


tent space of a generative model, where each disentangled

representation exclusively corresponds to one attribute in

the dataset. By leveraging the disentangled representations

of different attributes, we can improve the compositionality

by ensuring that each attribute described in the sentence is

correctly synthesized.

Motivated by these ideas, we present StyleT2I, a novel

framework to improve the compositionality of text-to-image

synthesis employing StyleGAN [19]. In specific, we propose

a CLIP-guided Contrastive Loss to train a network to find

the StyleGAN’s latent code semantically aligned with the

input text and better distinguish different compositions in

different sentences. To further improve the composition-

ality, we propose a Semantic Matching Loss and a Spatial

Constraint for identifying attributes’ latent directions that

induce intended spatial region manipulations. This leads to a

better disentanglement of latent representations for different

attributes. Then we propose Compositional Attribute Adjust-

ment to correct the wrong attribute synthesis by adjusting

the latent code based on identified attribute directions during

the inference stage. However, we empirically found that

optimizing the proposed losses above can sometimes lead to

degraded image quality. To address this issue, we employ

norm penalty to strike a nice balance between image-text

alignment and image fidelity.

To better evaluate the compositionality of text-to-image

synthesis, we devise a test split for the CelebA-HQ [18]

dataset, where the test text only contains unseen composi-

tions of attributes. We design a new evaluation metric for

the CUB [61] dataset to evaluate if the synthesized image

is in the correct bird species. Extensive quantitative results,

qualitative results, and user studies manifest the advantages

of our method on both image-text alignment and fidelity for

compositional text-to-image synthesis.

We summarize our contributions as follows: (1) We

propose StyleT2I, a compositional text-to-image synthesis

framework with a novel CLIP-guided Contrastive Loss and

Compositional Attribute Adjustment. To the best of our

knowledge, this is the first text-to-image synthesis work that

focuses on improving the compositionality of different at-

tributes. (2) We propose a novel Semantic Matching Loss and

a Spatial Constraint for identifying attributes’ latent direc-

tions that induce intended variations in the image space, lead-

ing to a better disentanglement among different attributes.

(3) We devise a new test split and an evaluation metric to bet-

ter evaluate the compositionality of text-to-image synthesis.

2. Related Work

Text-to-Image Synthesis Many previous works [8,15,25,29,

30,32,46,48,50,58,68,70±73,75] have studied text-to-image

synthesis. DALL·E [48] trains dVAE [58] that autoregres-

sively predicts the image tokens on a large-scale dataset.

Zhang et al. [71] use cross-modal contrastive loss on real

image-text and fake image-real image pairs to adversarially

train the conditional GAN. In contrast, StyleT2I’s CLIP-

guided Contrastive Loss enjoys a simpler training scheme

by using the pretrained CLIP as a conditional discriminator

to contrast fake image-text pairs. While DAE-GAN [51]

extracts aspects from the language with the attention mech-

anism to improve image-text alignment, StyleT2I identi-

fies attribute’s latent directions and explicitly manipulates

the latent code with proposed Compositional Attribute Ad-

justment, which is more interpretable. TediGAN [64,65]

uses pretrained StyleGAN [19] as the generator and trains a

text encoder by deterministically minimizing the feature dis-

tances between paired image and text in either StyleGAN’s

latent space [64] or CLIP’s feature space [65], which suffers

from memorizing the dataset’s compositions. TediGAN also

needs to conduct a manual analysis to find the layer-wise

control for each attribute. In comparison, StyleT2I auto-

matically finds disentangled latent directions for different

attributes with a novel Semantic Matching Loss and a Spatial

Constraint. Wang et al. [62] perform text-to-face synthesis

based on attribute’s latent direction identified by using addi-

tional attribute labels as supervision, whereas StyleT2I does

not need additional attribute labels. Tan et al. [57] focus

on the compositionality problem for multi-object scene im-

age synthesis. Very recently, Park et al. [39] propose a new

benchmark, revealing that many previous methods suffer

from the compositionality problem, which motivates us to

propose StyleT2I to address this issue.

Disentangled Representation Unsupervised disentangled

representation learning focuses on training generative mod-

els [11,24] with different latent dimensions interpreting inde-

pendent factors of data variations, and most of such models

are based on VAE [5,14,21,23,26] and GAN [43,63], en-

abling many downstream applications [27,31,55]. However,

Locatello et al. [35] show that unsupervised disentanglement

is impossible without inductive bias or supervision. Zhu et al.

[76] modify the generative model’s architecture with an ad-

ditional loss to improve spatial constriction and variation

simplicity. Some supervised disentanglement methods use a

pre-trained classifier [53], regressor [77], or multi-attribute

annotation [1] as the full supervision to identify latent at-

tribute directions. In contrast, StyleT2I finds disentangled

attribute directions in the unmodified StyleGAN’s latent

space based on the supervision from text, which has a much

lower annotation cost than multi-attribute labels.

3. Overview of StyleT2I

Figure 2 gives an overview of our StyleT2I framework.

Unlike most previous end-to-end approaches [51,68,71,75],

we leverage a pre-trained unconditional generator, Style-

GAN [19], and focus on finding a text-conditioned latent

code in the generator’s latent space that can be decoded into

a high-fidelity image aligned with the input text.
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z+ s

Figure 2. An overview of StyleT2I. The Text-to-Direction module

takes a text t and a random latent code z as inputs and outputs a

sentence direction s to edit z, resulting in a text-conditioned latent

code zs = z+ s in StyleGAN’s latent space for image synthesis.

The Text-to-Direction module is trained with novel CLIP-guided

Contrastive Loss (Sec. 4.1) with norm penalty employed (Sec. 4.2).

During the inference stage (lower branch), Compositional Attribute

Adjustment (Sec. 5.3) is performed by adjusting s to s
′, leading to

better compositionality.

To achieve this, in Sec. 4, we present a Text-to-Direction

module (see Fig. 2) trained with a novel CLIP-guided Con-

trastive Loss for better distinguishing different compositions

(Sec. 4.1) and a norm penalty (Sec. 4.2) to preserve the high

fidelity of the synthesized image.

To further improve the compositionality of the text-to-

image synthesis results, in Sec. 5, we propose a novel Se-

mantic Matching Loss (Sec. 5.1) and a Spatial Constraint

(Sec. 5.2) for identifying disentangled attribute latent direc-

tions, which will be used to adjust the text-conditioned latent

code during the inference stage (Sec. 5.3) with our novel

Compositional Attribute Adjustment (CAA). The pseudocode

of the complete algorithm is in Appendix A.1.

