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Abstract 

Athermal resistance to the motion of a phase interface due to a precipitate is investigated. The coupled phase field and 
elasticity equations are solved for the phase transformation (PT). The volumetric misfit strain due to the precipitate is 
included using the error and rectangular functions. Due to the presence of precipitates, the critical thermal driving 
forces remarkably differ between the direct and reverse PTs, resulting in a hysteresis behavior. For the precipitate 
radius small compared to the interface width, the misfit strain does not practically show any effect on the critical 
thermal driving force.  Also, the critical thermal driving force value nonlinearly increases vs. the precipitate 
concentration for both the direct and reverse PTs. Change in the precipitate surface energy significantly changes the 
PT morphology and the critical thermal driving forces. The critical thermal driving force shows dependence on the 
misfit strain for large precipitate sizes compared to the interface width. For both the constant surface energy (CSE) 
and variable surface energy (VSE) boundary conditions (BCs) at the precipitate surface, the critical thermal driving 
force linearly increases vs. the misfit strain coefficient for the direct PT while it is almost independent of it for the 
reverse PT. For larger precipitates, the critical thermal driving force nonlinearly increases vs. the precipitate 
concentration for the direct PT.  For the reverse PT, however, its value for the CSE BCs linearly increases vs. the 
precipitate concentration while it is almost independent of the precipitate concentration for the VSE BCs. Also, for 
any concentration, the VSE BCs result in higher thermal critical driving forces, a smaller hysteresis range, and a larger 
transformation rate. The obtained critical microstructure and thermal driving forces are validated using the 
thermodynamic phase equilibrium condition for stationary interfaces. The obtained results help for a better 
understanding of athermal friction mechanism for interfaces and similar defect effects on various PTs at the nanoscale. 
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1. Introduction 

The interaction of PTs with structural defects plays a crucial role in determining material 

properties. Precipitates can significantly affect the thermodynamics, kinetics, and morphology of 

martensitic PTs.  The effect of precipitates on martensitic PT in a b-CuAlBe SMA was 

experimentally studied in [1] which showed a significant change in morphology and 

thermodynamic conditions. The effect of Ni4Ti3 precipitates on martensitic PTs and consequently, 

the shape memory effect in TiNi was studied in [2,3]. The effect of defects on austenite-martensite 

interfaces was investigated in CuAlNi which revealed the significant influence on thermoelastic 

first order PT equilibrium [4]. The significant effect of Ni4Ti3 nanoprecipitates on the stress- and 

temperature-induced PTs, superelastic hysteresis loop, transformation temperatures and other 

characteristics of NiTi was found using MD simulations [5]. Martensitic transformation induced 

by the precipitate was studied using phase field approach [6]. An internal friction model was 

suggested based on the theory of phase nucleation and growth which shows the significant change 

in the thermoelastic martensitic transformation due to interstitials [7]. At nanoscale, athermal 

friction can be caused by the Peierls barrier or the interaction of interface with long-range stress 

fields of defects [8-10] which can change the nanostructure evolution, kinetics and 

thermodynamics and is responsible for temperature hysteresis. The athermal threshold in the PFA 

was included by introducing oscillating stress fields due to the Peierls barrier and defects or a jump 

in chemical energy [10,11]. The athermal hysteresis was modeled due to the dislocations generated 

along the austenite-martensite interface [12]. Such hysteresis behavior is even more crucial for 

PTs from the low-pressure phases (LPP) to high-pressure phases (HPPs) due to the large range of 

transformation pressures. HPPs (e.g., diamond and cubic BN) may have desired physical 

properties. One of the goals in the synthesis of HPPs is to reduce PT pressure for direct PT and to 

suppress the reverse PT, so that HPPs can be used at normal pressure in engineering applications. 

That is why controlling athermal interface friction by precipitates can play a key role on the LPP-

HPP transformation characteristics in various materials. Many numerical and experimental studies 

have been done to discover new HPPs and their PT mechanisms [13-15]. Recent reviews that 

includes analysis of hysteretic behavior for HP PTs are presented in [16,17]. Despite the extensive 

research on HPPs, the athermal friction to the interface motion and the hysteresis in HPPs due to 

precipitates has not been studied yet, and this is the main focus of the current work. 



It should be noted that structural defects can create a significant heterogeneity and lead to high 

stress concentrations and consequently, contribute to the thermodynamic driving forces for PT. 

This can promote direct or reverse LPP-HPP transformations at low mechanical loadings and even 

without them [18-22]. Therefore, even without mechanical loading, PTs can occur due to change 

in temperature (thermally-induced PT) and the internal stresses due to stress concentrators caused 

by structural defects such as precipitates and inelastic transformation strain mismatch at the 

interfaces. Since our focus is to find the athermal interface resistance, we will not apply external 

loading, but thermal hysteresis can be recalculated into pressure hysteresis using known equations.  

