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ABSTRACT 
The onset of Industry 4.0 brings a greater demand for 

Human-Robot Collaboration (HRC) in manufacturing.  This has 
led to a critical need for bridging the sensing and AI with the 
mechanical-n-physical necessities to successfully augment the 
robot’s awareness and intelligence. In a HRC work cell, options 
for sensors to detect human joint locations vary greatly in 
complexity, usability, and cost. In this paper, the use of depth 
cameras is explored, since they are a relatively low-cost option 
that does not require users to wear extra sensing hardware. 
Herein, the Google Media Pipe (BlazePose) and OpenPose 
skeleton tracking software packages are used to estimate the 
pixel coordinates of each human joint in images from depth 
cameras. The depth at each pixel is then used with the joint pixel 
coordinates to generate the 3D joint locations of the skeleton. In 
comparing these skeleton trackers, this paper also presents a 
novel method of combining the skeleton that the trackers 
generate from each camera’s data utilizing a quaternion/link-
length representation of the skeleton. Results show that the 
overall mean and standard deviation in position error between 
the fused skeleton and target locations was lower compared to 
the skeletons resulting directly from each camera’s data. 

Keywords: smart manufacturing systems, skeleton tracking, 
human-robot interaction, cobot, control and automation. 

NOMENCLATURE 
 

𝑃	" #! Point in cartesian space, 𝑚 ∈ {ℎ, 𝑟} for point on the 
human or robot, 𝑖 ∈ {1,2,3} for point number, 𝑘 ∈
{𝐴, 𝐵} for the camera frame (A or B) in which the 
point is defined. 

𝒙	𝒌 𝒏, 𝒚	𝒌 𝒏, 
𝒛	𝒌 𝒏 

The x, y, or z axis of coordinate frame 𝑛 ∈ {𝐻, 𝑅} 
(human or robot) as seen in coordinate frame 𝑘 ∈
{𝐴, 𝐵} (camera A or B). A tilde over the axis vector 
indicates it has been unitized. 

𝑅&"  The 3x3 rotation matrix that relates frame 𝑛 ∈
{𝐻, 𝑅} (human or robot) to frame 𝑘 ∈ {𝐴, 𝐵} 
(camera A or B). 

𝑇&"  The 4x4 homogenous transformation matrix that 
relates frame 𝑛 ∈ {𝐻, 𝑅} (human or robot) to frame 
𝑘 ∈ {𝐴, 𝐵} (camera A or B). 

𝑞' Quaternion for the 𝑙!" link of the human kinematic 
chain. 

𝒎𝒍 Unit vector that is the axis of rotation for 𝑞#. 
𝒗𝒍 Vector for the 𝑙!" link of the human kinematic chain. 

𝑃)*+,-'  The joint farthest from the torso for a particular link 
in the human kinematic chain. 

𝑃./01*#-'  The joint closest to the torso for a particular link in 
the human kinematic chain. 

𝒍𝒍𝒇𝒖𝒔𝒆𝒅 Column vector of link lengths of the fused skeleton. 
𝒍𝒍𝒄𝒂𝒎𝒆𝒓𝒂 Column vector of link lengths for the skeleton from 

𝑐𝑎𝑚𝑒𝑟𝑎 ∈ {𝐴, 𝐵} (camera A or B). 
𝒙,𝒏,𝒏,  

𝒙̇.𝒏,𝒏, 𝒙̈.𝒏,𝒏 
Kalman filter estimated quaternion elements, 
derivative of estimates, and second derivative of 
estimates, respectively. 

𝜃'  Rotation angle about 𝒎𝒍 defined by quaternion 	
𝑞'. 

𝛼, 𝛽, 𝛾, 𝛿 Kalman filter gains controlling rate of change of 
𝒙,𝒏,𝒏, rate of change of 𝒙̇.𝒏,𝒏, rate of change of 𝒙̈.𝒏,𝒏, 
and decay rate of 𝒙̇.𝒏,𝒏 and 𝒙̈.𝒏,𝒏, respectively. 

 
1. INTRODUCTION 

Since the introduction of Industry 4.0, human-robot 
collaboration (HRC) has been promoted as an enhancement to 
manufacturing work cells that can allow humans and robots to 
work together synergistically to complete tasks that require the 
unique capabilities of humans and robots. Some HRC tasks 
require tight coordination between the robot and human, such as 
a human-robot part handover, and therefore require very precise 
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sensing of human hand locations. Other HRC tasks may not 
involve as much coordination between robot and human, such as 
a robot pick-and-place task, but still require detection of human 
locations to ensure human safety among industrial robots. Tasks 
not requiring robot-human coordination could utilize a method 
of detection with more coarse resolution compared to tightly 
coordinated tasks. Moreover, high validity in detection of human 
locations will allow for proactive and reactive robot responses to 
human motion, allowing robots to avoid collisions with humans 
while completing interactions such as human-robot handovers.  

A recent trend in HRC is to use predicted data to either 
determine immediate robot motion or to determine if changes in 
the robot sequence are necessary due to predicted human motion. 
Many works in this area depend on receiving human joint 
locations as input. In the algorithm presented in [1], the estimated 
handover location, which is the output of a recurrent neural 
network (RNN), will only be reliable if the real-time human joint 
locations used as input are accurate. In [2], motion onset 
detection and human intent estimation is attained by using 
probabilistic principal component analysis and probabilistic 
motion primitives methods on human joint angle trajectories as 
input. This requires the human joint locations to be estimated 
first. The work in [3] presents another application of neural 
networks to human intent prediction using human gaze and pose 
data as input. The pose part of the input requires accurate human 
joint locations. The algorithm presented in [4] also requires 
human joint locations as input to a system of convolutional 
neural networks that classify actions a human is performing in 
front of an RGB-D camera. The Risk-of-Passage algorithm 
developed in [5] takes human joint location as input and 
estimates the risk a robot will incur by proceeding with passage 
between human links. The robot motion segmentation 
framework developed in [6] also utilizes human joint locations 
as an input and determines proactive-n-reactive robot behaviors 
upon human interruption. 

