

Title: Abiotic manganese oxidation by peroxy radicals generated from the reaction between hydroxyl radicals and their alcohol scavengers

Authors: Zhenwei Gao and Young-Shin Jun*

Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States

ysjun@wustl.edu

Symposium: Manganese (bio)geochemistry in natural and engineered environments

Abstract: Environmentally ubiquitous manganese (Mn) oxides play important roles in geochemical element redox cycling. They can be formed by both biotic and abiotic $Mn^{2+}(aq)$ oxidation processes. We recently observed photochemically-assisted abiotic oxidation of $Mn^{2+}(aq)$ to $\delta\text{-MnO}_2$ nanosheets during nitrate photolysis. Mn^{2+} was mainly oxidized by superoxide radicals, while hydroxyl radicals ($\cdot OH$) contributed little to Mn oxidation. However, unexpected abiotic Mn^{2+} oxidation was observed in the presence of *tert*-butyl alcohol (TBA) that was added to scavenge $\cdot OH$. TBA, one of the most common $\cdot OH$ scavengers, has been thought to be able to completely scavenge $\cdot OH$, leaving less reactive products that do not participate in further redox reactions in the system. However, we discovered that TBA was not an inert agent in scavenging $\cdot OH$. Secondary peroxy radicals (ROO^\cdot) were produced from the chain reactions between TBA and $\cdot OH$, facilitating the oxidation of Mn^{2+} to $MnO_2(s)$. These findings can also be applied to other alcohol scavengers, such as methanol, ethanol, and propanol. In addition, ROO^\cdot can be produced by the reaction between $\cdot OH$ and unsaturated organic matter in natural environments. This study helps understand the occurrences of Mn oxides in the environment, and it provides new insights into the oxidation pathways of other heavy metals ions (Fe^{2+} , As^{3+} , and Cr^{3+}) by ROO^\cdot .