
 1 © 2022 by ASME

Proceedings of the ASME 2021 17th International

Manufacturing Science and Engineering Conference
MSEC2022

June 27-July 1, 2022, West Lafayette, Indiana, USA

MSEC2022-85269

COMPARISON OF HUMAN SKELETON TRACKERS PAIRED WITH A NOVEL SKELETON
FUSION ALGORITHM

Jared T. Flowers
University of Florida
Gainesville, FL

Gloria J. Wiens
University of Florida
Gainesville, FL

ABSTRACT
The onset of Industry 4.0 brings a greater demand for

Human-Robot Collaboration (HRC) in manufacturing. This has
led to a critical need for bridging the sensing and AI with the
mechanical-n-physical necessities to successfully augment the
robot’s awareness and intelligence. In a HRC work cell, options
for sensors to detect human joint locations vary greatly in
complexity, usability, and cost. In this paper, the use of depth
cameras is explored, since they are a relatively low-cost option
that does not require users to wear extra sensing hardware.
Herein, the Google Media Pipe (BlazePose) and OpenPose
skeleton tracking software packages are used to estimate the
pixel coordinates of each human joint in images from depth
cameras. The depth at each pixel is then used with the joint pixel
coordinates to generate the 3D joint locations of the skeleton. In
comparing these skeleton trackers, this paper also presents a
novel method of combining the skeleton that the trackers
generate from each camera’s data utilizing a quaternion/link-
length representation of the skeleton. Results show that the
overall mean and standard deviation in position error between
the fused skeleton and target locations was lower compared to
the skeletons resulting directly from each camera’s data.

Keywords: smart manufacturing systems, skeleton tracking,
human-robot interaction, cobot, control and automation.

NOMENCLATURE

𝑃	" #! Point in cartesian space, 𝑚 ∈ {ℎ, 𝑟} for point on the
human or robot, 𝑖 ∈ {1,2,3} for point number, 𝑘 ∈
{𝐴, 𝐵} for the camera frame (A or B) in which the
point is defined.

𝒙	𝒌 𝒏, 𝒚	𝒌 𝒏,
𝒛	𝒌 𝒏

The x, y, or z axis of coordinate frame 𝑛 ∈ {𝐻, 𝑅}
(human or robot) as seen in coordinate frame 𝑘 ∈
{𝐴, 𝐵} (camera A or B). A tilde over the axis vector
indicates it has been unitized.

𝑅&" The 3x3 rotation matrix that relates frame 𝑛 ∈
{𝐻, 𝑅} (human or robot) to frame 𝑘 ∈ {𝐴, 𝐵}
(camera A or B).

𝑇&" The 4x4 homogenous transformation matrix that
relates frame 𝑛 ∈ {𝐻, 𝑅} (human or robot) to frame
𝑘 ∈ {𝐴, 𝐵} (camera A or B).

𝑞' Quaternion for the 𝑙!" link of the human kinematic
chain.

𝒎𝒍 Unit vector that is the axis of rotation for 𝑞#.
𝒗𝒍 Vector for the 𝑙!" link of the human kinematic chain.

𝑃)*+,-' The joint farthest from the torso for a particular link
in the human kinematic chain.

𝑃./01*#-' The joint closest to the torso for a particular link in
the human kinematic chain.

𝒍𝒍𝒇𝒖𝒔𝒆𝒅 Column vector of link lengths of the fused skeleton.
𝒍𝒍𝒄𝒂𝒎𝒆𝒓𝒂 Column vector of link lengths for the skeleton from

𝑐𝑎𝑚𝑒𝑟𝑎 ∈ {𝐴, 𝐵} (camera A or B).
𝒙,𝒏,𝒏,

𝒙̇.𝒏,𝒏, 𝒙̈.𝒏,𝒏
Kalman filter estimated quaternion elements,
derivative of estimates, and second derivative of
estimates, respectively.

𝜃' Rotation angle about 𝒎𝒍 defined by quaternion 	
𝑞'.

𝛼, 𝛽, 𝛾, 𝛿 Kalman filter gains controlling rate of change of
𝒙,𝒏,𝒏, rate of change of 𝒙̇.𝒏,𝒏, rate of change of 𝒙̈.𝒏,𝒏,
and decay rate of 𝒙̇.𝒏,𝒏 and 𝒙̈.𝒏,𝒏, respectively.

1. INTRODUCTION

Since the introduction of Industry 4.0, human-robot
collaboration (HRC) has been promoted as an enhancement to
manufacturing work cells that can allow humans and robots to
work together synergistically to complete tasks that require the
unique capabilities of humans and robots. Some HRC tasks
require tight coordination between the robot and human, such as
a human-robot part handover, and therefore require very precise

 2 © 2022 by ASME

sensing of human hand locations. Other HRC tasks may not
involve as much coordination between robot and human, such as
a robot pick-and-place task, but still require detection of human
locations to ensure human safety among industrial robots. Tasks
not requiring robot-human coordination could utilize a method
of detection with more coarse resolution compared to tightly
coordinated tasks. Moreover, high validity in detection of human
locations will allow for proactive and reactive robot responses to
human motion, allowing robots to avoid collisions with humans
while completing interactions such as human-robot handovers.

A recent trend in HRC is to use predicted data to either
determine immediate robot motion or to determine if changes in
the robot sequence are necessary due to predicted human motion.
Many works in this area depend on receiving human joint
locations as input. In the algorithm presented in [1], the estimated
handover location, which is the output of a recurrent neural
network (RNN), will only be reliable if the real-time human joint
locations used as input are accurate. In [2], motion onset
detection and human intent estimation is attained by using
probabilistic principal component analysis and probabilistic
motion primitives methods on human joint angle trajectories as
input. This requires the human joint locations to be estimated
first. The work in [3] presents another application of neural
networks to human intent prediction using human gaze and pose
data as input. The pose part of the input requires accurate human
joint locations. The algorithm presented in [4] also requires
human joint locations as input to a system of convolutional
neural networks that classify actions a human is performing in
front of an RGB-D camera. The Risk-of-Passage algorithm
developed in [5] takes human joint location as input and
estimates the risk a robot will incur by proceeding with passage
between human links. The robot motion segmentation
framework developed in [6] also utilizes human joint locations
as an input and determines proactive-n-reactive robot behaviors
upon human interruption.

