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Abstract

We provide an end-to-end Renyi DP based-
framework for differentially private top-k se-
lection. Unlike previous approaches, which
require a data-independent choice on k, we
propose to privately release a data-dependent
choice of k such that the gap between k-th
and the (k + 1)st “quality” is large. This is
achieved by a novel application of the Report-
Noisy-Max. Not only does this eliminate one
hyperparameter, the adaptive choice of k also
certifies the stability of the top-%£ indices in
the unordered set so we can release them us-
ing a variant of propose-test-release (PTR)
without adding noise. We show that our con-
struction improves the privacy-utility trade-
offs compared to the previous top-k selection
algorithms theoretically and empirically. Ad-
ditionally, we apply our algorithm to “Private
Aggregation of Teacher Ensembles (PATE)”
in multi-label classification tasks with a large
number of labels and show that it leads to
significant performance gains.

1 Introduction

The private top-k selection problem [Durfee and Rogers,
2019, Carvalho et al., 2020, Dwork et al., 2018, Hardt
and Roth, 2013] is one of the most fundamental prob-
lems in privacy-preserving data analysis. For example,
it is a key component in several more complicated differ-
entially private tasks, including private model selection,
heavy hitter estimation and dimension reduction. More
recently, the private selection algorithm (Report-Noisy-
Max) is combined with the “Private Aggregation of
Teacher Ensembles (PATE)” [Papernot et al., 2017,
2018, Bassily et al., 2018] to build a knowledge trans-
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fer framework for model agnostic private learning. In
this work, we focus on the counting problem. Given a
finite set of candidates and associated counts for each
candidate, our goal is to design practical differential
private algorithms that can return the unordered top-k
candidates.

Unlike previous approaches on private top-k selections,
which assume k is predetermined and data-independent,,
we consider choosing k adapted to the data itself. Why
would an adaptive choice of k be preferred? We give two
reasons. First, a data-dependent choice of k captures
the informative structure of the dataset. To illustrate
this matter, consider the following sorted sequence of
utilities
Examplf A:k=3
[100, 100, 99,99, 98, ..., 98,54, 53, 53, 52, 50, ...],

Example B: k=20
+

In Example A, the analyst choose k = 3 but all scores
up to the 19th are of nearly the same utility, and the
total utility should not differ much among any three
within the top 19; similarly in Example B, the index
set of the top 20 does not reveal the large gap between
the 19th and 20th, and the selection is somewhat unfair
to both the top 19 and the 21st onwards to include
the 20th. We argue that is more natural to choose
k = 19 in a data-dependent way. The second, and
more technical, reason is because it is substantially
cheaper in terms of the privacy-budget to accurately
release the top 19 in this example than either top 3
or top 20. Even if the end goal is to get top 20, the
large-gap structure can be leveraged so that one can
achieve better accuracy (at the same privacy cost) by
first releasing the top 19 and then choose an arbitrary
index to pad to k = 20.

To formalize these intuitions, we propose an elegant
two-step procedure that first privately select the most-
appropriate k using a variant of Report-Noisy-Max,
then use a propose-test-release (PTR) approach [Dwork
and Lei, 2009] to privately release the set of indices of
the top k candidates. When the chosen gap is large,
then the PTR algorithm adds no noise at all with
high probability. We also propose an extension of our
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approach to handle the case when there is a target k of
interest. Empirical and analytical results demonstrate
the utility improvements compared to the state-of-the-
arts, which encouragingly suggests that using the PTR
as a drop-in replacement could make top-k selection-
based algorithms more practical in downstream tasks.

Our contributions are four-folds:

1. We introduce a new differentially private, effi-
cient algorithm for the top-k selection problem
with an end-to-end RDP analysis.

2. We show that our algorithms improve over the
existing state-of-the-art private top-k selection
algorithms with a formal utility analysis and an
empirical comparison on real sensitive datasets.

3. We extend the Report-Noisy-Max algorithm and
the propose-test-release framework with Gaus-
sian noise distribution and provide RDP analy-
sis for two variants. Empirically, we show that
two variants are more advantageous than their
Laplace counterparts under compositions.

4. Our algorithms enable private model-agnostic
learning with multi-label classification with a
practical privacy-utility tradeoff.

Related work and novelty. The private-k-selection
has seen a growing interest in the machine learning and
differential privacy community [Chaudhuri et al., 2014,
McSherry and Mironov, 2009, Banerjee et al., 2012,
Durfee and Rogers, 2019, Carvalho et al., 2020].

Notably, the iterative peeling approach that composes
k exponential mechanisms (EM) has been shown to be
minimax optimal. Durfee and Rogers [2019] shows that
adding Gumbel noise and reports the top-k in one-shot
is equivalent to using the exponential mechanism with
peeling. Recent work [Qiao et al., 2021] adapts Report-
Noisy-Max to select the top-k elements and achieves
(¢,0)-DP with a noise level of O(v/k/€). We note that
the released “top-k” indices are ordered in the above
work, and therefore the dependence on k is unavoidable
in the e term. The focus of this work is to privately
release an unordered set of the top-k indices and get
rid of the dependence in k.

We are the first to consider privately choosing hyperpa-
rameter k and leverage the large-gap with these choices
for adapting to the favorable structure in each input.
The closest to us is perhaps [Carvalho et al., 2020] in
which the algorithm also leverages the large-gap infor-
mation to avoid the dependence in k by combining the
sparse vector technique (SVT) and the distance to insta-
bility framework, however, it still requires a fixed k and
a “crude” superset with cardinality k. Our approach is
simpler and more flexible. The utility comparison sec-
tion demonstrates that our algorithm achieves better

utility over Carvalho et al. [2020], Durfee and Rogers
[2019] under the same “unknown-domain” setting.