There exist various analytical, numerical, and experimental works on the effect of particles and 

precipitates on grain boundary (GB) motion. 3D FEM simulations for GB motion through 

spherical incoherent particles were presented [23]. An experimentally proven model for predicting 

austenite grain growth including the pinning and solute-drag effects of TiN precipitates and 

assuming a constant width of an austenite grain boundary was proposed in [24]. The effect of the 

interfacial energy of grain/particle was studied on grain growth kinetics using a cellular automata 

model [25]. The interaction between Ta clusters and GBs was studied in nanocrystalline Cu-Ta 

alloys which revealed the key role of temperature and composition [26]. A random walk-based 

model for GB motion through particles was introduced [27] which attributes GB fluctuations to 

the boundary mobility and drag effect. Molecular dynamics simulations of pinning of a Cu GB by 

an Ag particle have been presented in [28]. Interactions between GBs and Pt particles in Pt-

implanted high-purity polycrystalline Al2O3 were experimentally studied revealing various 

transitional morphologies [29]. The transmission electron microscopy and tensile tests showed that 

both the solute drag effect and the precipitate Zener effect are responsible for the retarded 

recrystallization in Mo-modified Zr-Nb alloys, which also significantly affected the grain size, 

yield strength, and ductility [30]. The kinetics of austenite grain growth was predicted in agreement 

with experiments using both the precipitation and grain growth models [31]. The effect of particles 

and precipitates on the interfaces is also investigated in few works. A relationship in terms of 

nanoparticles size and distribution for the Zener pressure was described in [32]. A significant Zener 

effect was found during annealing in Al–Mg–Si alloy due to the high density of the L12 dispersoids 

[33]. The interaction between interfaces and precipitated carbides was experimentally studied. 

which attributed the shifts in the critical temperatures to the pinning force [34].  



Within the continuum modeling of PTs, phase field approach (PFA) has been effectively used to 

predict structural evolution at various size scales [35] and particularly at the nanoscale for crack 

[36], nanovoids [37,38], grains [39], martensitic PTs [40-43] and dislocations [44-47]. The PFA 

deals with an energy function in terms of order parameters and their gradients. The microstructure 

evolution is described by corresponding thermodynamically consistent kinetic equation.  

Besides the various works above, the PFA has been recently used for modeling the effect of 

particles and precipitates on GBs and interfaces. 3D PF simulations of moving GBs through 

cylindrical particles in composites were presented and the effect of relative orientation and aspect 

ratio of particles on the kinetics was studied [48]. 3D PF simulations for the grain growth were 

performed which revealed the effect of particle-matrix coherency on GB pinning [49]. A PFA was 

proposed to study the effect of coherent precipitate on the Zener pinning of GBs which includes 

the misfit strain and the elastic heterogeneity and anisotropy [50]. The PF simulations were 

performed for 2D and 3D polycrystalline materials, and the pinning effect of incoherent particles 

on GBs was studied [51]. Within the PFA, an order parameter (𝜂) is defined which varies from 0 

for the parent phase (which we will call LPP, while it is equally applied to temperature-induced 

PT) to 1 for HPP.  The PT conditions for the model that we will used were derived first in [52-54]. 

Surface-induced PTs and interface stresses were presented in [55-58]. The interaction of PTs with 

dislocations [18-20], voids [21], and cracks [59] revealed a significant change in the PT 

mechanism and conditions. The FPA for martensitic PTs was reviewed in [60]. 

 In the current paper, we present the first detailed PFA study of the athermal friction to the 

interface motion caused by a precipitate, which includes two different profiles of a mismatch strain 

within an interface, unchanged and changed precipitate surface energy during the PT, and analysis 

their effect, as well as precipitate size, phase interface width, and volume fraction of the 

precipitates effects. The paper is organized as follows. In Section 2, the phase field model as well 

as the precipitate model are presented. The numerical procedure is described in Section 3. The 

results including critical thermal driving forces vs. precipitate concentration and misfit strain for 

direct and reverse PTs and corresponding nanostructures, hysteresis region, nanostructure 

evolution during direct and reverse PTs, size effect, interface width effect and the effect of 

precipitate variable surface energy on the critical driving forces are presented with their discussion 

in Section 4. Concluding remarks are summarized in Section 5.  



2. System of equations 

2.1. Phase field model for LPP-HPP transformation  [18,20] 

The transformation between the LPP and the HPP is described using the Ginzburg-Landau (GL)  

equation for the evolution of the order parameter 𝜂  as 

1

𝜆

𝜕𝜂

𝜕𝑡
= −

𝜕𝜓𝑃

𝜕𝜂
| 𝜺 + 𝛽𝛁2𝜂. (1) 

The Helmholtz free energy per unit volume 𝜓𝑃 is defined as 

𝜓𝑃 =
1

2
𝜺e: 𝑪: 𝜺e + 𝐴0(𝜃 − 𝜃c)𝜂2(1 − 𝜂)2 + z(𝜃 − 𝜃𝑒) 𝜂3(4 − 3𝜂) +

𝛽

2
|𝛁𝜂|2. (2 ) 

Here, 𝜃 is the temperature, 𝜃e is the phase equilibrium temperature at zero stresses, 𝜃c is the critical 

temperature for the loss of stability of the stress-free LPP, 𝜺e is the elastic strain tensor, and 𝑪 is 

the tensor of elastic moduli. The material parameters 𝜆, 𝛽, z, and 𝐴0 are defined in Table. 1. For 

these parameters, the interface width 𝛿0 = 5.54√𝛽/(2𝐴0(𝜃e − 𝜃c)) = 1.43 nm and energy 𝛾 =

√𝛽𝐴0(𝜃e − 𝜃c)/18 = 0.36 𝐽/𝑚2. The transformation strain tensor 𝜺𝑡 varies from zero for LPP to 

𝜺𝒕𝒓  for HPP as  

𝜺𝒕 = 𝜺𝒕𝒓 [𝑎𝜂2 + (4 − 2𝑎)𝜂3 + (𝑎 − 3)𝜂4], (3) 

where 𝑎  is a material parameter which characterizes the PT equilibrium and instability pressures 

