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Abstract—This paper proposes a pipeline to automatically
track and measure displacement and vibration of structural spec-
imens during laboratory experiments. The latest Mask Regional
Convolutional Neural Network (Mask R-CNN) can locate the
targets and monitor their movement from videos recorded by a
stationary camera. To improve precision and remove the noise,
techniques such as Scale-invariant Feature Transform (SIFT) and
various filters for signal processing are included. Experiments
on three small-scale reinforced concrete beams and a shaking
table test are utilized to verify the proposed method. Results
show that the proposed deep learning method can achieve the
goal to automatically and precisely measure the motion of tested
structural members during laboratory experiments.

Index Terms—Mask R-CNN, displacement measurement, vi-
bration measurement, structural experiments, shaking table.

I. INTRODUCTION

For safety assessment and structural health monitoring
of infrastructures such as buildings and bridges and their
components, their vibrations and deformations need to be
recorded and evaluated. Traditional structural sensors such
as Linear Variable Displacement Transducers (LVDTs), dial
gauges, accelerometers and other advanced sensors are used
to measure deformations and vibrations. However, in some
cases, conventional sensors may not be a good option to access
the desirable instrumentation locations and work in a timely
and cost-efficient way. Most importantly, traditional sensors
measure the displacement or vibration at a discrete location,
i.e., one sensor is used to measure one quantity at a single
point. On the other hand, a high definition video camera can
record the movement of a component or an entire structure
rather than a single point.

Recent developments on vision- and vibration-based tech-
nologies led to the measurement applications of low-cost
and non-contact sensors on deformation and vibration mon-
itoring of the infrastructures [1], especially because unusual
and extreme deformations or vibrations in aging bridges and
buildings may be an indication of significant serviceability
or safety issues. Cameras can collect high-quality images or
high-speed videos in lab or field tests as non-contact and non-
destructive sensors. With computer vision technologies and
various deep learning techniques, the vision sensors can not
only be used as eyes for Artificial Intelligence (AI) vehicles
and machines, but also provide opportunities for scientific
measurements to researchers and engineers. In a laboratory

experiment, cameras can be fixed near the testing station and
record live motion of the monitored structural members. They
can be placed at a stationary location or some distance away
from an in-service bridge or building to record its structural
movements remotely in the field. The collected visual data can
be processed further to identify potential damage and assess
the motion of the observed structures precisely.

To better understand and efficiently use displacement and
vibration measurement data from cameras, we used Mask R-
CNN [2] with High-resolution network (HRNet) [3] to track
a target attached on beam specimens in the laboratory and to
measure their deflections in the first study. Then the Mask R-
CNN was applied on a shaking table test to track the dynamic
motion of four targets simultaneously in the second study.

II. LITERATURE REVIEW

Computer Vision (CV) and deep learning techniques are
very useful to gain high-level understanding and extraction of
desired information and precise motion measurements from
images and videos.

Traditional CV techniques have been widely used by re-
searchers for displacement or vibration measurements by cam-
eras. These techniques include image processing technique
[4], up-sampled cross correlation [5], adaptive Region of
Interest algorithm [6], modified Taylor approximation [7], and
contour extraction with Speeded-Up Robust Features (SURF)
[8]. In addition, Lucas-Kanade template tracking algorithm [9],
[10] and Digital Image Correlation (DIC) [11] are employed
to track displacement and vibration of structural members.
Furthermore, Hu and Pai [12] utilized a camera-based 3D
motion analysis system to measure the resonant vibration of
steel cables. Chen et al. [13] described an application with
a video camera-based technique to test the vibration of an
antenna tower on a tall building when a camera was placed
175 meters far from it. Hoskere et al. [14] used an Unmanned
Aerial Vehicle (UAV) to measure the modal properties and
dynamic response of a full-scale structure.

Deep learning is a relatively new research area for visual
measurement applications. Dong et al. [15] implemented a full
field optical flow algorithm named FlowNet2 to measure the
displacement and vibration of structures. They also used the
Spatio-Temporal Context Learning to track targets and utilized



a Taylor approximation to gain subpixel level precision for
displacement measurement [16]. Also, Dong et al. [17] ap-
plied Visual Graph Visual Geometry Group (VGG) to extract
features of the target for monitoring and measuring during the
traffic time. These methods indicate how we can efficiently
use cameras to monitor and measure the displacement and
vibration of structural members or a structure in the laboratory
or in the field.

