Three-stage Evolution and Fast Equilibrium for SGD with Non-degerate Critical
Points

Yi Wang' Zhiren Wang >

Abstract

We justify the fast equilibrium conjecture on
stochastic gradient descent from (Li et al., 2020)
under the assumptions that critical points are non-
degenerate and the stochastic noise is a standard
Gaussian. In this case, we prove an scaling in-
varaint SGD with constant effective learning rate
consists of three stages: descent, diffusion and
tunneling, and explicitly identify temporary equi-
librium states that can be observed within practi-
cal training time. This interprets the gap between
the mixing time in the fast equilibrium conjecture
and the previously known upper bound. While our
assumptions do not represent typical implementa-
tions of SGD of neural networks in practice, this is
the first description of the three-stage mechanism
in any case. The main finding in this mechanism
is that a temporary equilibrium of local nature is
quickly achieved after polynomial time (in term
of the reciprocal of the intrinsic learning rate) and
then stabilizes within observable time scales; and
that the temporary equilibrium is in general differ-
ent from the global Gibbs equilibrium, which will
only appear after an exponentially long period
beyond typical training limits. Our experiments
support that this mechanism may extend to the
general case.

1. Introduction
1.1. Background and motivation

Stochastic gradient descent (SGD) has been an indispens-
able tool in the training of neural networks and is known to
work in both convex and non-convex settings. One theme
that has recently attracted much attention is the descrip-
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tion of the asymptoic behavior of the SGD, especially how
learning rate schemes affect the distribution of random tra-
jectories. A useful approach is to model the SGD

Wiy +— (1 = Nwi — VLR, (wi), )]

where L, is the loss function over a stochastic batch Bj,
and )\ and 7 are respectively the weight decay and the learn-
ing rate, by stochastic differential equations (SDE). In this
approach, the random noise in VL, (wy,) is regarded, by
taking a continuous limit on time increments, as a Brownian
motion with covariance matrix X(wy,). A widely adopted
approach is to approximate the SGD (1) by the value at
t = kn of the SDE:

AW, = —(VL(W,)dt + (W) 2dBY) — A Widt, (2)

starting from Wy = wy, where A, = A7, and B;i stands for
the standard Brownian motion in R? (see §2.1 for more de-
tails). The quantity ). is called the intrinsic learning rate
and is known to decide the limit behavior of the dynamics.

Modern neural networks often contain various normalization
steps, such as batch normalization, weight normalization
and layer normalization. Normalization makes the loss
function L scaling invariant and typically non-smooth near
the origin. A priori, it may take a long time for the SDE (2)
to reach an equilibrium as |W;| may remain too large or too
small for a long period. Recently (Li et al., 2020) studied
how . affects the distribution of the solutions through

_1
another quantity vy, > := |W;| ™25, called the effective

learning rate. Under mild assumptions, they proved that
1 1

7, 2 stabilizes to the magnitude O(A&) after O(5-) time.
They further conjectured: ‘

Conjecture 1.1. (Fast Equilibrium Conjecture) (Li et al.,
2020) Suppose F(W , x) is the output of the neural network
with parameter W and input data «, then the distribution
of F'(W,, x) stabilizes in total variation distance for all x
after O(%) time to an equilibrium state. Moreover, this
distribution is independent of the initial parameter Wj,.

Remark that the conjecture concerns the speed of conver-
gence of a sequence of distributions towards an equilibrium
state in terms of the total variation distance between prob-
ability measures. An interesting but different question in
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similar settings, about convergence of a typical trajectory
towards a local minima in terms of the gap in the loss func-
tion, has been studied in (Raginsky et al., 2017; Zhang et al.,
2017; Xu et al., 2018; Huang & Becker, 2021).

While the conjecture is supported by numerical experiments,
it currently lacks theoretical explanation. The relation be-
tween the convergence time of the SDE model and the learn-
ing rate A\, has been studied in (Bovier et al., 2004; Shi et al.,
2020) and the best known upper bound for mixing time is
O(e“re 1) for networks without normalization. For systems

with normalization, after adapting the stabilized value of
1

effective learning rate O(AZ ) in (Li et al., 2020), in lieu of
1

e, this bound becomes O(eCA; : ), which is much larger
than O(5-). This gap has not been theoretically explained
and will be the main focus of this paper.

Thanks to scaling-invariance, the distribution of F'(Wy, )
is determined by the distribution of %—:‘ We will study this

later distribution on the unit sphere S?~! and prove that it
displays fast convergence to certain temporary equilibria.
It turns out that, unlike in Conjecture 1.1, the temporary
equilibrium of % after such fast convergence does de-
pend on the initial value W),. For possibile interpretations
that reconcile such dependence with the initial parameter

independence in Conjecture 1.1, see the discussions in §6.1.

We also note that several earlier works, such as (Mandt
et al., 2017; Izmailov et al., 2018) investigated local mixing
in the convex optimization case, when there is only one local
minimum and the loss function is assumed to be quadratic.
Compared to these works, the current paper deals with other
obstructions that arise in a non-convex setting. Namely, we
will mainly focus on the separation between stages, which is
not an issue in the convex case since that case does not have
a final stage during which trajectories move across basins.

1.2. Restriction of mathematical tools and our goal

It is worth noting that both the works (Bovier et al., 2004;
Shi et al., 2020) assumed two hypothesis: (i) the noise 3
is the standard Gaussian (see Assumption 4.1), (ii) £ is a
Morse function, i.e. all critical points are non-degenerate
and hence isolated (see Assumption 4.2). The reason lies
in the limitation of mathematical tools: the only currently
available mathematical theory that applies to the study of
convergence of distributions towards equilibria around lo-
cal minima is the seminal work of Barry Simon (Simon,
1983) on semiclassical analysis of low lying eigenvalues.
However this theory is limited to the two assumption above.
It is unclear whether similar conclusions can be achieved
beyond these two assumptions without a major update to
the underlying mathematical theory.

As no such updates exist to date, the goal of this paper is

to work within the framework of Simon’s theory and to
explain the huge gap between the experimentally supported
upper bound in Conjecture 1.1 and the previously known
exponentially large upper bounds under these assumptions.

1.3. Our contributions

The main contributions of this paper are:

(1) We derive a spherical SDE model (Definition 3.2) of
the SGD with constant effective learning rate. This model

focuses on the normalized parameter ‘%:‘ and uses intrinsic

differential operators of S?-1 (instead of those in R%). Since
the output of the neural network depends only on % this
does not affect Conjecture 1.1. This spherical SDE is also
the mathematical model of the Riemannian realization of
batch normalization in (Cho & Lee, 2017).

(2) We introduce, for the first time to the best of our knowl-
edge, the three-stage description of the SGD: descent, dif-
fusion and tunneling. The descent stage sends, with high
probability, a point near the bottom of attracting basin con-
taining it. The diffusion stages stabilizes the distribution
towards a temporary Gibbs equilibrium that is locally Gibbs
within each individual attracting basin. The tunneling stage
allows mass to slowly leak between basins to achieve the

unique global Gibbs state. The three stages respectively take
1

at most O(i%), O(x:)» O(e%) in time. It was previously
known (Shi/\ect al., 2020) that convergence towards the global
Gibbs state is exponentially slow. But to our best knowledge
our result for the first time identifies the distinction between
the three stages, especially the fast-slow contrast between
the diffusion and tunneling stages.

(3) Our proof is based on a completely new strategy. Instead
of fully relying on Simon’s semiclassical analysis, we com-
plement this theory with a probabilistic argument (Lemma
E.6) that characterizes microscopically the difficulty for an
individual trajectory to escape from an attracting basin. This
is the key to materialize the gap between small and large
non-zero eigenvalues discovered in (Simon, 1983), which
leads to the aforementioned separation between the diffu-
sion and tunneling stages. Previous works (Bovier et al.,
2004; Shi et al., 2020) only used the gap between 0 and the
smallest non-zero eigenvalue.

(4) We derive an explicit formula of the temporary equilib-
rium achieved by the diffusion stage, which is the equilib-
rium observed in real word trainings: it is a linear combi-
nation of local Gibbs states p, in the attracting basins Uy,
And the weight of each basin is approximately the same as
the initial distribution of parameter among basins.

(5) Finally, we remark that our analysis also works in the
setting of (Shi et al., 2020), where scaling invaraince is not
assumed. Instead of the compact parametric space S~1,
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one assumes L is a loss function on R? that grows fast as
|| — oo. y (which is the case when the neural network has
regularization such as weight decay). In fact, the main math-
ematical theories from (Simon, 1983; Freidlin & Wentzell,
2012), that our proof relies on, work in both the S?-1 and
the fast growing functions in R? settings.

1.4. Limitations

The main limitation of our study is the adoption of Assump-
tions 4.1 and Assumption 4.2. As mentioned above, the
reason for these assumptions is their indispensability for the
application of (Simon, 1983). On the one hand, the isotropic
Gaussian is a popular assumption to use study SGD via SDE,
and Morse functions are mathematically generic among C2-
functions. On the other hand, a serious limitation of these
assumptions arises from the fact that most modern neural
networks are overparametrized, which forces local minima
to form connected regions, instead of being isolated like
in the case of Morse functions, see (Garipov et al., 2018;
Kuditipudi et al., 2019; Maddox et al., 2020; Benton et al.,
2021; Cooper, 2021). The local dynamics near such regions
has more recently been studied in (Li et al., 2021b).

