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Abstract

Although progress has been made for text-to-image syn-
thesis, previous methods fall short of generalizing to unseen
or underrepresented attribute compositions in the input text.
Lacking compositionality could have severe implications for
robustness and fairness, e.g., inability to synthesize the face
images of underrepresented demographic groups. In this
paper, we introduce a new framework, StyleT2I, to improve
the compositionality of text-to-image synthesis. Specifically,
we propose a CLIP-guided Contrastive Loss to better dis-
tinguish different compositions among different sentences.
To further improve the compositionality, we design a novel
Semantic Matching Loss and a Spatial Constraint to identify
attributes’ latent directions for intended spatial region ma-
nipulations, leading to better disentangled latent representa-
tions of attributes. Based on the identified latent directions of
attributes, we propose Compositional Attribute Adjustment
to adjust the latent code, resulting in better compositionality
of image synthesis. In addition, we leverage the {5-norm
regularization of identified latent directions (norm penalty)
to strike a nice balance between image-text alignment and
image fidelity. In the experiments, we devise a new dataset
split and an evaluation metric to evaluate the compositional-
ity of text-to-image synthesis models. The results show that
StyleT2I outperforms previous approaches in terms of the
consistency between the input text and synthesized images
and achieves higher fidelity.

1. Introduction

Text-to-image synthesis is a task to synthesize an image
conditioned on given input text, which enables many down-
stream applications, such as art creation, computer-aided
design, and training data generation for augmentation. Al-
though progress has been made for this task, the composition-
ality aspect is overlooked by many previous methods [39].
As shown in Fig. 1, the input text “he' is wearing lipstick”
describes an intersectional group [3] between two attributes—

In this work, the gender and gender pronouns denote the visually
perceived gender, which does not indicate one’s actual gender identity.
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Figure 1. When the text input contains underrepresented com-
positions of attributes, e.g., (he, wearing lipstick), in the dataset,
previous methods [30,51,64] incorrectly generate the attributes with
poor image quality. In contrast, StyleT2I achieves better composi-
tionality and high-fidelity text-to-image synthesis results.

“he” and “wearing lipstick,” which is underrepresented in a
face dataset [18]. The previous approaches [30,51,64] fail
to correctly synthesize the image, which could be caused by
overfitting to the overrepresented compositions, e.g., (“she”,
“wearing lipstick™) and (“he”, not “wearing lipstick”), in the
dataset. This leads to severe robustness and fairness issues
by inheriting biases and stereotypes from the dataset. There-
fore, it is imperative to improve the text-to-image synthesis
results in the aspect of compositionality.

The crux of the compositionality problem is to prevent
models from simply memorizing the compositions in the
training data. First, in terms of the objective function, some
previous methods [64,65] simply minimize the feature dis-
tance between pairwise matched image and text, leading
to poor generalizability. In contrast, we propose a CLIP-
guided Contrastive Loss to let the network better distinguish
different compositions among different sentences, in which
CLIP (Contrastive Language—Image Pre-training) [47] is pre-
trained on large-scale matched image-text pairs as a foun-
dation model [2]. Second, the compositional text-to-image
model needs to be sensitive to each independent attribute
described in the text. Most previous methods [30,68,71,75]
mainly resort to attention mechanism [60], which focuses
more on the correspondence between words and image fea-
tures but falls short of separating individual attributes from
a composition. Unlike previous approaches, our key idea
is to identify disentangled representations [6,14] in the la-



tent space of a generative model, where each disentangled
representation exclusively corresponds to one attribute in
the dataset. By leveraging the disentangled representations
of different attributes, we can improve the compositionality
by ensuring that each attribute described in the sentence is
correctly synthesized.

Motivated by these ideas, we present StyleT2I, a novel
framework to improve the compositionality of text-to-image
synthesis employing StyleGAN [19]. In specific, we propose
a CLIP-guided Contrastive Loss to train a network to find
the StyleGAN’s latent code semantically aligned with the
input text and better distinguish different compositions in
different sentences. To further improve the composition-
ality, we propose a Semantic Matching Loss and a Spatial
Constraint for identifying attributes’ latent directions that
induce intended spatial region manipulations. This leads to a
better disentanglement of latent representations for different
attributes. Then we propose Compositional Attribute Adjust-
ment to correct the wrong attribute synthesis by adjusting
the latent code based on identified attribute directions during
the inference stage. However, we empirically found that
optimizing the proposed losses above can sometimes lead to
degraded image quality. To address this issue, we employ
norm penalty to strike a nice balance between image-text
alignment and image fidelity.

To better evaluate the compositionality of text-to-image
synthesis, we devise a test split for the CelebA-HQ [18]
dataset, where the test text only contains unseen composi-
tions of attributes. We design a new evaluation metric for
the CUB [61] dataset to evaluate if the synthesized image
is in the correct bird species. Extensive quantitative results,
qualitative results, and user studies manifest the advantages
of our method on both image-text alignment and fidelity for
compositional text-to-image synthesis.

We summarize our contributions as follows: (1) We
propose StyleT2I, a compositional text-to-image synthesis
framework with a novel CLIP-guided Contrastive Loss and
Compositional Attribute Adjustment. To the best of our
knowledge, this is the first text-to-image synthesis work that
focuses on improving the compositionality of different at-
tributes. (2) We propose a novel Semantic Matching Loss and
a Spatial Constraint for identifying attributes’ latent direc-
tions that induce intended variations in the image space, lead-
ing to a better disentanglement among different attributes.
(3) We devise a new test split and an evaluation metric to bet-
ter evaluate the compositionality of text-to-image synthesis.

2. Related Work

Text-to-Image Synthesis Many previous works [8,15,25,29,
30,32,46,48,50,58,68,70-73,75] have studied text-to-image
synthesis. DALL-E [48] trains dVAE [58] that autoregres-
sively predicts the image tokens on a large-scale dataset.
Zhang et al. [71] use cross-modal contrastive loss on real

image-text and fake image-real image pairs to adversarially
train the conditional GAN. In contrast, StyleT2I's CLIP-
guided Contrastive Loss enjoys a simpler training scheme
by using the pretrained CLIP as a conditional discriminator
to contrast fake image-text pairs. While DAE-GAN [51]
extracts aspects from the language with the attention mech-
anism to improve image-text alignment, StyleT2I identi-
fies attribute’s latent directions and explicitly manipulates
the latent code with proposed Compositional Attribute Ad-
Jjustment, which is more interpretable. TediGAN [64,65]
uses pretrained StyleGAN [19] as the generator and trains a
text encoder by deterministically minimizing the feature dis-
tances between paired image and text in either StyleGAN’s
latent space [64] or CLIP’s feature space [65], which suffers
from memorizing the dataset’s compositions. TediGAN also
needs to conduct a manual analysis to find the layer-wise
control for each attribute. In comparison, StyleT2I auto-
matically finds disentangled latent directions for different
attributes with a novel Semantic Matching Loss and a Spatial
Constraint. Wang et al. [62] perform text-to-face synthesis
based on attribute’s latent direction identified by using addi-
tional attribute labels as supervision, whereas StyleT2I does
not need additional attribute labels. Tan et al. [57] focus
on the compositionality problem for multi-object scene im-
age synthesis. Very recently, Park et al. [39] propose a new
benchmark, revealing that many previous methods suffer
from the compositionality problem, which motivates us to
propose StyleT2I to address this issue.