State-of-the art solutions for detecting human joint locations
use sensors such as laser scanners or motion-capture systems
which are relatively expensive compared to depth cameras.
Additionally, some sensor suites (e.g., motion-capture systems)
require the worker in a HRC work cell to wear a suit with many
tracking markers [7]. In [8], another sensor suite is proposed in
which the human wears several inertial measurement units
ranging from 8 to 17 and several RGB cameras ranging from 2
to 8. Sensor suites requiring a worker to wear many accessories
can be cumbersome, impractical and may even restrict worker
motion and/or require significant setup time. Therefore, a
relatively inexpensive solution for human tracking that does not
require any extra setup before a worker enters the work cell is
desirable for HRC.
 A few skeleton tracking software packages exist that can
determine human joint locations given RGB images from a
camera as input. These software packages can determine the
pixel coordinates of human joints, which can then be converted
to 3D coordinates using the depth channel from a depth camera.
Some of these methods can also estimate 3D coordinates directly
from the RGB image, but still require the distance between the

camera and at least one point on the human to relate those 3D
coordinates to the world reference frame. Google Media Pipe
Pose Tracking (BlazePose) [9] and OpenPose [10] are
representative of different existing skeleton tracking methods
and therefore are selected for comparison in this paper. These
skeleton trackers utilize deep neural networks that take RGB
image data as input and output the pixel coordinates of each
human joint, as well as keypoints on the face. As with any vision
system, even when using advanced skeleton tracking algorithms,
a single camera cannot provide accurate or complete results
when portions of a human become occluded by objects within
the work cell and/or by the robot. Noise in the depth camera’s
sensed images can also prevent skeleton tracking software from
accurately determining the locations of human skeleton joints.
Therefore, using multiple cameras provides a necessary level of
redundancy in skeleton tracking, where fusion of the joint
location data can more reliably yield complete human skeletons
for tracking human movement within the work cell.
 A few works have focused on the area of skeleton tracking
and fusion with multiple depth cameras as input. Takahashi et al.
[11] proposed an approach which uses data from 2 RGB cameras
to generate 3D human poses. They minimized error in rotation,
translation, human link lengths, and human motion by
optimizing temporal difference parameters. Experiments showed
a 5.4m error in determining the position of cameras relative to
each other, on a 100m long field. Chen et al. [12] proposed a
method of skeleton fusion which uses human joint locations from
2 Kinect sensors as input. Their method first determines the
validity of joint locations based on how close human link lengths
are to averages taken over 100 frames. If a joint location is
invalid, then its location is inferred based on valid non-adjacent
joints in the kinematic chain and the human link lengths. Finally,
the coordinates for each joint of the fused skeleton are simply
taken from the camera that produced highest joint validity, per
each joint. Experimental results in [12] show the transform
relating camera positions achieved accuracy up to 4.1mm.
 In [13], Moon et al. also developed a multiple Kinect camera
skeleton tracking system that uses a Kalman filter to determine
the validity of each joint location in each camera based on the
level of noise in the joint location estimation. Again, the fused
joint location for each joint was taken from the camera data
producing the highest validity for that joint. Their experiments
utilized 5 Kinect cameras and achieved average joint position
error of 6.95cm. In [14], Huang et al. used OpenPose to extract
2D human joint coordinates from many Kinect cameras. Their
method of skeleton fusion uses a ray tracing approach to
determine if a human joint is occluded in a camera’s frame and
estimate the actual location of the occluded joint using a
weighted average of the joint location from all cameras. They
also utilized a Kalman Filter like approach with prior
distributions on the estimation of a joint’s location based on the
location of the previous joint in the human kinematic chain.
Their experiments achieved a mean joint localization error of
5.68cm. The method presented, herein this paper, also makes use
of a version of the Kalman filter, which has been used for state
estimation in random environments [15,16]. In the Kalman filter,

 3 © 2022 by ASME

state observations are computed based on previous state
observations and then state estimates are computed based on
probability and previously observed state values.

In comparing skeleton trackers, this paper presents a method
of fusing human skeletons generated from 2 depth cameras;
improving tracking accuracy and validity. The proposed method
differs from previously developed methods by decomposing the
human into a quaternion and link length representation. Then the
fused skeleton is reconstructed using the best quaternion from
any camera for each link of the fused skeleton. The quaternions
of the fused skeleton are then passed through a low pass
Butterworth filter to reduce noise and then a Kalman filter for
state estimation before using forward kinematics to generate the
fused skeleton joint locations. This work tests three methods of
skeleton tracking and compares those methods based on the
accuracy of joint locations directly from each camera’s data,
without affects from the skeleton fusion. The skeleton fusion
method is also applied to the trackers’ output, and accuracy of
the fused joint location estimations is compared to the joint
locations directly from each camera’s data when using two
cameras for input with occlusions occurring due to the robot
manipulator.
 The remainder of the paper is structured as follows: section
2.1 introduces each skeleton tracking software package used, 2.2
presents a camera calibration method, 2.3 presents the method of
decomposing a human into a quaternion representation, 2.4
presents the method of fusing the skeletons from each camera,
2.5 presents the filtering method, and 2.6 explains skeleton
quaternion/link length forward kinematics. Section 3 provides
experimental results and a comparative discussion highlighting
potential sources of error followed by a conclusion in section 4.

2. METHODS

The flow of data of the proposed method for generating
human skeleton data is shown in Fig. 1. It shows the depth
camera outputs an RGB image which is passed to the deep
convolutional neural network (DCNN) in each skeleton tracker
which then outputs the human’s joint location in pixel
coordinates. Then the depth image output from the depth camera
is used to convert the 2D pixel coordinates into 3D cartesian
coordinates. Next, nominal link lengths and quaternions for the
human skeleton are determined by each camera. Then, from
among all the cameras’ link lengths and quaternions, the skeleton
fusion algorithm selects the ‘best’ quaternions to represent each
link, stitching (fusing) them together to generate the skeleton.
Finally, these stitched (fused) together quaternions are passed
through filtering algorithms, resulting in the fused skeleton.

2.1 Skeleton Tracking

For the proposed method of fusing human skeleton models
from data of multiple depth sensors, open-source skeleton
tracking software was used to provide human joint locations as
output, given RGB+Depth images as input. Herein, this paper,
these input images were captured from 2 depth cameras. Google
Media Pipe Pose Tracking (Media Pipe) and OpenPose were the
skeleton tracking software packages tested. Both utilize DCNNs,

each with different architectures, to output human joint pixel
coordinates when provided RGB images as input. Media Pipe is
a top-down network, detecting regions of the image that might
contain a human and then detecting joint locations within each
region [17]. OpenPose is a bottom-up network, detecting all joint
locations and then determining how to group the joints for each
human. Media Pipe is built upon Google’s BlazePose network
and has been found to have a Percentage of Correct Keypoints
(PCK) score of up to 97.5% keypoints within 0.2 torso diameters
(PCK0.2) of the correct location while performing a HIIT task
[18]. Results in [9] showed on average OpenPose having a
PCK0.2 score that was 3.7% higher than BlazePose, but
BlazePose computed about 78 times faster than OpenPose. The
skeleton trackers also differ in the number of people that can be
tracked: 1 person with Media Pipe, and unlimited (with no
computer hardware constraints) with OpenPose. The neural
network in the Media Pipe algorithm also has the capability to
estimate 3D coordinates of human joints from RGB image input,
with the midpoint of the hips being the origin of the Media Pipe
coordinate frame. The depth channel from the cameras can be
used to locate the midpoint of the hips in the world coordinate
frame, allowing the Media Pipe 3D joint location estimates to be
easily transformed to the world coordinate frame. Therefore,
Media Pipe with the 3D joint location estimation is a third
method tested in this paper.