Technically, our method builds upon the PTR-
framework and Report-Noisy-Max with extensions tai-
lored to our problem of interest. Our RDP analysis of
RNM with other noise-adding mechanisms (e.g., Gaus-
sian noise) is based on the proof technique of [Zhu
and Wang, 2020] for analyzing SVT. Our approach
may strike the readers as being very simple, but we
emphasize that “constant matters in differential pri-
vacy” and the simplicity is precisely the reason why our
method admits a tight privacy analysis. In our humble
opinion all fundamental problems in DP should admit
simple solutions and we are glad to have found one for
private-k-selection.

2 Preliminary

In this work, we study the problem of differential pri-
vate top-k selection in the user-counting setting'. Con-
sider a dataset of n users is defined as D = {1, ..., x, }.
We say that two dataset D and D’ are neighbor-
ing, if they differ in any one user’s data, e.g. D =
D’ U{z;}. Assume a candidate set contains m can-
didates {1,...,m}. We consider the setting where a
user can vote 1 for an arbitrary number of candidates,
i.e. unrestricted sensitivity. One example for the unre-
stricted setting would be calculating the top-k popular
places that users have visited. We use z;; to denote
the voting of user 4, e.g., x;; = 1 indicates the i-th user
vote 1 for the j-th candidate. Let h;(D) € N denote
the number of users that have element j € [m], i.e.
hj(D) =>"  {z;; = 1} (we will drop D when it is
clear from context).

We then sort the counts and denote h(yy(D) > ... >
h(m) (D) as the sorted counts where i(1), ..., i(sm) € [M]
are the corresponding candidates. Our goal is to design
a differentially private mechanism that outputs the
unordered set {41y, ..., () } which k is chosen adaptively
to private data itself. Formally, the algorithm returns
a m-dim indicator I(D) € {0,1}", where I; = 1 if
J € {i(l), ~--7i(k)}7 otherwise I; = 0.

Symbols and notations. Throughout the paper, we
will use the standard notations for probability, e.g.,
Pr[-] for probability, p[-] for density, E for expectation.
€,d are reserved for privacy loss parameters, and « the
order of Renyi DP. We now introduce the definition of
differenital privacy.

Definition 1 (Differential privacy [Dwork et al., 2006]).
A randomized algorithm M is (e, )-differential private

LAll our results also apply to the more general setting of
selection among an arbitrary set of low-sensitivity functions,
but the user-counting setting allows a tighter constant and
had been the setting existing literature on this problem
focuses on.
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if for neighbring dataset D and D’ and all possible
outcome sets O C Range(M):

Pr[M(D) € O] < ePr[M(D’) € O] +§

Differential Privacy ensures that an adversary could not
reliably infer whether one particular individual is in the
dataset or not, even with arbitrary side-information.

Definition 2 (Renyi DP [Mironov, 2017]). We say
a randomized algorithm M is (o, eapm(a))-RDP with
order a > 1 if for neighboring datasets D, D’

Do (M(D)[|M(D")) =

At the limit of & — oo, RDP reduces to (¢,0)-DP.
If epm(a) < pa for all a then we say that the algo-
rithm satisfies p-zCDP [Bun and Steinke, 2016]. This
more-fine-grained description often allows for a tighter
(¢,0)-DP over compositions compared to the strong
composition theorem in Kairouz et al. [2015]. There-
fore, we choose to formulate the privacy guarantee of
our algorithms under the RDP framework. Here, we
introduce two properties of RDP that we will use.

Lemma 3 (Adaptive composition). € i, )
emi () +em, ()

Lemma 4 (From RDP to DP). If a randomized algo-
rithm M satisfies (a, €(a))-RDP, then M also satisfies
(e(a) + bi(%, 8)-DP for any § € (0,1).

Next, we will introduce the notion of approximate RDP,
which generalizes approximate zCDP [Bun and Steinke,
2016.

Definition 5 (Approximate RDP / zCDP). We
say a randomized algorithm M is &-approrimately-
(a0, epm(@))-RDP with order o > 1, if for all neigh-
boring dataset D and D', there exist events E (depend-
ing on M(D) )and E' (depending on M(D')) such
that Pr[E] > 1 —¢6 and Pr[E'] > 1 -4, and Va > 1,
we have Do (M(D)|E||M(D)|E") < em(a). When
em(a) < ap for a > 1 then M satisfies §-approxzimate
p-2CDP.

This notion preserves all the properties as approxi-
mate zCDP [Bun and Steinke, 2016]. The reason for
rephrasing it under the RDP framework is that some
of our proposed algorithms satisfy tighter RDP guar-
antees (compared to its zCDP version) while others
satisfy RDP conditioning on certain high probability
events. Similar conversion and composition rules of
approximate-RDP are deferred to the appendix.

Many differentially private algorithms, including output
perturbation, enable DP working by calibrating noise

using the sensitivity. We start by defining the local
and global sensitivity.

Definition 6 (Local / Global sensitivity). The lo-
cal sensitivity of f with the dataset D is defined as
LS§(D) = suppip ||f(D) — f(D')|| and the global
sensitivity of f is GSy :=supp LS¢(D).

The norm || - || could be any vector ¢, norm, and the
choice on ¢, depends on which kind of noise we use, e.g.,
we calibrate Gaussian noise for Gaussian mechanism
using {5 norm.

Motivation of an adaptive k. Recent
work[Carvalho et al., 2020, Durfee and Rogers,
2019, Gillenwater et al., 2022] make use of structures
in the top-k counts, showing that large gaps improve
the performance of the private top-k mechanisms. This
leads to one natural question — can’t we just set a k,
such that there exists a large gap between the k and
the (k4 1)th vote? Indeed, exploiting such the largest
eigengap information is already a standard heuristic in
selecting the number of principal components in PCA.
Our result shows that if there is a large gap between
k-th and the (k + 1)th, we can return the top k set
with only two times privacy budget instead of k£ times.
Moreover, even if want a pre-defined k£ and there is
a large gap at (k — 3), then we can release the top
(k — 3) with two times the budget then release the
remaining using the exponential mechanism with 3
times the budget. Our motivation is to adapt to these
large-margin structures.