Disentangled Representation Unsupervised disentangled
representation learning focuses on training generative mod-
els [11,24] with different latent dimensions interpreting inde-
pendent factors of data variations, and most of such models
are based on VAE [5,14,21,23,26] and GAN [43,63], en-
abling many downstream applications [27,31,55]. However,
Locatello et al. [35] show that unsupervised disentanglement
is impossible without inductive bias or supervision. Zhu et al.
[76] modify the generative model’s architecture with an ad-
ditional loss to improve spatial constriction and variation
simplicity. Some supervised disentanglement methods use a
pre-trained classifier [53], regressor [77], or multi-attribute
annotation [1] as the full supervision to identify latent at-
tribute directions. In contrast, StyleT2I finds disentangled
attribute directions in the unmodified StyleGAN’s latent
space based on the supervision from text, which has a much
lower annotation cost than multi-attribute labels.

3. Overview of StyleT2I

Figure 2 gives an overview of our StyleT2I framework.
Unlike most previous end-to-end approaches [51,68,71,75],
we leverage a pre-trained unconditional generator, Style-
GAN [19], and focus on finding a text-conditioned latent
code in the generator’s latent space that can be decoded into
a high-fidelity image aligned with the input text.
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Figure 2. An overview of StyleT2I. The Text-to-Direction module
takes a text t and a random latent code z as inputs and outputs a
sentence direction s to edit z, resulting in a text-conditioned latent
code zs = z + s in StyleGAN’s latent space for image synthesis.
The Text-to-Direction module is trained with novel CLIP-guided
Contrastive Loss (Sec. 4.1) with norm penalty employed (Sec. 4.2).
During the inference stage (lower branch), Compositional Attribute
Adjustment (Sec. 5.3) is performed by adjusting s to s’, leading to
better compositionality.

To achieve this, in Sec. 4, we present a Text-to-Direction
module (see Fig. 2) trained with a novel CLIP-guided Con-
trastive Loss for better distinguishing different compositions
(Sec. 4.1) and a norm penalty (Sec. 4.2) to preserve the high
fidelity of the synthesized image.

To further improve the compositionality of the text-to-
image synthesis results, in Sec. 5, we propose a novel Se-
mantic Matching Loss (Sec. 5.1) and a Spatial Constraint
(Sec. 5.2) for identifying disentangled attribute latent direc-
tions, which will be used to adjust the text-conditioned latent
code during the inference stage (Sec. 5.3) with our novel
Compositional Attribute Adjustment (CAA). The pseudocode
of the complete algorithm is in Appendix A.l.

4. Text-conditioned Latent Code Prediction

As many previous works [42,53,54,69,77] show that the
latent direction in StyleGAN’s latent space can represent
an attribute—traversing a latent code along the attribute’s
latent direction can edit the attribute in the synthesized im-
age, we hypothesize that there exists a latent direction that
corresponds to the composition of multiple attributes de-
scribed in the input text, e.g., “woman” and “blond hair”
attributes in text “the woman has blond hair.” Therefore,
to find a text-conditioned latent code in a pre-trained Style-
GAN’s latent space, we propose a Text-to-Direction module
that takes the text t and a randomly sampled latent code z
from the latent space of the pre-trained StyleGAN as input.
The output is a latent direction s, dubbed sentence direction,
to edit the latent code z, resulting in the text-conditioned
code zs = z + s. As a result, zg is fed into the StyleGAN
generator (3 to synthesize the image I = G/(zs).

4.1. CLIP-guided Contrastive Loss

The Text-to-Direction module should predict the sentence
direction that is aligned with the input text and avoid simply

memorizing the compositions in the training data. To achieve
this, we leverage a foundational model CLIP [56] pre-trained
on a large-scale dataset with matched image-caption pairs
to learn a joint embedding space of text and image, as a
conditional discriminator. We propose a novel CLIP-guided
Contrastive Loss based on CLIP and contrastive loss [4] to
train the Text-to-Direction module. Formally, given a batch
of B text {t;}2 , sampled from the training data and the
corresponding fake images I;, we compute the CLIP-guided
Contrastive Loss of the i-th fake image as:

exp(cos(Egyip (1), Eip(t)))
ZjB;éi exp(cos(Ecrp (L), Eip(t5))) 7
ey
where Ejp and EEX, denote the image encoder and text
encoder of CLIP, respectively. cos(-, -) denotes the cosine
similarity. CLIP-guided Contrastive Loss attracts paired text
embedding and fake image embedding in CLIP’s joint fea-
ture space and repels the embedding of unmatched pairs. In
this way, the Text-to-Direction module is trained to better
align the sentence direction s with the input text t. At the
same time, CLIP-guided Contrastive Loss forces the Text-to-
Direction module to contrast the different compositions in
different texts, e.g., “he is wearing lipstick” and “she is wear-
ing lipstick,” which prevents the network from overfitting to
compositions that predominate in the training data.

4.2. Norm Penalty for High-Fidelity Synthesis

Econtras (Iz) = - IOg

However, the experimental results (Fig. 7) show that min-
imizing the contrastive loss alone fails to guarantee the fi-
delity of the synthesized image. We observe that it makes
the Text-to-Direction module predict s with a large ¢5 norm,
resulting in zg shifted to the low-density region in the latent
distribution, leading to degraded image quality. Therefore,
we penalize the 5 norm of sentence direction s when it
exceeds a threshold hyperparameter 6:

Loorm = max(||s||2 — 6, 0). ()

Our ablation study (Fig. 7) shows that adding the norm
penalty strikes a nice balance between the text-image align-
ment and quality.

To summarize, the full objective function for training
the Text-to-Direction module is:

‘Cs = Lcomras + Enorm- (3)
5. Compositionality with Attribute Directions

To further improve the compositionality, we first identify
the latent directions representing the attributes with a novel
Semantic Matching Loss (Sec. 5.1) and a Spatial Constraint
(Sec. 5.2). Then, we propose Compositional Attribute Ad-
Jjustment (Sec. 5.3) to adjust the sentence direction by the
identified attribute directions to improve the compositional-
ity of text-to-image synthesis results.
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Figure 3. Identifying disentangled attribute directions by training
an Attribute-to-Direction module with a Semantic Matching Loss
(Lsemantic) and a Spatial Constraint (Lgpagial)-

5.1. Identify Attribute Directions via a Semantic
Matching Loss

To identify the latent directions of attributes existing in
the dataset, we first build a vocabulary of attributes, e.g.,
“smiling,” “blond hair,” attributes in a face dataset, where
each attribute is represented by a word or a short phrase.
Then, we extract the attributes from each sentence in the
dataset based on string matching or dependency parsing. For
example, “woman” and “blond hair” attributes are extracted
from the sentence “the woman has blond hair.”

Then, we present an Attribute-to-Direction module (see
Fig. 3) that takes the random latent code z and word embed-
ding of attributes t* sampled from the attribute vocabulary
as the inputs, outputting the attribute direction a. To en-
sure that a is semantically matched with the input attribute,
we propose a novel Semantic Matching Loss to train the
Attribute-to-Direction module. Concretely, a is used to edit
z to obtain the positive latent code z;,; = z + a and neg-
ative latent code z;,, = z — a. z is used to synthesize
the positive image I7,; = G(zy,) that can reflect the seman-
tic meaning of the attribute, e.g., the smiling face in Fig. 3.
While zf, = G(zg,,) is used to synthesize the negative im-
age It., = G(zy,,) that does not contain the information of
the given attribute, e.g., the not smiling face in Fig. 3. Based
on the triplet [52] of (t“, If, IL.,), the Semantic Matching
Loss is computed as:

Lsemantic = max(cos(Eénﬁ‘%P(Igeg), chp(t?))