2.2 Camera Calibration

For the coordinates determined from the skeleton trackers to
be useful, the relationship between each camera and the world
coordinate frame must be determined. In a multiple camera
system, if the skeleton of the same person is detected from each
camera’s frame, then at least 3 points (joint locations) that are
not colinear are common between camera frames. Therefore, the

Figure 1. Diagram showing the flow of data from the camera output
to the fused human skeleton model.

 4 © 2022 by ASME

homogenous transformations that relate the position of the
cameras to each other can be determined. To determine these
transformations, consider 2 cameras, A and B, where the
homogenous transformation 𝑇%& transforms points from camera
B’s coordinate frame to camera A’s coordinate frame.
Additionally, the 3 common points in each camera frame will be
denoted 𝑃"! , 𝑃"" , and 𝑃"#, as shown in Fig. 2. A new coordinate
frame denoted 𝐻 will be determined using these common points.
Figure 2 shows the 3 common points on the human as well as the
axes of frame 𝐻. A homogenous transformation between each
camera (k) and frame 𝐻 becomes:

 𝒙	𝒌 𝑯 = 𝑃	* "" − 𝑃	* "! (1)
 𝒛	𝒌 𝑯 = 𝒙	𝒌 𝑯 × ? 𝑃	* "# − 𝑃	* "!@ (2)
 𝒚	𝒌 𝑯 = 𝒛	𝒌 𝑯 × 𝒙	𝒌 𝑯 (3)
 𝑅+* = ? 𝒙B	𝒌 𝑯, 𝒚B	𝒌 𝑯, 𝒛C	𝒌 𝑯@, 𝑇+* = D 𝑅+

* , 𝑃	* "!
0,0,0,1

F 	𝑓𝑜𝑟	𝑘 = {𝐴, 𝐵} (4)

Now, 𝑇%& = 𝑇+& 𝑇%+ where 𝑇%+ = ? 𝑅+% , , − 𝑅+% , 𝑃	% "!; 0,0,0,1@.
Now that the transformation between any 2 cameras can be
determined, the transformations relating each camera’s
coordinate frame to that of a main camera can be determined. To
calibrate the two cameras used for testing to each other, 𝑇%& was
determined for each of 500 frames. Then the set of all 𝑇%&
transformations was averaged. In determining 𝑇%& , the pelvis and
each wrist were used for 𝑃"!, 𝑃"", and 𝑃"#, respectively.
Considering only the torso, these points are the combination of 3
points that maximizes the distance between points and generated
the most precise average 𝑇%& .

In addition to the camera-camera relationships, the
transformation from the main camera to the world coordinate
frame must be determined. Industrial robot manipulators can be
configured such that 3 points on the robot are non-colinear,
denoted 𝑃-!, 𝑃-", and 𝑃-#, illustrated in Fig. 3. Additionally, if the
manipulator can provide feedback of the variable joint
parameters, then forward kinematics can be used to determine
the location of those 3 non-colinear points on the robot in the
world coordinate frame. If the robot points can be detected in
the main camera’s frame, then a transformation between the main
camera and a new frame, denoted frame R, generated by the
robot points, can be determined. Figure 3 shows 3 points on a

robot manipulator used to generate frame R, which is also shown.
The world (fixed) coordinate frame, frame F, is also shown at the
base of the robot. The transformation between the world
coordinate frame or the main camera’s frame and the robot
points, denoted 𝑇./ and 𝑇.& , can be determined by:

 𝒙	𝒌 𝑹 = 𝑃	* -" − 𝑃	* -! (5)
 	 𝒛	𝒌 𝑹 = 𝒙	𝒌 𝑹 × ? 𝑃	* -# − 𝑃	* -!@ (6)
 	 𝒚	𝒌 𝑹 = 𝒛	𝒌 𝑹 × 𝒙	𝒌 𝑹 (7)
 𝑅.* = ? 𝒙B	𝒌 𝑹, 𝒚B	𝒌 𝑹, 𝒛C	𝒌 𝑹@, 𝑇.* = D 𝑅.

* , 𝑃	* -!
0,0,0,1

F 	𝑓𝑜𝑟	𝑘 = {𝐹, 𝐴} (8)

Now 𝑇&/ = 𝑇./ 𝑇&. where 𝑇&. = ? 𝑅,.
& , − 𝑅,.

& 𝑃	& -!; 0,0,0,1@.
After computing 𝑇&/ and 𝑇%& , points in the second camera (camera
B) can now be transformed to the fixed frame by 𝑇%/ = 𝑇&/ 𝑇%& .
Now, human joint locations can be transformed from each
camera’s frame to the world coordinate frame before computing
the human quaternion representation for each camera using:

 𝑃	/ "$ = 𝑇*/ 𝑃"$
	

	
* 	𝑓𝑜𝑟	𝑘 = {𝐴, 𝐵} (9)

for the 𝑖!" joint of the human in the frame of camera A or B.

2.3 Skeleton Quaternion/Link-Length Representation
The proposed method determines the quaternions and link

lengths that relate each human link to the fixed coordinate frame.
This contrasts with other methods that use joint cartesian
coordinates directly, which may not maintain reasonable
skeleton dimensions. Quaternions provide an axis-angle
representation of the rotation that relates one sliding vector to
another sliding vector. Quaternions are defined by:

 𝒒𝒍 = 〈𝑤# , 𝑥1% , 𝑦1% , 𝑧1%〉 (10)
for the 𝑙!" link of the human kinematic chain. The human
kinematic chain is shown in Fig. 4 and described in Table 1,
showing link indices and proximal/distal joint for each link. The
𝑤#, 𝑥1%, 𝑦1%, 𝑧1% are common variable names for parts of the
quaternion, not cartesian coordinates. The parts of the quaternion
can be expressed by:

 𝑤# = cos V2%
3
W and 〈𝑥1% , 𝑦1% , 𝑧1%〉 = sin V2%

3
W𝒎𝒍 (11)

Figure 2. Human coordinate frame constructed from the location of
the pelvis and wrists.

Figure 3. Three points used to determine the transformation from
the main camera to the world coordinate frame.