4. Text-conditioned Latent Code Prediction

As many previous works [42,53,54,69,77] show that the

latent direction in StyleGAN’s latent space can represent

an attributeÐtraversing a latent code along the attribute’s

latent direction can edit the attribute in the synthesized im-

age, we hypothesize that there exists a latent direction that

corresponds to the composition of multiple attributes de-

scribed in the input text, e.g., ªwomanº and ªblond hairº

attributes in text ªthe woman has blond hair.º Therefore,

to find a text-conditioned latent code in a pre-trained Style-

GAN’s latent space, we propose a Text-to-Direction module

that takes the text t and a randomly sampled latent code z

from the latent space of the pre-trained StyleGAN as input.

The output is a latent direction s, dubbed sentence direction,

to edit the latent code z, resulting in the text-conditioned

code zs = z + s. As a result, zs is fed into the StyleGAN

generator G to synthesize the image Î = G(zs).

4.1. CLIP-guided Contrastive Loss

The Text-to-Direction module should predict the sentence

direction that is aligned with the input text and avoid simply

memorizing the compositions in the training data. To achieve

this, we leverage a foundational model CLIP [56] pre-trained

on a large-scale dataset with matched image-caption pairs

to learn a joint embedding space of text and image, as a

conditional discriminator. We propose a novel CLIP-guided

Contrastive Loss based on CLIP and contrastive loss [4] to

train the Text-to-Direction module. Formally, given a batch

of B text {ti}
B
i=1 sampled from the training data and the

corresponding fake images Îi, we compute the CLIP-guided

Contrastive Loss of the i-th fake image as:

Lcontras(Ii) = − log
exp(cos(Eimg

CLIP(̂Ii), E
text
CLIP(ti)))∑B

j ̸=i exp(cos(E
img
CLIP(̂Ii), E

text
CLIP(tj)))

,

(1)

where E
img
CLIP and Etext

CLIP denote the image encoder and text

encoder of CLIP, respectively. cos(·, ·) denotes the cosine

similarity. CLIP-guided Contrastive Loss attracts paired text

embedding and fake image embedding in CLIP’s joint fea-

ture space and repels the embedding of unmatched pairs. In

this way, the Text-to-Direction module is trained to better

align the sentence direction s with the input text t. At the

same time, CLIP-guided Contrastive Loss forces the Text-to-

Direction module to contrast the different compositions in

different texts, e.g., ªhe is wearing lipstickº and ªshe is wear-

ing lipstick,º which prevents the network from overfitting to

compositions that predominate in the training data.

4.2. Norm Penalty for High-Fidelity Synthesis

However, the experimental results (Fig. 7) show that min-

imizing the contrastive loss alone fails to guarantee the fi-

delity of the synthesized image. We observe that it makes

the Text-to-Direction module predict s with a large ℓ2 norm,

resulting in zs shifted to the low-density region in the latent

distribution, leading to degraded image quality. Therefore,

we penalize the ℓ2 norm of sentence direction s when it

exceeds a threshold hyperparameter θ:

Lnorm = max(||s||2 − θ, 0). (2)

Our ablation study (Fig. 7) shows that adding the norm

penalty strikes a nice balance between the text-image align-

ment and quality.

To summarize, the full objective function for training

the Text-to-Direction module is:

Ls = Lcontras + Lnorm. (3)

5. Compositionality with Attribute Directions

To further improve the compositionality, we first identify

the latent directions representing the attributes with a novel

Semantic Matching Loss (Sec. 5.1) and a Spatial Constraint

(Sec. 5.2). Then, we propose Compositional Attribute Ad-

justment (Sec. 5.3) to adjust the sentence direction by the

identified attribute directions to improve the compositional-

ity of text-to-image synthesis results.
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Figure 3. Identifying disentangled attribute directions by training

an Attribute-to-Direction module with a Semantic Matching Loss

(Lsemantic) and a Spatial Constraint (Lspatial).

5.1. Identify Attribute Directions via a Semantic
Matching Loss

To identify the latent directions of attributes existing in

the dataset, we first build a vocabulary of attributes, e.g.,

ªsmiling,º ªblond hair,º attributes in a face dataset, where

each attribute is represented by a word or a short phrase.

Then, we extract the attributes from each sentence in the

dataset based on string matching or dependency parsing. For

example, ªwomanº and ªblond hairº attributes are extracted

from the sentence ªthe woman has blond hair.º

Then, we present an Attribute-to-Direction module (see

Fig. 3) that takes the random latent code z and word embed-

ding of attributes ta sampled from the attribute vocabulary

as the inputs, outputting the attribute direction a. To en-

sure that a is semantically matched with the input attribute,

we propose a novel Semantic Matching Loss to train the

Attribute-to-Direction module. Concretely, a is used to edit

z to obtain the positive latent code z
a
pos = z + a and neg-

ative latent code z
a
neg = z − a. z

a
pos is used to synthesize

the positive image Iapos = G(zapos) that can reflect the seman-

tic meaning of the attribute, e.g., the smiling face in Fig. 3.

While z
a
neg = G(zaneg) is used to synthesize the negative im-

age I
a
neg = G(zaneg) that does not contain the information of

the given attribute, e.g., the not smiling face in Fig. 3. Based

on the triplet [52] of (ta, Iapos, I
a
neg), the Semantic Matching

Loss is computed as:

Lsemantic =max(cos(Eimg
CLIP(I

a
neg), E

text
CLIP(t

a))

− cos(Eimg
CLIP(I

a
pos), E

text
CLIP(t

a)) + α, 0),
(4)

where α is a hyperparameter as the margin. Lsemantic attracts

attribute text embedding and positive image embedding and

repels the attribute text embedding against negative image

embedding in CLIP’s feature space, rendering the attribute

direction a semantically matched with the attribute.

5.2. Attribute Disentanglement with a Spatial Con-
straint

However, the Semantic Matching Loss cannot ensure that

the given attribute is disentangled with other attributes. For

pseudo-ground-truth mask
from weak supervision

+ blond hair

- blond hair

normalized 

pixel difference
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Figure 4. Spatial Constraint (Lspatial) to train Attribute-to-Direction

module. We compute the pixel-level difference between the positive

and negative image to measure the changing region on the image

space (red: high pixel differences; blue: low pixel variations).

Lspatial supervises the pixel-level differences by the mask (obtained

from a weak-supervised segmentation method) of the intended

region (e.g., hair) for the given attribute (e.g., ªblond hairº) to

suppress changes on other unintended areas (e.g., mouth), leading

to better disentanglement among different attributes.

example, in Fig. 4, while the Attribute-to-Direction module

is expected to predict an attribute direction of ªblond hair,º

the mouth region is also changing. To mitigate this issue, we

propose a novel Spatial Constraint as an additional loss to

train the Attribute-to-Direction module. Our motivation is to

restrict the spatial variation between the positive and negative

images to an intended region, e.g., the hair region for the

ªblond hairº attribute. To achieve this, we capture the spatial

variation by computing the pixel-level difference I
a
diff =∑

c |I
a
pos − I

a
neg|, where c denotes image channel dimension.