— cos(Egyip (L), Ectip(t9)) + @, 0),

pos

“)

where « is a hyperparameter as the margin. Lgemanc attracts
attribute text embedding and positive image embedding and
repels the attribute text embedding against negative image
embedding in CLIP’s feature space, rendering the attribute
direction a semantically matched with the attribute.

5.2. Attribute Disentanglement with a Spatial Con-
straint

However, the Semantic Matching Loss cannot ensure that
the given attribute is disentangled with other attributes. For
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Figure 4. Spatial Constraint (Lspasiat) to train Attribute-to-Direction
module. We compute the pixel-level difference between the positive
and negative image to measure the changing region on the image
space (red: high pixel differences; blue: low pixel variations).
Lpaial Supervises the pixel-level differences by the mask (obtained
from a weak-supervised segmentation method) of the intended
region (e.g., hair) for the given attribute (e.g., “blond hair”) to
suppress changes on other unintended areas (e.g., mouth), leading
to better disentanglement among different attributes.

example, in Fig. 4, while the Attribute-to-Direction module
is expected to predict an attribute direction of “blond hair,
the mouth region is also changing. To mitigate this issue, we
propose a novel Spatial Constraint as an additional loss to
train the Attribute-to-Direction module. Our motivation is to
restrict the spatial variation between the positive and negative
images to an intended region, e.g., the hair region for the
“blond hair” attribute. To achieve this, we capture the spatial
variation by computing the pixel-level difference If; =
> Mpos — Iieg|> Where c denotes image channel dimension.
Then, min-max normalization is applied to rescale its range
to 0 to 1, denoted as I;;. We send the positive image to a
weakly-supervised (i.e., supervised by attributes extracted
from text) part segmentation method [17] to acquire the
pseudo-ground-truth mask M® (Sec. 6.2), e.g., hair region
mask in Fig. 4. Finally, Spatial Constraint is computed as:

bl

Lpatial = BCE(Tgg, M), Q)

where BCE denotes binary cross-entropy loss. Minimizing
Lipaiial Will penalize the spatial variations out of the pseudo-
ground-truth mask. In this way, the Artribute-to-Direction
module is forced to predict the attribute direction that can
edit the image in the intended region.

In addition, similar to the norm penalty used for Text-to-
Direction module, we also add it here to ensure the image
quality. As a summary, the full objective function for train-
ing the Attribute-to-Direction module is:

£a = Esemantic + Acspatial + Enorm~ (6)

5.3. Compositional Attribute Adjustment

After training the Attribute-to-Direction module, we pro-
pose novel Compositional Attribute Adjustment (CAA) to
ensure the compositionality of the text-to-image synthesis
results. The key idea of Compositional Attribute Adjustment



is two-fold. First, we identify the attributes that the sentence
direction s incorrectly predicts based on its agreement with
attribute directions. Second, once we identify the wrongly
predicted attributes, we add these attribute directions as the
correction to adjust the sentence direction.

Concretely, during the inference stage, as described in
Sec. 4, we first sample a random latent code z and send it
to Text-to-Direction module along with the input text t to
obtain the sentence direction s. At the same time, we also
extract K attributes {t¢}X | from the sentence t and then
feed it into the Attribute-to-Direction module along with
the random latent code z to obtain the attribute directions
{a;} X ,. Here K is not a hyperparameter but is decided by
the number of attributes described in the sentence, and the
same z is used as the input for both the Text-to-Direction
module and the Attribute-to-Direction module. Based on the
attribute directions, we adjust the sentence direction s to s':

a;

|2’

A ={a; | cos(a;,s) <0}, s =s+ Z (7

a; €A

where cos(+, -) denotes cosine similarity and s’ stands for
the attribute-adjusted sentence direction. A is a set of at-
tribute directions that have a less or equal to zero cosine
similarity with the sentence direction. When cos(a;, s) < 0,
the sentence direction s is not agreed with the i-th attribute
direction a;, indicating that s fails to reflect the i-th attribute
in the input text. By adding the ¢-th attribute direction II;W’
the adjusted sentence direction s’ is corrected to reflect the
i-th attribute. Then, it replaces s to edit the latent code z
to obtain the new text-conditioned code zs = z + s’ (lower
branch in Fig. 2), which is used to synthesize the final image,
enhancing compositionality of the text-to-image synthesis.

6. Experiments
6.1. Experiment Setup

Dataset We use two datasets to conduct the experiments.
The first dataset is CelebA-HQ [18], which contains 30,000
celebrity face images. We use the text annotations provided
by Xia et al. [64], where each text description is based on the
facial attributes, e.g., “She is wearing lipstick.” We remove
the texts that mention the “attractiveness” attribute due to the
ethical concern [45]. The second dataset is CUB [61], which
contains 11,788 bird images in 200 bird species. We use the
text annotations collected by Reed ef al. [49], where each
sentence describes the fine-grained attributes of the bird.

Test Split for Compositionality Evaluation To better eval-
uate the compositionality of the text-to-image synthesis re-
sults, we carefully choose the test split on each dataset.
We observe that about half of the texts in the standard test
split [28] of CelebA-HQ dataset contain compositions of
attributes seen in the training split. Therefore, we exclude

these texts with seen compositions from the test split. As
a result, the texts in the new test split only contain the un-
seen compositions of attributes, which can better evaluate
the compositionality results. Proposed Split (PS) [66,67] is a
CUB dataset split to benchmark the compositional zero-shot
learning by splitting the dataset based on bird species. We
choose the “unseen test” in PS as the test split, which can
evaluate the model’s capability of synthesizing images in 50
unseen bird categories.

Evaluation Metrics

FID. We use FID [13] to evaluate image quality results.
Lower values indicate better image quality.

R-Precision. We use R-Precision [68] that evaluates the top-1
retrieval accuracy as the major evaluation metric in image-
text alignment. We follow [39] to use the CLIP finetuned
on the whole dataset (including the test split) to compute
the R-Precision results, which has been shown to be more
aligned with human evaluation results. Higher R-Precision
values indicate better alignment between text and image.
Bird Species Classification Accuracy. As the models are ex-
pected to synthesize birds in unseen species on CUB dataset,
we regard that a model that can more accurately synthesize
birds in unseen bird species has better compositionality for
disentangling different attributes from seen bird species. To
this end, we propose a new evaluation metric—bird species
classification accuracy for evaluating compositionality. Con-
cretely, we finetune a ResNet-18 [12] on the test split of CUB
dataset with real images and bird species labels to classify 50
bird species. In evaluation, the test split contains (text, bird
species label) pairs, where text is used to synthesize images.
We use the finetuned classifier to predict bird species of the
synthesized image. We report the top-1 accuracy based on
the prediction and bird species labels (Tab. 2). However,
a text may not contain enough discriminative information
for classifying the bird species. Therefore, we train a text
classifier, implemented as a GRU followed by an MLP, (last
row in Tab. 2) that directly takes the text as input to predict
the bird species. We train this text classifier on 80% of texts
in the test split, and we evaluate its classification accuracy
on the rest 20%, which can serve as the upper bound for the
text-conditioned bird species classification results.