Experimental evidences suggest that the temporary equi-
libria at constant effective learning rates should still be lo-
calized in the general setting. We hope the study of this
phenomenon may shed light on better understanding the dy-
namics of SGD in schemes not covered by Simon’s theory,
and formulate it as Conjecture 6.3.

2. Preliminaries
2.1. SDE model

The SDE model of SGD has been extensively studied in
recent years. Given a dataset S = {x;},, at the k-th
step of the SGD, a subset B, C S of fixed size n is ran-
domly drawn to train a neural network whose parameters
are denoted by w € RY. For z from a mini-batch B and
a parameter w, the neural network outputs a loss function
¢p(w, x), which is assumed to be differentiable in w. The
loss function depends on B because of batch normalization
steps inside the neural network. The loss functions over
Bis Lg(w) := Egzeplp(w,z). Also define the average
loss function by £(w) := Egeslp(w,x) = Elgcg Lp(w)
B

=n

(averaging all subsets B of size n randomly drawn from S).
In the k-th step, the parameter wy, is updated by (1).

The function £ now defines the gradient vector field V£ at
every point w € R?. We also define a non-negative definite

symmetric matrix X (w) € Mat(d, d) at every w € R< by
Y(w):= E

= E ((ch(w) ~ VL(w))
|B]=n 3)
(VL(w) — v.c(w))T).

The matrix 3 (w) is called the gradient noise, and will take
the role as a diffusion matrix.

The popular approach of approximating (1) by (2) has been
studied in (Jastrzebski et al., 2017; Goyal et al., 2017; Smith
& Le, 2018; Smith et al., 2018; Chaudhari & Soatto, 2018;
Shi et al., 2020; Li et al., 2019, Li et al., 2020). For example,
Li et al. (2019) proved that, for small 7, starting from the
same initial position the probability distributions of the ran-
dom variables W, in (2) and wy, in (1) are close to each
other for fixed K and all £ < % See also (Yaida, 2019;
Smith et al., 2021; Li et al., 2021a) for discussions on the
deficiencies of SDE view of SGD as well as conditions that
guarantee validate this view.

Li et al. (2020, Theorem 5.1) proved that the SDE (2) is in
turn equivalent to

AWy =—», ° (Vﬁ(Wt)dt + E(Wt)%dBﬁ)
S C))
1 . ;

- gfyt_lTrZ(Wt)Wtdt

% = 4y + 2TrE(Wy), (5)
- 1
where W, = IVV‘%I and 7, = |W;|*n~2. The quantity v, *
is called the effective learning rate. In particular, W is
a random process on the unit sphere S¢~!. In addition,
experimental results from (Li et al., 2020) suggest that both
TrX(W,) and ~; stabilizes quickly near constant values,
and the learning perfomance has little dependence on the
initial parameter q.

2.2. Normalization and scaling invariance within
components

The neural network is assumed to be batch normalized,
which guarantees that {g(w,x) = {p(cw,x) for all
¢ > 0. In consequence (Li et al., 2020, Lemma B.1),
w'Vl(w,x) = 0. The same orthogonality holds for
VLg(w) and VL(w), which are linear combinations of the
V/{g’s. Thus,

w' ' VL(w) =0, B(w)w = 0. (6)

For a vector w, denote by V.5 its (d — 1)-dimensional or-
thogonal complement vector space. As 3 (w) is symmetric
and has mutually orthogonal eigenspaces, 3(w) preserves
VL. Therefore (w)2 annihilates w and preserves V- as
well. Recall 3(w)? is a uniquely defined positive semi-
definite matrix (Horn & Johnson, 2013, Thm. 7.2.6).
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3. The spherical model

By scaling invariance, the parameters W; and W, yield the
same outcome. So it suffices to understand the distribution
of W to consider Conjecture 1.1. We shall ignore (5) and
focus on (4).

3.1. Description of model

Denote by V the gradient on S?~! with respect to the stan-
dard sphere metric . Then VL : S4~1 — T'S?~1 is a vector
field on S%~!, whose value coincides with V£ by (6). For
later use, we also write A for the Laplacian on S41.

Write ¥ (w) and 3 (w)? for the restrictions of 3(w) and
S (w)? to S, viewed as tensor fields that send R? to
TwS¥t = Vit for w € S%!. In particular, given the

Brownian motion dB? on R?, (W ,)2dB¢ is a random
infinitesimal vector along the tangent space T, S?~!.

Theorem 3.1. Starting from an initial value Wy € S41,
the SDE (4) is equivalent to the following SDE on S :

AW, = —v, 2 (ﬁﬁ(Wt)dt +§(Wt)%dBf) )

Difference between the SDE’s (4) and (7). We now explain
the meaning of Theorem 3.1, as it may at first glance seem
unnatural to remove the last term — 2, 'TrS(W, )W, dt
from (4) without destroying the equality. The difference
is as follows: (7) is a differential equation defined on the
manifold S~ with respect to the intrinsic geometry of this
manifold, where the terms V.£(W,)dt and (W ,)2d B¢
are infinitesimal tangent vectors of S?~!. While the parame-
ter W, flows along these vector fields according to (7), it by
construction stays inside S~ !. Indeed, in the construction
the diffusion process (7), the differential geometry of S¢~!
is used (Hsu, 2002, §1.3) in addition to the values of vector
fields. But (4) is a differential equation defined on the larger
ambient manifold R, and VL(W,)dt and (W ,)2d B¢
are only vector fields on RY. A priori, (4) moves W, around
in the entire R¢ but not necessarily within S¢~!. However,
it turns out that given an initial position W, € S~!, almost
all random trajectories of (4) must remain in S?~! since (4)
arises from (2) with W, = \V‘%\ Theorem 3.1 then asserts

the probability distributions of W are the same for (4) and
for (7).

In most of this paper, ¥(w)|y.. will be assumed to be the

constant matrix 021d|V$ for w € S, In this case, (Li

et al., 2020, Lemma 5.2) proved 7; = v + (7o — 7)e At

converges exponentially fast to v = g In light of this, we
will focus on the SDE model assuming +; is the constant ~:

Definition 3.2. The sphericial model of SGD with constant

L /2X

effective learning rate ¢ := 7y~ 2 = === is the following

SDE on S%1:

dW, = ¢ (VE(W)dt + S(W)HdBY) . ®)

We will denote by Py, _,,,(W+) and Py, (W) the
probability distributions of the random solution W to the
equation (8), respectively under initial conditions Wy = w
and W, ~ v, where w € S%~! and v is a probability
measure on S~

3.2. Relation to Riemannian implement of BN

Besides simulating the stablizing behavior of v;, the SDE
(8) is also a model to the Riemannian approach to batch nor-
malization introduced by (Cho & Lee, 2017). This approach
aims to eliminate the ambiguity in scaling by perform SGD
on the Riemannian manifold S~

The basic algorithm from (Cho & Lee, 2017) can be sim-
ply stated as follows: the sequence of parameters wy, will
always remain in S?~! and be updated by

Wi i1 ¢ XDy, (—CVLg, (wy)), )

where ( is the learning rate and exp,,(v) := wcos |v| +
Sulnv‘r’ | is the exponential map on S~ for w € S-!

and v € T,,S?"1. Note that VL, (wy)) € TpS? ! as
w ' VLs(w, z) = 0. An alternative to (9) is
wy, — (VLp, (wy)

lwp — VL, (wi)|

v

W41 4 (10)
The updating methods (9) and (10) differ only by O(¢?) and
hence are asymptotic to each other for small {, as demon-
strated by Theorem 3.3 below. However (10) has the advan-
tage that it is computationally cheaper and the trajectories
are guaranteed to stay in S?~! despite of numerical errors.

Theorem 3.3. If the vector VLp(w) — VL(w) is con-
sidered as a Gaussian noise &(w) with covariance matrix
Y (w) defined by (3), then (8) is the continuous time limit of
both (9) and (10).

4. Three-stage evolution

We will from now on assume following conditions like in
(Bovier et al., 2004; Shi et al., 2020) :

Assumption 4.1. (Standard noise) On S*~', the covari-
ance matrix X coincides with a constant multiple of the
Riemannian metric on S*~'. More precisely, there exists
o > 0 such that for all w € S*1andv e VUJ; =T,S% 1,
v S(w)v = o?|v|%

Assumption 4.2. (Morse loss function) The restriction of
L to S¥ 1 is a function in C*(S*~1). Furthermore, it is a
Morse function: every critical point z is non-degenerate, i.e.
det ﬁzﬁ(z) # 0.
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Note that the Morse function condition is generically true
in the class C2(S%1).

4.1. Fokker-Planck equation and Gibbs density

Because the diffusion matrix 3 (w)2 (Z(w)z)T = T(w)
coincides with 0?1d| 7, ga-1 on Ty, S?~1, the marginal dis-
tribution of the stochastic process (8) is absolutely contin-
uous on S?~! for ¢ > 0 and its density function u;(w) is
a solution for ¢ € (0,00) and w € S?~! to the following
Fokker-Planck equation by standard arguments on diffusion
process (see §B for a proof).

Proposition 4.3. The density function u : (0, 00) x S4~1 —
R of the distribution of the stochastic process (8) satisfies

Ou= (V- (uVL) + %C202Zu. (11)
Define
o5 A
8= 2<a =\ (12)

It is known that the Gibbs density

_ L(w)
e

P (w) = (13)

Jsa-s e~ Fdm

is a stationary solution to (11).