State-of-the art solutions for detecting human joint locations 
use sensors such as laser scanners or motion-capture systems 
which are relatively expensive compared to depth cameras. 
Additionally, some sensor suites (e.g., motion-capture systems) 
require the worker in a HRC work cell to wear a suit with many 
tracking markers [7]. In [8], another sensor suite is proposed in 
which the human wears several inertial measurement units 
ranging from 8 to 17 and several RGB cameras ranging from 2 
to 8. Sensor suites requiring a worker to wear many accessories 
can be cumbersome, impractical and may even restrict worker 
motion and/or require significant setup time. Therefore, a 
relatively inexpensive solution for human tracking that does not 
require any extra setup before a worker enters the work cell is 
desirable for HRC. 
 A few skeleton tracking software packages exist that can 
determine human joint locations given RGB images from a 
camera as input. These software packages can determine the 
pixel coordinates of human joints, which can then be converted 
to 3D coordinates using the depth channel from a depth camera. 
Some of these methods can also estimate 3D coordinates directly 
from the RGB image, but still require the distance between the 

camera and at least one point on the human to relate those 3D 
coordinates to the world reference frame. Google Media Pipe 
Pose Tracking (BlazePose) [9] and OpenPose [10] are 
representative of different existing skeleton tracking methods 
and therefore are selected for comparison in this paper. These 
skeleton trackers utilize deep neural networks that take RGB 
image data as input and output the pixel coordinates of each 
human joint, as well as keypoints on the face. As with any vision 
system, even when using advanced skeleton tracking algorithms, 
a single camera cannot provide accurate or complete results 
when portions of a human become occluded by objects within 
the work cell and/or by the robot. Noise in the depth camera’s 
sensed images can also prevent skeleton tracking software from 
accurately determining the locations of human skeleton joints. 
Therefore, using multiple cameras provides a necessary level of 
redundancy in skeleton tracking, where fusion of the joint 
location data can more reliably yield complete human skeletons 
for tracking human movement within the work cell.   
 A few works have focused on the area of skeleton tracking 
and fusion with multiple depth cameras as input. Takahashi et al. 
[11] proposed an approach which uses data from 2 RGB cameras 
to generate 3D human poses. They minimized error in rotation, 
translation, human link lengths, and human motion by 
optimizing temporal difference parameters. Experiments showed 
a 5.4m error in determining the position of cameras relative to 
each other, on a 100m long field. Chen et al. [12] proposed a 
method of skeleton fusion which uses human joint locations from 
2 Kinect sensors as input. Their method first determines the 
validity of joint locations based on how close human link lengths 
are to averages taken over 100 frames. If a joint location is 
invalid, then its location is inferred based on valid non-adjacent 
joints in the kinematic chain and the human link lengths. Finally, 
the coordinates for each joint of the fused skeleton are simply 
taken from the camera that produced highest joint validity, per 
each joint. Experimental results in [12] show the transform 
relating camera positions achieved accuracy up to 4.1mm. 
 In [13], Moon et al. also developed a multiple Kinect camera 
skeleton tracking system that uses a Kalman filter to determine 
the validity of each joint location in each camera based on the 
level of noise in the joint location estimation. Again, the fused 
joint location for each joint was taken from the camera data 
producing the highest validity for that joint. Their experiments 
utilized 5 Kinect cameras and achieved average joint position 
error of 6.95cm. In [14], Huang et al. used OpenPose to extract 
2D human joint coordinates from many Kinect cameras. Their 
method of skeleton fusion uses a ray tracing approach to 
determine if a human joint is occluded in a camera’s frame and 
estimate the actual location of the occluded joint using a 
weighted average of the joint location from all cameras. They 
also utilized a Kalman Filter like approach with prior 
distributions on the estimation of a joint’s location based on the 
location of the previous joint in the human kinematic chain. 
Their experiments achieved a mean joint localization error of 
5.68cm. The method presented, herein this paper, also makes use 
of a version of the Kalman filter, which has been used for state 
estimation in random environments [15,16]. In the Kalman filter, 
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state observations are computed based on previous state 
observations and then state estimates are computed based on 
probability and previously observed state values.  

In comparing skeleton trackers, this paper presents a method 
of fusing human skeletons generated from 2 depth cameras; 
improving tracking accuracy and validity. The proposed method 
differs from previously developed methods by decomposing the 
human into a quaternion and link length representation. Then the 
fused skeleton is reconstructed using the best quaternion from 
any camera for each link of the fused skeleton. The quaternions 
of the fused skeleton are then passed through a low pass 
Butterworth filter to reduce noise and then a Kalman filter for 
state estimation before using forward kinematics to generate the 
fused skeleton joint locations. This work tests three methods of 
skeleton tracking and compares those methods based on the 
accuracy of joint locations directly from each camera’s data, 
without affects from the skeleton fusion. The skeleton fusion 
method is also applied to the trackers’ output, and accuracy of 
the fused joint location estimations is compared to the joint 
locations directly from each camera’s data when using two 
cameras for input with occlusions occurring due to the robot 
manipulator. 
 The remainder of the paper is structured as follows: section 
2.1 introduces each skeleton tracking software package used, 2.2 
presents a camera calibration method, 2.3 presents the method of 
decomposing a human into a quaternion representation, 2.4 
presents the method of fusing the skeletons from each camera, 
2.5 presents the filtering method, and 2.6 explains skeleton 
quaternion/link length forward kinematics. Section 3 provides 
experimental results and a comparative discussion highlighting 
potential sources of error followed by a conclusion in section 4.  
 
2. METHODS 

The flow of data of the proposed method for generating 
human skeleton data is shown in Fig. 1. It shows the depth 
camera outputs an RGB image which is passed to the deep 
convolutional neural network (DCNN) in each skeleton tracker 
which then outputs the human’s joint location in pixel 
coordinates. Then the depth image output from the depth camera 
is used to convert the 2D pixel coordinates into 3D cartesian 
coordinates. Next, nominal link lengths and quaternions for the 
human skeleton are determined by each camera. Then, from 
among all the cameras’ link lengths and quaternions, the skeleton 
fusion algorithm selects the ‘best’ quaternions to represent each 
link, stitching (fusing) them together to generate the skeleton. 
Finally, these stitched (fused) together quaternions are passed 
through filtering algorithms, resulting in the fused skeleton. 
 