User Study. The quantitative evaluation metrics above can-
not substitute human evaluation. Therefore, we invite 12
subjects to conduct the user study on the two datasets to
evaluate image quality and text alignment. Following [71],
each question contains synthesized images from different
methods conditioned on the same text input. Participants are
invited to rank the synthesized images from different meth-
ods based on the image quality and image-text alignment.
More details of the user study, e.g., user interface and use of
human subjects, are in Appendix E.

Comparison Methods We compare with four recent text-
to-image synthesis methods—ControlGAN [30], DAE-



CelebA-HQ CUB

R-Precision 1 FID | | R-Precision?T FID |
ControlGAN 0.435 31.38 | 0.137 29.03
DAE-GAN 0.484 30.74 | 0.145 26.99
TediGAN-A 0.044 16.45 | 0.071 16.38
TediGAN-B 0.306 1546 | 0.121 16.79
StyleT2I (Ours) 0.625 17.46 | 0.264 20.53
StyleT2I-XD (Ours) ‘ 0.698 18.02 ‘ 0.350 19.19

Table 1. Text-to-Image synthesis results on CelebA-HQ [64] and
CUB [61] datasets. 1: high values mean better results. |: lower
values indicate better results.

GAN [51], TediGAN-A [64] TediGAN-B [65]. Control-
GAN focuses on controllable generation based on attention
mechanism. DAE-GAN extracts “aspects” information from
text, which is related to the attributes studied in this paper.
TediGAN-A trains a text encoder to minimize the distance
between encoded text and encoded image in StyleGAN’s
latent space. TediGAN-B uses CLIP to optimize the Style-
GAN’s latent code iteratively for each input text. For a fair
comparison, we use the official code of each comparison
method to conduct the experiments.

6.2. Implementation Details

Architecture and Hyperparameters We choose Style-
GAN2 [20] as the generator for synthesizing images in
2562 resolution. We use W+ space as the latent space,
where latent directions are more disentangled than the in-
put noise space [19]. GloVe [44] is used to obtain the
word embeddings of text, which will be used as the in-
put to Text-to-Direction and Attribute-to-Direction modules.
The two modules have the same architecture—a GRU [9]
to extract the text feature, which is concatenated with the
random latent code to send to a multi-layer perceptron
with two fully-connected layers and one ReLU activation
function [37]. We set the value # = 8 in Eq. (2) and
a = 11in Eq. (4). More details are in Appendix A.2. The
code is written in PyTorch [41] and is available at https:
//github.com/zhihengli-UR/StyleT2I.
Attributes Vocabulary and Attributes Extraction For the
vocabulary of attributes (Sec. 5.1), we use the attributes
defined in [34] (e.g., “wearing lipstick”) as the attributes
of CelebA-HQ dataset, and the attributes defined in [61]
(e.g., “red belly) as the attributes of CUB dataset. Note
that we do not use any attribute annotations. To extract
attributes from sentences, we use string matching (i.e., the
word “lipstick” in the sentence indicates “wearing lipstick”
attribute) on CelebA-HQ dataset. We use part-of-speech
tag and dependency parsing implemented in spaCy [16] to
extract attributes from the text on CUB dataset. More details
are shown in Appendix A.3.

Pseudo-Ground-Truth Mask For the Spatial Constraint
(Sec. 5.2), we obtain the pseudo-ground-truth mask based on
a weakly-supervised part segmentation method [17], where

Method Accuracy 1
ControlGAN 0.071
DAE-GAN 0.056
TediGAN-A 0.063
TediGAN-B 0.036
StyleT2I w/o (CAA) (Ours) 0.115
StyleT2I (Ours) 0.125
StyleT2I-XD (Ours) 0.142

Text Classifier (upper bound) 0.204

Table 2. Unseen bird species classification results. Our method
outperforms other methods, and the results are closer to the upper
bound, which demonstrates that StyleT2I can better synthesize
unseen bird species based on the input text description, indicating
better compositionality of our method.

we train image classier supervised by attributes extracted
from text. More details are presented in Appendix A.4.
Finetune CLIP We empirically find that directly using the
CLIP trained on the original large-scale dataset [47] per-
forms poorly for the proposed losses (Egs. (1) and (4)) on
two datasets. We suspect the reason is the domain gap be-
tween in-the-wild images in the large-scale dataset [47] and
face or birds images with fine-grained attributes. Therefore,
we finetune the last few layers of CLIP on the training splits
of CelebA-HQ and CUB datasets, respectively. Note that the
CLIP used for training differs from the one used for evalu-
ating R-Precision, where the latter is trained on the whole
dataset. More details are in Appendix A.5.

Cross-dataset Synthesis (StyleT2I-XD) Since StyleT2I is
based on a pretrained StyleGAN generator, we can train the
StyleGAN generator on a different image dataset with more
image samples and diversity to further improve the results.
We denote this method as StyleT2I-XD. Concretely, we
pretrain StyleGAN on FFHQ [19] dataset, a face dataset with
more variation on various attributes (e.g., age), to synthesize
images conditioned on the text from CelebA-HQ dataset.
Similarly, we pretrain StyleGAN on NABirds [59] dataset
with more bird species (the unseen bird species in the test
split are still excluded) and image samples to synthesize
images conditioned on the text from CUB dataset.

6.3. Results on Text-to-Image Synthesis

Quantitative Results The quantitative results of text-to-
image synthesis on CelebA-HQ and CUB datasets are shown
in Tab. 1. In terms of R-Precision, our StyleT2I outperforms
other comparison methods by a large margin, showing that
our method has a better compositionality to synthesize faces
in novel compositions and birds in novel bird species. Al-
though TediGAN-A is also based on StyleGAN, it performs
poorly on both datasets, which suggests that deterministi-
cally minimizing the distance between the latent codes of
text and image in StyleGAN’s latent space leads to poor gen-
eralizability to the unseen compositions. The bird species



Text ControlGAN DAE-GAN

This woman wears
lipstick. She has
receding hairline,
and bags under
eyes.

This man has
brown hair, straight
hair, goatee, and
bangs.

The bird has a long,
pointed orange bill,
a black eyepatch, a
white crown, and
black primaries.

The underside of
this bird is
completely white,
while the top is
blue.

TediGAN-A

< 1S,

TediGAN-B

(b) Text-to-Image Synthesis Results on CUB

StyleT2l (Ours) StyleT2I-XD (Ours) ground-truth

Figure 5. Qualitative comparison of text-to-image synthesis on CelebA-HQ and CUB datasets. Different attributes in the text are highlighted

in different colors. More examples are in Appendix D.
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Image-Text Ali on CUB Image Quality on CUB
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ControlGAN DAE-GAN TediGAN-A TediGAN-B StyleT2I  ControlGAN DAE-GAN TediGAN-A TediGAN-B StyleT2I

0.0%

Figure 6. User study results on CelebA-HQ and CUB datasets.

classification results are shown in Tab. 2. Our StyleT2I out-
performs other methods in the accuracy results by a large
margin, which is also closer to the text classifier accuracy up-
per bound. This indicates that StyleT2I can more accurately
synthesize the unseen bird species based on the text de-
scription, demonstrating better compositionality of StyleT2I.
Concerning FID, our method achieves strong image quality
results, which are also comparable with TediGAN. The FID
results also show the advantage of StyleGAN-based methods
(TediGAN and our StyleT2I) over methods with customized
generator architectures (i.e., ControlGAN and DAE-GAN)
for achieving high-fidelity synthesis results.