 5 © 2022 by ASME

where 𝜃# is the angle between the link and the world z-axis and
𝒎𝒍 is the unit vector about which rotation occurs, represented by:

 𝒎𝒍 =
4&% 5̂78&% 9̂7:&%*

;

<4&%
" 78&%

" 7:&%
"
. (12)

To determine the rotation angles and axis between human links,
the human kinematic chain is iterated over according to:

 𝒗𝒍 = 𝑃=>?!@# − 𝑃A-B4>C@# , 𝑎𝑛𝑑	𝒛𝒇 = [0,0,1], (13)
 𝒎𝒍 = 𝒗𝒍 × 𝒛𝒇 → 𝒎𝒍 =

𝒎𝒍
‖𝒎𝒍‖

 (14)

where subscript 𝑙 denotes a link of the human kinematic chain.
The 𝑃=>?!@# is the human joint farthest from the torso in the
kinematic chain and 𝑃A-B4>C@# is the human joint closest to the
torso in the kinematic chain, for each link. The latter part of Eq.
14 is indicating 𝒎𝒍 is normalized. The rotation angle between the
human link and the world z-axis about 𝒎𝒍 is computed by:

 𝜃# = 𝑎𝑡𝑎𝑛2bG𝒗𝒍×𝒛𝒇K‖𝒗𝒍‖
, G𝒗𝒍⋅𝒛𝒇K‖𝒗𝒍‖

	c. (15)

Figure 5 shows the rotation vector, 𝒎𝟕, and rotation angle,
𝜃N, between the right upper arm and forearm. The quaternion
representation of the human is preferred over a representation in
angles, such as roll-pitch-yaw or angle/axis, because all elements
of a quaternion are bounded between -1 and 1, necessary for
inputs to many filtering and prediction methods. When using a
filtering method such as a Kalman Filter, it is desirable for the
inputs to be continuous. An angle representation normalized
between ±𝜋 would have discontinuities when angles cross ±𝜋.
However, quaternions do not suffer from discontinuities. If the
angles were not normalized, so the angles could be continuous,
then it is possible for the angle to be unbounded if a vector
appeared to perform many revolutions. Considering a method

such as an RNN used to predict joint locations, if the inputs to
the RNN are unbounded then it would be impossible to construct
a training set of data to cover the entire test data set because the
test data set could be infinitely large.

The human’s nominal link lengths are taken to be 𝑙𝑙# =
‖𝒗𝒍‖, for each link 𝑙, for reconstructing the human skeleton from
the quaternions and lengths. Therefore, once a human enters a
camera’s field of view, distances between human joints (link
lengths) are determined for each camera frame. From the
distances, ratios of link length divided by the spine length are
computed for each link. After distance ratios have been
computed for at least 20 camera frames, and once the sum of
standard deviations of distance ratios over the last 20 frames is
below 0.1 and all distance ratios are less than 1, the nominal
human link lengths are then taken to be the average distance
between joints over the last 20 frames. Requiring the distance
ratios to be less than 1 proved to a be a good test for accuracy of
the captured link lengths because the spine length is the longest
link length for most humans, so all other link lengths should be
less than the spine length. Requiring the sum of standard
deviations of distance ratios to be less than 0.1 ensures stable
distance measurements are captured.

2.4 Fusing Skeletons

After determining the quaternion representation and link
lengths of a human, the quaternion representations and link
lengths of the same skeleton from multiple viewpoints can be
fused to generate one human skeleton. The nominal link lengths
of the same skeleton from each camera viewpoint, captured
according to the procedure stated earlier, are averaged to
generate the fused skeleton link lengths. The quaternions for the
fused skeleton are selected from the different camera viewpoints
according to the pseudo code in Fig. 6. In this pseudo code,
𝒍𝒍𝒇𝒖𝒔𝒆𝒅 is the vector of link lengths for the fused human, 𝒍𝒍𝒄𝒂𝒎𝒆𝒓𝒂
is the vector of link lengths for the human determined for each
camera, and ∆𝒍𝒍 is the difference between fused link length and
the camera link length, for each link. The 𝒒𝒇𝒖𝒔𝒆𝒅(𝑖) is the
quaternion corresponding to link 𝑖 in the fused skeleton and
𝒒𝒄𝒂𝒎(𝑖) is the quaternion corresponding to link 𝑖 from each
camera’s data. The ∆𝑞 = ∑)𝒒𝒇𝒖𝒔𝒆𝒅(𝑖)[𝑘] − 𝒒𝒄𝒂𝒎(𝑖)[𝑘]) is the
summation of the differences between quaternion elements
(w,x,y,z). For each link of the fused skeleton, the quaternion used

Figure 5. Vectors used to determine the rotation axis and angle for
the right forearm.

Table 1. Links of the human kinematic chain.
Link Description Proximal Distal
1 Spine Pelvis (Hip MP) Spine
2 Neck Spine Shoulder MP
3 Shoulder to Shoulder Shoulder MP Shoulders
4 Left Upper Arm Left Shoulder Left Elbow
5 Left Forearm Left Elbow Left Wrist
6 Right Upper Arm Right Shoulder Right Elbow
7 Right Forearm Right Elbow Right Wrist

Figure 4. Links of the human kinematic chain from the waist up.

MP=midpoint

 6 © 2022 by ASME

is the quaternion from any camera that is closest to the previous
quaternion of the fused skeleton. For a camera to be considered,
it must have provided a new frame in the last 100 milliseconds.
Testing indicated OpenPose was the tracking software with the
slowest update rate, as low as 15Hz. Therefore, requiring updates
at least as fast as every 100 milliseconds is a conservative
requirement to allow for skeleton updates as slow as the slowest
tracker, with a small buffer, while still ensuring that new skeleton
data is being generated by the tracker for each camera. If a
camera had stopped reporting new data, possibly due to
becoming disconnected or other hardware fault, then the skeleton
fusion algorithm would detect that more than 100 milliseconds
elapsed without a new skeleton from that camera. Then the
fusion algorithm would stop using that camera’s data for the
fused skeleton, until a new skeleton is reported from that camera.

Another constraint is that for each 𝑖!" link from each
camera, the change in link length, ∆𝒍𝒍(𝑖) for the 𝑖!" human link,
must be less than half the nominal link length, 𝒍𝒍𝒇𝒖𝒔𝒆𝒅(𝑖)	for the
𝑖!" human link. In other words, the observed link length must be
within 50% of the nominal link length recorded under ideal
conditions. Additionally, the absolute rate of change of rotation
angle of Eq. 15 (𝑣2$) must be below an upper threshold (𝑣2V) and
the tip speed of the unit rotation vector of Eq. 12 (𝑣C>) must be
below an upper threshold (𝑣CV) for the quaternion of the 𝑖!" link
from each camera to be considered in generating the fused
skeleton, both computed using a derivative of observations.
These conditions filter out erroneous data that are clearly not
representative of the human skeleton and prevent movements of
the fused skeleton that are unrealistically fast. E.g., when a joint
of the human becomes occluded, there is a step change in depth
resulting in unrealistically high velocity.

2.5 Filtering

After generating the fused set of quaternions, the
quaternions of the fused human are passed through a second
order low pass Butterworth filter to smooth potentially noisy
quaternion elements. The ideal cutoff frequency of 0.25 times the
sampling frequency was determined by trial and error. Lower
cutoff frequencies caused a visible lag of the fused skeleton
compared to the raw skeletons from the trackers. Higher
frequencies led to more noticeable jitter in the fused skeleton
quaternion elements. Additionally, an 𝛼 − 𝛽 − 𝛾	Kalman filter
was implemented due to its effectiveness at further filtering out
noise, ease of implementation, and option for state extrapolation
[19]. The state estimation equations are:

 𝒙o𝒏,𝒏 = 𝒙o𝒏,𝒏Y𝟏 + 𝛼q𝒛𝒏 − 𝒙o𝒏,𝒏Y𝟏r (16)
 𝒙̇t𝒏,𝒏 = (1 − 𝛿)𝒙̇t𝒏,𝒏Y𝟏 + βV

𝒛𝒏Y𝒙\𝒏,𝒏+𝟏
∆!