2.1 Skeleton Tracking 

For the proposed method of fusing human skeleton models 
from data of multiple depth sensors, open-source skeleton 
tracking software was used to provide human joint locations as 
output, given RGB+Depth images as input. Herein, this paper, 
these input images were captured from 2 depth cameras. Google 
Media Pipe Pose Tracking (Media Pipe) and OpenPose were the 
skeleton tracking software packages tested. Both utilize DCNNs, 

each with different architectures, to output human joint pixel 
coordinates when provided RGB images as input. Media Pipe is 
a top-down network, detecting regions of the image that might 
contain a human and then detecting joint locations within each 
region [17]. OpenPose is a bottom-up network, detecting all joint 
locations and then determining how to group the joints for each 
human. Media Pipe is built upon Google’s BlazePose network 
and has been found to have a Percentage of Correct Keypoints 
(PCK) score of up to 97.5% keypoints within 0.2 torso diameters 
(PCK0.2) of the correct location while performing a HIIT task 
[18]. Results in [9] showed on average OpenPose having a 
PCK0.2 score that was 3.7% higher than BlazePose, but 
BlazePose computed about 78 times faster than OpenPose. The 
skeleton trackers also differ in the number of people that can be 
tracked: 1 person with Media Pipe, and unlimited (with no 
computer hardware constraints) with OpenPose. The neural 
network in the Media Pipe algorithm also has the capability to 
estimate 3D coordinates of human joints from RGB image input, 
with the midpoint of the hips being the origin of the Media Pipe 
coordinate frame. The depth channel from the cameras can be 
used to locate the midpoint of the hips in the world coordinate 
frame, allowing the Media Pipe 3D joint location estimates to be 
easily transformed to the world coordinate frame. Therefore, 
Media Pipe with the 3D joint location estimation is a third 
method tested in this paper. 

 
2.2 Camera Calibration 

For the coordinates determined from the skeleton trackers to 
be useful, the relationship between each camera and the world 
coordinate frame must be determined. In a multiple camera 
system, if the skeleton of the same person is detected from each 
camera’s frame, then at least 3 points (joint locations) that are 
not colinear are common between camera frames.  Therefore, the 

 

 
Figure 1. Diagram showing the flow of data from the camera output 
to the fused human skeleton model. 
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homogenous transformations that relate the position of the 
cameras to each other can be determined. To determine these 
transformations, consider 2 cameras, A and B, where the 
homogenous transformation 𝑇%&  transforms points from camera 
B’s coordinate frame to camera A’s coordinate frame. 
Additionally, the 3 common points in each camera frame will be 
denoted 𝑃"! , 𝑃"" , and 𝑃"#, as shown in Fig. 2. A new coordinate 
frame denoted 𝐻 will be determined using these common points. 
Figure 2 shows the 3 common points on the human as well as the 
axes of frame 𝐻. A homogenous transformation between each 
camera (k) and frame 𝐻 becomes: 

 𝒙	𝒌 𝑯 = 𝑃	* "" − 𝑃	* "! (1) 
 𝒛	𝒌 𝑯 = 𝒙	𝒌 𝑯 × ? 𝑃	* "# − 𝑃	* "!@ (2) 
 𝒚	𝒌 𝑯 = 𝒛	𝒌 𝑯 × 𝒙	𝒌 𝑯 (3) 
 𝑅+* = ? 𝒙B	𝒌 𝑯, 𝒚B	𝒌 𝑯, 𝒛C	𝒌 𝑯@,  𝑇+* = D 𝑅+

* , 𝑃	* "!
0,0,0,1

F 	𝑓𝑜𝑟	𝑘 = {𝐴, 𝐵} (4) 

Now, 𝑇%& = 𝑇+& 𝑇%+  where 𝑇%+ = ? 𝑅+% , , − 𝑅+% , 𝑃	% "!; 0,0,0,1@. 
Now that the transformation between any 2 cameras can be 
determined, the transformations relating each camera’s 
coordinate frame to that of a main camera can be determined. To 
calibrate the two cameras used for testing to each other, 𝑇%&  was 
determined for each of 500 frames. Then the set of all 𝑇%&  
transformations was averaged. In determining 𝑇%& , the pelvis and 
each wrist were used for 𝑃"!, 𝑃"", and 𝑃"#, respectively.  
Considering only the torso, these points are the combination of 3 
points that maximizes the distance between points and generated 
the most precise average 𝑇%& . 

In addition to the camera-camera relationships, the 
transformation from the main camera to the world coordinate 
frame must be determined. Industrial robot manipulators can be 
configured such that 3 points on the robot are non-colinear, 
denoted 𝑃-!, 𝑃-", and 𝑃-#, illustrated in Fig. 3. Additionally, if the 
manipulator can provide feedback of the variable joint 
parameters, then forward kinematics can be used to determine 
the location of those 3 non-colinear points on the robot in the 
world coordinate frame.  If the robot points can be detected in 
the main camera’s frame, then a transformation between the main 
camera and a new frame, denoted frame R, generated by the 
robot points, can be determined. Figure 3 shows 3 points on a 

robot manipulator used to generate frame R, which is also shown. 
The world (fixed) coordinate frame, frame F, is also shown at the 
base of the robot. The transformation between the world 
coordinate frame or the main camera’s frame and the robot 
points, denoted 𝑇./  and 𝑇.& , can be determined by: 

 𝒙	𝒌 𝑹 = 𝑃	* -" − 𝑃	* -! (5) 
 	 𝒛	𝒌 𝑹 = 𝒙	𝒌 𝑹 × ? 𝑃	* -# − 𝑃	* -!@ (6) 
 	 𝒚	𝒌 𝑹 = 𝒛	𝒌 𝑹 × 𝒙	𝒌 𝑹 (7) 
 𝑅.* = ? 𝒙B	𝒌 𝑹, 𝒚B	𝒌 𝑹, 𝒛C	𝒌 𝑹@, 𝑇.* = D 𝑅.

* , 𝑃	* -!
0,0,0,1

F 	𝑓𝑜𝑟	𝑘 = {𝐹, 𝐴} (8) 

Now 𝑇&/ = 𝑇./ 𝑇&.  where 𝑇&. = ? 𝑅,.
& , − 𝑅,.