Qualitative Results We also show qualitative results in
Fig. 5. ControlGAN and DAE-GAN, although they reflect
most attributes in the text, achieve poor images quality re-
sults. For example, in the first row of Fig. 5, they both
exaggerate the “receding hairline” as bald. Although Te-

R-Precision T FID |

w/o CLIP-guided Contrastive Loss 0.205 18.64
w/o norm penalty 0.333 23.86
w/o Spatial Constraint 0.246 19.17
w/o Compositional Attribute Adjustment 0.238 19.17
w/o finetune CLIP 0.145 19.91
Full Model 0.264 19.19

Table 3. Ablation Study of StyleT2I on CUB dataset. Top-2 results
are bolded and the worst results are underlined.

diGAN can synthesize high-quality images, the images are
barely aligned with the text, e.g., wrong gender in the sec-
ond row of Fig. 5. In contrast, the synthesized images by
StyleT2I are in high fidelity and aligned with the attributes
in text, e.g., “orange bill” in Fig. 5 (b).

User Study The user study results are shown in Fig. 6. Com-
pared with other methods, StyleT2I receives higher ranking
scores from the human participants in terms of both image-
text alignment and image quality, which further manifests
the advantages of our method.

Cross-dataset Synthesis Our cross-dataset text-to-image
synthesis (StyleT2I-XD) can further improve the results. The
quantitative results are shown in Tabs. | and 2. StyleT2I-XD
achieves even stronger R-Precision and bird species clas-
sification accuracy results, demonstrating the effectiveness
of cross-dataset training. Although StyleT2I-XD does not
improve FID values, our qualitative results in Fig. 5 show
that StyleT2I-XD achieves photo-realistic image quality.

6.4. Ablation Studies

We conduct ablation studies to verify the effectiveness of
each component of our method. More ablation study results



w/o w/

Norm Penalty Norm Penalty ground-truth

This person has pointy nose,
bangs, pale skin, and big lips. She &

The bird has a black crown,
belly, wings, the color covers its
entire body.

Figure 7. Ablation study of norm penalty for improving image
quality. More examples are shown in Appendix D.

are included in Appendices B and C.

CLIP-guided Contrastive Loss An alternative loss to
Eq. (1) is minimizing the cosine distance between the paired
fake image feature and text feature in CLIP’s feature space,
which is initially proposed in StyleCLIP [42] and used in
TediGAN-B [65] for text-to-image synthesis. The result of
this alternative loss is shown on the first row of Tab. 3. Al-
though it slightly improves the FID result, the R-Precision
result significantly decreases, demonstrating the necessity of
contrasting unmatched (image, text) pairs to distinguish the
difference of compositions better.

Norm Penalty As shown in Tab. 3 and Fig. 7, Although it
lowers the performance in terms of R-Precision, using the
proposed norm penalty can effectively improve the FID re-
sults and perceptual quality, striking a better balance between
image-text alignment and fidelity.

Spatial Constraint The R-Precision results in Tab. 3 show
that Spatial Constraint can improve the alignment between
text and image. The qualitative results in Fig. 8 show that
Spatial Constraint effectively constrains the spatial varia-
tion within the intended region, e.g., hair region for “blond
hair” attribute. These more disentangled attribute directions
help StyleT2I achieve better R-Precision performance by
adjusting the sentence direction during the inference stage.

Compositional Attribute Adjustment Tab. 3 shows that
Compositional Attribute Adjustment (CAA) improves the R-
Precision results and achieves a similar FID result. In Tab. 2,
CAA can also improve the unseen bird species classification
results, demonstrating its effectiveness for improving com-
positionality. In Fig. 9, we show that (CAA) can not only
detects wrong attributes, e.g., “brown hair”, but also correct
these wrong attributes by adjusting the sentence direction
based on the identified attribute directions.

Finetune CLIP As introduced in Sec. 6.2, we finetune the
CLIP on the training split of the dataset. The R-Precision
results in Tab. 3 show that finetuning can greatly improve per-
formance. Although trained on a large-scale dataset, the re-
sults suggest that CLIP will underperform for text-to-image
synthesis with fine-grained attributes, proving the necessity
to finetune on the dataset for better results.

positive negative pixel positive negative pixel
image image difference image image difference

w/o
Spatial
Constraint

w/
Spatial
Constraint

(a) Attribute: blonde afr (b) Attibute: white nape

Figure 8. Ablation study of Spatial Constraint for identifying
attribute directions. Without our Spatial Constraint (first row),
there are also changes in the other regions (e.g., brows and mouth
regions for the blond hair attribute; the wings region for the white
nape attribute). Our Spatial Constraint (second row) successfully
suppresses the variations in other unintended regions, leading to
better disentanglement among different attributes.

after CAA

Text before CAA

Adjusted attributes:
brown hair,
bushy eyebrows,

This person has brown hair,
bushy eyebrows, high
cheekbones, and pointy
nose. She is wearing
lipstick.

High cheekbones,
wearing lipstick

The bird is white with a
black head and orange
beak.

Adjusted attribute:
black head

s ity 1&?

Figure 9. Compositional Attribute Adjustment (CAA) automatically
detect the attributes that are failed to be synthesized (highlighted in
red) and adjust the sentence direction with the attribute directions to
improve the compositionality of the text-to-image synthesis results.

7. Conclusion

We propose StyleT2I, a new framework for achieving
compositional and high-fidelity text-to-image synthesis. We
propose a novel CLIP-guided Contrastive Loss to better dis-
tinguish different compositions, a Semantic Matching Loss
and a Spatial Constraint to identify disentangled attribute di-
rections, and Compositional Attribute Adjustment to correct
wrong attributes in the synthesis results. StyleT2I outper-
forms previous approaches in terms of image-text alignment
and achieves image fidelity. Admittedly, our work has some
limitations. For example, our Spatial Constraint is not help-
ful to disentangle a few attributes that share the same spatial
region, e.g., “bushy eyebrow” and “arched eyebrow.” One
potential negative societal impact is that StyleT2I’s high-
fidelity synthesis may be maliciously used for deception.
We will mitigate it by asking the users to follow ethical
principles when releasing the model. A promising future
direction for StyleT2I is complex scene images synthesis for
disentangling different objects and backgrounds.
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Appendix
A. Implementation Details

A.1. Complete Algorithm

Training the StyleT2I framework contains two steps—
Step 1: train the Text-to-Direction module (Algorithm 1);
Step 2: train the Attribute-to-Direction module (Algo-
rithm 2). The pseudocode of the inference algorithm of
StyleT2I for synthesizing images conditioned on the given
text is shown in Algorithm 3.

Algorithm 1: Train 7ext-to-Direction module

Input: G: pretrained generator, M;: training
iterations, 7 = {t}: training set of text.
Output: Fi.\: Text-to-Direction module
1 fork:1...M;do
2 z ~ W+ // random latent code
sampled from W+ space
3 t~T // text sampled from the
training set

4 s = Fiext(2, t) // predict sentence

direction
5 zs =7+s // text-conditioned code
6 I=0G(z) // synthesize image
7 L= Econtras(Iat) + Enorm(s) // compute
loss

8 Fiext < Adam(V L)

9 return Fiey

// update Frext

A.2. Hyperparameters and Network Architecture

We pretrain StyleGAN2 on each dataset (CelebA-HQ [18]
and CUB [61]) with 300,000 iterations. In CLIP [47], we
use ViT-B/32 [10] architecture as the image encoder. We
use Adam optimizer [22] with 10~* learning rate to train
both modules. The Text-to-Direction module is trained with
60,000 iterations and the batch size is 40. The Attribute-to-
Direction module is trained with 1000 iterations with batch
size of 2. The architectures of Text-to-Direction module and
Attribute-to-Direction module are shown in Fig. 10.