[52] and will be determined below. For the total strain tensor 𝜺 we accept the additive 

decomposition of elastic (𝜺e), transformation (𝜺𝑡), and precipitate misfit (𝜺𝑝𝑟) strain tensors as 

𝜺 = 𝜺e + 𝜺𝑡 + 𝜺𝑝𝑟. (4) 

For convenience of describing the material in terms of characteristic pressures instead of 

temperatures, we introduce the phase equilibrium pressure, 𝑝e, and the lattice instability pressures 

for the direct PT, 𝑝in, and reverse PT , 𝑝𝑖𝑛
𝑟 , as [18,20,52,53] 

𝑝e =
z(𝜃−𝜃e)

𝜀0
; 

𝑝in =
𝐴0(𝜃−𝜃c)

𝑎𝜀0
; 

𝑝𝑖𝑛
𝑟 =

6z(𝜃 − 𝜃e) − 𝐴0(𝜃 − 𝜃c)

(6 − 𝑎)𝜀0
. 

 (5) 



We accept 𝑝e = 10, 𝑝in = 20, and 𝑝𝑖𝑛
𝑟 = −10 at 𝜃 = 300𝐾 [38]. For the plain-strain formulation, 

the volumetric transformation strain 𝜀0 = (𝜀𝑡𝑟𝑥 + 𝜀𝑡𝑟𝑦) = −0.1 , see Table 1. Substituting these 

values in Eq. (5) gives 𝑎 = 4, 𝐴0 = 20.6𝑀𝑃𝑎, and z = 5.05𝑀𝑃𝑎K-1. The elasticity equations 

which will be coupled to the GL equation are    

𝛁 ∙ 𝝈 = 𝟎; 

𝜺 = 𝜺e + 𝜺t + 𝜺pr =
1

2
[𝛁𝒖 + (𝛁𝒖)𝑇]; 

𝝈 = 𝑪: (𝜺 − 𝜺t − 𝜺pr), 

(6) 

 where 𝝈 is the elastic stress tensor and 𝒖 is the displacement field.  Substituting Eqs. (3) and (6) 

with 𝑎 = 4 into Eq. 1 gives the GL equation as 

1

𝜆

𝜕𝜂

𝜕𝑡
= 4𝜂(𝜂 − 1)(𝜂 − 2)𝝈: 𝜺𝒕𝒓  

− [2𝐴0(𝜃 − 𝜃𝑐) 𝜂(𝜂 − 1)(2𝜂 − 1) + 12z(𝜃 − 𝜃𝑒)𝜂2(1 − 𝜂)] + 𝛽𝛁2𝜂. 
(7) 

The insulated boundary condition for the PT problem is 𝛽𝛁 𝜂. 𝒏 = 0, where 𝒏 is the normal to the 

boundary. It means that the surface energy of the external boundaries does not change during the 

PT. 

2.2. Precipitate model  

The precipitate is modeled as a non-evolving circular region inside which no PT occurs and it 

includes a misfit strain due to the compositional heterogeneity between the matrix and precipitate 

[50,61]. The corresponding misfit strain tensor with respect to LPP is modeled as a position 

dependent volumetric strain 𝜺𝑝𝑟 = 𝜀p(𝐱)𝑰 [50], where 𝐱 is the position vector and 𝑰 is the unit 

tensor.  The position dependence or the distribution of 𝜀p(𝐱) is considered using two different 

models: (a)  a jump function such that 𝜀p(𝐱) = 𝜀v inside the precipitate region and it is zero in the 

rest of sample, where 𝜀v is the misfit strain coefficient, and (b) the error function 𝜀p(𝐱) =

𝜀v (𝜋𝑙2)⁄ exp(− |𝐱′ − 𝐱|2 𝑙2⁄ ), where 𝑙 is the radius of the circular region with the center 𝐱′, within 

which 𝜀p(𝐱) is nonzero [62] and smoothly goes to zero outside of it. Our results show practically 

no difference between these two models due to the nanoscale size of the precipitate. The precipitate 

concentration, c, is defined as the ratio of the area of the precipitate to that of the entire sample. 



The misfit strain is assumed to be independent of the order parameter. Here, a range of 

compositional heterogeneity due to different types of precipitate is characterized by the range 

0 ≤ 𝜀v ≤ 0.1 for the misfit strain. In practice, due to its additivity with volumetric part of the 

transformation strain, this means that the misfit constant with respect to the HPP is 𝜀v + 0.5𝜀0. 

Since misfit strain is considered to be tensile, it produces internal compressive mean stress 

(pressure) in the precipitate and tensile mean stress in the matrix. These stresses suppress direct 

and promote reverse PTs. Note that the study of the effect of misfit strain on grain growth and GB 

motion was presented in [50,61], where it was considered independent of GBs. 

The boundary between the precipitate and matrix is coherent, i.e., displacements are continuous 

across the interface.  The surface energy of the precipitate during the PT can vary or be constant. 

