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AbstractÐThe Random Dot Product Graph (RDPG) is a
popular generative graph model for relational data. RDPGs
postulate there exist latent positions for each node, and specifies
the edge formation probabilities via the inner product of the
corresponding latent vectors. The embedding task of estimating
these latent positions from observed graphs is usually posed
as a non-convex matrix factorization problem. The workhorse
Adjacency Spectral Embedding offers an approximate solution
obtained via the eigendecomposition of the adjacency matrix,
which enjoys solid statistical guarantees but can be computation-
ally intensive and is formally solving a surrogate problem. In this
paper, we bring to bear recent non-convex optimization advances
and demonstrate their impact to RDPG inference. We develop
first-order gradient descent methods to better solve the original
optimization problem, and to accommodate broader network
embedding applications in an organic way. The effectiveness
of the resulting graph representation learning framework is
demonstrated on both synthetic and real data. We show the
algorithms are scalable, robust to missing network data, and
can track the latent positions over time when the graphs are
acquired in a streaming fashion.

Index TermsÐGraph Representation Learning; Gradient De-
scent; Non-convex Optimization; Random Dot Product Graphs

I. INTRODUCTION

One of the most popular generative models for random

graphs is the Random Dot Product Graph (RDPG). Under this

model each node i ∈ {1, . . . , N} in a simple, undirected graph

G has an associated latent position vector xi ∈ X ⊂ R
d, and

edge (i, j) exists with probability Pij = x
⊤
i xj , independent

of all other edges. In other words, letting A ∈ {0, 1}N×N

be the random symmetric adjacency matrix of G and X =
[x1, . . . ,xN ]⊤ ∈ R

N×d the matrix of latent vertex positions,

the RDPG model specifies that given X, edges are condition-

ally independent with Aij ∼ Bernoulli(x⊤
i xj). The model’s

popularity stems from its simplicity and expressiveness; e.g.

the ErdÈos-RÂenyi and Stochastic Block Model (SBM) families

are included as particular cases [1]. Furthermore, the resulting

embeddings are easy to interpret: nodes with large ∥xi∥2 tend

to exhibit higher connectivity, whereas a small angle between

xi and xj indicates higher ªaffinityº among i and j.

Background on RDPG inference. Let us now discuss the

associated inference (or node embedding) problem, which is

the focus of the methods presented here. Given a realization

of a graph (or a sequence of graphs), we look for the latent
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position matrix X̂ which best explains the given adjacency ma-

trix A under the RDPG model. Since the maximum-likelihood

estimator is intractable beyond toy graphs [2], moving forward

we note that A is a noisy observation of P = XX
⊤, the

rank-d matrix of edge probabilities Pij , since E
[

A
∣

∣X
]

= P.

Therefore, and remembering that the diagonal entries of P are

zero, we want to solve the following problem [2]:

X̂ ∈ argmin
X∈RN×d

∥M ◦ (A−XX
⊤)∥2F , (1)

where ◦ is the Hadamard product, and M = 11
⊤ − I is a

mask matrix, with zero-diagonal and ones everywhere else.

In the RDPG framework, the usual approach to obtain an

approximate solution of (1) is to slightly modify the problem in

order to avoid the zero-diagonal constraint (either by replacing

the main diagonal of A, or simply ignoring the constraint) [1]:

X̂ ∈ argmin
X

∥A−XX
⊤∥2F , s. to rank(X) = d. (2)

Its solution can be computed as X̂ = V̂Λ̂
1/2

, where A =
VΛV

⊤ is the eigendecomposition of A, Λ̂ ∈ R
d×d is a diago-

nal matrix with the d largest eigenvalues of A, and V̂ ∈ R
N×d

are the corresponding d eigenvectors. This estimator is known

as the Adjacency Spectral Embedding (ASE).

Contributions and paper outline. Inspired by related matrix-

factorization problems, we propose to tackle the non-convex

problem (1) via gradient descent (GD). As we show in Section

II-A, our method scales better than the spectral-based ASE,

and therefore may be used for graphs with several tens

of thousands of vertices. Very recent papers [3] explicitly

comment on the difficulty of scaling these RDPG approaches

for large graphs and streaming settings. In this context, ours is

the first work to develop scalable algorithms to compute RDPG

embeddings, by proposing a proper formulation and bringing

to bear recent advances in first-order non-convex optimization.

Furthermore, our framework allows to solve exactly the

more appropriate problem formulation (1) [instead of (2)].

This limitation was recognized more than a decade ago [2],

yet to the best of our knowledge it has not been satisfac-

torily addressed in the recent RDPG literature. The existing

alternative [2], where the ASE is repeatedly computed and

the diagonal entries of A are completed with the diagonal

of X̂X̂
⊤, lacks convergence guarantees and multiplies the

ASE complexity by the number of iterations. Moreover, as

we discuss in Section III, the proposed algorithmic framework
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