W (17)
 𝒙̈t𝒏,𝒏 = (1 − 𝛿)𝒙̈t𝒏,𝒏Y𝟏 + γV

𝒛𝒏Y𝒙\𝒏,𝒏+𝟏
^.`∆!"

W. (18)

The 𝒛𝒏 is the column vector of measurements, which are the
elements of the quaternions for the fused skeleton stacked into a
column. The 𝒙o𝒏,𝒏, 𝒙̇t𝒏,𝒏, and 𝒙̈t𝒏,𝒏 are the estimates of the
quaternion elements, derivative of elements, and second
derivative of the elements. The 𝛼 is the gain that controls the rate
of change of quaternion elements, 𝛽 controls the rate of change
of the derivative of elements, and 𝛾 controls the rate of change
of the second derivative of elements. The 𝛿 term is selected
between 0 and 1 and included in Eq. 17 and Eq. 18 to make the
estimated velocity and acceleration decay to 0 if 𝒛𝒏 stopped
changing; plus, to allow the possibility of using state
extrapolations as input to the filter in future work. I.e., when the
best quaternions from all cameras still cannot generate a
seemingly accurate skeleton, application of the Kalman filter can
yield extrapolated quaternion values. In the event of an
inaccurate link quaterion, the elements of 𝒛𝒏 corresponding to
inaccurate sensed quaternions are replaced with the
extrapolations of those quaternions. The 𝛿 term is important
because the longer extrapolations are used in place of sensed
data, the less accurate the extrapolations become. Then, it is
desirable for the velocity and acceleration extrapolations to
decay to 0 to prevent the position extrapolation from going to
infinity before accurate sensed data is available again.

Trial and error showed ideal Kalman filter gains 𝛼, 𝛽, 𝛾, and
𝛿 are 0.5, 0.1, 0.001, and 0.3, respectively. Smaller 𝛼 caused
filtered quaternions to converge too slowly to a constant true
position. Smaller 𝛽 and 𝛾 caused the filtered quaternions to react
too slowly to changes in angular velocity and acceleration.
Larger values of 𝛼, 𝛽, or 𝛾 reduced the effect of the filter and led
to significant jitter in the quaternion elements.

2.6 Forward Kinematics for the Fused Skeleton

After determining the quaternion/link-length representation
of the skeleton from each camera, fusing the skeleton
quaternion/link-length data, and then filtering quaternion
elements, the quaternions and link-lengths of the fused skeleton
can be used to generate the cartesian coordinates of each joint of
the human skeleton. Using forward kinematics, the skeleton is
stitched together by first selecting the location of the pelvis. The
skeleton trackers output the hip locations, so the pelvis was taken
to be the midpoint of the hips. The skeleton trackers output an
estimated accuracy of the estimation of pixel coordinates for
each joint. However, these estimated accuracies did not seem to
differ in value when a joint was clearly visible or completely
occluded. Therefore, an alternate method of determining the
accuracy of the estimated hip locations was developed. This
method iterated through all the pixels along a line between the
hips and lines between the hips and shoulders, determining the
change in depth value between each consecutive pair of pixels.
The most accurate pelvis location from any camera was taken to
be from the camera that generated the lowest maximum absolute

For each camera:
 If time since new camera frame < 0.1sec:
 ∆𝒍𝒍 =)𝒍𝒍𝒇𝒖𝒔𝒆𝒅 − 𝒍𝒍𝒄𝒂𝒎𝒆𝒓𝒂)
 For each link (𝑖):
 If ∆𝒍𝒍(𝑖) < 0.5𝒍𝒍𝒇𝒖𝒔𝒆𝒅(𝑖)	&)𝑣+!) < 𝑣+, 	&)𝑣-.) < 𝑣-, :
 ∆𝑞 = ∑)𝒒𝒇𝒖𝒔𝒆𝒅(𝑖)[𝑘] − 𝒒𝒄𝒂𝒎(𝑖)[𝑘]) , 𝑘 ∈ {𝑤, 𝑥, 𝑦, 𝑧}
 If ∆𝑞 < ∆𝒒𝒇𝒖𝒔𝒆𝒅(𝒊):
 ∆𝒒𝒇𝒖𝒔𝒆𝒅(𝑖) ← ∆𝑞, 𝒒(𝑖)𝒇𝒖𝒔𝒆𝒅 ← 𝒒𝒄𝒂𝒎(𝑖),	
Figure 6. Pseudocode for skeleton fusion.

 7 © 2022 by ASME

change in pixel depth along those three lines. Note, if an object
was between the human and camera along one of those three
lines between hips and shoulders, at least one step change in
depth between adjacent pixels exists along those lines.

Once the pelvis location is selected, then quaternions and
link-lengths of the fused skeleton can be used to generate the rest
of the joint locations. In the forward kinematics process, the
location of distal joints is determined starting with the location
of proximal joints as follows:

 𝑃=>?!@# = 𝑃A-B4>C@# + 𝑙𝑙(𝑖)𝒗𝒊 (19)
where 𝑃A-B4>C@# is the location of the joint closest to the pelvis
in the human kinematic chain for link 𝑖, 𝑙𝑙(𝑖) is the link length
for link 𝑖 of the fused skeleton, 𝒗𝒊 is a unit vector indicating the
direction of link 𝑖 relative to the fixed z-axis, and 𝑃=>?!@# is the
location of the joint farthest from the pelvis for link 𝑖. The link
vector 𝒗𝒊 is determined using quaternion multiplication:

 𝒗𝒊 = 𝒒𝒇𝒖𝒔𝒆𝒅(𝒊)𝒒𝒛𝒇𝒒𝒇𝒖𝒔𝒆𝒅
Y𝟏 (𝒊) (20)

where 𝒒𝒛𝒇 is the quaternion representing the world z-axis, 𝒒𝒛𝒇 =
〈0,0,0,1〉, 𝒒𝒇𝒖𝒔𝒆𝒅(𝒊) was the quaternion determined to rotate the
world z-axis to align with link 𝑖 of the fused skeleton and
𝒒𝒇𝒖𝒔𝒆𝒅Y𝟏 (𝒊) is the inverse of that quaternion. The 𝑤# part of the
resulting quaternion would be zero, making the sin(0.5𝜃#) term
in Eq. 11 equal to one, allowing the unit vector 𝒗𝒊 to be the
𝑥1 , 𝑦1 , 𝑧1 quaternion elements resulting from this multiplication.
The calculations in Eq. 19 and Eq. 20 are performed on each link
of the skeleton, starting from the link most proximal to the pelvis,
the spine, and ending with the most distal links, the forearms.