Then, min-max normalization is applied to rescale its range

to 0 to 1, denoted as Ĩadiff. We send the positive image to a

weakly-supervised (i.e., supervised by attributes extracted

from text) part segmentation method [17] to acquire the

pseudo-ground-truth mask M
a (Sec. 6.2), e.g., hair region

mask in Fig. 4. Finally, Spatial Constraint is computed as:

Lspatial = BCE(̃Iadiff,M
a), (5)

where BCE denotes binary cross-entropy loss. Minimizing

Lspatial will penalize the spatial variations out of the pseudo-

ground-truth mask. In this way, the Attribute-to-Direction

module is forced to predict the attribute direction that can

edit the image in the intended region.

In addition, similar to the norm penalty used for Text-to-

Direction module, we also add it here to ensure the image

quality. As a summary, the full objective function for train-

ing the Attribute-to-Direction module is:

La = Lsemantic + Lspatial + Lnorm. (6)

5.3. Compositional Attribute Adjustment

After training the Attribute-to-Direction module, we pro-

pose novel Compositional Attribute Adjustment (CAA) to

ensure the compositionality of the text-to-image synthesis

results. The key idea of Compositional Attribute Adjustment
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is two-fold. First, we identify the attributes that the sentence

direction s incorrectly predicts based on its agreement with

attribute directions. Second, once we identify the wrongly

predicted attributes, we add these attribute directions as the

correction to adjust the sentence direction.

Concretely, during the inference stage, as described in

Sec. 4, we first sample a random latent code z and send it

to Text-to-Direction module along with the input text t to

obtain the sentence direction s. At the same time, we also

extract K attributes {tai }
K
i=1 from the sentence t and then

feed it into the Attribute-to-Direction module along with

the random latent code z to obtain the attribute directions

{ai}
K
i=1. Here K is not a hyperparameter but is decided by

the number of attributes described in the sentence, and the

same z is used as the input for both the Text-to-Direction

module and the Attribute-to-Direction module. Based on the

attribute directions, we adjust the sentence direction s to s
′:

A = {ai | cos(ai, s) ≤ 0}, s
′ = s+

∑

ai∈A

ai

||ai||2
, (7)

where cos(·, ·) denotes cosine similarity and s
′ stands for

the attribute-adjusted sentence direction. A is a set of at-

tribute directions that have a less or equal to zero cosine

similarity with the sentence direction. When cos(ai, s) ≤ 0,

the sentence direction s is not agreed with the i-th attribute

direction ai, indicating that s fails to reflect the i-th attribute

in the input text. By adding the i-th attribute direction ai

||ai||2
,

the adjusted sentence direction s
′ is corrected to reflect the

i-th attribute. Then, it replaces s to edit the latent code z

to obtain the new text-conditioned code zs = z+ s
′ (lower

branch in Fig. 2), which is used to synthesize the final image,

enhancing compositionality of the text-to-image synthesis.

6. Experiments

6.1. Experiment Setup

Dataset We use two datasets to conduct the experiments.

The first dataset is CelebA-HQ [18], which contains 30,000

celebrity face images. We use the text annotations provided

by Xia et al. [64], where each text description is based on the

facial attributes, e.g., ªShe is wearing lipstick.º We remove

the texts that mention the ªattractivenessº attribute due to the

ethical concern [45]. The second dataset is CUB [61], which

contains 11,788 bird images in 200 bird species. We use the

text annotations collected by Reed et al. [49], where each

sentence describes the fine-grained attributes of the bird.

Test Split for Compositionality Evaluation To better eval-

uate the compositionality of the text-to-image synthesis re-

sults, we carefully choose the test split on each dataset.

We observe that about half of the texts in the standard test

split [28] of CelebA-HQ dataset contain compositions of

attributes seen in the training split. Therefore, we exclude

these texts with seen compositions from the test split. As

a result, the texts in the new test split only contain the un-

seen compositions of attributes, which can better evaluate

the compositionality results. Proposed Split (PS) [66,67] is a

CUB dataset split to benchmark the compositional zero-shot

learning by splitting the dataset based on bird species. We

choose the ªunseen testº in PS as the test split, which can

evaluate the model’s capability of synthesizing images in 50

unseen bird categories.

Evaluation Metrics

FID. We use FID [13] to evaluate image quality results.

Lower values indicate better image quality.

R-Precision. We use R-Precision [68] that evaluates the top-1

retrieval accuracy as the major evaluation metric in image-

text alignment. We follow [39] to use the CLIP finetuned

on the whole dataset (including the test split) to compute

the R-Precision results, which has been shown to be more

aligned with human evaluation results. Higher R-Precision

values indicate better alignment between text and image.

Bird Species Classification Accuracy. As the models are ex-

pected to synthesize birds in unseen species on CUB dataset,

we regard that a model that can more accurately synthesize

birds in unseen bird species has better compositionality for

disentangling different attributes from seen bird species. To

this end, we propose a new evaluation metricÐbird species

classification accuracy for evaluating compositionality. Con-

cretely, we finetune a ResNet-18 [12] on the test split of CUB

dataset with real images and bird species labels to classify 50

bird species. In evaluation, the test split contains (text, bird

species label) pairs, where text is used to synthesize images.

We use the finetuned classifier to predict bird species of the

synthesized image. We report the top-1 accuracy based on

the prediction and bird species labels (Tab. 2). However,

a text may not contain enough discriminative information

for classifying the bird species. Therefore, we train a text

classifier, implemented as a GRU followed by an MLP, (last

row in Tab. 2) that directly takes the text as input to predict

the bird species. We train this text classifier on 80% of texts

in the test split, and we evaluate its classification accuracy

on the rest 20%, which can serve as the upper bound for the

text-conditioned bird species classification results.

User Study. The quantitative evaluation metrics above can-

not substitute human evaluation. Therefore, we invite 12

subjects to conduct the user study on the two datasets to

evaluate image quality and text alignment. Following [71],

each question contains synthesized images from different

methods conditioned on the same text input. Participants are

invited to rank the synthesized images from different meth-

ods based on the image quality and image-text alignment.

More details of the user study, e.g., user interface and use of

human subjects, are in Appendix E.