& 𝑃	& -!; 0,0,0,1@. 
After computing 𝑇&/  and 𝑇%& , points in the second camera (camera 
B) can now be transformed to the fixed frame by 𝑇%/ = 𝑇&/ 𝑇%& . 
Now, human joint locations can be transformed from each 
camera’s frame to the world coordinate frame before computing 
the human quaternion representation for each camera using: 

 𝑃	/ "$ = 𝑇*/ 𝑃"$
	

	
* 	𝑓𝑜𝑟	𝑘 = {𝐴, 𝐵} (9) 

for the 𝑖!" joint of the human in the frame of camera A or B. 

2.3 Skeleton Quaternion/Link-Length Representation 
The proposed method determines the quaternions and link 

lengths that relate each human link to the fixed coordinate frame. 
This contrasts with other methods that use joint cartesian 
coordinates directly, which may not maintain reasonable 
skeleton dimensions. Quaternions provide an axis-angle 
representation of the rotation that relates one sliding vector to 
another sliding vector. Quaternions are defined by: 

 𝒒𝒍 = 〈𝑤# , 𝑥1% , 𝑦1% , 𝑧1%〉 (10) 
for the 𝑙!" link of the human kinematic chain. The human 
kinematic chain is shown in Fig. 4 and described in Table 1, 
showing link indices and proximal/distal joint for each link. The 
𝑤#, 𝑥1%, 𝑦1%, 𝑧1% are common variable names for parts of the 
quaternion, not cartesian coordinates. The parts of the quaternion 
can be expressed by: 

 𝑤# = cos V2%
3
W and 〈𝑥1% , 𝑦1% , 𝑧1%〉 = sin V2%

3
W𝒎𝒍 (11) 

 
Figure 2. Human coordinate frame constructed from the location of 
the pelvis and wrists. 

 

 

 
Figure 3. Three points used to determine the transformation from 
the main camera to the world coordinate frame. 
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where 𝜃# is the angle between the link and the world z-axis and 
𝒎𝒍 is the unit vector about which rotation occurs, represented by: 

 𝒎𝒍 =
4&% 5̂78&% 9̂7:&%*

;

<4&%
" 78&%

" 7:&%
"
. (12) 

To determine the rotation angles and axis between human links, 
the human kinematic chain is iterated over according to:  

 𝒗𝒍 = 𝑃=>?!@# − 𝑃A-B4>C@# , 𝑎𝑛𝑑	𝒛𝒇 = [0,0,1], (13) 
 𝒎𝒍 = 𝒗𝒍 × 𝒛𝒇 → 𝒎𝒍 =

𝒎𝒍
‖𝒎𝒍‖

 (14) 

where subscript 𝑙 denotes a link of the human kinematic chain. 
The 𝑃=>?!@# is the human joint farthest from the torso in the 
kinematic chain and 𝑃A-B4>C@# is the human joint closest to the 
torso in the kinematic chain, for each link. The latter part of Eq. 
14 is indicating 𝒎𝒍 is normalized. The rotation angle between the 
human link and the world z-axis about 𝒎𝒍 is computed by: 

 𝜃# = 𝑎𝑡𝑎𝑛2bG𝒗𝒍×𝒛𝒇K‖𝒗𝒍‖
, G𝒗𝒍⋅𝒛𝒇K‖𝒗𝒍‖

	c. (15) 

Figure 5 shows the rotation vector, 𝒎𝟕, and rotation angle, 
𝜃N, between the right upper arm and forearm. The quaternion 
representation of the human is preferred over a representation in 
angles, such as roll-pitch-yaw or angle/axis, because all elements 
of a quaternion are bounded between -1 and 1, necessary for 
inputs to many filtering and prediction methods. When using a 
filtering method such as a Kalman Filter, it is desirable for the 
inputs to be continuous. An angle representation normalized 
between ±𝜋 would have discontinuities when angles cross ±𝜋.  
However, quaternions do not suffer from discontinuities. If the 
angles were not normalized, so the angles could be continuous, 
then it is possible for the angle to be unbounded if a vector 
appeared to perform many revolutions. Considering a method 

such as an RNN used to predict joint locations, if the inputs to 
the RNN are unbounded then it would be impossible to construct 
a training set of data to cover the entire test data set because the 
test data set could be infinitely large.  

The human’s nominal link lengths are taken to be 𝑙𝑙# =
‖𝒗𝒍‖, for each link 𝑙, for reconstructing the human skeleton from 
the quaternions and lengths. Therefore, once a human enters a 
camera’s field of view, distances between human joints (link 
lengths) are determined for each camera frame. From the 
distances, ratios of link length divided by the spine length are 
computed for each link. After distance ratios have been 
computed for at least 20 camera frames, and once the sum of 
standard deviations of distance ratios over the last 20 frames is 
below 0.1 and all distance ratios are less than 1, the nominal 
human link lengths are then taken to be the average distance 
between joints over the last 20 frames. Requiring the distance 
ratios to be less than 1 proved to a be a good test for accuracy of 
the captured link lengths because the spine length is the longest 
link length for most humans, so all other link lengths should be 
less than the spine length. Requiring the sum of standard 
deviations of distance ratios to be less than 0.1 ensures stable 
distance measurements are captured. 
 
2.4 Fusing Skeletons 

After determining the quaternion representation and link 
lengths of a human, the quaternion representations and link 
lengths of the same skeleton from multiple viewpoints can be 
fused to generate one human skeleton. The nominal link lengths 
of the same skeleton from each camera viewpoint, captured 
according to the procedure stated earlier, are averaged to 
generate the fused skeleton link lengths. The quaternions for the 
fused skeleton are selected from the different camera viewpoints 
according to the pseudo code in Fig. 6. In this pseudo code, 
𝒍𝒍𝒇𝒖𝒔𝒆𝒅 is the vector of link lengths for the fused human, 𝒍𝒍𝒄𝒂𝒎𝒆𝒓𝒂 
is the vector of link lengths for the human determined for each 
camera, and ∆𝒍𝒍 is the difference between fused link length and 
the camera link length, for each link. The 𝒒𝒇𝒖𝒔𝒆𝒅(𝑖) is the 
quaternion corresponding to link 𝑖 in the fused skeleton and 
𝒒𝒄𝒂𝒎(𝑖) is the quaternion corresponding to link 𝑖 from each 
camera’s data. The ∆𝑞 = ∑)𝒒𝒇𝒖𝒔𝒆𝒅(𝑖)[𝑘] − 𝒒𝒄𝒂𝒎(𝑖)[𝑘]) is the 
summation of the differences between quaternion elements 
(w,x,y,z). For each link of the fused skeleton, the quaternion used 

 

 
Figure 5. Vectors used to determine the rotation axis and angle for 
the right forearm. 