3 Methods

We now present our main algorithms for data-adaptive
top-k selection. Section 3.1 describes a simple algo-
rithm that privately selects parameter k € [m] such
that it maximizes the gap h(;) — h(j41). Section 3.2
presents a propose-test-release style algorithm called
STABLETOPK. It first privately selects k € [m] such
that it maximizes gap, then releases the top-k index set
whenever the gap at the chosen k is large. Section 3.3
demonstrates how STABLETOPK can be used for the
fixed k setting, where the algorithm takes &k as an input
and is required to return exactly k indices.

3.1 Choose a k privately

Recall that the goal is to choose k that approximately
maximizes the gap h) — h(x41)- Our idea of choos-
ing k uses off-the-shelf differentially private (Top-1)
selection algorithms. Any private selection algorithm
will work, but for simplicity we focus on the exponen-
tial mechanism [McSherry and Talwar, 2007], which
is recently shown to admit a Report-Noisy-Max style
implementation and a more refined privacy analysis
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Algorithm 1 Regularized Large Gap

1: Input Histogram h, regularizer r
DP parameter e.

2: Sort h into a descending order h(1y, ha)..., Pm)-

3: Return
Argmaxje[m,l]{h(j)—h(jﬂ)—&—r(j)—I—Gumbel(%)}.

cm =1 = R;

via a “Bounded Range” property [Durfee and Rogers,
2019.

The pseudo-code is given in Algorithm 1. Readers may
notice that it also takes a regularizer r. The choice of r
can be arbitrary and can be used to encode additional
public information that the data analyst supplies such
as hard constraints or priors that describe the ball park
of interest.

Proposition 7. Algorithm 1 satisfies (pure)-e-DP,
€2/8-2CDP and and (o, e(a))-RDP with

. [ ae sinh(ae) — sinh((a — 1)e)
e(a) := min {?, p— log( Snh(0) )} .
Proof. As we are applying the exponential mechanism
off-the-shelf, it suffices to analyze the sensitivity of the
utility function u(j) := hjy — h(j41) +7(j). Let u, v’
be the utility function of two neighboring dataset (with
histograms h, h'). For any j

[u(j) —u'(4)| = (hijy = hi+1)) — (h/(j) - /(j+1))| <1

The inequality can be seen by discussing the two
cases:“adding” and “removing’ separately. If we add
one data point, it may only increase h(;) and h(jy1)
by 1. Similarly if we remove one data point it may
only decrease h(j and h(;41) by 1. In both cases, the
change of the gap is at most 1. The pure-DP bound
follows from McSherry and Talwar [2007], the zCDP
bound follows from Cesar and Rogers [2021, Lemma
17] and the RDP bound is due to Bun and Steinke
[2016, Lemma 4]. O

Algorithm 1 is exponentially more likely to return a k
that has a larger gap than a k that has a small gap. In
our experiments, we find that the tighter zCDP analysis
gives EM an advantage over other alternatives including
the exponential noise and Laplace noise versions of
RNM [Ding et al., 2021]. For this reason, discussion
of these other selection procedures are given in the
appendix.

Gaussian-RNM. One may ask a natural question
whether one can use more concentrated noise such as
Gaussian noise to instantiate RNM. Using the tech-
niques from Zhu and Wang [2020], we prove the follow-
ing theorem about such generalized RNMs.

Theorem 8. Let M, denote any noise-adding mecha-
nism that satisfies e;(o)-RDP for a scalar function
f with global sensitivity 2. Assume Report Noisy
Max adds the same magnitude of noise to each coor-
dinate, then the algorithm obeys e, (M(D)||M(D")) <

eg(ar) + BT

In particular, we introduce RNM-Gaussian as an alter-
native to RNM-Laplace with Gaussian noise.

Corollary 9 (RNM-Gaussian). RNM-Gaussian (the
second line in Algorithm 2) with Gaussian noise
N(0,02) satisfies (i—% + %)—RDP.

We defer the comparison between RNM-variants in
the appendix, suggesting that RNM-Gaussian is better
than RNM-Laplace in certain regime (e.g., m is not
too large). However, RNM-Gumbel will dominate both
of them over compositions.

How to handle unknown domain / unlimited
domain? In TopK selection problems, it is usually
desirable to be able to handle an unbounded m in an
unknown domain [Durfee and Rogers, 2019, Carvalho
et al., 2020]. Our method handles it naturally by taking
the regularizer r to be a constraint that restricts our
chooses to j € {1,2,...,k} with an arbitrary k < m.
The issue of candidates moving inside and outside the
top k is naturally handled by the selection of a stable k
within {1,2, ..., k}. This simultaneously improves the
RDP bound and the utility bound for RNM-Gaussian
by replacing m with k.

3.2 Stable Top-k selection with an adaptive &

Once k is determined, the next step is to privately
release the top k£ index set. Different from existing
methods that select the top k by iteratively calling
exponential mechanisms for k times, we propose a new
approach that release the unordered indices of the top k
at one shot using a propose-test-release (PTR) [Dwork
and Lei, 2009] style algorithm. The query of interest is
the indicator vector I (D) € {0,1}"™ satisfying

1 if j € TopK

(D)l {O otherwise.

The indicator has a global L2 sensitivity of v/2k, as
there are at most k positions are 1 in I(D) and I(D’). It
could appear to be a silly idea to apply Gaussian mecha-
nism, because a naive application would require adding
noise with scale ~ N (0, v2kI,,), rendering an almost
useless release. Luckily, the problem happens to be one
where the global sensitivity is way too conservative,
and one can get away with adding a much smaller noise
in a typical dataset, as the following lemma shows.

Lemma 10 (Local sensitivity of the gap). Denote
qx(D) = hy (D) = h(p11)(D) as the gap between the k-
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Algorithm 2 STABLETOPK: Private k selection with
an adaptive chosen k
1: Input Histogram h and approximate zCDP budget
parameters dg, p.
2: Set k by invoking Algorithm 1 with € = 2,/p (and
arbitrary r).
Set g, = h(k) — h(k+1) and o =+/1/p.
4: Construct a high-probability lower bound
Gr = max{1, q.} + N(0,02%) — 0+/2log(1/6;).
if g, > 1 then
Return i(1)> ceey Z(k)
else
Return L.
end if

w

th and the k+1-th largest count. The local {5 sensitivity
of qr is 0 if qp(D) > 1.

