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Abstract

We consider the task of heavy-tailed statistical estimation given streaming p-dimensional samples.
This could also be viewed as stochastic optimization under heavy-tailed distributions, with an additional
O(p) space complexity constraint. We design a clipped stochastic gradient descent algorithm and provide
an improved analysis, under a more nuanced condition on the noise of the stochastic gradients, which we
show is critical when analyzing stochastic optimization problems arising from general statistical estimation
problems. Our results guarantee convergence not just in expectation but with exponential concentration,
and moreover does so using O(1) batch size. We provide consequences of our results for mean estimation
and linear regression. Finally, we provide empirical corroboration of our results and algorithms via
synthetic experiments for mean estimation and linear regression.

1 Introduction
Statistical estimators are typically random, since they depend on a random training set; their statistical
guarantees are typically stated in terms of the expected loss between estimated and true parameters [35,
14, 54, 29]. A bound on expected loss however might not be sufficient in higher stakes settings, such as
autonomous driving, and risk-laden health care, among others, since the deviation of the estimator from its
expected behavior could be large. In such settings, we might instead prefer a bound on the loss that holds
with high probability. Such high-probability bounds are however often stated only under strong assumptions
(e.g. sub-Gaussianity or boundedness) on the tail of underlying distributions [28, 27, 48, 21]; conditions
which often do not hold in real-world settings. There has also been a burgeoning line of recent work that
relaxes these assumptions and allows for heavy-tailed underlying distributions [5, 32, 39], but the resulting
algorithms are often not only complex, but are also specifically batch learning algorithms that require storing
the entire dataset, which limits their scalability. For instance, many popular polynomial time algorithms on
heavy-tailed mean estimation [11, 7, 8, 36, 13, 10] and heavy-tailed linear regression algorithms [32, 49, 46]
need to store the dataset to take polylogarithmic passes over data.

On the other hand, most successful practical modern learning algorithms are iterative, light-weight and access
data in a “streaming” fashion. As a consequence, we focus on designing and analyzing iterative statistical
estimators which only use constant storage in each step. To summarize, motivated by practical considerations,
we have three desiderata: (1) allowing for heavy-tailed underlying distributions (weak modeling assumptions),
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(2) high probability bounds on the loss between estimated and true parameters instead of just its expectation
(strong statistical guarantees), and (3) estimators that access data in a streaming fashion while only using
constant storage (scalable, simple algorithms).

Figure 1: Tail performance of SGD and
clipped-SGD of mean estimation. The un-
derlying distributions are zero-mean sub-
Gaussian or heavy-tailed distributions. This
figure shows `2-loss between estimated and
true mean against different confidence levels
δ. See more details in Section C.1.

A useful alternative viewpoint of the statistical estimation prob-
lem above is that of stochastic optimization: where we have
access to the optimization objective function (which in the
statistical estimation case is simply the population risk of the
estimator) only via samples of the objective function or its
higher order derivatives (typically just the gradient). Here
again, most of the literature on stochastic optimization typically
provides bounds in expectation [29, 54, 25], or places a strong
assumptions on the tail behavior of the distributions of the
derivatives of the stochastic objective, such as the distributions
being bounded [27, 48] or sub-Gaussian [28, 38]. Figure 1 shows
that even for the simple stochastic optimization task of mean
estimation, the deviation of stochastic gradient descent (SGD)
is much worse for heavy-tailed distributions than sub-Gaussian
ones. Therefore, bounds on expected behavior, or strong as-
sumptions on the tails of the stochastic noise distribution are
no longer sufficient.

While there has been a line of work on heavy-tailed stochastic
optimization, these require non-trivial storage complexity or
batch sizes, making them unsuitable for streaming settings or
large-scale problems [19, 41]. Specifically these existing works
require at least O(1/ε) batch size to obtain a ε-approximate
solution under heavy-tailed noise [47, 9, 24, 43] (See Section
B in the Appendix for further discussion). In other words,
to achieve a typical O(1/N) convergence rate (on the squared
error), where N is the number of samples, they would need a batch-size of nearly the entire dataset.

Therefore, we investigate the following question:

Can we develop a stochastic optimization method that satisfy our three desiderata?

Our answer is that a simple algorithm suffices: stochastic gradient descent with clipping (clipped-SGD). In
particular, we first prove a high probability bound for clipped-SGD under heavy-tailed noise, with a decaying
O(1/t) step-size sequence for strongly convex objectives. By using a decaying step size, we improve the
analysis of [24] and develop the first robust stochastic optimization algorithm in a fully streaming setting
- i.e. with O(1) batch size. We then consider corollaries for statistical estimation where the optimization
objective is the population risk of the estimator, and derive the first streaming robust mean estimation and
linear regression algorithm that satisfy all three desiderata above.

We summarize our contributions as follows:

• We prove the first high-probability bounds for clipped-SGD with a O(1/t) step size and a constant
batch size for strongly convex and smooth objectives without sub-Gaussian assumption on stochastic
gradients. To the best of our knowledge, this is the first stochastic optimization algorithm that uses
constant batch size in this setting. See Section 1.1 and Table 1 for more details and comparisons. A
critical ingredient is a nuanced condition on the stochastic gradient noise.