3. EXPERIMENTS AND RESULTS

To test the single camera accuracy and simultaneously test
the skeleton fusion accuracy, a human touched their wrists to
targets placed throughout the robotic testbed. The Comau e.Do
6-DOF robot’s end-effector was the target, although any robot or
other form of target of known location could have been used
[20]. The manipulator not only served as a target to touch, but
also as an occlusion for demonstration of skeleton fusion in static
and dynamic settings. The left camera was an Intel D455 and the
right camera was an Intel D435i [21], both depth cameras. The
location of the cameras relative to the robot can be seen in Fig.
7, just to the left and right of the robot. For both cameras, the
frame rate set at 30 Hz and resolution was set at 640x480 pixels,
selected due to reaching the GPU memory limits when using
higher resolution images. Additionally, the skeleton tracking and
fusion algorithms were run on a computer with an Intel i9-10900
CPU and Nvidia GeForce RTX 3070 GPU, used for tracker
inference. The skeleton fusion algorithm was programmed in
Python 3.6 in a ROS Noetic environment. A Python version of
OpenPose and the C++ version of Media Pipe was used for
skeleton tracking [10,9]. The velocity limits 𝑣2V and 𝑣CV were
selected to be 20 rad/sec and 10 m/sec, respectively, determined
by trial and error to reject erroneous human movement.

The 8 test positions are shown as the green circles at the tip
of the end-effector in Fig. 7 and are also listed in Table 2. In Fig.
7, the human would be standing in front of the robot such that
the human’s perspective would be the same as shown in the
image. Note that some test positions have similar locations, but
more importantly, poses of similar location, such as positions 1
and 4 vary greatly in robot configuration, which is the source of
varying levels of occlusion in tests. Stationary touch tests were
conducted where the human touched the target at each test
position 50 times for each wrist. Dynamic tests were also
conducted where the human held their wrist to the robot’s end-
effector while the robot cycled through the position sequences:
1-3-1 for 20 cycles or 1-4-6-3-1 for 10 cycles for each wrist.

All 8 positions can cause occlusions of the pelvis in one of
the cameras’ perspectives, depending on where the human is
standing relative to the robot. Situations where the pelvis is
occluded were necessary for testing since the fused skeleton is
built starting with an estimated pelvis position. Test positions 1
through 3 don’t cause occlusion of the arms, while positions 4
through 8 can cause occlusion of the arm that touches the target.
Two examples are shown in Fig. 8, where images a and b show
test position 8, at which the robot occludes part of the torso and
left arm from the left camera, but those links are viewable in the
right camera’s image. Images c and d show position 4 in which
the robot occluded part of the torso and left arm in the right
camera’s image but not in the left camera’s image. To create
various occlusion situations, when testing each static position,

Figure 7. Eight robot configurations used where the end-effector tip
was the position target.
 Table 2. Robot joint angles and end-effector positions for tests.
Test Position

ID
Joint Angles
(radians)

End-effector position (x,y,z)
(cm)

1 (2.07,1.57,0,0,0,0) (-37.9,69.6,33.8)
2 (1.57,1.57,0,0,0,0) (0.1,79.3,33.8)
3 (1.07,1.57,0,0,0,0) (38.1,69.5,33.8)
4 (2.37,0.6,1.0,0,1.0,0) (39.4,38.2,23.3)
5 (1.57,0.6,1.0,0,1.0,0) (0.1,54.9,23.3)
6 (0.77,0.6,1.0,0,1.0,0) (-39.3,38.3,23.3)
7 (1.17,0.8,0.3,0,0,0) (26.1,61.7,74.8)
8 (1.97,0.8,0.3,0,0,0) (-26.1,61.7,74.8)

 8 © 2022 by ASME

the human alternated between crossing the test arm across his/her
torso and extending the test arm away from the torso.

The results from touching stationary targets indicate that
Media Pipe’s 3D joint location estimation with the proposed
skeleton fusion method generated the lowest position error on
average, as shown in Table 3. Additionally, Table 3 shows that
the mean and standard deviation of position error is lower for the
fused skeleton than for the skeleton determined directly from
either the left or right camera’s data. Lower standard deviation
of position error translates to more repeatable position
estimations. Table 4 shows the mean and standard deviation of

position error for each of the 8 test positions when using Media
Pipe’s 3D location estimation, averaged over all 50 samples for
right and left wrists. These statistics indicate that for the left
camera, test position 8 was least accurate and position 4 had the
best accuracy. Interestingly, for the right camera, position 4 was
least accurate and position 8 had the best accuracy. Figure 9
shows plots of the position error between the right wrist and the
target over all stationary test positions using the skeleton directly
from the left camera (dashed blue line), skeleton directly from
the right camera (solid orange line), and the fused skeleton
(dotted green line). These plots show that for some test positions,
such as 4, the left camera provided better position accuracy. And,
for other test positions, such as 8, the right camera provided the
better position accuracy. The line for the fused skeleton mostly
followed the line of the more accurate camera for the entire plot.

Table 5 shows the results from touching the end-effector
while the target moved between test positions. These results
show that the fused skeleton generated when using OpenPose
generated less position error compared to either Media Pipe
methods, contrary to Table 3 results. The fusion algorithm with
OpenPose generated 16.7cm average position error in dynamic
tests, compared with 26.6cm and 28.8cm with Media Pipe joint
pixel coordinate estimation and Media Pipe 3D joint coordinate
estimation, respectively. Table 5 shows the fused skeleton
generated using OpenPose and the fusion algorithm was more
accurate than the skeleton directly from either camera. However,
when using either Media Pipe method, the fused skeleton was
less accurate than the skeleton directly from either camera.

Discussion. Portions of the resulting position errors may be
attributed to the following sources. First, the robot position data

a. (right camera) b. (left camera)

c. (right camera) d. (left camera)

Figure 8. Examples of robot and human positions with which one
camera provided inaccurate readings. Images a and b used Media Pipe.
Images c and d used OpenPose. Images a and c come from the right
camera and b and d come from the left camera.

Table 3. Average position error between the target and left or right
wrist, averaged over all stationary test positions.
Overall Mean / Standard Deviation of Error (cm)
Tracker Left Camera Right Camera Fused Skeleton
Media Pipe, 2D 21.3 / 14.87 41.2 / 20.40 24.5 / 10.20
Media Pipe 3D 17.0 / 7.38 42.8 / 21.22 15.5 / 7.21
OpenPose 32.1 / 42.26 28.5 / 62.07 18.9 / 10.71

Table 4. Average position error between the target and left or right
wrist for each stationary test position with the Media Pipe 3D method.
Mean / Standard Deviation of Error (cm)
Test Pos. ID Left Camera Right Camera Fused Skeleton

1 17.0 / 5.18 38.0 / 13.60 13.9 / 7.57
2 22.5 / 6.03 33.7 / 25.48 17.2 / 7.31
3 20.8 / 4.36 37.8 / 19.31 19.0 / 6.41
4 9.3 / 4.51 67.9 / 8.08 13.5 / 4.80
5 15.8 / 5.41 30.7 / 10.83 14.2 / 6.67
6 15.3 / 8.96 51.9 / 18.44 13.0 / 5.25
7 21.2 / 11.10 48.6 / 9.61 14.9 / 4.40
8 48.5 / 21.51 21.4 / 6.62 18.1 / 10.60

Table 5. Average position error between the target and left or right
wrist from dynamic position tests.