Proof. Fix k. If we are adding, then it could increase
h(r+1y(D) by at most 1 and may not decrease h (D) .
If we are removing, then it could decrease h) (D) by at
most 1 and may not increase h(j41)(D). In either case,
if gr(D) > 1, it implies that hyi1)(D") < hgy(D'),
thus the set of the top k indices remains unchanged. [

Using the PTR approach, if we differentially privately
test that the local sensitivity is indeed 0, then we can
get away with returning I(D) as is without adding
any noise. Notably, this approach avoids composition
over k rounds and could lead to orders of magnitude
improvements over the iterative EM baseline when &
is large. A pseudocode of our proposed mechanism is
given in Algorithm 2.

Theorem 11. Algorithm 2 satisfies 6¢-approrimated-

p-2CDP and (p + +/2plog(1/6),0 + 6;)-DP for any
6 > 0. Moreover, if the chosen k satisfies that qp >

1+2 M, then the algorithm returns the correct

top-k set with probability 1 — 0.

Proof. The mechanism is a composition of Algorithm 1
(by the choice of parameter, it satisfies p/2-zCDP) and
an application of PTR which is shown to satisfy d;-
approximate p/2-zCDP in Lemma 18 in the appendix.
The stated result is obtained by the composition of
approximate zCDP and its conversion to (e, §)-DP. Fi-
nally, the utility statement follows straightforwardly
from the standard subgaussian tail bound. O

Utility comparison. The theorem shows that our
algorithm returns the correct Top-k index with high

probability if the gap gy, is O(\/@)

. In compar-
ison, the iterative EM algorithm, or its limited domain

(LD) variant [Durfee and Rogers, 2019] requires the

gap to be on the order of O(\/Elog(l/ét)) — a factor

of \/klog(1/0,) worse than our results. Comparing to
the Top Stable procedure (TS) [Carvalho et al., 2020],

which is similar to our method, but uses SVT instead
of EM for selection; under the same condition (by The-
orem 4.1 in their paper) TS requires the gap to be

log(1/6:)/+/p, which is a factor of \/log(1/d;) larger

than our results.

Connection to distance to instability framework
Our algorithm has a nice connection with the distance
to instability framework [Thakurta and Smith, 2013].
Similar to the idea of using gap information to up-
per bound the local sensitivity, we can define the
Dist2instability function to be max{0,h) (D) —
h(k4+1)(D) — 1} and test whether it is 0 using Laplace
mechanism. Our PTR-Gaussian algorithm can be
thought of as an extension of the distance to instability
framework with Gaussian noise, which is of independent
interest.

Why not smooth sensitivity? A popular alterna-
tive to PTR for such tasks of data-adaptive DP al-
gorithm is the smooth sensitivity framework [Nissim
et al., 2007], which requires constructing an exponen-
tially smoothed upper bound of the local sensitivity and
add noise that satisfy certain “dilation” and “shift” prop-
erties. Our problem does have an efficient smooth sen-
sitivity calculation, however, we find that the “dilation”
and “shift” properties of typical noise distributions (in-
cluding more recent ones such as those proposed inBun
and Steinke [2019]) deteriorate exponentially as dimen-
sionality gets large; making it infeasible for releasing
an extremely high-dimensional vector in {0, 1}™.

3.3 Stable private k-selection with a fixed k&

In many scenarios, k is a parameter chosen by the data
analyst who expect the algorithm to return exactly &
elements. In this situation, there might not be a large
gap at k. In this section, we show that one can still
benefit from a large gap in this setting if there exists
one in the the neighborhood of the chosen k.

We introduce STABLETOPK with a fixed k& (Algo-
rithm 3) which takes as input a histogram h, parameter
k, regularizer parameter A, and approximate zCDP pa-
rameter §; and p.

Ideally, we hope to find a k such that we see a sudden
drop at the k-th position and k is closed to the input k.
Therefore, we introduce a regularizer term A|j — k| in
Step 2. Then we apply PTR-Gaussian (Algorithm 4) to
privately release the top—l% elements. If k < k, we can
optionally use exponential mechanism ([Mcﬁherry and
Talwar, 2007]) to privately select top-(k — k) elements
in a peeling manner. Similarly, if k> k, we can apply
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Algorithm 3 StableTopK with fixed k: Private Top-k
selection with a fixed k input
1: Input Histogram h, parameter k, regularizer
weight A,approx zCDP parameter &, p.
2: Set r(j) = —A|lj — k|
: Set egyr = 24/p.
4: Set S as the output of Algorithm 2, instantiated
with (h, d¢, p/2) and regularizer r.
5: if S =1, Return result of Top-k EM on h with
total pure-DP budget egpy.
6: if k =k, Return S
7: elif £k > k, Return result of Top-k EM on
Rigyys e hi(ic) with budget egs.

8: else Return {i,...,i; }U result of Top-(k — k) EM
on h with budget egps.

w

exponential mechanism to select top-k elements from
the shrinked h histogram.

i(l)"“vi(fc)
The privacy guarantee of Algorithm 3 stated as follows.

Theorem 12. Algorithm & obeys d;-approximately p-
zCDP.

Proof. The proof applies the composition theorem to
bound the total RDP using the chosen approximate
zCDP parameter of Algorithm 2 and the zCDP of the
possible invocation of the Top-k EM. O

In terms of utility, this algorithm is never worse by
more than a factor of 2 than using all budget for Top-k
EM.

However, if there is a large gap at the position %, the an-
alyst only has to pay half of the total budget to release

v/2min{k—k|,k} to

the top k set and use the noise scale P

select the remaining |k — k| candidates.