Table 1. Links of the human kinematic chain. 
Link Description Proximal Distal 
1 Spine Pelvis (Hip MP) Spine 
2 Neck Spine Shoulder MP 
3 Shoulder to Shoulder Shoulder MP Shoulders 
4 Left Upper Arm Left Shoulder Left Elbow 
5 Left Forearm Left Elbow Left Wrist 
6 Right Upper Arm Right Shoulder Right Elbow 
7 Right Forearm Right Elbow Right Wrist 

 

 
Figure 4. Links of the human kinematic chain from the waist up. 
 

MP=midpoint 
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is the quaternion from any camera that is closest to the previous 
quaternion of the fused skeleton. For a camera to be considered, 
it must have provided a new frame in the last 100 milliseconds. 
Testing indicated OpenPose was the tracking software with the 
slowest update rate, as low as 15Hz. Therefore, requiring updates 
at least as fast as every 100 milliseconds is a conservative 
requirement to allow for skeleton updates as slow as the slowest 
tracker, with a small buffer, while still ensuring that new skeleton 
data is being generated by the tracker for each camera. If a 
camera had stopped reporting new data, possibly due to 
becoming disconnected or other hardware fault, then the skeleton 
fusion algorithm would detect that more than 100 milliseconds 
elapsed without a new skeleton from that camera. Then the 
fusion algorithm would stop using that camera’s data for the 
fused skeleton, until a new skeleton is reported from that camera.  

Another constraint is that for each 𝑖!" link from each 
camera, the change in link length, ∆𝒍𝒍(𝑖) for the 𝑖!" human link, 
must be less than half the nominal link length, 𝒍𝒍𝒇𝒖𝒔𝒆𝒅(𝑖)	for the 
𝑖!" human link. In other words, the observed link length must be 
within 50% of the nominal link length recorded under ideal 
conditions. Additionally, the absolute rate of change of rotation 
angle of Eq. 15 (𝑣2$) must be below an upper threshold (𝑣2V) and 
the tip speed of the unit rotation vector of Eq. 12 (𝑣C>) must be 
below an upper threshold (𝑣CV ) for the quaternion of the 𝑖!" link 
from each camera to be considered in generating the fused 
skeleton, both computed using a derivative of observations. 
These conditions filter out erroneous data that are clearly not 
representative of the human skeleton and prevent movements of 
the fused skeleton that are unrealistically fast. E.g., when a joint 
of the human becomes occluded, there is a step change in depth 
resulting in unrealistically high velocity. 

 
2.5 Filtering 

After generating the fused set of quaternions, the 
quaternions of the fused human are passed through a second 
order low pass Butterworth filter to smooth potentially noisy 
quaternion elements. The ideal cutoff frequency of 0.25 times the 
sampling frequency was determined by trial and error. Lower 
cutoff frequencies caused a visible lag of the fused skeleton 
compared to the raw skeletons from the trackers.  Higher 
frequencies led to more noticeable jitter in the fused skeleton 
quaternion elements. Additionally, an 𝛼 − 𝛽 − 𝛾	Kalman filter 
was implemented due to its effectiveness at further filtering out 
noise, ease of implementation, and option for state extrapolation 
[19]. The state estimation equations are: 

 𝒙o𝒏,𝒏 = 𝒙o𝒏,𝒏Y𝟏 + 𝛼q𝒛𝒏 − 𝒙o𝒏,𝒏Y𝟏r (16) 
 𝒙̇t𝒏,𝒏 = (1 − 𝛿)𝒙̇t𝒏,𝒏Y𝟏 + βV

𝒛𝒏Y𝒙\𝒏,𝒏+𝟏
∆!

W (17) 
 𝒙̈t𝒏,𝒏 = (1 − 𝛿)𝒙̈t𝒏,𝒏Y𝟏 + γV

𝒛𝒏Y𝒙\𝒏,𝒏+𝟏
^.`∆!"

W. (18) 

The 𝒛𝒏 is the column vector of measurements, which are the 
elements of the quaternions for the fused skeleton stacked into a 
column. The 𝒙o𝒏,𝒏, 𝒙̇t𝒏,𝒏, and 𝒙̈t𝒏,𝒏 are the estimates of the 
quaternion elements, derivative of elements, and second 
derivative of the elements. The 𝛼 is the gain that controls the rate 
of change of quaternion elements, 𝛽 controls the rate of change 
of the derivative of elements, and 𝛾 controls the rate of change 
of the second derivative of elements. The 𝛿 term is selected 
between 0 and 1 and included in Eq. 17 and Eq. 18 to make the 
estimated velocity and acceleration decay to 0 if 𝒛𝒏 stopped 
changing; plus, to allow the possibility of using state 
extrapolations as input to the filter in future work. I.e., when the 
best quaternions from all cameras still cannot generate a 
seemingly accurate skeleton, application of the Kalman filter can 
yield extrapolated quaternion values. In the event of an 
inaccurate link quaterion, the elements of 𝒛𝒏 corresponding to 
inaccurate sensed quaternions are replaced with the 
extrapolations of those quaternions. The 𝛿 term is important 
because the longer extrapolations are used in place of sensed 
data, the less accurate the extrapolations become. Then, it is 
desirable for the velocity and acceleration extrapolations to 
decay to 0 to prevent the position extrapolation from going to 
infinity before accurate sensed data is available again.  

Trial and error showed ideal Kalman filter gains 𝛼, 𝛽, 𝛾, and 
𝛿 are 0.5, 0.1, 0.001, and 0.3, respectively. Smaller 𝛼 caused 
filtered quaternions to converge too slowly to a constant true 
position. Smaller 𝛽 and 𝛾 caused the filtered quaternions to react 
too slowly to changes in angular velocity and acceleration. 
Larger values of 𝛼, 𝛽, or 𝛾 reduced the effect of the filter and led 
to significant jitter in the quaternion elements. 