The variable surface energy boundary conditions (VSE BCs) between the precipitate and the 

matrix [6,55,56] are defined as  

𝛽𝛁 𝜂. 𝒏 = −
𝑑𝑞

𝑑𝜂
,      𝑞 = 𝛾𝐿𝑃𝑃 + (𝛾𝐻𝑃𝑃 − 𝛾𝐿𝑃𝑃)[𝑎𝜂2 + (4 − 2𝑎)𝜂3 + (𝑎 − 3)𝜂4],           (8) 

where 𝑞 is the surface energy during the PT, and 𝛾𝐿𝑃𝑃 and 𝛾𝐻𝑃𝑃 are the surface energies between 

the precipitate and the LPP and HPP, respectively.  For the constant surface energy (CSE) BCs, 

𝛾𝐻𝑃𝑃 = 𝛾𝐿𝑃𝑃 and 𝛽𝛁 𝜂. 𝒏 = 0. Since 𝛁 𝜂 describes the normal to the LPP-HPP interface, then this 

interface is orthogonal to the precipitate surface. We accept for VSE BCs that 𝛾𝐿𝑃𝑃 = 1 𝐽 𝑚3⁄   and 

𝛾𝐻𝑃𝑃 =  0.6 𝐽 𝑚3⁄ .  The reduction in surface energy promotes HPP and suppresses LPP.  

 

3. Numerical procedure 

The FEM COMSOL code is used to solve the coupled GL and elasticity equations in 2D, which 

are implemented in PDE/Heat Transfer in Solids application and the Structural mechanics/Plane 

Strain application, respectively. Triangular Lagrange elements with the mesh size of 0.5nm are 

used to reach mesh-independent solutions. The Segregated solver with the time step of 0.01ps 

has been utilized. Stress, size, and time are normalized by 1 GPa, 1 nm, and 1 ps, respectively. 

The material parameters for the PT simulations [18,20] are given in Table 1. The numerical 

solutions well resolve the analytical solutions for the planar austenite-martensite interface energy 

and width [18,19,22]. 

 

Table 1. The material parameters used in the PT simulations. 



Parameter Value Definition 
𝐴0 20.6 MPaK−1 The magnitude of the double well barrier between LPP-HPP 

z −5.05 MPaK−1 The jump in specific entropy  

𝛽 5.18 × 10−10 N LPP-HPP gradient energy coefficient  

𝜆 2600 (Pa. s)−1 Kinetic coefficient 

𝜃e 100 K Phase equilibrium temperature at zero stresses 

𝜃c −90 K Critical temperature for the loss of stability of the stress-free LPP   

𝐸 177.023 GPa Young’s modulus 

𝜈 0.238 Poisson’s ratio 

𝜺𝒕𝒓 ⌊
−.05 0.1
0.1 −.05

⌋ Transformation strain tensor  

 

4. Results 

The athermal resistance to the LPP-HPP interface motion due to precipitates is investigated. A 

circular precipitate region with the radius of R is located at the center of a square sample with the 

size L. The lower left corner is fixed in both x and y directions and the upper left corner is fixed 

only in the x direction. Initially, to avoid nucleation problem, a small part of the left side of the 

sample is considered a HPP and the rest of it is considered a LPP. At low temperatures, the initial 

sharp interface between the HPP and LPP broadens to a diffuse interface which propagates to the 

right (direct PT), while at high temperatures a reverse PT occurs, and the interface moves back to 

the left.  In the absence of the precipitate, slightly below the phase equilibrium temperature 𝜃𝑒, the 

interface propagates to the right and slightly above 𝜃𝑒  it moves back to the left. Thus, there is no 

athermal resistance for direct and reverse PTs and there exists no athermal hysteresis. Due to the 

presence of a precipitate, the motion of an LPP-HHP interface experiences athermal resistance. 

Thus, a larger dimensionless thermal driving force 𝜃̅ = (𝜃𝑒 − 𝜃)/𝜃𝑒 (or equivalent dimensionless 

mechanical driving force 𝑝̅ = (𝑝 − 𝑝𝑒)/𝑝𝑒 for the loading with pressure) is required for the 

interface motion to continue to the right during the direct PT. Conversely, a smaller negative 

thermal driving force is required to allow the interface pass through the precipitate to the left during 

the reverse PT. Investigating such hysteresis is the main focus of the current study.  

 The critical thermal driving force for the direct PT, 𝜃̅𝑐
𝑑 (blue lines), and reverse PTs, 𝜃̅𝑐

𝑟 

(red lines), are plotted vs. the misfit strain coefficient in Fig. 1a for the misfit strain distribution 

using the error function and in Fig. 1b for the constant misfit strain. They are defined as the 



temperatures for which stationary solutions with two-phase regions cease to exist, and solution 

evolve to the complete HPP for direct PT or complete LPP for the reverse PT. Between 𝜃̅𝑐
𝑑 and 

𝜃̅𝑐
𝑟, two-phase equilibrium is arrested, which exhibit itself as an athermal resistance to the interface 

motion. In these simulations, L=20 and R=0.5 (i.e., 𝑐 = 0.002), which is much smaller than the 

interface width of 𝛿0 = 1.43. An important finding here is that the misfit strain does not practically 

show any effect on the critical thermal driving forces for the direct and reverse PTs provided that 

the precipitate radius size is small compared to the interface width. The difference between the 

critical thermal driving forces of direct and reverse PTs, 𝐻 = 𝜃̅𝑐
𝑑 − 𝜃̅𝑐

𝑟, defines the athermal 

hysteresis. Since the counterpart of the phase equilibrium temperature for the system with 

precipitate cannot be determined, we assume that it is in the middle between  𝜃̅𝑐
𝑑 and 𝜃̅𝑐

𝑟, and the 

athermal resistance to the interface motion is the same in both direction and equal to 0.5H.  

Fig. 1. The critical thermal driving forces for direct (blue lines) and reverse PTs (red lines) vs. the misfit strain 

coefficient for (a) the misfit strain distribution using the error function and (b) for the constant misfit strain; L=20 

and R=0.5, i.e., 𝑐 = 0.002. There is clear effect of the shape of εv. 