3.4 Application to model agnostic learning
with multi-label classification

A direct application of our private top-k selection algo-
rithm is in the private model agnostic learning [Bassily
et al., 2018] (a.k.a. the private knowledge transfer
model). Private model agnostic learning is a promising
recent advance for differentially private deep learning
that can avoid the explicit dimension dependence of
the model itself and substantially improve the privacy-
utility trade-offs. This framework requires an unlabeled
public dataset to be available in the clear.

The Private Aggregation of Teacher Ensembles
(PATE) [Papernot et al., 2017, 2018] is the main
workhorse to make this framework being practical.
PATE first randomly partition the private dataset into
T splits and trains a teacher model on each split. Then

an ensemble of teacher models make predictions on un-
labeled public data, and their sanitized majority votes
are released as pseudo-labels. Lastly, a student model
is trained using pseudo-labeled data and is released
to the public. The privacy analysis of PATE can be
thought of as a tight composition over a sequence of
private queries via RDP, where each query applies a
Gaussian mechanism to releases the top-1 label.

Example 13 (PATE with multi-class classification
tasks [Papernot et al., 2018]). For each unlabeled data
x from the public domain, let f;(z) € [c] denote the j-th
teacher model’s prediction and n; denotes the vote count
for the i-th class (i.e., n; :== 3, |f;(x) =i]). PATE
framework labels x by Mparg(z) = argmaz;(n;(z) +
N(0,0%)). Mparr guarantees (o, /a?)-RDP for
each labeling query.

Unfortunately, the current PATE framework only sup-
ports the multi-class classification tasks instead of the
generalized multi-label classification tasks, while the
latter plays an essential role in private language model
training (e.g., tag classification). The reasons are two-
fold: first, the label space is large and each teacher
in principle could vote for all labels (i.e., the global
sensitivity grows linearly with the label space), thus
preventing a practical privacy-utility tradeoff using
Gaussian mechanism. Secondly, previous private top-k
selection algorithms do not target multiple releases of
private queries; thus, there is a lack of a tight private
accountant. Our algorithm naturally narrows this gap
by providing an end-to-end RDP framework that en-
ables a sharper composition. Moreover, an adaptively
chosen k is indeed favorable by PATE, as the number
of ground-truth labels can be different across different
unlabeled data. We provide one example of applying
Algorithm 2 to solve multi-label classification tasks.

Example 14 (PATE with multi-label classification
tasks). For each unlabeled data x from the public do-
main, let f;(z) € {0,1}¢ denote the j-th teacher model’s
prediction and n; denotes the vote count for the i-th
class (i.e., ni ==Y, |fji(z)|). PATE framework labels
x by Mparg(x)=Algorithm 2. Mparg answers T
labeling queries guarantees T'é¢-approximated-p-2CDP.

4 Experiment

EXP1: Evaluations of k-selection with a fixed
k. In Exp 1, we compare our STABLETOPK with
recent advances (TS[Carvalho et al., 2020] and the
Limited Domain(LD) [Durfee and Rogers, 2019]) for
private top-k section algorithms. We replicate the
experimental setups from [Carvalho et al., 2020],
which contains two location-based check-ins datasets
Foursquare [Yang et al., 2014] and BrightKite [Cho
et al., 2011]. BrightKite contains over 100000 users
and 1280000 candidates. Foursquare contains 2293
users with over 100000 candidates. We assume each
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user gives at most one count when she visited a certain
location. The goal is to select the top-k most visited
locations, where k is chosen from {3, 10,50}.

Comparison Metrics and Settings Similar to [Car-
valho et al., 2020], we consider the proportion of true
top-k metric, which evaluates the number of true top-
k elements returned divided by k. For privacy bud-
gets, we set 6 = 1/n and consider € being chosen from
{0.4,0.8,1.0}. In the calibration, we split half of §
as the failure probability d;. Then, we use the RDP
to (e,8)-DP conversion rule to calibrate o using the
remaining privacy budget (e,6 — d;). For simplicity, we
use r = 0 in STABLETOPK.

For TS and LD, we report their results from Carvalho
et al. [2020].

Observation By increasing privacy budget from € =
0.4 to € = 1.0, the “accuray” increases for all algorithms.
Moreover, our STABLETOPK consistently outperforms
TS, LD in the specific settings we consider.

Covid-19 cases

1.0
TS
0.91 EM-CDP
StableTopK
081 mmm LD
0.7 4
g 0.6
<
0.51
0.4 4
0.31
B , ,
Day 1-10 Day 11-20 Day 21-30 Day 31-40

(a) Covid-19 dataset with a small k

Synthetic dataset

1.0
0.81
Tos)
o
041 15
—— EM-CDP \\_/
0.214 —— StablePrivk
102 103
k

(b) Synthetic dataset

Figure 1: Figure 1(a) evaluates composed top-k selec-
tion with varied data distribution. Figure 1(b) com-
pares top-k selection with different choice on k.

EXP2: Multiple top-k queries The behaviors of
top-k mechanisms can be varied for different data dis-
tribution, k£ and privacy budgets. To study their behav-
iors, we design two groups of experiments — one with a
fixed k but various data distribution and another with
a range of k.

We first consider the case when k is fixed with an
instantiation in releasing daily top-k states that has
the largest Covid-19 cases. We will use the United
States Covid-19 Cases by State from 2020-03-12 to
2020-05-12 and assume one person can contribute at
most one case on the daily case report.

Baselines and Metrics TS and LD are two baselines.
As the CDP/RDP analysis of both TS and LD is un-
known, we use advanced composition to allocate the
privacy budget (e, d) over T queries.

Another baseline we will use is the exponential mecha-
nism EM-CDP. The exponential mechanism admits a
tighter CDP analysis due to its bounded range property.
We will add Gumbel noise to each count and report
the indices with the top-k highest noisy counts. In the
experiment, we average the recall of the top-k set over
a fixed time interval (e.g., 10 days) and repeat each
experiment for 100 trials.