Comparison Methods We compare with four recent text-

to-image synthesis methodsÐControlGAN [30], DAE-
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CelebA-HQ CUB

R-Precision ↑ FID ↓ R-Precision ↑ FID ↓

ControlGAN 0.435 31.38 0.137 29.03

DAE-GAN 0.484 30.74 0.145 26.99

TediGAN-A 0.044 16.45 0.071 16.38

TediGAN-B 0.306 15.46 0.121 16.79

StyleT2I (Ours) 0.625 17.46 0.264 20.53

StyleT2I-XD (Ours) 0.698 18.02 0.350 19.19

Table 1. Text-to-Image synthesis results on CelebA-HQ [64] and

CUB [61] datasets. ↑: high values mean better results. ↓: lower

values indicate better results.

GAN [51], TediGAN-A [64] TediGAN-B [65]. Control-

GAN focuses on controllable generation based on attention

mechanism. DAE-GAN extracts ªaspectsº information from

text, which is related to the attributes studied in this paper.

TediGAN-A trains a text encoder to minimize the distance

between encoded text and encoded image in StyleGAN’s

latent space. TediGAN-B uses CLIP to optimize the Style-

GAN’s latent code iteratively for each input text. For a fair

comparison, we use the official code of each comparison

method to conduct the experiments.

6.2. Implementation Details

Architecture and Hyperparameters We choose Style-

GAN2 [20] as the generator for synthesizing images in

2562 resolution. We use W+ space as the latent space,

where latent directions are more disentangled than the in-

put noise space [19]. GloVe [44] is used to obtain the

word embeddings of text, which will be used as the in-

put to Text-to-Direction and Attribute-to-Direction modules.

The two modules have the same architectureÐa GRU [9]

to extract the text feature, which is concatenated with the

random latent code to send to a multi-layer perceptron

with two fully-connected layers and one ReLU activation

function [37]. We set the value θ = 8 in Eq. (2) and

α = 1 in Eq. (4). More details are in Appendix A.2. The

code is written in PyTorch [41] and is available at https:

//github.com/zhihengli-UR/StyleT2I.

Attributes Vocabulary and Attributes Extraction For the

vocabulary of attributes (Sec. 5.1), we use the attributes

defined in [34] (e.g., ªwearing lipstickº) as the attributes

of CelebA-HQ dataset, and the attributes defined in [61]

(e.g., ªred bellyº) as the attributes of CUB dataset. Note

that we do not use any attribute annotations. To extract

attributes from sentences, we use string matching (i.e., the

word ªlipstickº in the sentence indicates ªwearing lipstickº

attribute) on CelebA-HQ dataset. We use part-of-speech

tag and dependency parsing implemented in spaCy [16] to

extract attributes from the text on CUB dataset. More details

are shown in Appendix A.3.

Pseudo-Ground-Truth Mask For the Spatial Constraint

(Sec. 5.2), we obtain the pseudo-ground-truth mask based on

a weakly-supervised part segmentation method [17], where

Method Accuracy ↑

ControlGAN 0.071

DAE-GAN 0.056

TediGAN-A 0.063

TediGAN-B 0.036

StyleT2I w/o (CAA) (Ours) 0.115

StyleT2I (Ours) 0.125

StyleT2I-XD (Ours) 0.142

Text Classifier (upper bound) 0.204

Table 2. Unseen bird species classification results. Our method

outperforms other methods, and the results are closer to the upper

bound, which demonstrates that StyleT2I can better synthesize

unseen bird species based on the input text description, indicating

better compositionality of our method.

we train image classier supervised by attributes extracted

from text. More details are presented in Appendix A.4.

Finetune CLIP We empirically find that directly using the

CLIP trained on the original large-scale dataset [47] per-

forms poorly for the proposed losses (Eqs. (1) and (4)) on

two datasets. We suspect the reason is the domain gap be-

tween in-the-wild images in the large-scale dataset [47] and

face or birds images with fine-grained attributes. Therefore,

we finetune the last few layers of CLIP on the training splits

of CelebA-HQ and CUB datasets, respectively. Note that the

CLIP used for training differs from the one used for evalu-

ating R-Precision, where the latter is trained on the whole

dataset. More details are in Appendix A.5.

Cross-dataset Synthesis (StyleT2I-XD) Since StyleT2I is

based on a pretrained StyleGAN generator, we can train the

StyleGAN generator on a different image dataset with more

image samples and diversity to further improve the results.

We denote this method as StyleT2I-XD. Concretely, we

pretrain StyleGAN on FFHQ [19] dataset, a face dataset with

more variation on various attributes (e.g., age), to synthesize

images conditioned on the text from CelebA-HQ dataset.

Similarly, we pretrain StyleGAN on NABirds [59] dataset

with more bird species (the unseen bird species in the test

split are still excluded) and image samples to synthesize

images conditioned on the text from CUB dataset.

6.3. Results on Text-to-Image Synthesis

Quantitative Results The quantitative results of text-to-

image synthesis on CelebA-HQ and CUB datasets are shown

in Tab. 1. In terms of R-Precision, our StyleT2I outperforms

other comparison methods by a large margin, showing that

our method has a better compositionality to synthesize faces

in novel compositions and birds in novel bird species. Al-

though TediGAN-A is also based on StyleGAN, it performs

poorly on both datasets, which suggests that deterministi-

cally minimizing the distance between the latent codes of

text and image in StyleGAN’s latent space leads to poor gen-

eralizability to the unseen compositions. The bird species
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This person has pointy nose, 

bangs, pale skin, and big lips. She

wears lipstick.

w/o 

Norm Penalty

w/

Norm Penalty ground-truth

The bird has a black crown, 

belly, wings, the color covers its 

entire body.

Figure 7. Ablation study of norm penalty for improving image

quality. More examples are shown in Appendix D.

are included in Appendices B and C.

CLIP-guided Contrastive Loss An alternative loss to

Eq. (1) is minimizing the cosine distance between the paired

fake image feature and text feature in CLIP’s feature space,

which is initially proposed in StyleCLIP [42] and used in

TediGAN-B [65] for text-to-image synthesis. The result of

this alternative loss is shown on the first row of Tab. 3. Al-

though it slightly improves the FID result, the R-Precision

result significantly decreases, demonstrating the necessity of

contrasting unmatched (image, text) pairs to distinguish the

difference of compositions better.

Norm Penalty As shown in Tab. 3 and Fig. 7, Although it

lowers the performance in terms of R-Precision, using the

proposed norm penalty can effectively improve the FID re-

sults and perceptual quality, striking a better balance between

image-text alignment and fidelity.

Spatial Constraint The R-Precision results in Tab. 3 show

that Spatial Constraint can improve the alignment between

text and image. The qualitative results in Fig. 8 show that

Spatial Constraint effectively constrains the spatial varia-

tion within the intended region, e.g., hair region for ªblond

hairº attribute. These more disentangled attribute directions

help StyleT2I achieve better R-Precision performance by

adjusting the sentence direction during the inference stage.

