Section 7.1, we focus on loops in this anti-
pattern, for their bigger performance impact.

Results. Our analyzer found 154 cases of this anti-pattern
(34 in ASP.NET Core and 120 in Roslyn). Manual checking
finds 4 of these to be false positives: in 3 cases, a token is used

via an indirect reference or reflection; in 1 case, a method
that operates on a token instead of using it as a signal.

We also investigated a similar analyzer that is part of
CodeRush [2], a popular debugging and code analysis ex-
tension for VisualStudio. The CodeRush analyzer warns if a
token is not checked anywhere inside in a method. We have
simulated the CodeRush analyzer using CodeQL and find 112
and 179 instances in ASP.NET Core and Roslyn, respectively.
In one regard, our analyzer is stricter: if a token is checked
somewhere in a method but not in a loop, our analyzer will
flag it as a warning but the CodeRush analyzer will not. But,
unlike the CodeRush analyzer, our analyzer does not check
methods that do not contain loops.

7.5 Token not passed - .NET analyzer (C#)

We also applied an analyzer included as part of the .NET
compiler platform (Roslyn). That Roslyn built-in analyzer
checks if a CancellationToken is passed via parameter to a
method M, but M does not pass the token to its calee C which
optionally accepts a token parameter (optional arguments
are a feature of the C# language). This anti-pattern is related
to the “invisible token” bugs discussed in Section 5.2.2.
Simulating this anti-pattern using CodeQL, we find 9 in-
stances each in the latest version of ASPNET Core and
Roslyn. Our manual checking finds no false positives.

7.6 Anti-pattern limitations

While these checkers have been inspired by and cover some
of the bugs in our study, there are still many bugs that
cannot be covered by our checkers, for various reasons. In
some cases a bug manifests due to reasons logically different
from those covered by our checkers: for example, a cancel
is dropped due to a semantic bug in a custom mechanism,
rather than API misuse or an unhandled interrupt exception.

In other cases, conditions added to our antipatterns to
reduce false positives thereby introduce false negatives: for
example, we search for empty interrupt exception handling
specifically inside loops, but empty handling outside loops
can also cause bugs.

Finally, our checkers are designed around common usage
patterns and may miss other valid forms of usage: for ex-
ample, we assume a cancel-supporting method is one that
accepts a context or token explicitly as a top-level parame-
ter; our checkers will ignore methods where the context or
token is passed implicitly, say as a member field of another
parameter.

8 Related Work

Our study is the first empirical study of task cancellation
patterns and failures in concurrent systems to the best of
our knowledge. Nevertheless, several related works have
discussed general exception handling problems in the past.

The problem of empty exception handlers was discussed
by Yuan et al. in the study of real-world failures of distributed
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systems and by Fu and Ryder in the context of analyzing
exception-chain of Java programs [8, 26]. Our work is or-
thogonal to their research, as we particularly focus on bugs
related to task cancel. As discussed in Section 5, only a small
portion of cancel-related bugs are due to empty exception
handlers — those 6 “Cancel not carried out” bugs in Java and
some of those 16 “Dropped cancel” bugs in Java. Because of
the task-cancel context, why these bugs’ catch blocks are
empty, how to fix them, their failure symptoms, and how
to generalize them into anti-patterns are all different from
generic empty handler problems (e.g., the anti-pattern in
Section 7.1 does not just look for empty catch blocks).

While our work discusses how cancel signals may fail
to propagate to the target tasks (Section 5.2) in concurrent
systems, previous work studied how incomplete error propa-
gation could occur in file systems and storage device drivers
[12, 24]. Since previous work looks at propagation through
function error-code return, it is orthogonal to our study.

Past studies about general cloud system failures [11, 18]
have identified error/fault handling to be a common cause,
contributing to 18% of software-related failures in one study
[11] and 31% of software-bug incidents in another study [18].
Both categorized error/fault handling problems into two
or three major categories, including “error/fault detection”,
“error propagation”, and “error handling”. This taxonomy
is similar to how we categorize cancel-related bugs at the
highest level. The similarity ends here. Since both previous
studies focus on general cloud failures, neither goes deep into
the error/fault handling problems. The examples of detection,
propagation, and handling problems there are very different
from the cancel initiation, propagation, and fulfillment bugs
discussed in this paper.

A Java textbook [9] has listed five possible reasons behind
task cancel: (a) user-requested cancel, (b) time-limited activi-
ties, (c) application events, (d) errors, (e) shutdown. In our
cancel feature study, we want to see what are the common
reasons and trigger events behind task cancel in modern
concurrent systems. Our study led to a categorization (Table
3) that is related but not the same as the textbook listing.

9 Future Research Directions

In this section we highlight a few potential areas for future
research.

Cancellation in other languages. Different languages may
have attributes which affect what types of cancel issues man-
ifest. For example, our study focuses on garbage-collected
languages; languages with manual memory management
(e.g. C++) may see other cancel issues, e.g. stemming from
explicit deallocation.

Cancel programming models and language features. As dis-
cussed in Section 5.4, different built-in cancel mechanisms
and language constructs offer different support and chal-
lenges to developers. While we present some examples of

custom cancel constructs in Section 5.4, more extensive ex-
ploration and evaluation of cancel-related designs and mod-
els are needed.

Bug-detection and other developer tools. Although this work
presents static tools to detect certain classes of cancel bugs,
there are still many cancel bugs that are not covered by
our static checkers. More static or dynamic detection and
diagnosis tools are needed.

Other kinds of developer tools may also assist in cancel im-
plementation. For example, in Section 5.3.2 we describe how
InterruptedException often contains the least semantic
information about the source of cancel; it may be worth ex-
ploring whether developer tools, such as IDE plugins that
detect and provide this contextual information, can help
guide proper implementation.

10 Conclusions

Task cancellation is critical to the efficiency, availability,
and operational flexibility of concurrent systems. This pa-
per presents a comprehensive study about how task cancel
is used and what type of bugs are related to task cancel in
popular distributed and concurrent systems written in Java,
C#, and Go. This study reveals the complexity of implement-
ing correct and efficient task cancel, and motivates future
research to offer better system support for task cancel.
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