 
2.6 Forward Kinematics for the Fused Skeleton 

After determining the quaternion/link-length representation 
of the skeleton from each camera, fusing the skeleton 
quaternion/link-length data, and then filtering quaternion 
elements, the quaternions and link-lengths of the fused skeleton 
can be used to generate the cartesian coordinates of each joint of 
the human skeleton. Using forward kinematics, the skeleton is 
stitched together by first selecting the location of the pelvis. The 
skeleton trackers output the hip locations, so the pelvis was taken 
to be the midpoint of the hips. The skeleton trackers output an 
estimated accuracy of the estimation of pixel coordinates for 
each joint. However, these estimated accuracies did not seem to 
differ in value when a joint was clearly visible or completely 
occluded. Therefore, an alternate method of determining the 
accuracy of the estimated hip locations was developed. This 
method iterated through all the pixels along a line between the 
hips and lines between the hips and shoulders, determining the 
change in depth value between each consecutive pair of pixels. 
The most accurate pelvis location from any camera was taken to 
be from the camera that generated the lowest maximum absolute 

For each camera: 
 If time since new camera frame < 0.1sec: 
  ∆𝒍𝒍 = )𝒍𝒍𝒇𝒖𝒔𝒆𝒅 − 𝒍𝒍𝒄𝒂𝒎𝒆𝒓𝒂) 
  For each link (𝑖): 
   If ∆𝒍𝒍(𝑖) < 0.5𝒍𝒍𝒇𝒖𝒔𝒆𝒅(𝑖)	&	)𝑣+!) < 𝑣+, 	&	)𝑣-.) < 𝑣-, : 
    ∆𝑞 = ∑)𝒒𝒇𝒖𝒔𝒆𝒅(𝑖)[𝑘] − 𝒒𝒄𝒂𝒎(𝑖)[𝑘]) , 𝑘 ∈ {𝑤, 𝑥, 𝑦, 𝑧} 
    If ∆𝑞 < ∆𝒒𝒇𝒖𝒔𝒆𝒅(𝒊): 
     ∆𝒒𝒇𝒖𝒔𝒆𝒅(𝑖) ← ∆𝑞, 𝒒(𝑖)𝒇𝒖𝒔𝒆𝒅 ← 𝒒𝒄𝒂𝒎(𝑖),	 
Figure 6. Pseudocode for skeleton fusion. 
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change in pixel depth along those three lines. Note, if an object 
was between the human and camera along one of those three 
lines between hips and shoulders, at least one step change in 
depth between adjacent pixels exists along those lines. 

Once the pelvis location is selected, then quaternions and 
link-lengths of the fused skeleton can be used to generate the rest 
of the joint locations. In the forward kinematics process, the 
location of distal joints is determined starting with the location 
of proximal joints as follows: 

 𝑃=>?!@# = 𝑃A-B4>C@# + 𝑙𝑙(𝑖)𝒗𝒊 (19) 
where 𝑃A-B4>C@# is the location of the joint closest to the pelvis 
in the human kinematic chain for link 𝑖, 𝑙𝑙(𝑖) is the link length 
for link 𝑖 of the fused skeleton, 𝒗𝒊 is a unit vector indicating the 
direction of link 𝑖 relative to the fixed z-axis, and 𝑃=>?!@# is the 
location of the joint farthest from the pelvis for link 𝑖. The link 
vector 𝒗𝒊 is determined using quaternion multiplication: 

 𝒗𝒊 = 𝒒𝒇𝒖𝒔𝒆𝒅(𝒊)𝒒𝒛𝒇𝒒𝒇𝒖𝒔𝒆𝒅
Y𝟏 (𝒊) (20) 

where 𝒒𝒛𝒇 is the quaternion representing the world z-axis, 𝒒𝒛𝒇 =
〈0,0,0,1〉, 𝒒𝒇𝒖𝒔𝒆𝒅(𝒊) was the quaternion determined to rotate the 
world z-axis to align with link 𝑖 of the fused skeleton and 
𝒒𝒇𝒖𝒔𝒆𝒅Y𝟏 (𝒊) is the inverse of that quaternion. The 𝑤# part of the 
resulting quaternion would be zero, making the sin(0.5𝜃#) term 
in Eq. 11 equal to one, allowing the unit vector 𝒗𝒊 to be the 
𝑥1 , 𝑦1 , 𝑧1 quaternion elements resulting from this multiplication. 
The calculations in Eq. 19 and Eq. 20 are performed on each link 
of the skeleton, starting from the link most proximal to the pelvis, 
the spine, and ending with the most distal links, the forearms. 
 
3. EXPERIMENTS AND RESULTS 

To test the single camera accuracy and simultaneously test 
the skeleton fusion accuracy, a human touched their wrists to 
targets placed throughout the robotic testbed. The Comau e.Do 
6-DOF robot’s end-effector was the target, although any robot or 
other form of target of known location could have been used 
[20]. The manipulator not only served as a target to touch, but 
also as an occlusion for demonstration of skeleton fusion in static 
and dynamic settings. The left camera was an Intel D455 and the 
right camera was an Intel D435i [21], both depth cameras. The 
location of the cameras relative to the robot can be seen in Fig. 
7, just to the left and right of the robot. For both cameras, the 
frame rate set at 30 Hz and resolution was set at 640x480 pixels, 
selected due to reaching the GPU memory limits when using 
higher resolution images. Additionally, the skeleton tracking and 
fusion algorithms were run on a computer with an Intel i9-10900 
CPU and Nvidia GeForce RTX 3070 GPU, used for tracker 
inference. The skeleton fusion algorithm was programmed in 
Python 3.6 in a ROS Noetic environment. A Python version of 
OpenPose and the C++ version of Media Pipe was used for 
skeleton tracking [10,9]. The velocity limits 𝑣2V  and 𝑣CV  were 
selected to be 20 rad/sec and 10 m/sec, respectively, determined 
by trial and error to reject erroneous human movement. 

The 8 test positions are shown as the green circles at the tip 
of the end-effector in Fig. 7 and are also listed in Table 2. In Fig. 
7, the human would be standing in front of the robot such that 
the human’s perspective would be the same as shown in the 
image. Note that some test positions have similar locations, but 
more importantly, poses of similar location, such as positions 1 
and 4 vary greatly in robot configuration, which is the source of 
varying levels of occlusion in tests. Stationary touch tests were 
conducted where the human touched the target at each test 
position 50 times for each wrist. Dynamic tests were also 
conducted where the human held their wrist to the robot’s end-
effector while the robot cycled through the position sequences: 
1-3-1 for 20 cycles or 1-4-6-3-1 for 10 cycles for each wrist. 