Compositional Attribute Adjustment Tab. 3 shows that

Compositional Attribute Adjustment (CAA) improves the R-

Precision results and achieves a similar FID result. In Tab. 2,

CAA can also improve the unseen bird species classification

results, demonstrating its effectiveness for improving com-

positionality. In Fig. 9, we show that (CAA) can not only

detects wrong attributes, e.g., ªbrown hairº, but also correct

these wrong attributes by adjusting the sentence direction

based on the identified attribute directions.

Finetune CLIP As introduced in Sec. 6.2, we finetune the

CLIP on the training split of the dataset. The R-Precision

results in Tab. 3 show that finetuning can greatly improve per-

formance. Although trained on a large-scale dataset, the re-

sults suggest that CLIP will underperform for text-to-image

synthesis with fine-grained attributes, proving the necessity

to finetune on the dataset for better results.

(a) Attribute: blonde hair

w
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ti
a
l
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n
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ra
in
t

w
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S
p
a
ti
a
l

C
o
n
st
ra
in
t

positive

image

(b) Attribute: white nape

negative

image

pixel 

difference

positive

image

negative

image

pixel 

difference

Figure 8. Ablation study of Spatial Constraint for identifying

attribute directions. Without our Spatial Constraint (first row),

there are also changes in the other regions (e.g., brows and mouth

regions for the blond hair attribute; the wings region for the white

nape attribute). Our Spatial Constraint (second row) successfully

suppresses the variations in other unintended regions, leading to

better disentanglement among different attributes.

This person has brown hair, 

bushy eyebrows, high 

cheekbones, and pointy 

nose. She is wearing 

lipstick.

Adjusted attributes:

brown hair,

bushy eyebrows,

High cheekbones,

wearing lipstick 

before CAA after CAA

The bird is white with a 

black head and orange 

beak.

Adjusted attribute:

black head

Text

Figure 9. Compositional Attribute Adjustment (CAA) automatically

detect the attributes that are failed to be synthesized (highlighted in

red) and adjust the sentence direction with the attribute directions to

improve the compositionality of the text-to-image synthesis results.

7. Conclusion

We propose StyleT2I, a new framework for achieving

compositional and high-fidelity text-to-image synthesis. We

propose a novel CLIP-guided Contrastive Loss to better dis-

tinguish different compositions, a Semantic Matching Loss

and a Spatial Constraint to identify disentangled attribute di-

rections, and Compositional Attribute Adjustment to correct

wrong attributes in the synthesis results. StyleT2I outper-

forms previous approaches in terms of image-text alignment

and achieves image fidelity. Admittedly, our work has some

limitations. For example, our Spatial Constraint is not help-

ful to disentangle a few attributes that share the same spatial

region, e.g., ªbushy eyebrowº and ªarched eyebrow.º One

potential negative societal impact is that StyleT2I’s high-

fidelity synthesis may be maliciously used for deception.

We will mitigate it by asking the users to follow ethical

principles when releasing the model. A promising future

direction for StyleT2I is complex scene images synthesis for

disentangling different objects and backgrounds.
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Appendix

A. Implementation Details

A.1. Complete Algorithm

Training the StyleT2I framework contains two stepsÐ

Step 1: train the Text-to-Direction module (Algorithm 1);

Step 2: train the Attribute-to-Direction module (Algo-

rithm 2). The pseudocode of the inference algorithm of

StyleT2I for synthesizing images conditioned on the given

text is shown in Algorithm 3.

Algorithm 1: Train Text-to-Direction module

Input: G: pretrained generator, Mt: training

iterations, T = {t}: training set of text.

Output: Ftext: Text-to-Direction module

1 for k : 1 . . .Mt do

2 z ∼ W+ // random latent code

sampled from W+ space

3 t ∼ T // text sampled from the

training set

4 s = Ftext(z, t) // predict sentence

direction

5 zs = z+ s // text-conditioned code

6 Î = G(zs) // synthesize image

7 Ls = Lcontras(̂I, t) + Lnorm(s) // compute

loss

8 Ftext ← Adam(∇Ftext
Ls) // update Ftext

9 return Ftext

A.2. Hyperparameters and Network Architecture

We pretrain StyleGAN2 on each dataset (CelebA-HQ [18]

and CUB [61]) with 300,000 iterations. In CLIP [47], we

use ViT-B/32 [10] architecture as the image encoder. We

use Adam optimizer [22] with 10−4 learning rate to train

both modules. The Text-to-Direction module is trained with

60,000 iterations and the batch size is 40. The Attribute-to-

Direction module is trained with 1000 iterations with batch

size of 2. The architectures of Text-to-Direction module and

Attribute-to-Direction module are shown in Fig. 10.
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Figure 10. Detailed architectures of (a) Text-to-Direction module

and (b) Attribute-to-Direction module.

Algorithm 2: Train Attribute-to-Direction module

Input: V = {ta}: attribute vocabulary, G:

pretrained generator, S: weakly-supervised

segmentation network, Ma: training

iterations

Output: Fattr: Attribute-to-Direction module

1 for m : 1 . . .Ma do

2 z ∼ W+ // random latent code

sampled from W+ space

3 t
a ∼ V // attribute sampled from

vocabulary

4 a = Fattr(z, t
a) // predict attribute

direction

5 z
a
pos = z+ a // positive latent code

6 z
a
neg = z− a // negative latent code

7 I
a
pos = G(zapos) // positive image

8 I
a
neg = G(zaneg) // negative image

9 M
a = S(Iapos)

// pseudo-ground-truth mask

10 I
a
diff =

∑
c |I

a
pos − I

a
neg| // pixel-level

difference

11 Ĩ
a
diff =

I
a
diff−min(Iadiff)

max(Ia
diff

)−min(Ia
diff

) // min-max

normalization

12 La = Lsemantic(I
a
pos, I

a
neg, t

a) +

Lspatial(̃I
a
diff,M

a) + Lnorm(a) // compute

loss

13 Fattr ← Adam(∇Fattr
La) // update Fattr

14 return Fattr

A.3. Attribute Extraction

On CelebA-HQ dataset, we use string matching to extract

attributes from the text. For example, the word ªbangsº in

the sentence indicates the ªbangsº attribute. On CUB dataset,

we extract attributes based on part-of-speech (POS) tags and

dependency parsing implemented in spaCy [16]. Concretely,

given a text, we extract adjectives and nouns based on POS

tags. Then, we leverage their dependency relations to extract

the attributes. For example, in the text ªthe bird has a yellow

breast,º, ªyellowº and ªbreastº has the adjectival modifier

(amod) dependency relation, which indicates the ªyellow

breastº attribute. We also use other dependency relations to

deal with sentences with more complex sentence structures.