By varying the sample size L in the range of 5 to 50 at constant R=2, the critical thermal driving 

forces and the hysteresis region are obtained vs. the precipitate concentration (Fig. 2). Obviously, 

point (0,0) is added for the sample without precipitate. The critical thermal driving forces 

nonlinearly increases vs. the precipitate concentration for both the direct and reverse PTs, 

especially for low precipitate concentrations. The critical thermal driving forces for the direct and 

reverse PTs are approximately symmetric with respect to 𝜃̅ = 0 up to 𝑐 = 0.015 and asymmetric 

above it. The asymmetry is due to the small sample as well as the compressive diagonal 



transformation strains of the HPP (𝜺𝒕𝒓 = [
−.05 0.1
0.1 −.05

]) which produces tensile mean stress in the 

matrix and promotes reverse PT and suppresses the direct PT. Indeed, for zero diagonal 

transformation strains, i.e., 𝜺𝑡𝑟
∗ = [

0 0.1
0.1 0

], the critical thermal driving forces 𝜃̅𝑐
𝑑 and 𝜃̅𝑐

𝑟 are 

almost symmetric with respect to 𝜃̅ = 0. Note that plots in Fig. 2 are almost the same for any 𝜀v in 

the range 0 ≤ 𝜀v ≤ 0.1, as expected from Fig. 1, while the critical thermal driving force depends 

on the misfit strain for larger precipitate sizes, which will be discussed later. 

 

Fig. 2. The critical thermal driving forces vs. the precipitate concentration for the direct and reverse PTs for two 

different HPP transformation strain tensors,  CSE BCs for R=2 and 𝜀v = 0.05. 

Now, let us consider a precipitate with R=2 and 𝜀v = 0.05. Fig. 3 presents the evolution of the 

HPP phase for the critical thermal driving force for the direct PT 𝜃̅𝑡ℎ
𝑑 = 0.21 (a), for a slightly larger 

thermal driving force 𝜃̅ = 0.22 (b) and during the reverse PT for a slightly smaller thermal driving 

force 𝜃̅ = −0.12 than the critical thermal driving force 𝜃̅𝑡ℎ
𝑟 = −0.11, when the CSE BCs are 

applied on the precipitate surface. For 𝜃̅𝑡ℎ
𝑑 = 0.21, the LPP-HPP interface propagates to the right 

until it reaches the precipitate and stuck, and only slightly rotates at the upper side until it reaches 

the stationary solution at 𝑡 = 40 (Fig. 3a). Interface below the precipitate is delayed in comparison 

with the interface above the precipitate due to change in geometry caused by the transformation 

shear. After increasing the thermal driving force to 𝜃̅ = 0.22, the interface passes through the 

precipitate region and completes the PT to the HPP in the entire sample at  𝑡 = 100 (Fig. 3b). The 



main event that determines unlimited interface motion is the loss of the stability of the stationary 

interface near the lower portion of the precipitate. This will be discussed later using the 

transformation work distribution. Due to the small sample size and the boundary effects, the 

interface significantly rotates around the precipitate before it leaves its surface. For larger sample 

sizes, the interface passes the precipitate region without changing its orientation.  

 For the reverse PT, to avoid nucleation problem like the one for the direct PT, we start 

simulations before complete direct PT occurs. Here, the solution of Fig. 3b at 𝑡 = 90 is chosen as 

the initial condition for the reverse PT problem as shown in Fig. 3c. Again, the main event that 

determines unlimited interface motion is the loss of the stability of the stationary interface near the 

lower portion of the precipitate, which is clearly delayed in Fig. 3c at t=110 and 120 in comparison 

with that in the upper portion of the precipitate. 

 

Fig. 3. The evolution of the HPP phase for the critical thermal driving force 𝜃̅𝑡ℎ
𝑑 = 0.21 up to stationary solution (a), 

for a slightly larger thermal driving force 𝜃̅ = 0.22 (b), and for the thermal driving force 𝜃̅ = −0.12   slightly 

smaller than the critical thermal driving force 𝜃̅𝑡ℎ
𝑟 = −0.11 for the reverse PT (c), all for CSE BCs at the precipitate 

surface. L= 20, R=2, and 𝜀v = 0.05. 



As it will be shown, variation in the precipitate surface energy changes the stress distribution and 

consequently transformation work and can significantly change the PT morphology and the critical 

thermal driving forces for both the direct and reverse PTs. Thus, the VSE is one of the key 

parameters in determining the critical thermal driving forces. Fig. 4 presents the evolution of the 

HPP phase (a) for direct PT for 𝜃̅ =  𝜃̅𝑐
𝑑 = 0.28 up to the stationary solution and (b) for a slightly 

larger thermal driving force 𝜃̅ = 0.29, as well as (c) during the reverse PT for a slightly smaller 

thermal driving force 𝜃̅ = −0.02 than the critical thermal driving force 𝜃̅𝑐
𝑟 = −0.01 for the reverse 

PT, when the VSE BCs are applied on the precipitate surface. For VSE BCs, the surface energy of 

the boundary between the precipitate and the matrix varies from 1 𝐽 𝑚3⁄  (for the LPP) to 0.6 𝐽 𝑚3⁄  

(for the HPP) in a very thin region with the width of 1 𝑛𝑚, while for CSE there is a practically 

sharp interface between precipitate and matrix for any phase. This significantly changes the stress 

distribution. For 𝜃̅ =  𝜃̅𝑡ℎ = 0.28, after the LPP-HPP interface is arrested, its middle part coincides 

with the precipitate surface and its upper part rotates by 600 until it reaches the stationary solution 

at 𝑡 = 200 (Fig. 4a).  