4.2. Attracting basins

In view of Assumption 4.2, denote the set of critical points
of the restriction of £ on S?~! by Z C S?~!, and the local
minima among them by 2z, ..., 2,,, € Z. Because the critical
points are non-degenerate, they must be isolated. Hence Z
is finite.

Definition 4.4. The attracting basin U, of a critical point

z € Z is the set of all points wy € S9=1 such that the
unique solution W to the ODE

defined on S?~!, subject to the initial condition W = wy,
converges to z as t — oo. For simplicity, when z = z; is a
local minima, we will write U; := Uy, .

For @ > 0,letU,; o := {w € U; : L(w) — L(z;) < Q},
which is a neighborhood of z; in U;.

4.3. Main theorems

In the analysis below, fix a parameter € > 0 as error toler-
ance, and let )\, be sufficiently small. All choices of param-
eters, as well as implicit constants in O(-) notations, are
supposed to be dependent of the loss function L.

The dynamics of (8) consists of three different stages: de-
scent, diffusion and tunneling.

Stage 1: Descent. In this stage, the trajectory, with proba-

bility close to 1, takes O(\e ?) time, to descend to U; ¢, in
each U;.

Theorem 4.5. Under Assumptions 4.1 and 4.2, for all e > 0
and Q1 > 0, there exist Cqes > 0, Ages > 0 and a set A, of
volume m(A.) > 1 — ¢, such that for all A\ < Ages, and
all wy € A, the random solution W to (8) starting at wy
satisfies Py _,,0 (WCdCSAZ% € Uk,Ql)
Uy is the unique attracting basin that contains wy.

> 1 — ¢, where

Stage 2: Diffusion. The diffusion stage takes at most
O(M\;!) time in terms of t. During this period, the dis-
tribution converges to a temporary equilbrium given by
the conditional measure of the Gibbs equilibrium inside
each basin and remains stable for exponentially long time
after that. The weights assigned to basins correspond to the
initial distribution of mass among them. The next theorem
is the central one in this paper.

Theorem 4.6. Under Assumptions 4.1 and 4.2, for all € > 0,

there exist constants Cyit, Caif, Aair > 0, and a set A of
volume m(A.) > 1 — ¢, such that:

With 8 = \/%a, for all Ao < Mgit, the random solution
cdif

W, to (8) satisfies: for allt € [%, eVie]:

(i) For all initial positions wy € A,

(8)
A
dlStTV (PWOI’UJO( t)7 ka ,u(ﬁ)dmdm> < €,

where Uy, is the unique attracting basin of the gradient flow
of L that contains w.

(ii) For all initial probability distribution vy,

@)
dlStTV (PWONV() (Wt), Z 1%} (UL) jw([l)Uclrrldm)
=1 i

<e +1o(A7).

Here distry is the total variation distance distv (i, v) =
sup 4 |u(A) — v(A)| between measures, and A¢ is the com-
plement of A..

Theorem 4.6.(i1)) identifies a temporary equilibrium

(8)
> vo(Us) %dm. The corollary below claims
U.

that in the case of non-convex optimization, this tempo-
rary equilibrium is often different from the eventual Gibbs
equilibrium £(%)dm.

Corollary 4.7. In the setting of Theorem 4.6, if in addition
m > 2, then there exists a constant Kqir > 0 and a subset
Qait withm(Qqie) > Kais, such that for all sufficiently small
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<dif
,eV>e] the random solution

Cais

Ae, Wy € Quisand t € [ e

W, to(8) satisfies

disty (PWO:WO (Wt), M(ﬁ)dm) > Kdif-

Moreover, if L attains its global minimum value on S~ at
more than one local minima, then given any small ¢ > 0,
one can replace m(Qqir) > Kair by m(Qqie) > 1 — € for
sufficiently small \e.

The exceptional set A¢ in Theorems 4.5 and 4.6 is a small
neighborhood of the set of points whose deterministic gradi-
ent descent trajectory converge to a stationary point of £ that
is not a local minimum. This later set is a submanifold of
strictly lower dimension under Assumption 4.2, and should
be viewed as the boundary between attracting basins of local
minima. A careful analysis of the arguments in Appendix
§D would control the radius of the neighbordhood in terms
of ¢, the values of £ and V°L at the stationary points of £
and the Lipschtiz norm of L.

C
Stage 3: Tunneling. The final stage takes O(e V< ) time.
During this stage, mass leaks slowly between basins, and
eventually equidistributes towards the Gibbs equilibrium
1® dm. Because of the slow rate, this stage is not expected
to be observed within typical training time.

The name “tunneling”, following previous works, e.g. (Helf-
fer & Sjostrand, 1985; Hérau et al., 2011), comes from the
quantum tunnel effect in solutions to the Schrédinger equa-

tion, which is related to our model through the Schrodinger
B — gAf— (VL2 _ AL

operator D7 # f = BAf — ( 17 5-)f (see §E.1).

Theorem 4.8. Under Assumptions 4.1 and 4.2, and with

B=1/ %0, there exist constants Ciun, Agun > 0 such that

Jor all wy € S N, < Aun and t > 0, the random
solution Wy to (8) satisfies :

— Ctun

disty (PWO:MO (Wt), M(ﬁ)dm> < O(e—e \/Kt)

We don’t claim originality for Theorem 4.8 and only include
it for a complete description of the stages. It was proved by
(Shi et al., 2020) for fast growing loss functions £ on R4,
and their argument also works here (see §F).

Instead, our main contribution is Theorem 4.6, which identi-
fies the temporary equilibrium and proves the time needed
to reach itis < O(\;!), as well as Corollary 4.7, which as-
serts that typically the temporary and eventual equilibria are

different, and the time needed to deviate from the temporary
Cdif
equilibrium towards the eventual one is at least O(e V<),
and thus usually beyond practical observable windows. The
contrast between Corollary 4.7 and Theorem 4.8 establishes

the separation between the diffusion and tunneling stages.

5. Experiments

Model with our assumptions. We implemented the SDE
(8) on S%-1 with d = 100, ¢ = 0.1, and a scaling-invariant
loss function £(w) = 212201 sin(a; - ﬁ)Q where a; are ran-
domly chosen. For each (, we ran 32 independent random
instances of the discrete implementation

wy, — ((VL(wy) + Na(0,0))
\wy — C(VL(wr) + Na(0,0))|
of (8). The same proof of Theorem 3.3 shows (8) is a

continuous time limit of (15). All instances start at the same
initial position and last 8 x 10° iteration steps.

W41 < (15)
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Figure 1. Train loss [Toy function experiment]
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Figure 3. Train loss, zoom in view [Toy function experiment]

We choose two features to indicate the achievement of an
equilibrium: the average loss among the instances, as well
as the variance of the weights W, of all the instances. Fig-
ures 1-4 show that when ( is divided by 2°-°, the step
at which these features become approximately constant is
roughly multiplied by 29-°. That is, equilibrium is observed
in O(C™Y) time. As ¢ = Y2 0(C™Y) = O\ ?) <
O(A\; 1), this is consistent with Theorem 4.6 and suggests
there is room for further improvement (Question 6.2 below).

Experiments also support that the observed equilibrium is
the one in Theorem 4.6. First of all, the observed equilib-
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rium is localized near a single local minimum point, as the
variance among instances become very close to 0.
iy () 1P|y, :
In addition, note y;; ’ := ———————dm is concentrated
ka M(ﬁ)dm
near zj for small 5. As zj, is a non-degenerate local mini-
mum, in suitable local linear coordinates y € T, S=1 for
w near zy, £(w) = L£(z1,) + 1 |y|2+O(|y[*). Then u{” is
—aglyl?
38
approximated by € dy, which is the normal distribu-
tion N'(0, 81Id) in terms of y. Since w is approximately an
affine function of y, Varuw) (w) should be approximately
k

proportional to 8 = %CO’Q, and thus to ¢ as well. In ad-
dition, EHL[:!)L('LU) — L(zg) =~ %]Eusf)\yp = iVar(y) ~

1Trpld = 4513 is also proportional to both /3 and (.
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Figures 5 and 6 show that near the observed equilibrium,
the training loss EL(W,) is approximately linear in ¢ and
Var(W,) is approximately proportional to ¢, which per-
fectly matches the predictions above.

Underparametrized neural network. We apply (10) to a
tiny 4-layer CNN network of the same structure as above,
but with on the MNIST dataset of only d = 332 param-
eters. There are two convolution layer followed by two
linear layers. All layers are batch normalized to ensure

scale-invariance. The number of parameters is chosen to be
unpractically low for two reasons: (1) the underparametriza-
tion of the network guarantees that Assumption 4.2 still
holds and local minima are isolated; (2) to allow faster train-
ing, as we need to run many independent instances and
observe their distribution. However, Assumption 4.1 no
longer holds in this case.

Due to the small size of the network, the achieved minimum
of the cross entropy loss function is much worse than those
in practical trainings. But our goal here is to empirically
test the likelihood of whether our results extend to settings
satisfying Assumption 4.2 but not Assumption 4.1.

For each learning rate ¢, 16 independent random instances
of (10) with the same initial position are performed, for
20,000 epochs. Each epoch has 54 iteration steps with a
batch size of 1000.