For example, in the text ªthe bird has a brown and yellow

breast,º ªyellowº and ªbrownº have the ªconjunctº (conj) de-

pendency relation, which indicates two attributesÐªyellow

breastº and ªbrown breast.º
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Algorithm 3: Inference algorithm of StyleT2I

Input: G: pretrained generator, t: input text,

{tai }
K
i=1: extracted K attributes from text,

Ftext: Text-to-Direction module, Fattr:

Attribute-to-Direction module

Output: Î: synthesized image conditioned on the

input text

1 z ∼ W+ // random latent code

sampled from W+ space

2 s = Ftext(z, t) // predict sentence

direction

3 A = {ai | cos(ai, s) ≤ 0}. // set of

attributes need to be adjusted

4 s
′ = s+

∑
ai∈A

ai

||ai||2
// adjust sentence

direction

5 zs = z+ s
′ // text-conditioned code

6 Î = G(zs) // synthesize image

7 return Î

A.4. Pseudo-ground-truth Mask

We use [17] as a weakly-supervised part segmentation net-

work to obtain pseudo-ground-truth masks. The network is a

classifier supervised by binary attribute labels extracted from

text. In specific, since each image is paired with multiple

texts, we use the union of attributes extracted from multiple

texts as the image’s attribute label. For example, if the image

has two captions (1) ªthe woman is smilingº and (2) ªthe

woman has blond hair,º the attribute label for this image

is (ªwomanº, ªsmiling,º and ªblond hairº). Based on these

(image, binary attribute label) pairs, we train the network

with binary cross-entropy loss. After training the network,

we obtain an image’s pseudo-ground-truth mask based on its

attention map (Fig. 4 in [17]). We use Otsu method [38] to

threshold the attention map as the final pseudo mask ground-

truth. Examples of pseudo-ground-truth mask are shown in

Fig. 11.

A.5. Finetune CLIP

We finetune the last few layers of CLIP. Specifically, we

finetune the last visual resblock, ªln post,º ªprojº, the last

text transformer resblock, ªln finalº, ªtext projection,º and

ªlogit scaleº in CLIP. Following [39], we use AdamW [36]

optimizer and 5× 10−4 learning rate.

When finetuning CLIP for the CLIP-guided Contrastive

Loss (Eq. 1), the objective function for finetuning is con-

trastive loss defined in [47], where we use the (real image,

text) pairs from the training split of the dataset for computing

the contrastive loss.

As reported by Zhang et al. [71], using the same model

in training and testing can skew the R-Precision results. To

beard

bangs

bushy eyebrows

smiling

red throat

yellow breast

yellow forehead

black crown

(a) Pseudo-ground-truth mask on CelebA-HQ.

(b) Pseudo-ground-truth mask on CUB.

Figure 11. Pseudo-ground-truth masks generated by [17] on

CelebA-HQ [18] and CUB [61] datasets. The pseudo-ground-truth

mask of the each attribute (e.g., beard) is highlighted in white.

alleviate this issue, for computing R-Precision results, we

use a CLIP model that is different from the one used in

training. We use the contrastive loss to finetune CLIP on

the whole dataset (both training and testing splits), which is

different from the CLIP used in training (finetuned on the

training split only).

When finetuning CLIP for the Semantic Matching Loss

(Eq. (4)), the objective function for finetuning is binary

cross-entropy loss. Concretely, the image’s predicted

probability of an attribute is computed by sigmoid(τ ·

cos(Eimg
CLIP(I), E

text
CLIP(t

a))). Here, I denotes an image. t
a

denotes an attribute. τ is the ªlogit scaleº parameter in CLIP

optimized during finetuning. The predicted probability is

used in binary cross-entropy to compute the loss.

B. Ablation Studies of Text-to-Image

We show more ablation studies results of text-to-image

synthesis.
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R-Precision ↑ FID ↓

w/o CLIP-guided Contrastive Loss 0.488 17.06

w/o norm penalty 0.736 25.75

w/o Spatial Constraint 0.607 17.45

w/o Compositional Attribute Adjustment 0.594 17.59

w/o finetune CLIP 0.344 17.79

Full Model 0.625 17.46

Table 4. Ablation study of StyleT2I on CelebA-HQ [18] dataset.

Top-2 results are bolded and the worst results are underlined.

dataset threshold (θ) R-Precision ↑ FID ↓

CelebA-HQ

8 (min) 0.625 17.46

16 (mean) 0.815 21.35

31 (max) 0.801 25.77

CUB

8 (min) 0.264 20.53

20 (mean) 0.395 22.41

39 (max) 0.375 26.97

Table 5. Ablation study on the threshold of norm penalty (θ in

Eq. 2). Here, ªminº, ªmeanº, and ªmaxº stand for the minimum,

average, and maximum ℓ2 norm of two randomly sampled latent

codes of the pretrained StyleGAN.

Results on CelebA-HQ We show the ablation study re-

sults on CelebA-HQ dataset in Tab. 4. The results are consis-

tent with the ablation study results on CUB dataset in Tab. 3,

which further proves the effectiveness of each component of

StyleT2I.

Threshold of norm penalty (θ) We conduct an ablation

study on different threshold values (θ) of norm penalty

(Eq. (2)). To better decide the threshold used for norm

penalty, we compute the minimum (min), mean, and maxi-

mum (max) ℓ2 norm between two random latent codes sam-

pled from W+ space of StyleGAN (sampling from W+
space is performed by feeding the sampled Gaussian noise

to the ªMapping Networkº in StyleGAN). We found that

the minimum ℓ2 norm in StyleGAN trained on CelebA-HQ

and CUB datasets are 8.2 and 8.9, respectively. Therefore,

we choose θ = 8 in our experiment to force the Text-to-

Direction and Attribute-to-Direction modules find the direc-

tion with the smallest norm. As results shown in Tab. 5,

although larger θ can increase R-Precision results, it also

renders worse image quality (larger FID values). Hence, us-

ing θ = 8 strikes a nice balance between image-text balance

and image quality.

Alternatives to norm penalty We also tried other alter-

natives to improve image quality. One way is using the

discriminator lossÐmaking the synthesized image fool a

discriminator. Another approach is using the perceptual loss

to minimize the feature distance between the synthesized

and real images. As the results shown in Tab. 6, our norm

dataset method for image quality FID ↓

CelebA-HQ

discriminator 32.83

perceptual loss 24.98

norm penalty (Ours) 17.46

CUB

discriminator 26.25

perceptual loss 29.49

norm penalty (Ours) 20.53

Table 6. Ablation study of different methods for improving image

quality.