Overall Mean Error (cm)
Tracker Left Camera Right Camera Fused

Media Pipe, 2D 22.3 24.0 26.6
Media Pipe 3D 20.4 32.4 28.7
OpenPose 19.6 22.6 16.7

Figure 9. Plots of the position error from all samples for each of the
tracking methods.

Position
4

OpenPose

Po
sit
io
n
8

M
ed
ia
 P
ip
e

 9 © 2022 by ASME

relative to the world coordinate frame was not exactly correct.
Two robot positioning tests were conducted in which the robot
was commanded to go to joint angles that positioned the tip of
the end effector at (42.2,0.0,0.0)cm and (0.0,42.2,0.0)cm. The
actual measured position for the first test was (42.8,-0.4,0.4)cm
and for the second test was (1.8,42.6,0.4)cm, corresponding to a
maximum of 1.9cm in Euclidean norm of robot position error.
Second, the wrists of the human conducting the tests were about
6.2cm maximum diameter. The depth channel of the cameras
only reported the distance between the camera and surfaces
nearest the cameras. Consequently, the observed coordinates of
the wrist were not at the exact center of the wrist, but instead on
the surface of the wrist nearest the camera. A diameter of the
wrists, 6.2cm, can be added to the joint position error depending
on if the wrist was in front of or behind the target, relative to the
camera perspective. Here, the combined error due to both robot
position and wrist diameter introduces 8.1cm of error. In the best-
case scenario, taking this error into account reduces the
minimum average wrist tracking error to 7.4cm, but the error
could also increase the tracking error.

In testing it was observed that when a joint was occluded,
the trackers often estimated a pixel coordinate for the occluded
joint that was just beside the occlusion, resulting in a poor
estimation, as seen by the left hip in Fig. 8.c. The results in Table
4 for tracking error at each position with Media Pipe 3D
estimation illustrate another potential problem with always using
the pelvis as the foundation of the skeleton. They show that
position 4 had the least accurate sensing by the right camera
because in this position the robot could be between the pelvis and
the right camera. This caused depth of the pelvis to be inaccurate.
Since the pelvis location was used to relate Media Pipe’s
estimated 3D joint locations to the world frame and also provided
the starting point for skeleton forward kinematics after fusion
with all trackers, pelvis position error propagates through the
entire skeleton. Individual test position results from the other
trackers show the same problem. In future work, skeleton fusion
could benefit from using the most accurately sensed part of the
skeleton, not just the pelvis, as the start for forward kinematics.

While conducting tests, GPU memory utilization, GPU
processor utilization, and average update rate of the skeleton
fusion algorithm was recorded, as shown in Table 6. The update
rate of the fusion algorithm is limited by how frequently new
data is determined by the skeleton trackers. The OpenPose
skeleton tracker used over 10 times more GPU memory than
either Media Pipe tracking method. Additionally, both Media
Pipe tracking methods operated at the camera’s frame rate of 30
Hz, indicating Media Pipe processed new camera frames at least
as fast as the camera reported new frames. OpenPose processed
new frames at an average of 17.8 Hz, 59% the rate of Media Pipe.

Therefore, Media Pipe is preferred over OpenPose considering
only computing resource requirements.

When compared to the results in other works on the subject
of skeleton fusion with depth camera inputs, the results of this
paper’s algorithm show significantly larger position error of the
fused skeleton joint locations, as shown in Table 7. A key
difference between this work and others is the source of
occlusion. The methods in [13,14] were tested using self-
occlusion caused by the human’s pose. Since the robot was used
as the occlusion in experiments in this work, the difference in
distance from the camera between the human and robot could be
larger than if the human was the source of occlusions. When a
human’s arm occludes other joints, it is likely that the error in
depth is relatively small compared to if the occlusion was caused
by a different object. Another difference between the
experiments used here and in other works is that only 2 depth
cameras were used to test this algorithm compared to 3 and 5
depth cameras used to test other algorithms. Adding more depth
cameras placed so that, at all times, at least 1 camera can sense
each human link without occlusion could improve results.

Based on the results observed from experiments, Media
Pipe’s 3D joint coordinate estimation provides lower human
joint tracking error if the target is stationary. In a manufacturing
setting, a stationary target could be the end effector location for
a static robot-human handover. However, if the target is moving
or tracking moving human joints is desired, then OpenPose
skeleton tracking provides lower joint position error than Media
Pipe. Many manufacturing settings require tracking of moving
human joints. This is necessary for collision detection and
avoidance as well as human-robot interaction such as dynamic
handovers. However, since the results showed the minimum
average tracking error was 16.7cm with a dynamic target and
15.5cm with a static target, skeleton tracking with depth camera
inputs may only be appropriate for course collision detection and
avoidance. Human-robot interaction requires higher precision to
ensure safety of humans and accurate completion of interactive
tasks. Therefore, future efforts will investigate other sensing
solutions that can provide higher accuracy, but without requiring
the worker to wear a large array of sensing hardware.

4. CONCLUSION

In summary, this work presented a novel algorithm for
fusing human joint locations generated with skeleton tracking
software and multiple depth camera inputs. Media Pipe (2D and
3D joint estimation) and OpenPose skeleton tracking software
was tested for providing input to the fusion algorithm. Results
showed, with any of the 3 skeleton tracking methods, the fusion

Table 7. Comparison of results with competitive methods.
Method
[Ref.]

Number
Cameras

Occlusion Source Fused Skeleton
Position Error (cm)

[11] 2 Self-occlusion Did not report
[12] 2 Objects and self Did not report
[13] 5 Self-occlusion 6.95
[14] 3 Self-occlusion 5.68
Ours 2 Objects (robot)/self 15.3

Table 6. Skeleton tracker performance comparison.
Tracker GPU mem.

usage (MiB)
GPU use
(%)

Avg. data update
rate (Hz)

Media Pipe, 2D est. 586 74 30.0
Media Pipe, 3D est. 606 77 30.0

OpenPose 7552 66 17.8

 10 © 2022 by ASME

algorithm overall generated wrist locations with less mean
position error and standard deviation in error than the wrist
location determined by the trackers directly from individual
camera data. Results also showed that Media Pipe’s 3D joint
location estimation generated the lowest mean position error
when touching stationary targets. OpenPose generated the lowest
mean position error when the wrist followed a moving target. To
conclude, the fusion method mitigated the impact of occlusions;
but is tracker algorithm dependent for static versus dynamic
tracking performance. Future work is still needed to further
reduce errors in skeleton tracking algorithms using inexpensive
depth cameras. Alternate sensor solutions may still be required
for precision human-robot interaction in HRC work cells.