III. METHODOLOGY

In our previous studies [18], [19], new variants of the latest
Mask R-CNNs were successfully applied for structural damage
detection with high accuracy. Therefore, we used one of the
variants, Mask R-CNN with HRNet, to track and measure the
displacement and vibration in this research. Fig. 1 shows the
framework of this Mask R-CNN.
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Fig. 1. The framework of Mask R-CNN for tacking and measuring displace-
ment of a reinforced concrete beam
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Fig. 2. Translation of a target measured by a bounding box or by matching
keypoints.
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Fig. 3. A flowchart of Mask R-CNN and SIFT for automated displacement
and vibration measurement in a lab experiment with a stationary camera.

As shown in Fig. 1 and 4, a wood frame is attached near
the midspan of the tested beam so that it moves downward
or upward when the beam is loaded or unloaded. The motion
of the frame represents the deflection of the point where it
is attached. Mask R-CNN is used to track the top of this
wood frame (i.e., yellow dashed line on the left image in
Fig. 1), which is marked by a bounding box and a mask in
purple on the right image. Since the tracking target is a rigid
body, its motion can be represented by any point on it or
by the bounding box. On the other hand, as shown in Fig. 2
for the image plane of a stationary camera, translation of a
target between the first frame and the jth frame, duj and dvj,
can be calculated as the position change of the bounding box
or the average motion of the matching keypoints with SIFT.
We observed that the mask for a target may be not exactly
the same as its real shape in some cases. Therefore, SIFT
is introduced into the pipeline to eliminate this inadvertent
drawback when the bounding box is inaccurate to represent
the target. Furthermore, subpixel precision can be achieved by

matching and using the average motion of these keypoints on
the target. In our pipeline (see Fig. 3), the ratio of good match-
ing is restricted as SIFT commonly used in practice, but the
range of coordinate change for each matching keypoint is also
constrained such that the top good matching keypoints can be
secured. Therefore, the mismatching is reduced dramatically
and the accuracy of measurement is improved. Finally, the
measurement is converted from pixel to length unit (inches or
millimeters), which is also called a scalar, s. The horizontal
and vertical displacement dxj and dyj of the target can be
obtained as follows:

dxj = s× duj (1)
dyj = s× dvj (2)

As a comparison, an optical flow method called Lucas-
Kanade (LK) tracker [20] was used to track and measure
the same targets in our experiments. For the LK tracker,
the relative displacement is measured between two adjacent
frames in a video. The final displacement is the sum-up of all
the relative measurements. In addition, Savitzky-Golay filter
[21] and Butterworth filter [22] were employed to handle the
inconsistency and noise of the measurements. Fast Fourier
Transform (FFT) [23] was applied to extract the frequencies
of the vibrating targets.

IV. IMPLEMENTATION

Two types of indoor experiments were utilized to verify our
proposed methods. The first one is a small-scale experiment
involving three reinforced concrete (RC) beams (see Fig. 4)
conducted on the main campus of The Ohio State University in
Columbus, Ohio. These beams are loaded and deflected until
failure. Another test is an application on a video of a shaking
table test (see Fig. 5) [24].
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Fig. 4. A flexural test of a RC beam with a LVDT and a camera.
A. Deflection Measurement of RC Beams in Laboratory Tests

In this experiment, three RC beams were subjected to
a monotonically increasing point load at the midspan. A
displacement sensor (a LVDT or dial gauge) and a wood
frame were used to measure the deflection near midspan of
the beams, while a camera was placed 3-feet away from the
midspan (see Fig. 4). Its definition was 1600× 1200 and the
frame rate was 15 per second. The wood frame was clamped
on the beam to represent the deflection of the targeted point
on the tested beam.
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Fig. 5. Original image (left) and label (right) in the shaking table video [24].