-
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sentence

(a) detailed architecture of Text-to-Direction module

i
1+ random

| latent code
i

'
sentence | | smiling

direction |
| attribute £
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She has mouth
slightly open,
arched eyebrows,
and wavy hair.
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direction

Attribute-to-Direction

'
! (b) detailed architecture of Attribute-to-Direction module

Figure 10. Detailed architectures of (a) Text-to-Direction module
and (b) Attribute-to-Direction module.
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Algorithm 2: Train Attribute-to-Direction module

Input: V = {t}: attribute vocabulary, G:
pretrained generator, S: weakly-supervised
segmentation network, M, training
iterations

Output: F,y,: Attribute-to-Direction module

1 form:1...M,do
2 z ~ W+ // random latent code
sampled from W+ space

3 t*~3)Y // attribute sampled from
vocabulary

4 a= Fuu(z,t*) // predict attribute
direction

5 zo =Z+a // positive latent code

6 Zpe =Z—a // negative latent code

7 Lo = G(Zf.?os) // positive image

8 Ihee = G(Zhee) // negative image

9 Ma’ = S(I;()S)

// pseudo-ground-truth mask
L = 22c Mpos — Iieg // pixel-level
difference

10

diff = max(1%,)—min(1%;)
normalization
»Ca = »Csemantic (Igow Igeg’ ta) +

Cspatial(igiffa Ma) + £nonn(a)
loss
-Fattr {— Adam(V]: La)

attr

1 // min-max

12
// compute

13 // update Fater

14 return F,,

A.3. Attribute Extraction

On CelebA-HQ dataset, we use string matching to extract
attributes from the text. For example, the word “bangs” in
the sentence indicates the “bangs” attribute. On CUB dataset,
we extract attributes based on part-of-speech (POS) tags and
dependency parsing implemented in spaCy [16]. Concretely,
given a text, we extract adjectives and nouns based on POS
tags. Then, we leverage their dependency relations to extract
the attributes. For example, in the text “the bird has a yellow
breast,”, “yellow” and “breast” has the adjectival modifier
(amod) dependency relation, which indicates the “yellow
breast” attribute. We also use other dependency relations to
deal with sentences with more complex sentence structures.
For example, in the text “the bird has a brown and yellow
breast,” “yellow” and “brown” have the “conjunct” (conj) de-
pendency relation, which indicates two attributes—"‘yellow
breast” and “brown breast.”



Algorithm 3: Inference algorithm of StyleT21I

Input: G: pretrained generator, t: input text,
{t2}K | : extracted K attributes from text,
Fiext: Text-to-Direction module, Fy,:
Attribute-to-Direction module
Output: I: synthesized image conditioned on the
input text
1z~W+ // random latent code
sampled from W+ space
s = Fiext(z,t) // predict sentence
direction
A = {a; | cos(a;,s) < 0}. // set of
attributes need to be adjusted

N

w

4 ¢ =S+Zai,eAH:ﬁ // adjust sentence
direction

525 =2z+s // text-conditioned code

6 I=0G(z) // synthesize image

7 return 1

A 4. Pseudo-ground-truth Mask

We use [17] as a weakly-supervised part segmentation net-
work to obtain pseudo-ground-truth masks. The network is a
classifier supervised by binary attribute labels extracted from
text. In specific, since each image is paired with multiple
texts, we use the union of attributes extracted from multiple
texts as the image’s attribute label. For example, if the image
has two captions (1) “the woman is smiling” and (2) “the
woman has blond hair,” the attribute label for this image
is (“woman”, “smiling,” and “blond hair”). Based on these
(image, binary attribute label) pairs, we train the network
with binary cross-entropy loss. After training the network,
we obtain an image’s pseudo-ground-truth mask based on its
attention map (Fig. 4 in [17]). We use Otsu method [38] to
threshold the attention map as the final pseudo mask ground-
truth. Examples of pseudo-ground-truth mask are shown in
Fig. 11.

A.S. Finetune CLIP

We finetune the last few layers of CLIP. Specifically, we
finetune the last visual resblock, “In_post,” “proj”, the last
text transformer resblock, “In_final”, “text_projection,” and
“logit_scale” in CLIP. Following [39], we use AdamW [36]
optimizer and 5 x 10~* learning rate.

When finetuning CLIP for the CLIP-guided Contrastive
Loss (Eq. 1), the objective function for finetuning is con-
trastive loss defined in [47], where we use the (real image,
text) pairs from the training split of the dataset for computing
the contrastive loss.

As reported by Zhang er al. [71], using the same model
in training and testing can skew the R-Precision results. To
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bushy eyebrows

smiling

(a) Pseudo-ground-truth mask on CelebA-HQ.

yellow breast

red throat

yellow forehead

black crown

(b) Pseudo-ground-truth mask on CUB.

Figure 11. Pseudo-ground-truth masks generated by [17] on
CelebA-HQ [18] and CUB [61] datasets. The pseudo-ground-truth
mask of the each attribute (e.g., beard) is highlighted in white.

alleviate this issue, for computing R-Precision results, we
use a CLIP model that is different from the one used in
training. We use the contrastive loss to finetune CLIP on
the whole dataset (both training and testing splits), which is
different from the CLIP used in training (finetuned on the
training split only).

When finetuning CLIP for the Semantic Matching Loss
(Eq. (4)), the objective function for finetuning is binary
cross-entropy loss. Concretely, the image’s predicted
probability of an attribute is computed by sigmoid(7 -
cos(Edip(I), EES(t2))). Here, I denotes an image. t®
denotes an attribute. 7 is the “logit_scale” parameter in CLIP
optimized during finetuning. The predicted probability is
used in binary cross-entropy to compute the loss.

B. Ablation Studies of Text-to-Image

We show more ablation studies results of text-to-image
synthesis.



R-Precision T FID |
w/o CLIP-guided Contrastive Loss 0.488 17.06
w/o norm penalty 0.736 25.75
w/o Spatial Constraint 0.607 17.45
w/o Compositional Attribute Adjustment 0.594 17.59
w/o finetune CLIP 0.344 17.79
Full Model 0.625 17.46

Table 4. Ablation study of StyleT2I on CelebA-HQ [18] dataset.
Top-2 results are bolded and the worst results are underlined.

dataset threshold (¢) R-Precision 1 FID |
8 (min) 0.625 17.46
CelebA-HQ 16 (mean) 0.815 21.35
31 (max) 0.801 25.77
8 (min) 0.264 20.53
CUB 20 (mean) 0.395 22.41
39 (max) 0.375 26.97

Table 5. Ablation study on the threshold of norm penalty (6 in
Eq. 2). Here, “min”, “mean”, and “max” stand for the minimum,
average, and maximum {5 norm of two randomly sampled latent

codes of the pretrained StyleGAN.