 

Fig. 4. The evolution of the HPP phase for the critical thermal driving force 𝜃̅ =  𝜃̅𝑡ℎ
𝑑 = 0.28 up to stationary 

solution (a), for a slightly larger thermal driving force 𝜃̅ = 0.29 (b), and for the thermal driving force 𝜃̅ = −0.02,   

slightly smaller than the critical thermal driving force 𝜃̅𝑡ℎ
𝑟 = −0.01 for the reverse PT (c) for VSE BCs at the 

precipitate surface. L= 20, R=2, and 𝜀v = 0.05. 



Slightly increasing the thermal driving force to 𝜃̅ = 0.29 results in a very different morphology so 

that the upper and lower parts of the interface continue propagation until they coalesce and move 

away from the precipitate (Fig. 4b). Similar to the discussion for Fig. 3, a, non-complete 

transformed solution in Fig. 4b for 𝑡 = 50 is chosen as the initial condition for the reverse PT. In 

contrast to the CSE BCs, the reverse PT reveals a different evolution compared to the direct PT, 

especially when passing the precipitate region (Fig. 4c).   

The critical thermal driving forces vs. the misfit strain coefficient are plotted for both the direct 

and reverse PTs for R=2 (i.e., for the precipitate size larger than the interface width) in Fig. 5. For 

both the CSE and VSE BCs, the critical thermal driving force linearly increases vs. the misfit strain 

coefficient for the direct PT while it is almost independent of the misfit strain coefficient for the 

reverse PT. The VSE BCs also result in higher critical thermal driving forces for both the direct 

and reverse PTs and a smaller hysteresis compared to those of the CSE BCs.  For example, for 

𝜀𝑣 = 0.08, 𝜃̅𝑐
𝑑 = 0.31 and 𝜃̅𝑐

𝑟 = 0 for the VSE which gives the hysteresis 𝐻𝑉𝑆𝐸 = 0.31 while for 

the CSE BCs, 𝜃̅𝑐
𝑑 = 0.26 and 𝜃̅𝑐

𝑟 = −0.1 with the 𝐻𝐶𝑆𝐸 = 0.36. In comparison with Fig. 1, 

increase in R increases athermal hysteresis and suppress direct PT more than the reverse PT, due 

to stronger effect of volumetric transformation strain combined with misfit strain.   

 

Fig. 5. The critical thermal driving forces vs. the misfit strain coefficient for the direct and reverse PTs for the CSE 

BCs and VSE BCs at the precipitate surface for R=2 nm and L=20. The hysteresis range is also shown. 



The critical thermal driving force for both the direct and reverse PTs and for both the VSE and 

CSE BCs are plotted vs. the precipitate concentration in Fig. 6 for 𝜀v = 0.1.  In contrast to the 

problem with the small precipitate radius of R=0.5, the critical thermal driving force nonlinearly 

increases vs. the precipitate concentration for the direct PT.  For the reverse PT, however, the 

critical thermal driving force for the CSE BCs linearly increases vs. the precipitate concentration 

while it is almost independent of the precipitate concentration for the VSE BCs. Also, for any 

concentration, the VSE BCs result in higher critical thermal driving forces for both the direct and 

reverse PTs and a smaller hysteresis range compared to those of the CSE BCs.   

 From the computational point of view there are two choices to change the precipitate 

concentration: one is to keep the sample size while varying the precipitate radius and the other is 

to keep the precipitate radius constant and varying the sample size. The critical thermal driving 

forces for the two choices, i.e., (a) L=50 with varying precipitate radius from 1 to 6 and (b) R=2 

with varying sample size from 15 to 100, are compared in Fig. 7 for 𝜀v = 0.1 and the CSE BCs. 

As can be seen, for smaller concentrations of 𝑐 ≤ 0.01, both choices coincide while for larger 

concentrations they differ by 10-15%. This difference means that the effect of the third scale 

parameter, the phase interface width, is significant.  

  

Fig. 6. The critical thermal driving forces for both the direct and reverse PTs and for both the VSE and CSE BCs vs. 

the precipitate concentration for 𝜀v = 0.1.  R=2, 10<L<100 



 

Fig. 7. The critical thermal driving forces for the direct and reverse PTs for two choices, i.e., (a) L=50 with varying 

precipitate radius and (b) R=2 with varying sample size, for 𝜀𝑣 = 0.1 and the CSE BCs.   

Besides the variation of the critical athermal driving forces for the direct and reverse PTs with the 

concentration of the precipitate 𝑐 (Fig. 6), the morphology and the transformation rate also show 

a remarkable dependence on 𝑐. The dependence of the evolution of the HPP on 𝑐 is shown in Fig. 

8 for the direct and reverse PTs for two different sample sizes of L=15 and 50 (𝜀v = 0.1, R=2). 

Also, the phase concentration 𝜂̅ vs. time is plotted for different sample sizes L=10, 12.5, 15, 20, 

30, 40 and 50 for the direct PT in Fig. 9. For smaller sizes, i.e., larger precipitate concentrations, 

the effect of the precipitate is much larger so that the transformation rate during the interaction of 

precipitate and the interface is smaller (intermediate region). For larger sizes, this effect reduces 

so that such region disappears for L>30 and the concentration shows a linear variation, i.e., the 

transformation rate becomes the same before, during and after the interface passes the precipitate 

region. Obviously, for larger samples, the stationary solution is reached for larger times. 