P Y (Y PSS PR R PR PR PR PR P PR o)
#iteration

Figure 7. Train loss [Underparametrized NN]

#iteration

Figure 8. Variance among instances [Underparametrized NN]
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Figure 9. Train loss, zoom in view [Underparametrized NN]

As before, we use the average loss as well as the variance
among parameters as indicators for reaching equilibrium.
Figures 7-10 ! again show that random trajectories with
the same initial position stabilize to a local equilibrium

'Curves in Figures 7-10, as well as in Figure 14 later, are
logarithmically smoothified by displaying at n the average values
from epoch 0.9n to epoch n.
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within O(¢™!) = O()\;%) time. This local minimum is
again near a single critical point as Var/t(kg) (w) is extremely
small. As ( decreases, the loss and variance decay in similar
patterns as in the previous model. However, Figure 12 shows
Var% s (w) is not exactly proportional to «, but decreases
to O faster than 7, which suggests that with Assumption 4.2
but not Assumption 4.1, the local equilibrium in general
1Py,

ka 1P dm
noise setting. See Conjecture 6.3 below.

doesn’t take the form dm than in the standard
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Overparametrized neural network. Finally we apply (10)
to a 4-layer CNN network of the same structure as above,
but with d ~ 100k parameters instead, on the MNIST. This
general case is very different from the setting we studied
as it is highly overparametrized and the local minima are
likely submanifolds of large dimensions and sizes. Neither
Assumptions 4.1 nor 4.2 is expected to hold. In particular,
we no longer expect to see equilibria concentrated around
single critical points.

In this setting it takes a huge number (> 10k) of epochs be-
fore statistics stabilize, and each epoch runs for longer time.
Hence it was infeasible within our training budget to carry
out similar experiments with many independent instances

across several learning rates like in the two previous cases.
However, in this case we want to know: Starting from a
given initial position, is the fast equilibrium for (7) localized
inside a single basin, and different from the global Gibbs
equilibrium, like in Theorem 4.6? In other words, does
the separation between the diffusion and tunneling stages
extend to the overparametrized case?

Our experiment suggests that the answer is yes. At small
effective learning rate, within observable time windows
different initial positions lead to different equilibria that
are far from each other. Since they cannot both be the
unique Gibbs equilibrium, these equilibria are both local and
temporary in nature. Starting from each of two randomly
chosen initial positions w}, w2 € S, we ran 5 instances
of the implementation (10) of (7) for 40000 epochs (= 2M
iterations) at ¢ = 2745, All instances use independent
random seeds. For 1 < ¢ < 5and p = 1,2, let w;” €
S%-1 denote the parameter at k-th step of the i-th instance
starting at wj. We tracked the average distance squares
between pairs of parameters that originated from the same
initial position, as well as from different initial positions, or
more precisely the quantities Vi1 (k) := E;; lwp* f'wi"l 12
Vo (k) = Eigylwy® - % Via(k) = Eijlwy’ —

°5 .
wy *|?. where the parameters are regarded as vectors in R

7,2
wy,
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Figure 13. Different temporary equilibria [Overparametrized NN]

Figure 13 shows: (1) The equilibrium derived from an initial
position is not concentrated near a single point, as ;; and
Va2 do not approach 0; (2) The two equilibria derived from
w} and w are far from each other, because V; is much
larger than V11 and Vso. Indeed, V12 =~ 2 for all time. Since
the distance between two uniformly chosen random points
on S 1 is ~ /2 when d is large, this suggests the two
equilibria are independently located.

6. Discussions

6.1. Interpretations of initial parameter independence
in Conjecture 1.1

Our Theorem 4.6 shows that, in the parameter space the
equilibrium reached in O(5-) time is mostly concentrated
in the attracting basin of the initial parameter. While this
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is supported by real world neural network implementations
(Figure 13), one needs to explain such deviation from the
independence on the initial parameter in Conjecture 1.1 of
(Li et al., 2020). Two possible interpretations are sketched
below.

Initial mass distribution. Consider SGD with batch nor-
malization starting from an inital distribution v of parame-
ters and let v; be the distribution at moment ¢. Theorem 4.6
shows that equilibrium can be reached in t; < O(/\i) steps

_l ey eqe . . .
after v, ° stabilizes. Moreover, the equilibrium is a linear

combination ), px ,u,(f ) of local equilibria u,(f ) in basins

U}. The allocation of weights py, is approximately the same
as the initial allocation for this stage, or in other words the
allocation at the end of the preparatory phase when +, stabi-
lizes. (Li et al., 2020) suggests this prepartory phase takes
to ~ O(/\%) steps, during which , stabilizes exponentially
fast (at least when TrX is constant). Experiments in (Li
et al., 2020, Figl{re 5) also show that the initial effective

learning rate 7, * is typically much larger than the limit
value at tg.

When ¢ is small, the effective learning rate vy, z is large for
some time. Though this period is short, the large learning
rate allows mixing in short time and reaches a global equilib-
rium (which we think of as (%) with some very large ).
This process fixes the allocation of mass p;, among basins
U}. Once the effective learning rate becomes small, mech-
anisms similar to Theorem 4.6 prevent mass from leaking

1
between basins. Finally, after v, * stabilizes, the distribu-

tion is locally fine tuned to local Gibbs equilibria ,ugf) with
small 5 without changing the weights py.

(8)

In summary, in the fast equilibrium  _, py.,.”, the compo-
nents u](f )°s are determined later at small effective learning

rates, but the weights py’s are determined earlier at large
effective learning rates.

Similar landscapes among local minima. We are grateful
to an anonymous reviewer for suggesting to us that the use
of an output function such as testing/training loss might be
responsable for the independence in the initial parameter in
Conjecture 1.1. On the one hand, for an arbitrary loss func-
tion L, this is likely not the case because £ may have two
attracting basins with different local minimum values £(x1),
L(x2). Different initial parameters in these basins will out-
put the corresponding training losses. On the other hand,
further experiments show that in realistic neural network
implementations the use of an output function such as the
loss £ might explain the initial parameter independence. For
instance, for the same initial parameters w{, w3 in Figure
13, though their stochastic trajectories converge in the diffu-
sions stage to different temporary equilibria in the parameter
space, Figure 14 shows that the loss function £ has similar

distribution over these temporary equilibria. More precisely,
the quantities VLi1(k) = Ejx; \ﬁ(wlk’l) — L(wlh?,
VLoo(k) := Eigj|L(wh?) — L(w]?)|? and VL1o(k) =
Eij|L(w}") — L(w]?)|? are all distributed near 0 with
the same pattern. This suggests the following possible in-
terpretation of initial parameter independence: in an over-
parametrized scaling-invariant neural network, a majority
portion of the parametric space S?~! might be covered by
attracting basins on which the landscapes of £ are approxi-
mately the same.

32 28 26 28 g0 oz o
#epoch

Figure 14. Different temporary equilibria have similar distributions
of loss function [Overparametrized NN]

6.2. Open questions and future directions

The following questions might be of interest.

Question 6.1. Analyze either one or both of the interpreta-
tions in §6.1.

Though Theorem 4.6 shows the distribution stabilizes near
temporary equilibria within O(/\i) time, in our experiments,
most features only require O(\/%) time to stabilize with

_1
constant 7, *. Note that this wouldn’t affect Conjecture 1.1
_1
as the convergence of 7, ? itself needs O(5-) time.

Question 6.2. With Assumptions 4.1 and 4.2, can the bound
t> O(%) in Theorem 4.6 be improved to t > O(\/%)?

In light of the experiments in §5, we conjecture that

Conjecture 6.3. Without Assumptions 4.1 and 4.2, around
each connected sets Z, C S9! of local minima of L,
there are probability measures u,(f ) supported on attract-
ing basins, such that Ewwﬂgf)dist(w, Zx) —> 0as § — 0;
and Theorem 4.6 and Corollary 4.7 hold after replacing

(8)
ufg)]k’dm with ,u,(f).
Ju, nP)dm
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A. Proofs of results in §3

Proof of Theorem 3.1. First remark that given any initial
position W € S, the solution to (4) almost surely stays
in S?~! by (Li et al., 2020, Thm 5.1).

Write 3(w)? = (a1(w), ..., ag(w)). Note that forw €
S, aj(w) € T,S* L. Then the random solution W to
(7) satisfies the following property:

SEF(W.) = BWI(W,), (16)

where U is a differential operator on S?~! defined by

1__

a7
where ﬁaj is the covariant derivative along the vector field
a; on S4=1 with respect to the spherical metric (see (Hsu,
2002, Theorem 1.3.4)). The operator W is called the genera-
tor of (7). Similarly, the random solution W to (4) satisfies
: SEf(W,) = E(¥ f(W,)) where ¥ is a differential op-
erator on R? defined by

U f(w) =~ *VL(w) - V] (w)
d
+ %%—1 > Vi, f(w) (18)
j=1
- %'yt_lTrE('w)w -V f(w).

We emphasize that besides the removal of the last term, ¥
differs from W in that differential operators and the Rieman-
nian metric on S¢~! are used instead of those on R% 1.

We next analyze the difference between corresponding terms
in (17) and (18) at w € S~ 1.

Recall that T,,,S?"! is the orthogonal complement V-
of w, and the unit normal vector at w is given by w it-
self. Thus V f(w) is the V,}-component of V f(w) and
Viw) = Vf(w) — (Ve f(w))w. Similarly VL =
VL — (VwL)w = VL, where we used the fact that £
is scaling-invariant and V,,L(w) = 0. Moreover, by (6),
VL(w) - (Vf(w) = Vf(w)) = (=Vuf(w))(VL(w) -
w) = 0. Therefore, (17) and (18) share the same first term.