In Figure 1(a), we consider k¥ = 15 and (0.1,1076)-
DP instances of EM-CDP, TS, LD and our Stable-
TopK(fixed K) For each mechanism, we first calibrate
their noise scale such that the composition over 10 days
satisfy (0.1,1076)-DP. We then simulate four groups of
the time interval: Day 1-10, Day 11-20, Day 21-30 and
Day 31-40 such that # composition is the same but
the distribution of daily covid-19 cases is varied. Note
that there was a exponential growth on the covid-19
cases between 2020-03-12 to 2020-05-12, which leads
to an increasing gap between the k-th and the k + 1-th
count.

EM-CDP performs best in all time intervals, especially
when there are small gaps between the vote counts
(see Day 1-10 and Day 11-20). When the gap is small,
both TS and StableTopK will likely fail on the stability
test, which will result in a substitute of the exponential
mechanism using half of the privacy budget. Therefore,
both TS and StableTopk perform worse than EM-CDP.
The number of indices returned by LD can be smaller
than k, especially when there is no large gap among
vote counts. Thus it obtains the worst recall rate over
all intervals. When the gap is large, all mechanisms
achieve better performance. StableTopk is still slightly
worse than EM-CDP on Day 31-40 though the latter
requires splitting the privacy budget into k pieces. We
conjecture this is because the k we use is small, which
diminished the effect of “unavoidable O(v/k) depen-
dence in €’ in EM-CDP.
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Datasets Methods e=04 e=0.8 ‘ e=1.0
- k:3 10 50 k:3 10 50 k:3 10 50

TS 1.00 0.77 0.14 1.00 0.80 0.16 1.00 0.80 0.18

BrightKite LD 1.00 0.47 0.10 1.00 0.79 0.25 1.00 0.88 0.28
STABLETOPK 1.00 0.91 0.61 1.00 1.00 0.67 1.00 1.00 0.67

TS 1.00 0.64 0.11 1.00 0.90 0.18 1.00 0.90 0.18

LD 0.68 0.62 0.13 0.75 0.85 0.24 0.91 0.94 0.28

Foursquare STABLETOPK [1.00 0.72 0.48 1.00 1.00 0.67 1.00 1.00 0.67

Table 1: EXP2: Comparison of top-k selection with a fixed k

Datasets ‘ Methods ‘ € ‘ Accuracy ‘Non—Private Accuracy
PATE >10  85.0 £0.1%
CelebA PATE-7 7.7  85.1+0.2% 89.5 + 0%
StableTopK [3.6  [85.0 £0.2%

Table 2: EXP3: Evaluations on CelebA datasets with § = 1076.

Therefore, we next construct a synthetic example to
investigate the effect on k. The synthetic histogram has
15000 bins, where all top k bins have 700 counts, and
the remaining 15000 — & bins have 0 counts. We range k
from 10 to 1500 with (0.15,107¢)-DP instances of EM-
CDP, TS and our StableTopK. The line in Figure 1(b)
plots the mean recall rate (of answering one-time top-k
query) from 100 trials, and the shaded region spans
with the standard deviation for each mechanism. Sta-
bleTopK outperforms all mechanisms, especially when
k is large. This is because the utility of StableTopK is
determined by the gap at the k-th position rather than
how large a k is. StableTopK is clearly better than TS
when k is large. We note that Lyu et al. [2017] has
a similar observation — EM outperfoms SVT in the
non-interactive setting. Though EM-CDP admits a
tight composition through CDP, its peeling procedure
requires splitting its privacy budget into k splits for
each subroutine. Therefore, EM-CDP is worse than
STABLETOPKwhen £ is sufficiently large.

EXP3: Evaluation with multi-label classifica-
tion tasks. CelebA [Liu et al., 2015] is a large-scale
face attribute dataset with 220k celebrity images, each
with 40 attribute annotations. To instantiate the PATE
framework, we take the original training set as the
private domain and split it into 800 teachers. Simi-
lar to the implementation from Zhu et al. [2020], we
randomly pick 600 testing data to simulate unlabeled
public data and using the remaining data for test-
ing. We train each teacher model via a Resnet50m
structure [He et al., 2016]. As there is no strict re-
striction on an exact k output, we apply a Gaussian
variant of Algorithm 2 (i.e., replace the second step
in Algorithm 2 with RNM-Gaussian) with noisy pa-
rameters §;, = 1072, 01 = 50,0 = 60. o7 is used in
RNM-Gaussian. Our result is compared to two base-
lines: PATE [Papernot et al., 2018] and PATE-7 |[Zhu

et al., 2020]. In PATE, the global sensitivity is 40, as
each teacher can vote for all attributes. To limit the
global sensitivity, PATE-7 applies a T-approximation
by restricting each teacher’s vote that no more than 7
attributes or contributions will be averaged to 7. We
remark that though the 7 approximation approach sig-
nificantly reduces the global sensitivity, the choice on 7
shall not be data-dependent. In Table 2, we align the
accuracy of three DP approaches and compare their
accuracy at the test set. We report the privacy cost
based on the composition of over 600 labeling queries
from the public domain. For StableTopK, the reported
€ is based on the RDP to DP conversion rule using
6 =10"5—600 x 1079. Each experiment is repeated
five times. Our StableTopK (adaptive K) algorithm
saves half of the privacy cost compared to PATE-7
while maintaining the same accuracy.

5 Conclusion

To conclude, we develop an efficient private top-k al-
gorithm with an end-to-end RDP analysis. We gen-
eralize the Report-Noisy-Max algorithm, the propose-
test-release framework and the distance-to-instability
framework with Gaussian noise and formal RDP anal-
ysis. In the downstream task, we show our algorithms
improve the performance of the model-agnostic frame-
work with multi-label classification. We hope this work
will spark more practical applications of private selec-
tion algorithms.
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Organization of the Appendix

In the appendix, we first state the composition and conversion rules in Sec A. In Sec B we provide the description
and the analysis of PTR-with Laplace-mechanism-based tests and Gaussian mechanism-based tests. Finally,
Sec C provides all other proofs that were omitted in the main paper, including that for the generalized (and
Gaussian) RNM.