 

Fig. 8. The evolution of the HPP for the direct and reverse PTs for two different sample sizes of L=15 and 50 (R=2). 

For the direct PT,  𝜃̅ = 0.42  for L=15 and 𝜃̅ = 0.12 for L=50 (slightly larger than their critical thermal driving 

forces). For the reverse PT, 𝜃̅ = −0.16  for L=15 and 𝜃̅ = −0.05 for L=50 (slightly smaller than their critical 

thermal driving forces). 

The pressure and transformation work (𝑊𝑡𝑟 = 𝝈: 𝜺𝒕𝒓(𝜂) − 𝑧(𝜃 − 𝜃𝑒)) distributions corresponding 

to the thermal driving force 𝜃̅ = 0.42 for direct PT are plotted in Fig. 10 for both the CSE and 

VSE BCs for 𝑐 = 0.056 and 𝜀v = 0.1. For a better illustration of the pressure inside the 

transforming region, the precipitate is excluded. Due to the VSE BCs, the precipitate is surrounded 

by the LPP and a continuous interface, and it is under pressure. For the CSE BCs, a part of the 

precipitate surface is surrounded by the HPP with a larger pressure concentration than for the VSE 

BCs; tensile stresses appear at the intersection of the interface and the precipitate and the boundary 

region between the precipitate surface and the LPP is under pressure. 



 

Fig. 9. The variation of the phase concentration 𝜂̅ vs. for different sample sizes for the direct PT. 

 

Fig. 10. The pressure distribution corresponding to the critical thermal driving force 𝜃̅ = 0.42 for direct PT for the 
CSE and VSE BCs for 𝑐 = 0.056 and 𝜀v = 0.1.  

The transformation work also shows higher concentrations around the precipitate region in the 

HPP for the CSE BCs (≈ 0.25) than for the VSE BCs (≈ 0.2) but almost the same low values 

along the interface away from the precipitate. The difference between the transformation work 

values for the two BCs is not significant; thus, a low difference is expected between the critical 



thermal driving forces for the CSE and VSE BCs (𝜃̅𝑐
𝑑 = 0.42 for the CSE BCs while 𝜃̅𝑐

𝑑 = 0.49 

for the VSE BCs).  

The obtained critical thermal driving forces are validated using the local phase equilibrium 

condition criterion. To do so, the contour of the equilibrium condition 𝑊𝑒 = 𝝈: 𝜺𝒕𝒓 − 𝒛(𝜃 − 𝜃𝑒) =

0 [18] is plotted on the stationary HPP nanostructure at the critical thermal driving force for both 

the direct and reverse PTs and the VSE and CSE BCs in Fig. 11. It is seen that the interface well 

coincides with the phase equilibrium condition contour 𝑊𝑒 = 0, confirming thermodynamic phase 

equilibrium for the stationary solution. 

 

Fig. 11. The morphology of the HPP nanostructure at the critical thermal driving force for (a) the direct PT with the 

CSE BCs (𝜃̅𝑐
𝑑 = 0.21), (b) the reverse PT with the CSE BCs (𝜃̅𝑐

𝑑 = −0.11), (c) the direct PT with the VSE BCs 

(𝜃̅𝑐
𝑑 = 0.28), and (d) the reverse PT with the VSE BCs (𝜃̅𝑐

𝑟 = −0.01), combined with the contour line 𝑊𝑒 = 0. 

To better show the highly heterogeneous stress field and the transformation work, the evolution of 

the transformation work 𝑊𝑡𝑟 = 𝝈: 𝜺𝒕𝒓(𝜂) − 𝑧(𝜃 − 𝜃𝑒) during the direct PT is presented in Fig. 12 

for the CSE BCs at 𝜃̅ = 0.22 and for the VSE BCs at 𝜃̅ = 0.29. The high tensile and compressive 

stress concentrations and consequently, transformation work concentrations appear near the 

precipitate. The suppression of the interface motion at the precipitate occurs in the regions of 

negative transformation work (blue regions).  Also, the interface motion occurs the regions where  

𝑊𝑡𝑟 > 0. Since for each type of BCs the evolution is obtained for a slightly larger thermal driving 

force than its critical value, the transformation work along the moving interface regions is 

relatively low and mainly  0 < 𝑊𝑡𝑟 < 0.05. As stated earlier, the VSE BCs result in the higher 



critical thermal driving force than the CSE BCs and consequently, the PT is promoted by the CSE 

BCs. This can be seen from the variation of the phase concentration with time for 𝜃̅ = 0.3 as an 

example. The phase concentration 𝜂̅ is defined as the ratio of the transformed area to the total area. 

As can be seen in Fig. 13, the phase concentration for the CSE BCs is larger than that for the VSE 

BCs. The main difference between the two solutions appears during the time period 𝑡𝑝 when the 

interface is interacting with the precipitate and as it is clear, the rate of transformation is much 

larger for the CSE BCs. After this period, the transformation rate is again similar for both cases 

until they reach their stationary solutions. As a result, the stationary solution for the CSE BCs is 

reached at a shorter time (𝑡 = 38) than for the VSE BCs (𝑡 = 55).   

 

Fig. 12. The evolution of the transformation work 𝑊𝑡𝑟 during the direct PT for the CSE BCs at 𝜃̅ = 0.22 (a) and for 

the VSE BCs at 𝜃̅ = 0.29 (b). The phase interfaces are included in each figure. 