For the second term, we use the fact that
(vai)Q - (vﬂi)2 = _Hw(ai7 ai)vw

at w € S9!, where II,, is the second fundamental form
of S4=1 at w and V,, is the directional derivative along
the outward normal direction. Since w - V f = V,, f, after
comparing, we know that there exists a function G on S~
such that ¥ f (w) — ¥ f(w) = G(w) V4 f.

Because trajectories of both (4) and (7) remain in Sa-1, for
w € S?! and two smooth functions £, g that coincide on
S, U f(w) = Vg(w) and ¥ f(w) = Ug(w). Hence
G(w)Vyu(f — g)(w) = 0. Because V4, (f — g)(w) can
be chosen arbitrarily, we must have G(w) = 0. Therefore,
U f = W f on S for all functions f.

Therefore, restricted to S, (4) and (7) have the same
generator and are hence equivalent as diffusion processes.
The proof is completed. O

Proof of Theorem 3.3. We first prove the theorem for the
updating method (9). Under continuous limit, the surro-
gate for VLg(w) = VL(w) + (VLg(w) — VL(w))
is VL(w)dt 4 d&; where &; is a Gaussian diffusion of
covariance Y (w), such a diffusion can be taken to be
& = [ E(w)2dBy.
Using the Taylor expansion
sin |v|

0]

Lo, 1,4
:w(1—§|v| —|—I|v| —..)

exp,, (v) =w + w(cos |v| — 1) + v

+v(l - %|’u|2 +...),
the surrogate dynamics for (9) is
th
_ 1 _ 12
W, < - 5‘g(vz:(w,f)dt + 5(W,)dB¢ )‘

+ %‘C(Vﬁ(wt)dt +3(W,):dBY) ’4 — )

— (VLW ,)dt + £(W,)2dB})

1 — — 1
<1 - gﬂg(vqwt)dt + %(W,)2dB})
1td’s calculus gives

(VLW )t + (W) HdBY) i

=C*(dB)T (B(W,)?) T S(W,)#dBf
=CTr(S(W,)2) TS (W,)7)dt
=CTrE(W,)dt.
Hence,
I — 1 _
dW, :Wt( - §C2Tr§](Wt)dt)
— ¢(VL(W,)dt + =(W,)*dBY)
(1— %CQTrE(Wt)dt)
= — ((VL(W,)dt + =(W,)2dBY)

1 o
— §C2TrE(Wt)Wtdt.



Three-stage Evolution and Fast Equilibrium for SGD with Non-degerate Critical Points

Note that only the terms w(1 — %|v|?) + v came into the
final expression. Since this is exactly the same equation as

(4) with y, 2 = , the statement now follows from Theorem
3.1.

For the updating method (9), it suffices to use, for w € Sé-1
and v_Lw, the Taylor expansion

w+v
w + vl

=(w +o)(1+[vf)~3
1 3
=w(l — §|’U|2 + Z|v\4 +...)
1 3
+v(l - §|v|2 + Z|’u\4 +...)

Since we still have w(1 — $|v|?) + v as leading terms, the
same argument as above applies and concludes the proof.
O

B. Formulation of the Fokker-Planck equation

In this section, we justify the Fokker-Planck equation (11),
which is a standard fact.

Proof of Proposition 4.3. As in the proof of Theorem 3.1,
write $(w)2 = (a;(w), ..., ag(w)). Because for w €
Sd—l

d
(D aj(w)Ta;(w)]|; s
j=1

=((B(w)?) T S(w)?)

=3(w)|r, 511

501

=0?1d|p, g 1,

the operator 2?21 Vii equals 0?A. (Recall A denotes the
Laplacian on S471.)

As we are working with the effective learning rate o e equal
to a constant (. The random solution W, to (8) satisfies
(16) with
5 N 182 L, S 2
Uf(w) == (VL(w) - V(w) + 3¢ D (Va, ) f(w)
j=1
_ _ 1 _
=~ (VL(w) - Vf(w) + 50"  (w).
(19)
Then for all smooth test functions f, (16) can be reformu-
lated as

Oy /Sdl_1 u(t,w) f(w)
:/SEH u(t, w)( — ¢(VL(w) -V f(w) + %C%QZ]‘(w)),

After integration by parts, this is equivalent to the desired
Fokker-Planck equation (11). O

C. Linear time change and notations

We first perform a time change. Let 3 and 1(%) be as in (12),
(13). Write T' = (t and accordingly

V/[V/Z(JB) = W%; (T, w) = U(%’w)' (20)

After this time change, (8) and (11) respectively become
aw ) = ewiPhar - grS(w)2dBE, (21)

and
ori=DPg, (22)

where
DB =V . (aVL) + fA. (23)

Like in the notations for W,, We will denote by
Pwém:w (Wj(ﬁ)) and PVT/OWNV(WI(“B)) the probability dis-
tribution of the random solution W, to (21), respectively

under initial conditions WO(B ) = wand Wéﬂ) ~ v where
v is a measure (which we allow to be a non-probability). In

)

addition we define an operator ]?;ﬁ between measures by:

FBy = PWUWW(W}B)), 24)

in other words ]?:(FB ) is the pushforward by the SDE (21) for
time 7.

Remark that ]T'éﬁ ) is a linear operator between positive mea-
sures and preserves total mass. Moreover, ]-'¢(Fﬁ ) forms a
semigroup parametered by 7": ]?;B ) o .%g? ) = ]?:(FB_QT/.

For convenience, we will occasionally denote by VA[;}B ) (w)

fo the value of WTW ) subject to initial condition Wfo(ﬁ ) = w.
Note that this value is random.

D. Proof of the descent stage

This section contains the proof of Theorem 4.5. After the
time change, Theorem 4.5 is equivalent to:

Theorem D.1. Under Assumptions 4.1 and 4.2, for all e > 0
and Q1 > 0, there exists Cqes, Baes > 0 and a set A, of
volume m(A.) > 1 — €, such that for all < Baes and
all wy € A, the solutions to (21) starting at wq satisfy
]P";‘;O(B):wo (W}fe)s € Uk7Q1> > 1 — ¢, where Uy is the

unique attracting basin in S*' that contains wy.
We will first focus on the gradient flow without an diffusion

term and then prove the diffusion component is a small
peturbation in the begining of the dynamics.
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D.1. Study of the gradient flow

Note that by allowing to endow 3 with value 0, again via
the time change 7' = (t, the gradient flow (14) is equiva-
lent to the flow W}O) defined by (21) with the same initial
condition. Hence we will think of the attracting basins U,
as attracting basins for the flow W}O). We emphasize that
W}O) is deterministic and has only one possible trajectory
starting from a given initial position.

Lemma D.2. Under Assumption 4.2,

1. S4Vis the disjoint union of {U, }2c 7,

2. U;is openfog eacht =1, ...,m, and the union Ui:l U;
is dense in S*~1;

3. Ifz € Z\{z1, ..., 2m}, then Uy is a submanifold whose
dimension is strictly less than d — 1.

This is an elementary fact and the proof is omitted.

Lemma D.3. Forall Q' > 0 and € > 0, there exists § =
0(Q', €) > 0, such that the volume of the set
A} ::U{weri:VTZO,
i=1

either LW, (wo)) — L(z;) < Q'
or VLWL (wg))]? > 6. }

satisfies m(A}) > 1 —e.

Proof. Since the set Aé is decreasing in 6, it suffices to show
that m(|Jy. o Aj) = 1. We claim that | J, , Aj 2 Ui, Us.
The lemma would then follow from Lemma D.2.

Suppose "/‘70(0) =wy € U;and T > 0, then W/}O) ey
as well. It suffices to show there exists 6 that depends on
w but not on 7', such that if E(W}O)) — L(z;) > Q' then
VLW > 6.

Indeed, as limy_, o0 (L(W) — L(2;)) = 0, LW) —
L(z;) > Q' only happens on a fixed interval [0, Tp].
Moreover, VE(W}O)) > 0 for all T > 0, because oth-
erwise W}O) € Z and hence w = W}O) is a critical

point, which must be z; since w € U;. In this case
LW") — L(z;) > Q' does not hold.

Therefore, as VL is continuous on the com-

pact interval [0,7p], it suffices to choose 6 =
= (0

suppe o1y [VLWA)2 > 0. O

Corollary D.4. Let 0 = 6(Q', €) be as in the lemma above.
If wy € Aé then wqy € U; for some 1 < i < m. Moreover,

ifWO(O) = wy, then forT = w, "47%0) € U; and
LW) - L(z) < Q"

Proof. By definition w € U; for some . Assume that
LW = L(z) > Q. then LW ) — L(z) > Q
for all s € [0, 7] as the gradient flow decreases £. Thus
VLW )2 > g and

L(wo) — LWL
S /T Loy
o ds s
_ / VLWO)T - (~VLW))ds
0

T
2/ VL (gsw)|*ds > T > max £ — min £,
0

which cannot be true as E(W}O)) > L(z;) > min L. This
completes the proof. O

D.2. Perturbative estimate

As the following lemma shows, the SDE (21) is a perturba-
tion of the gradient flow on short time scales, during which
the diffusion effect is weak and dominated by the speed to
the gradient flow.

Lemma D.5. Assume ﬁ}:ﬁﬁ ) and WT(FO) start from the same
initial position wg at'T' = 0, then
e N 2
E (dist (W1 (wo), Wi (wp)) ) = Or(8)

for a fixed T' > 0 and sufficiently small /3.