Method R-Precision ↑ FID ↓
ControlGAN 0.498 17.36

DAE-GAN 0.546 19.24

TediGAN-A 0.026 12.92

TediGAN-B 0.354 14.19

StyleT2I (Ours) 0.635 15.60

Table 7. Results on CelebA-HQ’s standard split.

penalty is the most effective way to ensure the image quality,

while other approaches produce much higher FID values

(i.e., worse image quality results).

Training Stage Regularization We create an alternative

to Compositional Attribute AdjustmentÐªTraining Stage

Regularization.º While our Compositional Attribute Ad-

justment adjusts the sentence direction during the inference

stage, ªTraining Stage Regularizationº maximizes the co-

sine similarity between the sentence direction and attribute

directions, i.e., max
∑

i cos(s,ai), which is added as an

additional loss to Eq. 3 to regularize the Text-to-Direction

module during the training stage. The results comparing

the ªTraining Stage Regularizationº and Compositional At-

tribute Adjustment are shown in Tab. 8. Two methods achieve

similar FID results. However, our Compositional Attribute

Adjustment achieves better R-Precision results than ªTrain-

ing Stage Regularization.º We believe the reason is that

regularizing during the training stage only helps for seen at-

tribute compositions in the training set, which cannot ensure

the correct attribute prediction during the inference stage.

Therefore, our proposed Compositional Attribute Adjustment

can better improve the image-text alignment by adjusting

the results during the inference stage for text with unseen

attribute compositions.

Different z We sample three different z for each text to

compute the standard deviation of R-Precision, which is

0.008, proving that z does not have a significant effect on

the image-text alignment. The synthesized images of the

same text in various z in Fig. 12, proving the diversity of the

synthesis results.
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He has bangs.

She is chubby.

He has wavy hair.

She has gray hair.

Figure 12. Diverse results when sampling four different z.

dataset method R-Precision ↑ FID ↓

CelebA-HQ
Training Stage Regularization 0.604 17.56

Compositional Attribute Adjustment 0.625 17.46

CUB
Training Stage Regularization 0.256 19.48

Compositional Attribute Adjustment 0.264 20.53

Table 8. Ablation study of Compositional Attribute Adjustment.

ªTraining Stage Regularizationº stands for using attribute directions

to supervise the the sentence direction during the training stage,

which can be regarded as an alternative method to Compositional

Attribute Adjustment that uses attribute directions to adjust sentence

direction during the inference stage.

Results on CelebA-HQ’s standard split We also show

the results on the CelebA-HQ’s standard testing split, i.e.,

not the test split that we created for the evaluation of com-

positionality (Sec. 6.1), in Tab. 7. Most of the results are

better than the results on the new split (Tab. 1) because of the

overlap between train and test splits that allows the models

to cheat.

C. Ablation Studies of Identifying Attribute Di-

rections

We further conduct more ablation studies of identifying

attribute directions on CelebA-HQ dataset. To evaluate the

identified attribute directions, we train a ResNet-18 classi-

fier with the ground-truth attribute labels (i.e., not the labels

extracted from text) as the attribute classifier. We use this

Attribute Accuracy ↑

w/o Spatial Constraint 0.827

w/ Spatial Constraint 0.871

Table 9. Ablation study of Spatial Constraint for identifying at-

tribute directions on CelebA-HQ dataset.

margin Attribute Accuracy

0.1 0.577

0.5 0.761

1 0.871

5 0.881

10 0.875

20 0.873

Table 10. Ablation study on the margin (α) of Semantic Matching

Loss on CelebA-HQ dataset. The accuracy results are not sensitive

to the value of margin when α ≥ 1.

attribute classifier to evaluate the synthesized positive and

negative images generated from Attribute-to-Direction mod-

ule (Fig. 3). For the positive image, its attribute ground-truth

is positive. For the negative image, its attribute ground-truth

is negative. We compute Attribute Accuracy based on the

attribute classifier’s prediction and ground-truth. Higher

Attribute Accuracy indicates a more accurate attribute direc-

tion.

Spatial Constraint The results of the ablation study on

Spatial Constraint are shown in Tab. 9, which proves that

Spatial Constraint can help the Attribute-to-Direction mod-

ule find more accurate attribute directions by leveraging the

intended region from pseudo-ground-truth mask.

Margin of Semantic Matching Loss (α) We conduct the

ablation study on the margin (α) of Semantic Matching Loss

(Eq. (4)). The results in Tab. 10 show that the results are

converged when α ≥ 1. We choose α = 1 in the main

experiments.

Alternative to Spatial Constraint An alternative ap-

proach to improve disentanglement among different at-

tributes is encouraging different attribute directions to

be orthogonal with each other in the latent space [53].

Therefore, we create an alternative approach by minimiz-

ing
∑

i

∑
j

ai

||ai||2

T aj

||aj ||2
when training the Attribute-to-

Direction module. The results in Tab. 11 show that this alter-

native approach hurts the accuracy performance compared

with only using the Semantic Matching Loss. In contrast, our

Spatial Constraint can greatly improve the accuracy results.
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He has blond hair.

She has double chin.

She has gray hair.

She is bald.

ControlGAN DAE-GAN TediGAN-A TediGAN-B Ours

Figure 13. More examples of synthesis results where the input text decribes underrepresented compositions of attribute on CelebA-HQ

dataset.

Attribute Accuracy

Semantic Matching Loss only 0.827

w/ min
∑

i

∑
j

ai

||ai||2

T aj

||aj ||2
0.809

w/ Spatial Constraint 0.871

Table 11. Comparison between Spatial Constraint and an alterna-

tive approach min
∑

i

∑
j

ai

||ai||2

T aj

||aj ||2
for disentanglement on

CelebA-HQ dataset. Spatial Constraint achieves better results.

Alternative to Semantic Matching LossÐContrastive

Loss Since the Text-to-Direction module and Attribute-to-

Direction module share some similarity, one may wonder if

it is feasible to use the contrastive loss to train the Attribute-

to-Direction. To this end, we adapt our CLIP-guided Con-

trastive Loss for Attribute-to-Direction module by replacing

the text input with attribute input, which attracts the embed-

dings of paired synthesized image and attribute and repels

the embeddings of mismatched pairs.