All 8 positions can cause occlusions of the pelvis in one of 
the cameras’ perspectives, depending on where the human is 
standing relative to the robot. Situations where the pelvis is 
occluded were necessary for testing since the fused skeleton is 
built starting with an estimated pelvis position. Test positions 1 
through 3 don’t cause occlusion of the arms, while positions 4 
through 8 can cause occlusion of the arm that touches the target. 
Two examples are shown in Fig. 8, where images a and b show 
test position 8, at which the robot occludes part of the torso and 
left arm from the left camera, but those links are viewable in the 
right camera’s image. Images c and d show position 4 in which 
the robot occluded part of the torso and left arm in the right 
camera’s image but not in the left camera’s image. To create 
various occlusion situations, when testing each static position, 

 

 
Figure 7. Eight robot configurations used where the end-effector tip 
was the position target. 
 Table 2. Robot joint angles and end-effector positions for tests. 
Test Position 

ID 
Joint Angles 
(radians) 

End-effector position (x,y,z) 
(cm) 

1 (2.07,1.57,0,0,0,0) (-37.9,69.6,33.8) 
2 (1.57,1.57,0,0,0,0) (0.1,79.3,33.8) 
3 (1.07,1.57,0,0,0,0) (38.1,69.5,33.8) 
4 (2.37,0.6,1.0,0,1.0,0) (39.4,38.2,23.3) 
5 (1.57,0.6,1.0,0,1.0,0) (0.1,54.9,23.3) 
6 (0.77,0.6,1.0,0,1.0,0) (-39.3,38.3,23.3) 
7 (1.17,0.8,0.3,0,0,0) (26.1,61.7,74.8) 
8 (1.97,0.8,0.3,0,0,0) (-26.1,61.7,74.8) 
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the human alternated between crossing the test arm across his/her 
torso and extending the test arm away from the torso.  

The results from touching stationary targets indicate that 
Media Pipe’s 3D joint location estimation with the proposed 
skeleton fusion method generated the lowest position error on 
average, as shown in Table 3. Additionally, Table 3 shows that 
the mean and standard deviation of position error is lower for the 
fused skeleton than for the skeleton determined directly from 
either the left or right camera’s data. Lower standard deviation 
of position error translates to more repeatable position 
estimations. Table 4 shows the mean and standard deviation of 

position error for each of the 8 test positions when using Media 
Pipe’s 3D location estimation, averaged over all 50 samples for 
right and left wrists. These statistics indicate that for the left 
camera, test position 8 was least accurate and position 4 had the 
best accuracy. Interestingly, for the right camera, position 4 was 
least accurate and position 8 had the best accuracy. Figure 9 
shows plots of the position error between the right wrist and the 
target over all stationary test positions using the skeleton directly 
from the left camera (dashed blue line), skeleton directly from 
the right camera (solid orange line), and the fused skeleton 
(dotted green line). These plots show that for some test positions, 
such as 4, the left camera provided better position accuracy. And, 
for other test positions, such as 8, the right camera provided the 
better position accuracy. The line for the fused skeleton mostly 
followed the line of the more accurate camera for the entire plot.  

Table 5 shows the results from touching the end-effector 
while the target moved between test positions. These results 
show that the fused skeleton generated when using OpenPose 
generated less position error compared to either Media Pipe 
methods, contrary to Table 3 results. The fusion algorithm with 
OpenPose generated 16.7cm average position error in dynamic 
tests, compared with 26.6cm and 28.8cm with Media Pipe joint 
pixel coordinate estimation and Media Pipe 3D joint coordinate 
estimation, respectively. Table 5 shows the fused skeleton 
generated using OpenPose and the fusion algorithm was more 
accurate than the skeleton directly from either camera. However, 
when using either Media Pipe method, the fused skeleton was 
less accurate than the skeleton directly from either camera.   

Discussion.  Portions of the resulting position errors may be 
attributed to the following sources. First, the robot position data 

 

 

 

 
a. (right camera)  b. (left camera) 

 

 

 
c. (right camera)  d. (left camera) 

Figure 8. Examples of robot and human positions with which one 
camera provided inaccurate readings. Images a and b used Media Pipe. 
Images c and d used OpenPose. Images a and c come from the right 
camera and b and d come from the left camera. 
 

Table 3. Average position error between the target and left or right 
wrist, averaged over all stationary test positions. 
Overall Mean / Standard Deviation of Error (cm) 
Tracker Left Camera Right Camera Fused Skeleton 
Media Pipe, 2D 21.3 / 14.87 41.2 / 20.40 24.5 / 10.20 
Media Pipe 3D 17.0 / 7.38 42.8 / 21.22 15.5 / 7.21 
OpenPose 32.1 / 42.26 28.5 / 62.07 18.9 / 10.71 
 
Table 4. Average position error between the target and left or right 
wrist for each stationary test position with the Media Pipe 3D method. 
Mean / Standard Deviation of Error (cm) 
Test Pos. ID Left Camera Right Camera Fused Skeleton 

1 17.0 / 5.18  38.0 / 13.60 13.9 / 7.57 
2 22.5 / 6.03 33.7 / 25.48 17.2 / 7.31 
3 20.8 / 4.36 37.8 / 19.31 19.0 / 6.41 
4 9.3 / 4.51 67.9 / 8.08 13.5 / 4.80 
5 15.8 / 5.41 30.7 / 10.83 14.2 / 6.67 
6 15.3 / 8.96 51.9 / 18.44 13.0 / 5.25 
7 21.2 / 11.10 48.6 / 9.61 14.9 / 4.40 
8 48.5 / 21.51 21.4 / 6.62 18.1 / 10.60 

 

 

Table 5. Average position error between the target and left or right 
wrist from dynamic position tests. 