 

Fig. 13. The phase concentration 𝜂̅ vs. time for the CSE and VSE BCs 𝜃̅ = 0.3. 

It is worthy to note that the significant rotation of the stationary interface not only can be caused 

by the VSE BCs (like in Fig. 11), but also occurs for the large misfit strains even for the CSE BCs.  

Fig. 14 shows the distribution of 𝑊𝑡𝑟 combined with the stationary interface contour lines of 𝜂 =

0.5  for two different misfit strain coefficients 𝜀v = 0.01  and 0.1, for the direct PT for the CSE 

BCs, and a significant rotation of the interface is found for the large misfit strain 𝜀v = 0.1. The 

interface contour also corresponds to the regions of 𝑊𝑡𝑟 = 0 which proves its phase equilibrium 

state. 

 

Fig. 14. The distribution of 𝑊𝑡𝑟 combined with the stationary interface contour lines of 𝜂 = 0.5 (red line) for 𝜀v =

0.01 at 𝜃̅𝑡ℎ
𝑑 = 0.14 (a) and 𝜀v = 0.1 at 𝜃̅𝑡ℎ

𝑑 = 0.29 (b) for the CSE BCs.  

It is worthy to investigate the effect of interface width on the critical thermal driving force. In fact, 

by changing the interface width, the interaction of interface with precipitate surface changes which 

affects the critical thermal driving force. Here, the interface width is varied by changing parameter 



𝛽 and the critical thermal driving force is plotted vs. the normalized LPP-HPP interface width 

𝛿/𝛿0 in Fig. 15 for direct PT for the CSE BCs at the precipitate surface and for 𝐶 = 0.056 and 

𝜀v = 0.1. As can be seen, the critical thermal driving force almost linearly reduces from 0.35 to 

0.21 within the interface width range from 𝛿/𝛿0 = 0.33 (closer to the sharp interface approach) to 

3. A similar dependence of the results on the interface energy is also found for other used misfit 

strains and precipitate concentrations.  

 
 

Fig. 15. The variation of the critical thermal driving force for direct PT (use subscripts th) vs. the normalized LPP-

HPP interface width for the CSE at the precipitate surface and for 𝐶 = 0.056 and 𝜀v = 0.1.   

Concluding remarks 

Athermal resistance to the LPP-HPP interface motion due to precipitates is investigated. The 

coupled phase field and elasticity equations are solved for the thermally-induced martensitic PT, 

which can also be interpreted as LPP-HPP PT, using the FEM code COMSOL. The volumetric 

misfit strain due to the precipitate is included using the error and constant functions. Due to the 

presence of a precipitate, the critical thermal driving forces remarkably differ between the direct 

and reverse PTs, resulting in a hysteresis behavior. The misfit strain does not practically show any 

effect on the critical thermal driving force if the precipitate radius is smaller than the interface 

width.  The critical thermal driving forces nonlinearly increases vs. the precipitate concentration 

for both the direct and reverse PTs, especially for low precipitate concentrations. Change in the 

precipitate surface energy significantly changes the PT morphology and the critical thermal driving 

forces. In contrast to the CSE BCs, the interface does not split when passing the precipitate for the 

VSE BCs, but its width reduces.  Also, the reverse PT reveals a different evolution compared to 

the direct PT, especially when passing the precipitate region. The critical thermal driving force 



shows dependence on the misfit strain for larger precipitate sizes than the interface width. For both 

the CSE and VSE BCs, the critical thermal driving force linearly increases vs. the misfit strain for 

the direct PT while it is almost independent of the misfit strain coefficient for the reverse PT. The 

VSE BCs also result in higher critical thermal driving forces for both the direct and reverse PTs 

and a smaller hysteresis range.  In contrast to the problem with the small precipitate radii, the 

critical thermal driving force nonlinearly increases vs. the precipitate concentration for the direct 

PT.  For the reverse PT, the critical thermal driving force for the CSE BCs linearly increases vs. 

the precipitate concentration, while it is almost independent of the precipitate concentration for the 

VSE BCs. Also, for any concentration, the VSE BCs result in higher critical thermal driving forces 

for both the direct and reverse PTs and a smaller hysteresis range.  For a constant thermal driving 

force, the CSE BCs create a larger thermal driving force compared to the VSE BCs which results 

in a larger transformation rate during the interaction of the interface and the precipitate. The results 

of the two choices to change the precipitate concentration, i.e., the constant sample size with 

variable precipitate radius and the constant precipitate radius with variable sample size, coincide 

for smaller concentrations and slightly differ for larger concentrations. The obtained critical 

thermal driving forces are validated using the phase equilibrium condition criterion, so that the 

interfaces for the critical stationary morphologies well coincides with the zero thermodynamic 

driving force contour. The suppression of the interface motion at the precipitate is found at the 

regions of negative transformation work, while the interface motion belongs to the regions of 

positive transformation work. The morphology and the transformation rate also show a remarkable 

dependence on the sample size, so that for smaller sizes, the effect of the precipitate is much larger 

and the transformation rate during the interaction is smaller. The effect of the LPP-HPP interface 

width on the results was investigated. It is found that the critical thermal driving force weakly 

nonlinearly reduces as the LPP-HPP interface width increases. The obtained results help for a 

better understanding of athermal friction mechanism for interfaces and similar defect effects on 

various PTs at the nanoscale. 
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