The results of comparing this alternative method and Se-

mantic Matching Loss are shown in Tab. 12. The contrastive

loss achieves poorer performance for identifying attribute

directions. The reason is that we should not repel the em-

beddings mismatched (image, attribute) pairs. For example,

we should not repel the embedding of an ªsmilingº image

against ªmanº attribute when the random latent code z can

be used to synthesize a male face image. Therefore, our

Attribute Accuracy

Contrastive Loss + Spatial Constraint 0.669

Semantic Matching Loss + Spatial Constraint 0.871

Table 12. Ablation study of Semantic Matching Loss for identifying

attribute directions on CelebA-HQ dataset.

Semantic Matching Loss can identify the attribute directions

better since it does not repel the embeddings of mismatched

(image, attribute) pairs.

Local Direction vs. Global Direction Our Attribute-to-

Direction module predicts the attribute direction conditioned

on both input attribute and random latent code z. One may

wonder if conditioning on the random latent code is neces-

sary. Following the terms defined by Zhuang et al. [77], we

call the attribute direction conditioned on the random latent

code as ªlocal direction,º and we name the attribute direc-

tion only conditioned on the attribute (i.e., not conditioned

on random latent code) as ªglobal direction.º The results

comparing local direction and global direction are shown

in Tab. 13. The global direction, which predicts a single

direction for an attribute globally, achieves poor attribute

accuracy results. In contrast, our local direction method,

which takes the random latent code into the consideration,

can more accurately predict the attribute direction.
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This person is wearing earrings. She has big 

lips, high cheekbones, arched eyebrows, bags 

under eyes, and big nose. She is smiling.

This young person has wavy hair, mustache, 

and sideburns.

Bird’s beak is small and brown head is a 

brownish color also wings tan and feet are 

brown and short.

This small bird has a two-tone yellow and 

brown breast, and a small head in 

comparison to it s body.

ControlGAN DAE-GAN TediGAN-A TediGAN-B StyleT2I-XDStyleT2I

(a) Text-to-Image Synthesis Results on CelebA-HQ

(b) Text-to-Image Synthesis Results on CUB

Figure 14. More examples of text-to-image synthesis results.

Attribute Accuracy

global direction 0.764

local direction (Ours) 0.871

Table 13. Ablation study of global direction vs. local direction for

identifying attribute directions on CelebA-HQ dataset.

D. More Qualitative Results

Underrepresented Compositions More examples of syn-

thesis results where the input texts describe underrepresented

compositions of attributes are shown in Fig. 13. Our method

can more accurately synthesize the image for underrepre-

sented attribute compositions with high image fidelity.

Text-to-Image Results More examples of text-to-image

synthesis results are shown in Fig. 14. Our method can

synthesize images conditioned on the text describing unseen

attribute compositions with better image-text alignment and

higher image quality.

Norm Penalty More examples of the ablation study on

norm penalty are shown in Fig. 15, which proves that norm

penalty can effectively improve the image quality.

Compositional Attribute Adjustment More examples of

the ablation study on Compositional Attribute Adjustment

(CAA) are shown in Fig. 16, which demonstrates that CAA

can automatically identify the wrong attribute predictions

and effectively correct them during the inference stage to

improve the compositionality.

w/o 

Norm Penalty

w/

Norm Penalty ground-truth

this brilliant red bird has black 

accents on wings and tail and a 

short, thick beak.

She has narrow eyes, high 

cheekbones, and mouth slightly 

open. She is wearing lipstick, and 

heavy makeup. She is smiling.

Figure 15. More examples of the ablation study on norm penalty.

She has rosy cheeks, 

narrow eyes, big lips, and 

big nose.

Adjusted Attribute:

she

before CAA after CAA

A bird with a white and 

black crown and orange 

bill.

Adjusted Attribute:

black crown

Figure 16. More examples of the ablation study on Compositional

Attribute Adjustment (CAA).

E. User Study

On each dataset, we randomly sample 20 sentences from

the testing split to synthesize the images for the user study.

We invite 12 participants to evaluate the image-text align-

ment and the image quality.

We request the participants to read a guideline before

conducting the user study. For evaluating the image-text
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(a) User interface for ranking image-text alignment. (b) User interface for ranking image quality.

Figure 17. User interface for user study.

alignment on face images, our guideline clarifies that the

words like ªwoman,º ªman,º ªshe,º ªheº denote the visually

perceived gender, which does not imply one’s real gender

identity. Since participants may not be familiar with some

terms in the birds image domain, we provide Fig. 2 in [61],

an illustration of fine-grained bird part names (e.g., nape),

in the guideline of the user study to help participants better

understand the text.

We use Google Form to collect the user study results.

The user interface for the user study is shown in Fig. 17.

The method names are not shown in the user interface. In

each question, the order of images generated from different

methods is shuffled.

The user study in this paper follows the research protocol,

whose master study received the exempt determination from

Institutional Review Board (IRB).

F. Discussion

F.1. Limitations and Future Research Directions

We honestly list some limitations of our work and discuss

some promising future research directions.

First, our attribute extraction approach (Appendix A.3) is

limited by assuming that adjectives and nouns in the text can

imply the attribute, which cannot be generalized to texts de-

scribing more complex relations in the image. For example,

the text ªthe earring on the left is bigger than the earring

on the right,º describes a relative relation (e.g., ªbiggerº),

which cannot be expressed as an attribute.

Second, based on StyleGAN, StyleT2I focuses on syn-

thesizing find-grained images in face and bird domains,

where StyleGAN has shown a great capability of synthe-

sizing high-fidelity images. However, our initial experiment

finds that StyleGAN cannot synthesize high-quality com-

plex scene images from MS-COCO [7,33] dataset, which

limits our method to focus on fine-grained single-object im-

age domains, e.g., faces and birds. Future works can study

how to leverage pretrained scene image generators (e.g.,

SPADE [40]) to perform text-to-image synthesis.

Third, in terms of Spatial Constraint, the pseudo-ground-

truth masks for some images are not accurate, which in-

troduces label noises for Spatial Constraint. Future work

can leverage some recent semi-supervised methods to ob-

tain the pseudo-ground-truth mask for Spatial Constraint.

For example, by only annotating a few images, [74] uses

StyleGAN to synthesize high-quality images with pseudo-

ground-truth masks, which can be used as an alternative to

the weakly-supervised method [17] used in this work.

F.2. Potential Negative Societal Impacts

Since StyleT2I can synthesize high-fidelity images, a ma-

licious agent may use our model as a deepfake technology

for unintended usage. To mitigate this issue, we ask the

users to agree to the ethics terms when releasing the model.

Overall, StyleT2I improves the compositionality of text-to-

image synthesis, which can better synthesize images for text

containing underrepresented attribute compositions, e.g., ªhe

is wearing lipstick.º Therefore, we believe that StyleT2I con-

tributes to reducing the negative societal impact compared

with previous text-to-image synthesis methods.
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