Proof. By (Freidlin & Wentzell, 2012, p32), there
exists a Lipschitz type constant C = C(L),

~_ — 2
such  that E(dist(Wéﬂ)(wo), W}O) (wo))) =
O(ﬂCzeQCT fOT 6(2C+ﬁ02)8d5). For small 3, the
right hand side is Or (). O

Corollary D.6. In the setting as above, for a fixed T, there
exists a subset A7, . with m(A7, ) > 1 — ¢ such that for

sufficiently small 8 and all wy € A%,e’ the solutions to (21)
starting at w satisfy

P(W:,(ﬁ)(wo) and w belong to the same U,

and dist(ﬁv/}ﬁ) (wo), W%O)(wo)) < OT(ﬁ%))

>1 —e.

Proof. Lemma D.5 implies, by Chebyshev inequality, that
P(dist(w;‘” (wo), W' (wp)) < OT(ﬁ%)) >1—efor
all initial positions w. Remember that W/}O) (wp) and wy
belong to the same attracting basin. For W;ﬁ ) and w to be
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in the same U;, we can take

K24 —U{wer B, 51, (Wi (w0)) C Ui},

i=1

By Lemma D.2, if wy ¢ K2T,/37 then the neigh-
w (0)

borhood B On B%)(WT (wp)) meets the boundary of

U;, which is contained in Uzez\{% Lz} U,, a union
of finitely many proper submamfolds In other

words, WT(O) (wo) is in the Ogp(B2)-neighborhood
BOT(g%)(Uzez\{zl,...,Zi} Uz) of this union. It follows

<o e — (0
that (%%,)° € W8, 1) (Useziion,om Uz))
where WEOT) is the time-reversed gradient flow. Because

A W—OT)<BOT«3%>< U Uz))

B>0 z€Z\{z1,...,zi}

-wo( U u)

z€Z\{z1,...,zi }

= U Uzv

z€Z\{z1,...,z;}

we conclude limg_, m(AT ) = 1. Since the sets A

are decreasing in 3, one may fix a sufficiently small 50 =
Bo(T,€) and set A7, = A7 5, such that m(A?) > 1 —
€. O

D.3. Proof of Theorem 4.5
Proof of Theorem 4.5. It suffices to prove Theorem D.1.

Take Tyes = 7ma;‘(%1“im £and Ac = AINAZ, . Ttfollows
from Corollaries D.4 and D.6 that
P, (ﬁ?}ﬁ) € Uy . and
LW ) — L(z) < % + max [VL| - 06(5%))
>1 —e.
For sufficiently small /3, % +max |VL|- O(82) < Q1.

Moreover, m(A.) > 1 — 2¢. To deduce the proposition, it
suffices to rewrite 2¢ as e. O

E. Proof of the diffusion stage

This section contains the proof of Theorem 4.6. Using the
time change 7" = (t, Theorem 4.6 follows from:

Theorem E.1. Under Assumptions 4.1 and 4.2, for all e > 0,
there exist constants Rait, rait, Adif > 0, and a set A, of
volume m(A.) > 1 — ¢, such that:

With B = 4/ ﬁa, Sforall Ao < Agis, the following is true for
all T € [ o™

B ]

(i) For all initial positions wq € A,
— (8)
i _ DN G )
dlStTV(PWéB):wo(WT ),f u(ﬁ)dmdm < €,
Uk

where Uy, is the unique attracting basin of the gradient flow
of L that contains wy.

(ii) More generally, for all initial probability distribution
Vo,

diStTv (Pwo(ﬂ)’\’ Z l/(] )dm dm)
S€ + Z/Q(Ag)
E.1. Relevant Hilbert spaces and operators
Consider the adjoint operator (D?))* = —V L -V 4 A.

It is known that (D(®))* is self-adjoint on the Hilbert space
L2 () := L2(S41, P dm) (Kolokoltsov, 2000, §8.5).
More precisely, for smooth functions f, g,

/ F(DD) g

This is equivalent to

/D(ﬂ)(fu(ﬁ))gdm: /fD(ﬁ)(gu(B))dm

Dam = [(DP) g Pam. 25

or
1
(8) BNYg,B) .
/D (fu"Ngu M(ﬂ)dm

1
:/fu(ﬂ)@m(gﬂ(m). dm.
I

This shows D) is self-adjoint for the Hilbert space
LQ(#(B)) = L2(S%1, ﬁdm). We shall also write
L?(1) := L?(S?!,dm) for the unweighted L? space.

written  as
gdm which

The equality (25) can also be

J(PD) flguPdm = [DE)
implies

(PP f = %D“”(fu(ﬁ)). (26)

On the other hand, one can directly check the following
facts:

Lemma E.2. Let fr(w) = ¥ (w) " 2ar(w). Ifuisa

solution to (22) then f satisfies Or f = DP# f where
st g gap_ ([VEE AL
D= FAf -~ (S =S5O0 @D

We also note

pB g — D(ﬂ)((u(ﬁ))%f) — (M(ﬂ))%pﬂ#f. (28)
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The equalities (25) and (28) guarantee the following com-
mutative diagram of operators:

F= ()2 f Fo(u®)d g
L2 (u(®) (1 ()
[(D(B))* DB-# Jpw)
Fo(uz g Fou®)E g
L2(u®) L2(1) L*(3)

(29)
In this diagram, every horizontal arrow is an isometry and
every vertical arrow is a self-adjoint operator. In particu-
lar, f — f(1(#))2 is a bijection, from the eigenfunctions
of (D¥)* to those of D?# with the same eigenvalues,
then again a bijection from the later ones to the eigenfunc-
tions of D#) with the same eigenvalues. In other words,
the spectra of (D(?)* , DA# and D), as self-adjoint op-
erators in their corresponding spaces, are the same. By
self-adjointness, this spectrum is actually contained in R.

Recall that U; is the attracting basin containing z;. From
now on, we will denote the indicator function of U; by

X5 ‘= XU;-

The low lying eigenvalues of —D?) correspond to the local
minima. This was first proved in (Simon, 1983). The precise
version that we need can be found in (Kolokoltsov, 2000).

Proposition E.3. (Kolokoltsov, 2000, p248) Given L, there
exist constants Qq, p > 0, determined by L, such that:

1. The first m eigenvalues (counted with multiplicity) of

—DB) in LQ(H}M) are < O(e*%);

2. WithTI®) and (1)L =1d — 1) respectively denot-
ing the orthogonal projections in L*( M(%)) to the span of
the first m eigenfunctions of —D'®) and to its orthogonal

BNL (v (B
T O ) 2y o
= O(e™ %)

complement, =
151 2
“

holds for 1 < j < m;

3. All other eigenvalues of —D'P) are greater than or equal
to p.

More precisely, Qo can be any positive value such that
Qo < min; SUp,,ep, ((C(w) — E(zi)).

The original formulation in (Kolokoltsov, 2000) was for the
spectral decomposition of —(D(®)*. But in light of the
correspondence D) (P f) = pB)(DB))* f (see §E.1),
the translation to the D#) setting is straightforward.

E.2. Approximate spectral decomposition

e
(B) XiH (B)
. = —F and ’(/} =
’ HX]'/U'(B)”L?( L) !

e

H(ﬁ)g;ﬂ). Then ||>2§.B)||L2( i) = 1. By Proposition E.3,
m

For brevity, let y

Q

0

1 = ey <0 ), (30)

and the matrix

1
)

m

— — B) ,,(B)
K= (Kij)ZLjZI T (<z/}7, awj >L2(ﬁ))i,j:1

Q

TO) from Id. In consequence,

is within distance O(e

Q
I = 1d]| < O(e™ 7). 31
The entries of K ! will be denoted by K ~! = (K%).

Suppose tr(-) = @(T,-) is the density function of the
distribution of trajectories WT that start from an intial point
wyp. We are interested in the spectral decomposition of ur,
or more precisely the projection

m

e f = Z (ZKij<ﬂT,w§B)>Lz(ﬁ)>¢§'B). (32)

i=1  j=1
The strategy is to show that the coefficient
S KY (ﬂT,w‘gﬁ ) r2(—1_) in the decomposition

2 (B)
above has little dependence on the choice of wy as long as

it is supported in Uy, g, .

E.3. Regularity bound

From now on, suppose Uy, is the attracting basin containing
wy. By Theorem D.1, after running the SDE (21) for T} =
0@, (1) time starting from a randomly sampled point wy,
the resulting point WTI is with probabilty 1 — € in the “well”
Uy,q, near the local minimum zj, at the bottom of Uj,.

We will start the SDE again, on a longer time scale, from
the restricted probability distribution (]?;f )6w0) Uy, In
the next stage, gradient descent slows down because VL is
small in Uy, g, , and diffusion behavior plays a more impor-
tant role than in the previous stage.

It is noteworthy that (j-:%j )(5,,,0) k21 i absolutely contin-
uous because 77 > 0 and the parabolic PDE (22) is non-
degenerate.

Instead of bounding @ (7, -), we allow the stochastic pro-
cess (21) to run for a duration of £ before estimating the
regularity of the new marginal distribution u 5 dm. Let

p : (0,00) x S971 x S9! be the heat kernel of the op-
erator DY), ie. p(T,z,y)dm(y) = d(ﬁ;ﬂ)ém)(y). In
other words, for each fixed @, p(T, x, -) solves (22) and
p(T,x,y)dm(y) converges weakly to d, as 7' — 0.
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Lemma E.4. There exist constants C1,Cy > 0 determined
by L, such that for every R > 1 and sufficiently small B,

Co

Ip(&,-,)| is uniformly bounded by O™ 52,

L(z)—L(y)

Proof. First remark that, by (29),e™~ 2% p(T,z,y) =

(1) 2 () (u®) =2 (y)p(T, x, y) is the heat kernel of the
operator DP# .