ACKNOWLEDGEMENTS

Funding was provided by the NSF/NRI: INT: COLLAB:
Manufacturing USA: Intelligent Human-Robot Collaboration
for Smart Factory (Award I.D. #:1830383). Any opinions,
findings and conclusions or recommendations expressed are
those of the researchers and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] Zhang, Jianjing, Liu, Hongyi, Chang, Qing, Wang,
Lihui, Gao, Robert X. “Recurrent Neural Network for Motion
Trajectory Prediction in Human-Robot Collaborative
Assembly.” Cirp Annals-Manufacturing Technology. Vol. 69
No. 1 (2020): pp. 9–12. DOI 10.1016/j.cirp.2018.04.066

[2] Callens, Thomas, Van der Have, Tuur, Van Rossom,
Sam, De Schutter, Joris and Aertbeliën, Erwin. “A Framework
for Recognition and Prediction of Human Motions in Human-
Robot Collaboration Using Probabilistic Motion Models.” IEEE
Rob. Autom. Lett. Vol. 5 No. 4 (2020): pp. 5151-5158. DOI
10.1109/LRA.2020.3005892.

[3] Schydlo, Paul, Raković, Mirko, Jamone, Lorenzo and
Santos-Victor, José. “Anticipation in Human-Robot
Cooperation: A Recurrent Neural Network Approach for
Multiple Action Sequences Prediction.” Proceedings of the
IEEE ICRA. pp. 5909-5914. Brisbane, Australia. May 21-25,
2018. DOI 10.1109/ICRA.2018.8460924.

[4] Al-Amin, Md., Qin, Ruwen, Moniruzzaman, Md., Yin,
Zhaozheng, Tao, Wenjin and Leu, Ming C. “An Individualized
System of Skeletal Data-Based CNN Classifiers for Action
Recognition in Manufacturing Assembly.” J Intell Manuf (2021)
DOI 10.1007/s10845-021-01815-x.

[5] Flowers, Jared and Wiens, Gloria. “Robot Risk of
Passage Among Dynamic Obstacles.” Proceedings of the ASME
MSEC. Virtual, Online, June 21-25, 2021.
DOI 10.1115/MSEC2021-63670.

[6] Lavit, Matteo, Ambrosetti, Roberto, Wiens, Gloria J. and
Fassi, Irene. “Human–Robot Collaboration in Smart
Manufacturing: Robot Reactive Behavior Intelligence.” J Manuf
Sci Eng. Vol. 143 No. 3. (2021). DOI 10.1115/1.4048950.

[7] González, Leticia, Álvarez, Juan C., López, Antonio. M.,
and Álvarez, Diego. “Metrological Evaluation of Human-Robot
Collaborative Environments Based on Optical Motion Capture

Systems.” MDPI Sensors. Vol. 21 No. 11. (2021): pp. 3748-
3763. DOI 10.3390/s21113748.

[8] Moniruzzaman, Md., Yin, Zhaozheng, Bin Hossain, Md
Sanzid, Guo, Zhishan and Choi, Hwan. “Wearable Motion
Capture: Reconstructing and Predicting 3D Human Poses from
Wearable Sensors.” TechRxviz. Preprint. 2021.
DOI 10.36227/techrxiv.16921444.v1.

[9] Bazarevsky, Valentin, Grishchenko, Ivan, Raveendran,
Karthik, Zhu, Lixuan Tyler, Zhang, Fangfang and Grundmann,
Matthias. 2020. “BlazePose: On-device Real-time Body Pose
tracking.” ArXiv abs/2006.10204.

[10] Cao, Zhe, Simon, Tomas, Wei, Shih-En and Sheikh,
Yaser. “OpenPose: Realtime Multi-person 2D Pose Estimation
Using Part Affinity Fields.” IEEE Trans. Pattern Anal. Mach.
Intell. Vol. 48 No 1. (2019): pp.172-186.
DOI 10.1109/TPAMI.2019.2929257.

[11] Takahashi, Kosuke, Mikami, Dan, Isogawa, Mariko
and Kimata, Hideaki. “Human Pose as Calibration Pattern: 3D
Human Pose Estimation with Multiple Unsynchronized and
Uncalibrated Cameras.” Proceedings of the IEEE/CVF CVPRW.
pp. 1775–1782. Salt Lake City, UT, June 18-22, 2018.
DOI 10.1109/CVPRW.2018.00230.

[12] Chen, Ning, Chang, Yuqing, Liu, Haiqiang, Huang,
Lingtao and Zhang, Hongyan. “Human Pose Recognition Based
on Skeleton Fusion from Multiple Kinects.” Proceedings of the
IEEE CCC. pp. 5228-5232. Wuhan, China. July 25-27, 2018.
DOI 10.23919/ChiCC.2018.8483016.

[13] Moon, Sungphill, Park, Youngbin, Ko, Dong Wook
and Suh, Il Hong. “Multiple Kinect Sensor Fusion for Human
Skeleton Tracking Using Kalman Filtering.” Int. J. Adv. Robot.
Syst. Vol. 13 No. 2 (2016). DOI 10.5772/62415

[14] Huang, Ching-Chun and Nguyen, Manh-Hung.
“Robust 3D Skeleton Tracking based on OpenPose and a
Probabilistic Tracking Framework.” Proceedings of the IEEE
ICSMC. pp. 4107-4112. Bari, Italy. Oct. 6-9, 2019
DOI 10.1109/SMC.2019.8913977.

[15] Kálmán, Rudolf E. “A New Approach to Linear
Filtering and Prediction Problems" ASME J. Basic Eng. Vol. 82
No. 1. (1960): pp. 34-45. DOI 10.1115/1.3662552.

[16] Roux, Joël Le. “An Introduction to Kalman Filter:
Probabilistic and Deterministic Approaches.” University of
Nice, Nice, France (2003).

[17] An, Weizhi, Yu, Shiqi, Makihara, Yasushi, Wu,
Xinhui, Xu, Chi, Yu, Yang, Liao, Rijun and Yagi, Yasushi.
“Performance Evaluation of Model-Based Gait on Multi-View
Very Large Population Database With Pose Sequences.” IEEE
Trans. Biom. Behav. Identity Sci. Vol. 2 No. 4 (2020): pp. 421-
430. DOI 10.1109/TBIOM.2020.3008862.

[18] Google (2020) MediaPipe Pose. MediaPipe.
https://google.github.io/mediapipe/solutions/pose.html.

[19] Tenne, Dirk, and Singh, Tarunraj. "Characterizing
Performance of 𝛼-𝛽-𝛾 Filters," IEEE Trans. Aerosp. Electron.
Syst. Vol. 38 No. 3 (2002): pp. 1072-1087.
DOI 10.1109/TAES.2002.1039425.

[20] Comau S.p.A. (October 2017) e.Do Technical Sheet.
[21] Intel RealSense (June 2020) D400 Series Datasheet.