A Conversion and composition rules for approximated RDP

Recall our definition of approximate RDP.

Definition 15 (Approximate Renyi Differential Privacy). We say a randomized algorithm M is §-approximate-
(o, epm(@))-RDP with order o > 1, if for all neighboring dataset D and D', there exist events E (depending
on M(D) )and E' (depending on M(D')) such that Pr[E] > 1 — 46 and Pr[E’] > 1 -6, and Yo > 1, we have
Da(M(D)|E[M(D)|E") < em(a).

When § is 0, 0-approximate-RDP is RDP. Similar to [Bun and Steinke, 2016], the approximate-RDP satisfies the
composition and post-processing property.

Lemma 16 (Composition rule). Let M; satisfies 1-approzimate-(c, epq, ())-RDP and My satisfies 02-
approzimate-(c, €p, (e))-RDP. Then the composition of My and Ma satisfies (01 + 62)-approzimate-(c, ea, () +
em,())-RDP.

Lemma 17 (Conversion rule). Let M satisfies 61-approzimate-(a, epq(a))-RDP. Then it also satifies (eaq () +
1080 |5 4 6,)-DP.

Proof. M satisfies d;-approximate-(«, epq(a))-RDP implies that there exists an pairing event F and E’ such
that D (M(D)|E||M(D")|E") < epm(a) and Pr[E] > 1 — 61, Pr[E’] > 1 — §;. Condition on E and E’, we apply
the RDP conversion rule [Mironov, 2017], which gives us (M + epm(@))-DP. Then we combine the failure

a—1

probability §; and d, which completes the proof. O

B Propose-Test-Release with Gaussian and Laplace noise

Instead, the PTR framework is less restrictive than the smooth sensitivity. This approach first proposes a good
estimate of the local sensitivity and then testing whether this is a valid upper bound. If the test passes, we then
calibrate the noise according to the proposed test. If the test instead failed, the algorithm stops and returns
“no-reply”.

Lemma 18. Let gy be a private release of qi that obeys (o, €gap(@))-RDP and Prlgy > qi] < 6 (where the
probability is only over the randomness in releasing Gi). If Gr passes the threshold check (i.e., gp > 1), the
algorithm releases the set of top-k indices directly satisfes d;-approzimately-(, €gqp(cv))-RDP.

In the proof, the local sensitivity depends on the private data only through the gap ¢i. Thus we can construct a
private lower bound of ¢ such that — if the PTR test passes, then with probability at least 1 — §;, the local
sensitivity is 0. Therefore we do not need to randomize the output. If the PTR test fails, the algorithm is
€gap(@)-RDP due to post-processing.

Remark. The bottleneck of PTR approaches is often the computation efficiency of bounding the local sensitivity.
Our algorithm addresses this issue by exploiting the connection to qx, which only takes O(1) time to validate
the local sensitivity. Moreover, most prior work on PTR approaches only accounts for approzimate differential
privacy. Our new RDP analysis enables PTR algorithms to permit tighter analyses of privacy loss over multiple
releases of statistics.

Our algorithm applies a variant of the PTR framework, which first constructs a high-confidence private upper
bound of the local sensitivity and then calibrates the noise accordingly. We formalize the idea in the following
theorem.

Next, we work out the detailed calibration of PTR approaches using Laplace/Gaussian noise and provide their
privacy guarantee in the following corollary.
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Algorithm 4 Propose-test-release (PTR) with Gaussian Noise

Input Histogram h, noise parameter oy and the privacy parameter d;

Let i(1), -, i(x) be the unordered indices of the sorted histogram.

Set the gap qr = h(k) — h(k+1)

Propose a private lower bound of gqx: g, = max{1, gz} +N(0,03) — 02+/21log(1/5;)
If g <1, Return |

Return (1)s e b(k)

Algorithm 5 Propose-test-release (PTR) with Laplace Noise

Input Histogram h, noisy gap i, privacy parameter d;, €

Let i(1), ..., i(x) be the unordered indices of the sorted histogram.

Set the gap qr = h(k) — h(k+1)

Propose a private lower bound of gi: gx = g + Lap(1/¢) —log(1/d;)/e¢
If ¢ <1, Return L

Return i(l), ceny i(k)

Corollary 19 (Privacy guarantee of PTR variants). Algorithm 5 (PTR-Laplace) satisfies (e, 0;)-DP. Algorithm 4
(PTR-Gaussian) satisfies 0;-approzimately-(a, 555 )-RDP.

The Laplace noise used in PTR-Laplace is heavy-tailed, which requires the threshold in Algorithm 5 to be
O(log(1/6:)) in order to control the failure probability being bounded by d;. In contrast, Algorithm 4 with
Gaussian noise requires a much smaller threshold — O(4/log1/d;) due to its more concentrated noise.

Theorem 20 (Accuracy comparison). For one-time DP top-k query, the minimum gap hy — h(xq1) needed to
output k elements with probability at least 1 — 3 is hy) — hq1)y > 1+ (log 1/0 +1og1/3)/(e/4) for PTR-Gaussian
while by — hgg1y > 1 +log(1/6)/e 4+1og(1/8)/e for PTR-Laplace.

Proof. With ¢, > 1+ log(1/d:)/e + log(1/8) /e, we have

Gk =2 1+10g(1/6,)/€ +1og(1/5)/e + Lap(1/e) —log(1/6;)/e = log(1/5)/e + 1 + Lap(1/€)

PTR-Laplace outputs k elements only when g, > 1. Therefore, the failure probability is bounded by Pr[Lap(1/e) >
log(1/8)] = B. O

2log(1.25/6)

PTR-Laplace outperforms PTR-Gaussian for one-time query as we are using a loose calibration oo = -

However, if we align the zCDP parameter (e.g., €gqp(c) = %‘2), then o3 = 1/e and gives us the minimum gap

to be 1+ 1,/2log(1/6) + 1,/2log(1/B) for PTR-Gaussian. This explains why the Gaussian version of PTR is

superior under composition.