Results on CelebA-HQ We show the ablation study re-
sults on CelebA-HQ dataset in Tab. 4. The results are consis-
tent with the ablation study results on CUB dataset in Tab. 3,
which further proves the effectiveness of each component of
StyleT2I.

Threshold of norm penalty (/) We conduct an ablation
study on different threshold values (f) of norm penalty
(Eq. (2)). To better decide the threshold used for norm
penalty, we compute the minimum (min), mean, and maxi-
mum (max) /> norm between two random latent codes sam-
pled from W+ space of StyleGAN (sampling from W+
space is performed by feeding the sampled Gaussian noise
to the “Mapping Network™ in StyleGAN). We found that
the minimum ¢2 norm in StyleGAN trained on CelebA-HQ
and CUB datasets are 8.2 and 8.9, respectively. Therefore,
we choose # = 8 in our experiment to force the Text-to-
Direction and Attribute-to-Direction modules find the direc-
tion with the smallest norm. As results shown in Tab. 5,
although larger 6 can increase R-Precision results, it also
renders worse image quality (larger FID values). Hence, us-
ing § = 8 strikes a nice balance between image-text balance
and image quality.

Alternatives to norm penalty We also tried other alter-
natives to improve image quality. One way is using the
discriminator loss—making the synthesized image fool a
discriminator. Another approach is using the perceptual loss
to minimize the feature distance between the synthesized
and real images. As the results shown in Tab. 6, our norm
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dataset method for image quality FID |
discriminator 32.83

CelebA-HQ perceptual loss 24.98
norm penalty (Ours) 17.46

discriminator 26.25

CUB perceptual loss 29.49
norm penalty (Ours) 20.53

Table 6. Ablation study of different methods for improving image
quality.

Method R-Precision T FID |
ControlGAN 0.498 17.36
DAE-GAN 0.546 19.24
TediGAN-A 0.026 12.92
TediGAN-B 0.354 14.19
StyleT2I (Ours) 0.635 15.60

Table 7. Results on CelebA-HQ’s standard split.

penalty is the most effective way to ensure the image quality,
while other approaches produce much higher FID values
(i.e., worse image quality results).

Training Stage Regularization We create an alternative
to Compositional Attribute Adjustment— Training Stage
Regularization.” While our Compositional Attribute Ad-
Jjustment adjusts the sentence direction during the inference
stage, “Training Stage Regularization” maximizes the co-
sine similarity between the sentence direction and attribute
directions, i.e., max ), cos(s,a;), which is added as an
additional loss to Eq. 3 to regularize the Text-fo-Direction
module during the training stage. The results comparing
the “Training Stage Regularization” and Compositional At-
tribute Adjustment are shown in Tab. 8. Two methods achieve
similar FID results. However, our Compositional Attribute
Adjustment achieves better R-Precision results than “Train-
ing Stage Regularization.” We believe the reason is that
regularizing during the training stage only helps for seen at-
tribute compositions in the training set, which cannot ensure
the correct attribute prediction during the inference stage.
Therefore, our proposed Compositional Attribute Adjustment
can better improve the image-text alignment by adjusting
the results during the inference stage for text with unseen
attribute compositions.

Different z We sample three different z for each text to
compute the standard deviation of R-Precision, which is
0.008, proving that z does not have a significant effect on
the image-text alignment. The synthesized images of the
same text in various z in Fig. 12, proving the diversity of the
synthesis results.



Se has gray hair. ‘

Figure 12. Diverse results when sampling four different z.

dataset method R-Precision T FID |
Training Stage Regularization 0.604 17.56

CelebA-HQ Compositional Attribute Adjustment 0.625 17.46
CUB Training Stage Regularization 0.256 19.48
Compositional Attribute Adjustment 0.264 20.53

Table 8. Ablation study of Compositional Attribute Adjustment.
“Training Stage Regularization” stands for using attribute directions
to supervise the the sentence direction during the training stage,
which can be regarded as an alternative method to Compositional
Attribute Adjustment that uses attribute directions to adjust sentence
direction during the inference stage.

Results on CelebA-HQ’s standard split We also show
the results on the CelebA-HQ’s standard testing split, i.e.,
not the test split that we created for the evaluation of com-
positionality (Sec. 6.1), in Tab. 7. Most of the results are
better than the results on the new split (Tab. 1) because of the
overlap between train and test splits that allows the models
to cheat.

C. Ablation Studies of Identifying Attribute Di-
rections

We further conduct more ablation studies of identifying
attribute directions on CelebA-HQ dataset. To evaluate the
identified attribute directions, we train a ResNet-18 classi-
fier with the ground-truth attribute labels (i.e., not the labels
extracted from text) as the attribute classifier. We use this

15

Attribute Accuracy T

0.827
0.871

w/o Spatial Constraint
w/ Spatial Constraint

Table 9. Ablation study of Spatial Constraint for identifying at-
tribute directions on CelebA-HQ dataset.

margin  Attribute Accuracy
0.1 0.577
0.5 0.761
1 0.871
5 0.881
10 0.875
20 0.873

Table 10. Ablation study on the margin («) of Semantic Matching
Loss on CelebA-HQ dataset. The accuracy results are not sensitive
to the value of margin when v > 1.

attribute classifier to evaluate the synthesized positive and
negative images generated from Attribute-to-Direction mod-
ule (Fig. 3). For the positive image, its attribute ground-truth
is positive. For the negative image, its attribute ground-truth
is negative. We compute Attribute Accuracy based on the
attribute classifier’s prediction and ground-truth. Higher
Attribute Accuracy indicates a more accurate attribute direc-
tion.

Spatial Constraint The results of the ablation study on
Spatial Constraint are shown in Tab. 9, which proves that
Spatial Constraint can help the Attribute-to-Direction mod-
ule find more accurate attribute directions by leveraging the
intended region from pseudo-ground-truth mask.

Margin of Semantic Matching Loss (o) We conduct the
ablation study on the margin («) of Semantic Matching Loss
(Eq. (4)). The results in Tab. 10 show that the results are
converged when o > 1. We choose o = 1 in the main
experiments.

Alternative to Spatial Constraint An alternative ap-
proach to improve disentanglement among different at-
tributes is encouraging different attribute directions to
be orthogonal with each other in the latent space [53].
Therefore, we create an alternative approach by minimiz-
ing 37,57, H_:i’me||:j”2 when training the Attribute-to-
Direction module. The results in Tab. 11 show that this alter-
native approach hurts the accuracy performance compared
with only using the Semantic Matching Loss. In contrast, our
Spatial Constraint can greatly improve the accuracy results.
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He has blond hair.

She has double chin.

She has gray hair.

She s bald. (8 '

Figure 13. More examples of synthesis results where the input text decribes underrepresented compositions of attribute on CelebA-HQ

dataset.

Attribute Accuracy
Semantic Matching Loss only 0.827
. a; 1T a;
w/min} >, >, s Toih 0.809
w/ Spatial Constraint 0.871

Table 11. Comparison between Spatial Constraint and an alterna-

tive approach min 3, 3~ ﬁT ﬁ for disentanglement on
(4 J

CelebA-HQ dataset. Spatial Constraint achieves better results.

Alternative to Semantic Matching Loss—Contrastive
Loss Since the Text-to-Direction module and Attribute-to-
Direction module share some similarity, one may wonder if
it is feasible to use the contrastive loss to train the Astribute-
to-Direction. To this end, we adapt our CLIP-guided Con-
trastive Loss for Attribute-to-Direction module by replacing
the text input with attribute input, which attracts the embed-
dings of paired synthesized image and attribute and repels
the embeddings of mismatched pairs.