The data process for the videos of three tests is like this:
since this is a static test, which means the loading and
deflection of the tested beams is slow, images from the video
at each second are selected as the visual data. There are a total
of 500 to 600 images for each test. To train the Mask R-CNN,
only 50 images are randomly selected and labeled for detecting
and tracking the top of wood frame (in purple mask) as shown
in Fig. 1. The LK tracker is used to track the same object
and measure the deflection. The testing results are shown in
Fig. 8. Compared to the LK tracker, this Mask R-CNN with
SIFT can provide a measurement closer to the ground truth
of beam deflections by a dial gauge. In addition, Savitzky-
Golay filter is applied to smooth the measurement such that
it becomes consistent (see Fig. 9). Table I shows MAE (mean
absolute error) for both methods. It can be inferred that SIFT
and Savitzky-Golay filter can effectively readjust the position
of the bounding box predicted from the Mask R-CNN and
smooth the measurements, hence, the proposed method can
outperform the LK tracker.

TABLE I
MAE FOR TWO METHODS (INCHES)

Methods Test 1 Test 2 Test 3
Mask R-CNN + SIFT 0.005 0.005 0.005

LK tracker 0.030 0.012 0.012

B. Vibration Measurement of A Shaking Table Test
Our proposed method was also applied on a shaking table

test [24] to check its applicability of monitoring dynamic
movement of objects. In this test, there are three rectangles
(masses) fixed on the shaking table at different heights (see
Fig. 5). Each rectangle, which is supported by two sticks,
like a structure has its unique resonant frequency in the
horizontal direction. This is due to differences between the
lateral stiffness of each pair of sticks. The frequencies of the
applied shaking are increased from 4 Hz to 13.65 Hz to excite
these masses and cause their harmonic vibrations. From the
recorded video [24], 150 frames are randomly selected from
a total of 6,674 frames and labeled for training the Mask R-
CNN. The video has an image size of 640×480 and a frame
rate of 30 per second. SIFT is not applied to smooth the
measurements here, since the goal of this test is to detect the
frequencies instead of accurate amplitudes of the vibration,
which is in pixel unit in this test. Thus, the motion of the
bounding box represents the translation of each object. The
LK tracker is utilized to verify our method by tracking the
same vibration of the shaking table. On one hand, all the raw
data are processed by Butterworth filter, and FFT is applied
to extract the frequencies for each tracking target. The filtered
vibrations of the shaking table with the LK tracker and Mask
R-CNN are shown in the left figures of Fig. 6. There are three
frequencies of vibration at approximately 4 Hz, 6.35 Hz and
11.35 Hz excited by the table. Both methods capture these
frequencies (yellow captions in the right figures of Fig. 6)
with a less than 2.6% error. On the other hand, the vibrations
of three rectangles are measured by the Mask R-CNN and raw
data are processed like the procedures for the shaking table.
As shown in Fig. 7, their resonant frequencies are very close

to the intended frequencies (i.e., 4 Hz, 6.35 Hz and 11.35 Hz).
The error rate for this measurement is 0%, 0.3% and 2.6%,
respectively. This indicates that the proposed Mask R-CNN
can be used alone to track multiple objects and capture their
vibrations characteristics precisely.
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Fig. 6. Vibration and frequencies of the shaking table measured by Mask
R-CNN and the LK tracker.
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Fig. 7. Vibrations of three rectangles (the highest to the lowest one from
top to bottom on the left hand side) measured by Mask R-CNN and and the
corresponding frequencies calculated by FFT (on the right hand side).

V. CONCLUSIONS

A deep learning method (i.e., Mask R-CNN with HRNet)
and techniques such as SIFT and Savitzky-Golay filter are
applied to automatically track the targets and provide the ac-
curate measurement of their motions with a stationary camera.
In our first experiment, Mask R-CNN and SIFT were used for
precise deflection measurement of the tested RC beams, since
SIFT can utilize the keypoints on the targets to refine the mea-
surement. Our method can be closer to the measurement from
traditional structural sensors and outperform the LK tracker.
The Mask R-CNN was also used alone to track the vibration of
multiple targets in a shaking table experiment and capture the
resonant frequencies of these targets via Butterworth filter and
FFT. These preliminary tests show that the proposed method is
robust and has the potential for measuring displacements and
vibrations of structural specimens precisely and automatically
in laboratory experiments.

Our ongoing work involves application of the proposed
method on actual buildings tested in the field to confirm its
applicability for outdoor environments. Other deep learning
methods are also being explored and tested.
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Fig. 8. The deflection-time relationship measured by a camera and a dial gauge for the three testing beams.
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Fig. 9. The filtered deflection-time relationship measured by a camera and a dial gauge for the three testing beams.
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