C Omitted Proofs

Theorem 21 (Restatement of Theorem 8). Let M, denote any noise-adding mechanism that satisfies €,(o)-RDP
for a scalar function f with global sensitivity 2. Assume Report-Noisy-Mazx adds the same magnitude of noise to
each coordinate, then the algorithm obeys eo(M(D)||M(D")) < €,(a) + 287

a—1

Proof. We use i to denote any possible output of the Report-Noisy-Max M(D). The Report-Noisy-Max aims to
select an coordinate i that maximizes C; in a privacy-preserving way, where C; denotes the difference between
h(; (D) and h;11)(D). Let C' denote the vector of the difference when the database is D’. We will use the
Lipschitz property: for all j € [m — 1], 1+ C} > C;. This is because adding/removing one data point could at
most change C; by 1 for Vj € [m — 1]. Throughout the proof, we will use p(r;), p(r;) to denote the pdf of r; and
7j, where r; denote the realized noise added to the i-th coordinate.
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From the definition of Renyi DP, we have

PrM(D)=d*] 1 ~ PrM(D) =14
o8B | D) =) = e vy — g O

Da(M(D)|M(D') = ——

m PrM(D)=i]*

Our goal is to upper bound (x) =>.", BIM(D =T The probability of outputting ¢ can be written explicitly

as follows:

Pr[M(D) =1i] = /OO p(r))Pr[C; +r; > max {C; +r;}dr;

—00 je[m],j;éz
= / p(ri —2)Pr[C; +1; —2> max {C;+r;}|dr;
—o0 jelml.j#i
= /OO p(ri) <p(ri_2)>Pr[Ci +r;—2> max {C;+r;}dr;
oo p(ri) j€lmlii

=E,, {(W)Pr[@ +ri—2> jel[}ﬁ?#{cj + Tj}}]

In the first step, the probability of Pr[C; 4 r; > max;e(m],j2i{Cj +7;}] is over the randomness in ;. Substituting
the above expression to the definition of RDP and apply Jensen’s inequality

m |:Em (W)Pr[ci 7= 2> maxjem) ;{05 + T.j}]}
(%) =

a—1
- [EmPr[Cé + 7 > maxje ) j£i{Cf + 7 H]

- iE A (p(n- — 2)>a <Pr[C¢ + 7 — 2 > maxX;epy),j£i1C5 + T’j}]>a1 i
< i p(r:) Pr[CZf +r; > maxje[m]’j#{cg» + Tj}]

Ci+r;—2> max {C;+r;
je[m],#i{ i+l

We apply Jensen’s inequality to bivariate function f(z,y) = 2*y'~*, which is jointly convex on R?% for a € (1, 400).

Pr[C;+r; —2>maxX;ec(m],j#£i {Cj+r;}]

The key of the analysis relying on bounding (x*) = PrCT T r S max ey g2 ACT 7]
i 7 JEe[m],j#1i J J

>. Note that D’ is constructed

by adding or removing one user’s all predictions from D’. In the worst-case scenario, we have C;» =C; +1 for
every j € [m],j #14,C; = C/ + 1 . Based on the Lipschitz property, we have

PrC{+m> max {C) +r; >Pr[C;+7r;,—2> max {C;+r;
[ je[m],#i{ 5+ it 2 P jE[ijgéi{ i+ i

which implies (xx) < 1. Therefore, we have

ei(e) < 1 logZEm (p(n— - 2))@4 <ee)+ log(m)

a—1 p(r;) a—1"

O

Corollary 22 (Restatement of Corollary 9). RNM-Gaussian (the second line in Algorithm 2) with Gaussian

noise N'(0,0%) satisfies (i—% + %)—RDP.

Proof. For a function f : D — R with L2 sensitivity 2,the RDP of Gaussian mechanism with Gaussian noise

N(0,0%) satisfies (o, 23)-RDP. We complete the proof by plugging in e;(a) = 2% into Theorem 8. O
1 1

Lemma 23 (Restatement of Lemma 18). Let i obeys €gap(e)-RDP and Pr[gy > qi] < 6; (where the probability
is only over the randomness in releasing Gi ). If i passes the threshold check, the algorithm releases the set of
top-k indices directly satisfies 8;-approximately-(c, €gqp(cv))-RDP.

Proof. We start with the proof for §;-approximately-(«, e(a))-RDP. Denote M; be the mechanism that releases
the set of top-k indices directly (without adding noise) if g passes the threshold check (g > 1).

Then let us discuss the two cases of the neighboring pairs D, D’.
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(a) For neighboring datasets D, D’ where the Top-k indices are the same, the possible outputs are therefore
{L, Top — k(D)} for both M;(D), M;(D’). Notice that |g;(D) — qx(D")| < 1, thus in this case

Do (M1(D)[|M1(D")) = Da(1(Gr(D) > 1)[[1(Gr(D’) > 1)) < Da(Gr(D)]|de(D")) < €gap(r),

where the inequality follows from the information-processing inequality of the Renyi Divergence. Thus it
trivially satisfies d-approximated-(c, €44p(c))-RDP when we set E to be the full set, i.e., Pr[E] =1>1—4.

(b) For D, D" where the Top-k indices are different, then it implies that ¢x(D) < 1 and gx(D’) < 1. In this case,
we can construct F to be the event where ¢ < g, i.e., the high-probability lower bound of gy, is valid. Check
that P[E] > 1 — 6 for any input dataset. Conditioning on F, ¢, < qx < 1 for both D, D’, which implies
that Pr[My(D) =L |E] = Pr[M(D’) =L |E] = 1. Thus, trivially D, (M (D)|E(D)||M(D")|E(D")) =0
for all . For this reason, it satisfies d-approximated-(«, €(a))-RDP for any function e(«) > 0, which we
instantiate it to be €gqp(cv).
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