We then renormalize D?# to D%# = A — VB where
~ .
VB .— ‘Z[ﬂ — %—g. The heat kernel of DZ# at time R
_L@-Lw) p
takes the form e 28 p(g, xz,y).

Note that V(#) may take negative values, but min V(%) >

— %. Define the Schrédinger operator

SB) A — (V(B) — min V(ﬁ))7

whose . heaE o Ll((ye;rnel at time R is
ey " (@)~ £
e(min VIR —==05= p(%,w,y),

Because the new potential function V(%) — min V(%) is non-
negative, by a standard maximal principle argument, the
heat kernel of S(%) is bounded by the Gaussian heat kernel,
i.e. the one of the Laplancian A on S?~!. This in particular
shows that

(min V)R — £ LW (R

p77w7y

5 )
_d—1 _ cdist(z,y)?

gO(R e R )

for some constant ¢ > 0. Thus

p(%, z,y) <O (Rf%ef(min V<5>)Re“””)27f<y> )

To establish the lemma, it suffices to take C; = ”AEQHL‘”

and Cy = max £ — min L. O]

Corollary E.5. For R > 1, small 8 and any initial mea-
sure vy on ST, .7-"(;)1/0 is absolutely continuous. More-
3

B

over, }'(3’8)1/0 = qdm for a function q with ||q||L~ <
C1R+C:

O(e™ 7 (S,

The operator F (Eﬁ) was defined in §C.
B

Proof. This follows from Lemma E.4 and the direct decom-
o R
position ¢(y) = / p(g, z, y)dvo(x). O

E.4. Non-escaping from well

We will make a choice of the parameter )1 in Theorem
D.1 that depends only on L. The goal is to assert that the

a trajectory of the SDE (21) with starting point w € Uy, g,
will be trapped in Uy, ¢ for an exponentially long period with
high probability. The argument below is essentially due to
(Freidlin & Wentzell, 2012, §4.4). However, while their
proof works for all w € Uy, g, , the purpose of reproducing
it here is to demonstrate the uniformity of the estimate for
allw € Uy g, .

For every w € Uy q,, its first exit time with respect to
Us,q, is denoted by

PO (w) = inf {T > 0: WP (w) € Wiq, . (33)

Lemma E.6. Given L and Q, there exists a constant @1,

such that the bound P(1%) (w) < e%g) < O(e_%?) holds
uniformly for all w € Uy, q,.

Proof. Together with another constant r, also determined
by L, we can make @); satisfy the following condition:

V1 < 7 < m, Ui7Q1 C BT(ZZ') and Bgr(zi) C Ui7Q0 (34)

For every w € U, g, U 9U; ,, and let Tl(’B) (w) be the
following stopping time:

7 (w)
.= inf {T >0: Wi (w) € 0B, (z:) UdUi g,  (35)

and 37" € [0,T) s.t. W\ (w) € aBQT(Zi)}.

Fix constants Qp, @ such that 0 < Qf < Q) < Qo -
In addition to (34), by (Freidlin & Wentzell, 2012, Ch. 4,
(4.6)), one can choose r to be sufficiently small, such that
for all sufficiently small 3,

’

— Qh
P(Wf?>>(w)(w) €Mig,)<e ™ (36)

foralll <i<mandw € 0B,(z;) UJU, q,. In addition,
define for every w € U, g, recursively the n-th stopping
times forall n > 1:

¥ w) =12 w) + WG . 67

Note that if w € Ba,(z;), then 709 (w) = TJ(Vﬁ()ﬁ)(w) (w)
for a random variable N = N(®) (w) € N.
Once r is fixed, because the stochastic process (21) is a

perturbation of the geodesic flow when [ is very small and
the separation condition (34) holds, there exists a constant

6 > 0 such that P(Tl(ﬁ) (w) > 6) > 1 for all sufficiently

small 3 and w € 0By, (z}). By construction of Tl(ﬁ ), this
inequality is also true for all w € 9B,.(z)
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From now on suppose w € U; g, C B,(z;), Set a target
Q//
iteration number at M (#) = L%GTOJ. Then Tl(ﬂ) (w) =

7 (w)+r “)(WQ;( | (w) where 7" (w) = inf{T >
0: W:(p )('w) € 0B, (z;)}. In particular,
NOw) = NOWE (). G

Since W(Q( (w) € 0B,(2:) UU; g, by (36).
To w
3%

P(NO(w) <M®) <1 (1— e )L 7! 39
—0(™7 ),

where the implied constant is uniform for w € U; g, C
BT(ZZ‘).

On the other hand, since 7\ (w) = Téﬁ)(w) +
Sy Tl(ﬂ) (W(f?)( )(w)), and each term in the summa-

tion, given all precedent terms, is greater than 6 with at least
1 g . . . .

5 probability, we know by large deviation principle that for
an absolute constant ¢ > 0,

IED( (ﬁ) S e—CM(ﬁ) (40)

0
Tape (W) < gM(ﬁ))

uniformly for all w € U; q,. Combining (39) and (40)
yields that for all sufficiently small 8 (depending only on
L), we have uniformly for all w € U, g, ,

QII
P(r®(w) < e?)

u 0
=P( ](\/'ﬁ()ﬁ)(w)( y<e? ) <P J(V’B()ﬁ)(w)(w) < g]\4(5))
0
<P(N®(w) < MP) + P(+7) (w) < gM(m)
" _ ot QY
SO(BQOﬁQO ) T ech%eJﬂLJ
<O(e W% ).
41)

The proof is completed by taking Q{ % and Q) =
2230. -

E.S. Short term convergence towards local equilibria

We are now ready to put the pieces together and understand
the evolution during the current stage.

Let T} = T4es as in Theorem D.1. Fix an arbitrary parame-
ter R > 0,say R’ = 1. Let
Cy=Cs+

%(maxﬁ —minfl) = g(maxﬁ —min L),

which depends only on £. Consider R > R’ such that the
following assumptions are satisfied:
p+Ci C3 + Qo

R + , (42)
p p

R>

R/ R Qo
— <= <e®. 43)
B~ B
We first write
PWo:wo (W%) = f(%ﬁ)éwo = ‘7_:.5%6—;}:{’ J?S%ﬁ’)(swo' (44)

Then decompose
]:g%ﬁ') 5'“’0 :f(i?)_Tl ((]:7(“[13) 6“’0) |Uk,Q1 )

+}:(I§) ((]:”}? wO)‘Uk Ql)

By Theorem 4.5, the total mass of

f(%ﬁle ((]:;(pf)5w0) |U£,Q1) is less than e.

For simplicity, denote the measure

}-Eg) T ((fq(ff)éwo)\(]k Ql) by 7. Then its properties
Fh ’

can be summarized as follows:
(i) distry (FU 6w, 7) < €
B

(i) v is absolutely continuous.  Moreover, v =
h(-)dm with a density function h satisfying ||h| <

C1R'+Co
O(e” 7

Here the second property follows from Corollary E.S5.

In particular, the total mass of y satisfies 1 —e < 7(S%1) <
1.

We now run the Fokker-Planck equation (22) starting at
initial time 5 and initial data h(-), and denote the solution
by h; that is, hp(w) := h(T,w) is defined on T > £

B8
w € S and solves

5TT p(ﬂ)iLT
{ hi ()= h(), @

(T-&

~ 8)
In other words, h,_r =€ )P 1. Note that as the
B

Fokker-Planck equation preserves total mass,

/BTdm:/hdme [1—¢1],VT > % (46)

Since 7 and @ both satisfy (22), for T > £, hy will be
viewed as an approximation of %7 in the sense that
diStTV (ﬁé«ﬁ)éwo 5 iLTdm)
:diStTV (’&,le’l’l7 iLle’n)

:diStTV(]T‘:(FBj%, (it dm), ]-N‘WJ& (ﬁgdm)) (47)

=distry (F?) , (@i dm), 7P ~)
T77 B

T— R’
<e.
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(ﬁ)X(ﬂ) and A(ﬂ) 1][]](/3) _

to the span of the first

m eigenvalues of —D®) and its orthogonal complement in
L?( (1[3) ). The conditions (42) and (43) will be assumed on
R and R’ without further notice.

Recall ") = (@)
(8)

are respectively the projections of X;

Lemma E.7. For sufficiently small (3,

BN+, -
[| () h%HLQ(ﬁ)SO(e +).

The projections IT(?) and (I1(%))+ were defined in Proposi-
tion E.3.

Proof. The projection (IT(?))+h, z can be bounded by
L
||(H(ﬁ)) hg ||L2( )

) S

L2(Tay)

Y (48)
R—R’ 1(8) ~
e ; <H”’>Lh%’ G
L)
Se /1 ||hR/ ’LQ M(lﬁ))

because by Proposition E.3.(3), the spectrum of —D#) on
the image of (I1(¥))+ is in [p, c0).