Overall Mean Error (cm) 
Tracker Left Camera Right Camera Fused 

Media Pipe, 2D 22.3 24.0 26.6 
Media Pipe 3D 20.4 32.4 28.7 
OpenPose 19.6 22.6 16.7 

 

 

 
Figure 9. Plots of the position error from all samples for each of the 
tracking methods. 
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relative to the world coordinate frame was not exactly correct. 
Two robot positioning tests were conducted in which the robot 
was commanded to go to joint angles that positioned the tip of 
the end effector at (42.2,0.0,0.0)cm and (0.0,42.2,0.0)cm. The 
actual measured position for the first test was (42.8,-0.4,0.4)cm 
and for the second test was (1.8,42.6,0.4)cm, corresponding to a 
maximum of 1.9cm in Euclidean norm of robot position error. 
Second, the wrists of the human conducting the tests were about 
6.2cm maximum diameter. The depth channel of the cameras 
only reported the distance between the camera and surfaces 
nearest the cameras. Consequently, the observed coordinates of 
the wrist were not at the exact center of the wrist, but instead on 
the surface of the wrist nearest the camera. A diameter of the 
wrists, 6.2cm, can be added to the joint position error depending 
on if the wrist was in front of or behind the target, relative to the 
camera perspective. Here, the combined error due to both robot 
position and wrist diameter introduces 8.1cm of error. In the best-
case scenario, taking this error into account reduces the 
minimum average wrist tracking error to 7.4cm, but the error 
could also increase the tracking error. 

In testing it was observed that when a joint was occluded, 
the trackers often estimated a pixel coordinate for the occluded 
joint that was just beside the occlusion, resulting in a poor 
estimation, as seen by the left hip in Fig. 8.c. The results in Table 
4 for tracking error at each position with Media Pipe 3D 
estimation illustrate another potential problem with always using 
the pelvis as the foundation of the skeleton. They show that 
position 4 had the least accurate sensing by the right camera 
because in this position the robot could be between the pelvis and 
the right camera. This caused depth of the pelvis to be inaccurate. 
Since the pelvis location was used to relate Media Pipe’s 
estimated 3D joint locations to the world frame and also provided 
the starting point for skeleton forward kinematics after fusion 
with all trackers, pelvis position error propagates through the 
entire skeleton. Individual test position results from the other 
trackers show the same problem. In future work, skeleton fusion 
could benefit from using the most accurately sensed part of the 
skeleton, not just the pelvis, as the start for forward kinematics. 

While conducting tests, GPU memory utilization, GPU 
processor utilization, and average update rate of the skeleton 
fusion algorithm was recorded, as shown in Table 6. The update 
rate of the fusion algorithm is limited by how frequently new 
data is determined by the skeleton trackers. The OpenPose 
skeleton tracker used over 10 times more GPU memory than 
either Media Pipe tracking method. Additionally, both Media 
Pipe tracking methods operated at the camera’s frame rate of 30 
Hz, indicating Media Pipe processed new camera frames at least 
as fast as the camera reported new frames. OpenPose processed 
new frames at an average of 17.8 Hz, 59% the rate of Media Pipe. 

Therefore, Media Pipe is preferred over OpenPose considering 
only computing resource requirements. 

When compared to the results in other works on the subject 
of skeleton fusion with depth camera inputs, the results of this 
paper’s algorithm show significantly larger position error of the 
fused skeleton joint locations, as shown in Table 7. A key 
difference between this work and others is the source of 
occlusion. The methods in [13,14] were tested using self-
occlusion caused by the human’s pose. Since the robot was used 
as the occlusion in experiments in this work, the difference in 
distance from the camera between the human and robot could be 
larger than if the human was the source of occlusions. When a 
human’s arm occludes other joints, it is likely that the error in 
depth is relatively small compared to if the occlusion was caused 
by a different object. Another difference between the 
experiments used here and in other works is that only 2 depth 
cameras were used to test this algorithm compared to 3 and 5 
depth cameras used to test other algorithms. Adding more depth 
cameras placed so that, at all times, at least 1 camera can sense 
each human link without occlusion could improve results. 

Based on the results observed from experiments, Media 
Pipe’s 3D joint coordinate estimation provides lower human 
joint tracking error if the target is stationary. In a manufacturing 
setting, a stationary target could be the end effector location for 
a static robot-human handover. However, if the target is moving 
or tracking moving human joints is desired, then OpenPose 
skeleton tracking provides lower joint position error than Media 
Pipe. Many manufacturing settings require tracking of moving 
human joints. This is necessary for collision detection and 
avoidance as well as human-robot interaction such as dynamic 
handovers. However, since the results showed the minimum 
average tracking error was 16.7cm with a dynamic target and 
15.5cm with a static target, skeleton tracking with depth camera 
inputs may only be appropriate for course collision detection and 
avoidance. Human-robot interaction requires higher precision to 
ensure safety of humans and accurate completion of interactive 
tasks. Therefore, future efforts will investigate other sensing 
solutions that can provide higher accuracy, but without requiring 
the worker to wear a large array of sensing hardware.  

 
4. CONCLUSION 

In summary, this work presented a novel algorithm for 
fusing human joint locations generated with skeleton tracking 
software and multiple depth camera inputs. Media Pipe (2D and 
3D joint estimation) and OpenPose skeleton tracking software 
was tested for providing input to the fusion algorithm. Results 
showed, with any of the 3 skeleton tracking methods, the fusion 

Table 7. Comparison of results with competitive methods. 
Method 
[Ref.] 

Number 
Cameras 

Occlusion Source Fused Skeleton 
Position Error (cm) 

[11] 2 Self-occlusion Did not report 
[12] 2 Objects and self Did not report 
[13] 5 Self-occlusion 6.95 
[14] 3 Self-occlusion 5.68 
Ours 2 Objects (robot)/self 15.3 

 

Table 6. Skeleton tracker performance comparison. 
Tracker GPU mem. 

usage (MiB) 
GPU use 
(%) 

Avg. data update 
rate (Hz) 

Media Pipe, 2D est. 586 74 30.0 
Media Pipe, 3D est. 606 77 30.0 

OpenPose 7552 66 17.8 
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algorithm overall generated wrist locations with less mean 
position error and standard deviation in error than the wrist 
location determined by the trackers directly from individual 
camera data. Results also showed that Media Pipe’s 3D joint 
location estimation generated the lowest mean position error 
when touching stationary targets. OpenPose generated the lowest 
mean position error when the wrist followed a moving target. To 
conclude, the fusion method mitigated the impact of occlusions; 
but is tracker algorithm dependent for static versus dynamic 
tracking performance. Future work is still needed to further 
reduce errors in skeleton tracking algorithms using inexpensive 
depth cameras. Alternate sensor solutions may still be required 
for precision human-robot interaction in HRC work cells. 
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