The results of comparing this alternative method and Se-
mantic Matching Loss are shown in Tab. 12. The contrastive
loss achieves poorer performance for identifying attribute
directions. The reason is that we should not repel the em-
beddings mismatched (image, attribute) pairs. For example,
we should not repel the embedding of an “smiling” image
against “man” attribute when the random latent code z can
be used to synthesize a male face image. Therefore, our
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Attribute Accuracy
Contrastive Loss + Spatial Constraint 0.669
Semantic Matching Loss + Spatial Constraint 0.871

Table 12. Ablation study of Semantic Matching Loss for identifying
attribute directions on CelebA-HQ dataset.

Semantic Matching Loss can identify the attribute directions
better since it does not repel the embeddings of mismatched
(image, attribute) pairs.

Local Direction vs. Global Direction Our Attribute-to-
Direction module predicts the attribute direction conditioned
on both input attribute and random latent code z. One may
wonder if conditioning on the random latent code is neces-
sary. Following the terms defined by Zhuang et al. [77], we
call the attribute direction conditioned on the random latent
code as “local direction,” and we name the attribute direc-
tion only conditioned on the attribute (i.e., not conditioned
on random latent code) as “global direction.” The results
comparing local direction and global direction are shown
in Tab. 13. The global direction, which predicts a single
direction for an attribute globally, achieves poor attribute
accuracy results. In contrast, our local direction method,
which takes the random latent code into the consideration,
can more accurately predict the attribute direction.



ControlGAN

This person is wearing earrings. She has big
lips, high cheekbones, arched eyebrows, bags
under eyes, and big nose. She is smiling.

This young person has wavy hair, mustache,
and sideburns.

Bird’s bealk is small and brown head is a
brownish color also wings tan and feet are
brown and short.

This small bird has a two-tone yellow and
brown breast, and a small head in
comparison to it s body.

=

DAE-GAN TediGAN-A TediGAN-B

StyleT2I  StyleT2I-XD

(b) Text-to-Image Synthesis Results on CUB

Figure 14. More examples of text-to-image synthesis results.

Attribute Accuracy

0.764
0.871

global direction
local direction (Ours)

Table 13. Ablation study of global direction vs. local direction for
identifying attribute directions on CelebA-HQ dataset.

D. More Qualitative Results

Underrepresented Compositions More examples of syn-
thesis results where the input texts describe underrepresented
compositions of attributes are shown in Fig. 13. Our method
can more accurately synthesize the image for underrepre-
sented attribute compositions with high image fidelity.

Text-to-Image Results More examples of text-to-image
synthesis results are shown in Fig. 14. Our method can
synthesize images conditioned on the text describing unseen
attribute compositions with better image-text alignment and
higher image quality.

Norm Penalty More examples of the ablation study on
norm penalty are shown in Fig. 15, which proves that norm
penalty can effectively improve the image quality.

Compositional Attribute Adjustment More examples of
the ablation study on Compositional Attribute Adjustment
(CAA) are shown in Fig. 16, which demonstrates that CAA
can automatically identify the wrong attribute predictions
and effectively correct them during the inference stage to
improve the compositionality.
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w/

Norm Penalty

w/o
Norm Penalty ground-truth

She has narrow eyes, high
cheekbones, and mouth slightly

this brilliant red bird has black
accents on wings and tail and a
short, thick beak.

Figure 15. More examples of the ablation study on norm penalty.
before CA4 after CA4

She has rosy cheeks,

narrow eyes, big lips, and Adjusted Attribute:

big nose. she

A bird with a white and Adi Attribute:

black crown and orange djusted Attribute:
black crown

bill.

Attribute Adjustment (CAA).

E. User Study

On each dataset, we randomly sample 20 sentences from
the testing split to synthesize the images for the user study.
We invite 12 participants to evaluate the image-text align-
ment and the image quality.

We request the participants to read a guideline before
conducting the user study. For evaluating the image-text



1. Please rank the alignment between the image and the given caption (1 to 5 means the "worst" *
to the "best”).

aring earrings. She is young and has bags under eyes, and big lips.

Image (d)

1 (worst) 2

3 (medium) 4

5 (best)

Image (a)
Image (b)
Image (c)
Image (d)

Image (e)

(a) User interface for ranking image-text alignment.

1. Please rank the image quality (1to 5 means the "worst" to the "best"). *

image (b)

Image (c)

1 (worst) 2 3 (medium) 4

5 (best)

Image (a)
Image (b)
Image (c)
Image (d)

Image (¢)

(b) User interface for ranking image quality.

Figure 17. User interface for user study.

alignment on face images, our guideline clarifies that the
words like “woman,” “man,” “she,” “he” denote the visually
perceived gender, which does not imply one’s real gender
identity. Since participants may not be familiar with some
terms in the birds image domain, we provide Fig. 2 in [61],
an illustration of fine-grained bird part names (e.g., nape),
in the guideline of the user study to help participants better
understand the text.

We use Google Form to collect the user study results.
The user interface for the user study is shown in Fig. 17.
The method names are not shown in the user interface. In
each question, the order of images generated from different
methods is shuffled.

The user study in this paper follows the research protocol,
whose master study received the exempt determination from
Institutional Review Board (IRB).

F. Discussion
F.1. Limitations and Future Research Directions

We honestly list some limitations of our work and discuss
some promising future research directions.

First, our attribute extraction approach (Appendix A.3) is
limited by assuming that adjectives and nouns in the text can
imply the attribute, which cannot be generalized to texts de-
scribing more complex relations in the image. For example,
the text “the earring on the left is bigger than the earring
on the right,” describes a relative relation (e.g., “bigger”),
which cannot be expressed as an attribute.

Second, based on StyleGAN, StyleT2I focuses on syn-
thesizing find-grained images in face and bird domains,
where StyleGAN has shown a great capability of synthe-
sizing high-fidelity images. However, our initial experiment
finds that StyleGAN cannot synthesize high-quality com-

18

plex scene images from MS-COCO [7,33] dataset, which
limits our method to focus on fine-grained single-object im-
age domains, e.g., faces and birds. Future works can study
how to leverage pretrained scene image generators (e.g.,
SPADE [40]) to perform text-to-image synthesis.

Third, in terms of Spatial Constraint, the pseudo-ground-
truth masks for some images are not accurate, which in-
troduces label noises for Spatial Constraint. Future work
can leverage some recent semi-supervised methods to ob-
tain the pseudo-ground-truth mask for Spatial Constraint.
For example, by only annotating a few images, [74] uses
StyleGAN to synthesize high-quality images with pseudo-
ground-truth masks, which can be used as an alternative to
the weakly-supervised method [17] used in this work.

F.2. Potential Negative Societal Impacts

Since StyleT2I can synthesize high-fidelity images, a ma-
licious agent may use our model as a deepfake technology
for unintended usage. To mitigate this issue, we ask the
users to agree to the ethics terms when releasing the model.
Overall, StyleT2I improves the compositionality of text-to-
image synthesis, which can better synthesize images for text
containing underrepresented attribute compositions, e.g., “he
is wearing lipstick.” Therefore, we believe that StyleT2I con-
tributes to reducing the negative societal impact compared
with previous text-to-image synthesis methods.
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