By the bound on izif = h, we have:
]

Hh%'”L?(ﬁ)

C1R'+Cy
<O(e™ 7 )l Lz &)

:O(GCIRL;+CZ)</ lu(lﬁ)dm)—é

C1R +Cy

<O(e B

(49)

)(min zo(#)) =
SO(E Cq RB+C’2 )(e min L;maxﬁ )7%
=0(e S

Combining (48) with (49), we obtain

R— R) C1R'+0%
B

§0(6 p(

_ pR—(p+C1)R O}
B

Qo

<O(c#)
because of (42). O]

Notation E.8. In addition to the usual big O(+) notation, we
will use O(€) to represent an error taking value in [—e, €].

Lemma E.9. For each j,

/ P [ 140 +0H) =k
Uy 3¢ O(e~ %) j#k

Proof. By the
FB)

R -7

fact that h 2 dm =

((.7?%3 )(5w0)|Uc ), condition (43), and Lemma

E6, Jy, , hydm = by [y, hydm + 0@ 3). We
then conclude with (46). O]

Corollary E.10. For sufficiently small 3,

<ﬁ%,w§-ﬁ>>m

01 N TO 2
||XkM ||L2(“(+3>)

1
)

Proof. 1t follows from (30) and the lemma above that

8) _ (5)
<hRa¢ )2 L2(—L)

“ 'B)>L2(

=(MD)*h w“)

Qo Qo

<O(e” 7)) - 0(677) =0(e” 7).

Together with Lemma E.9, this implies

A(ﬁ)>

<hR 7X]

1
L2 ()

<h%anN(ﬁ)>L2(“(lﬁ))

||XJ'M('6)||L2(W)

_ij,Qo h%'u(ﬁ) ) ﬁ
1P| 2

“<B))
iLRdm
fUJ~Q0 B

dm

61V

||XjM(’8)HL2(“+B))

O+ 0(e) + O(e~ )

([ xrat?) ez )

The corollary is proved by adding (50) and (51). O

E.6. Proof of Theorem 4.6
To prove Theorem 4.6, it suffices to prove Theorem E.1.
Proof of Theorem E.1. The constant Rg;s will be the right

hand in (42) and let raie = 2. For T € [Baie ¢™H), write
T = L. Then R satisfies both (42) and (43).
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Fart (i). Let U be the unique basin containing wy. First
assume that A C Uy. In this case, using (30)

(xap?, ¢§ﬂ)>L2(ﬁ)

=(xap?, X§5)>L2(M+B))

+ (xau®, ) — )AC;B)>L2(M<1B )

- (xap®, Xjﬂ(ﬁ)>L2(“(1B) )

HXjM(B)”L?(Ml )

(B)
o — P o

+ ||XAN(6)||L2( 1 )

(B

Skillx a2,

()

PP

_ Qo
+ 0™ F)an gz _y )

)

<6ijAN(ﬁ)|L2( .

Qo
—|—O e B (5) 1
Pz ( )> bear o o)

(M(IB) )

(52)
We can now, from (31), (32), (52) and Corollary E.10, de-
duce

ME)
=3 D K g ) e
p et ME)
) (8
(XAM( )7% ) 2(—5y)
m m 7@7
=D (6, +0(e™ 7))
i=1 j=1
_Qo
X B
(BT o)
Derit D 2
o

(53)

5kj||XAu(5)||L2( L)
( e +0(e‘%°)>

oGy

. (8)
xap ||L2( (15))

-y (5'“0 )+ ol #) +ole )

2\ TPy

Mz
1(B) +O(€%))>

PP

<5kj||XAH

. (8)
lIxap ”L%ﬁ)

By separating the j = k and j # k terms, this becomes

<H(ﬁ);}% (6)>L2( )
1+ 0(e) + O(e™ ) 0
2
:<< ) +O(€_BO)>
Xk H ||L2(m)
”XAN(ﬁ)”Lz( L)
( T +0(6%0))
Xk pe HLZ(”(lm)
O( )

(8)
)”XAM HLQ(“(IB))

O(e 5)) s
Ikt P | 21y

([ xre a2 ez

(8) ~

Ixan HLQ(M(lﬂ)) O(e) +

- @2 +
Dotz oy

. (8)
[xap ||L2(ﬁ)

Ixap®|2,

= xen @2,

(0(6) + 0(
X

f ,u(ﬁ)dm - Qo
=, aPam T 0O+,
Uy

3 ))IIXAu Mg )

+

Here we used the fact that ||XAﬂ(ﬁ)HL2( 1

)
= (Jo, 1t

On the other hand, by Lemma E.7,

<

HXW(B)HLz( dm)2 <1

(B)yL7, (8)
(M) "he, xap >L2(M(1ﬁ))

(55)
<O(e”

Qo _ Qo
E )HXAM([&)HLz(‘(lﬁ)) <O0(e7)

Adding the last two inequalities gives, for all subset A C Uy,

2 (8) L
<h%7XAM >L2(u(5>)
Bdm  ~ o (56)
J[Ai(ﬁ)d +0(e) + 0(e™ )
Uy,

Assume now A C U{. In this case, by Lemma E.9

h 7 _Qo
<h%7XAM(ﬂ)>L2(“(1ﬁ)) = /Ah%dm = O(e 3 ) (57)

Finally, for a general subset A C Sa-1 we decompose A
into ANUy, and A\Uy, and apply (56) and (57), and conclude
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that

/ hRdm

_ (8)
—<h%,XAM >L2(M(1B))
B)q
pPdm - 2 (58)
:f?mULw)dm +0(e) + O(e™ )
Uy
f M(B)|U dm  ~ aQ
:m"‘rO(E)—FO(e 313)
U

By (47), the relation (58) is equivalent to

B
sty (F D5, Mo
disty (}-% Oawg » ka M(ﬂ)dmdm)) 59)

0

<e+O(e 38) < 2.

Q

for sufficiently small 5. Let T =
5)5

%. After renaming 2e as
wo = PWéﬁ):’wo (W}B)), in view of
(43), we obtain Part (1) of Theorem E.1.

€ and rewriting ]-"

Fart (ii). The second part of the theorem follows directly
from Part (i) by disintegrating v as Z;nzl

O

Corollary 4.7 follows from Theorem 4.6 and the following
lemma:

Lemma E.11. In the setting of Theorem 4.6, given € > 0,
for sufficiently small 3,

(i) Forall i with L(z;) > min L,

distTv( 7u(ﬁ)dm) >1—c¢

T

(ii) For all i with L(z;) = min L,

8
. 1Y |qu B)
dist — e, 7dm
Tv(fUi 1B dm )
—92 1
o1 _ (det V' L(z;))" 2 .

- =2 1

Zk:ﬁ(zk):min [,(det \Y ‘C(zk))_E

Proof. By (Hwang, 1980, Thm. 2.1), as 8 — 0,
B converges to a probability measure 1(?) supported
on {z; L(z)) = minf} and p@({z}) =
=2 —1
(det V L(z:)) 2 r if £(z;) = minL. There-
Zk:C(Zk):minL(detV L(zr)) 2
fore:

For all i with £(z;) > min £, (%) is supported outside U;,

thus

(8)
distry (7“ |Ui

(8) .

For all ¢ with £(z;) = min £,
(ﬁ)

dist CIACR!
istry (7 m Jo 1®@dm’ " m)
- (det V* L (=)~

=2 1°
Zk:[)(zk):min E(det \4 ‘C(Z’f))ii

Both inequalities above are obtained by comparing the mea-
sures of U;.

It now suffices to take sufficiently small 3 in the limit. [

Proof of Corollary 4.7. Suppose m > 2, choose A\ < Agif
sufficiently small such that (8 is small enough for Lemma
E.11. Let Qqif = Ac N, L(2:)>min £ U; if there is only
one zj with £(z;) = minZL; and Qqir = Ac N Y, Us
otherwise. Note that m(UU,.z 2, )>min £ Ui) > 0 in the first
case and | J, U; = 1 in the second case. So in the first case
m(Qqi) > k1 — € for some constant k1 > 0, and in the
second case m(Qqir) > 1 — €.

Suppse w € (qir and w € U;. Notice that in the second
=2 1

case, 1 — (det V £(ziB2 2 1

2 kir(z)=min c(det V7 L(2k)) ™ 2

degeneracy Assumption 4.2. By Lemma E.11, in both cases,

> 0 by the non-

)
. M |Ui
distry (1 i

for some constant ko > 0. By Theorem 4.6,

,,u(ﬁ)dm) > Ko — €

distv (PWO:MO (W), M(ﬁ)dm> > Ko — 2€.

The corollary follows by fixing a sufficiently small € <
1 min(k1, k2) and choose A accordingly. O

F. Proof of the tunneling stage
Using again the time change 7' = (t, Theorem 4.8 would
follow from:

Theorem F.1. Under the genericity Assumption 4.2, There
exists a constant Qyuy such that for all T > 0

dlStTV (Pﬁ;o(ﬁ) —w
— Qtun
B

§O<67(e )T)

(WD), 1D dm)

holds uniformly for all initial position wy € S*! and
sufficiently small 3.

Proof of Theorem F.1. As noted in the discussion following
Theorem 4.8, this part (or the R? version of it) has essen-
tially been proved in (Shi et al., 2020). Their proof is for
fast growing functions £ on R? and is based on the fact that
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there exists () such that for the second eigenvalue )\éﬁ) of
D),
AP > 5 (60)

(Recall that the first eigenvalue is 0 as D) ;%) = 0.) In
our setting of the compact manifold S4~!, (60) was proved
in (Michel, 2019, Thm 2.8), and the same argument as in
(Shi et al., 2020) applies. O