• We show that our proposed stochastic optimization algorithm can be used for a broad class of statistical
estimation problems. As corollaries of this framework, we present a new class of robust heavy-tailed
estimators for streaming mean estimation and linear regression.
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• Lastly, we conduct synthetic experiments to corroborate our theoretical and methodological developments.
We show that clipped-SGD not only outperforms SGD and a number of baselines in average performance
but also has a well-controlled tail performance.

1.1 Related Work
Batch Heavy-tailed mean estimation. In the batch-setting, [31] proposed the first polynomial-time
algorithm that matches the error guarantees achieved by the empirical mean on Gaussian data. After this work,
efficient algorithms with improved asymptotic runtimes were proposed: Hopkins [31], Cherapanamjeri et al.
[8] proposed optimal estimators based on semi-definite programming (SDP). Diakonikolas et al. [12], Hopkins
et al. [30], Cheng et al. [7], Lei et al. [36], Dong et al. [13] constructed more practical algorithms via spectral
techniques. Estimators [42, 10] relied on the median-of-means framework. However, these approaches are
not designed for the streaming setting and requires taking polylogarithmic passes over data. We discuss the
difficulties in applying these approaches in the streaming setting in Section 4.1.

Batch Heavy-tailed regression. For the setting where the regression noise w is heavy-tailed with bounded
variance, Huber’s estimator is known to have exponential deviation bounds [16, 50] in high dimensional
setting. For the case where both the covariates and the noise are both heavy-tailed, several recent works
have proposed computationally efficient estimators that achieve exponential deviation bounds based on the
median-of-means framework [40, 32, 42], thresholding techniques [49], and covariate filtering [46]. However,
as we noted before, computing all of these estimators require storing the entire dataset.

Heavy-tailed stochastic optimization. A line of work in stochastic convex optimization have proposed
bounds that achieve sub-Gaussian concentration around their mean (a common step towards providing
sharp high-probability bounds), while only assuming that the variance of stochastic gradients is bounded
(i.e. allowing for heavy-tailed stochastic gradients). Davis et al. [9] proposed proxBoost that is based on
robust distance estimation and proximal operators. Prasad et al. [47] utilized the geometric median-of-
means to robustly estimate gradients in each mini-batch. Gorbunov et al. [24] and Nazin et al. [43] proposed
clipped-SSTM and RSMD respectively based on truncation of stochastic gradients for stochastic mirror/gradient
descent. Zhang et al. [54] analyzed the convergence of clipped-SGD in expectation but focus on a different
noise regime where the distribution of stochastic gradients has bounded 1 + α moments for some 0 < α ≤ 1.
However, all the above works [9, 47, 24, 43] have an unfavorable O(n) dependency on the batch size to get
the typical O(1/n) convergence rate (on the squared error). We note that our bound is comparable to the
above approaches while using a constant batch size. See Appendix B for more details.

2 Background and Problem Formulation
In this paper, we consider the following statistical estimation/stochastic optimization setting: we assume
that there are some class of functions {fθ}θ∈Θ parameterized by θ, where Θ is a convex subset of Rp; some
random vector x with distribution P ; and a loss function L which takes x, θ and outputs the loss of fθ at
point x. In this setting, we want to recover the true parameter θ∗ defined as the minimizer of the population
risk function R(θ):

θ∗ = argmin
θ∈Θ

R(θ) = argmin
θ∈Θ

Ex∼P [L(θ, x)]. (1)

We assume that L is differentiable and convex, and further impose two regularity conditions on the population
risk: there exist τ` and τu such that

τ`
2
‖θ1 − θ2‖22 ≤ R(θ1)−R(θ2)− 〈∇R(θ2), θ1 − θ2〉 ≤

τu
2
‖θ1 − θ2‖22 (2)

with τ`, τu > 0 and it holds for all θ1, θ2 ∈ Θ. The parameters τ`, τu are called the strong-convexity and
smoothness parameters of the function R(θ).
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To solve the minimization problem defined in Eq. (1), we assume that we can access the stochastic gradient of
the population risk, ∇L(θ, x), at any point θ ∈ Θ given a sample x. We note that this is a unbiased gradient
estimator, i.e.

Ex∼P [∇L(θ, x)] = ∇R(θ).

Our goal in this work is to develop robust statistical methods under heavy-tailed distributions. The specific
characterization of heavy-tailed distributions we consider in this paper is the common notion of distributions
where only very low order moments may be finite, e.g. student-t distribution or Pareto distribution. In this
work, we assume the stochastic gradient distribution only has bounded second moment. Formally, for any
θ ∈ Θ, we assume that there exists α(P,L) and β(P,L) such that

Ex∼P [‖∇L(θ, x)−∇R(θ)‖22] ≤ α(P,L)‖θ − θ∗‖22 + β(P,L). (3)

In other words, the variance of the `2-norm of the gradient distribution depends on a uniform constant β(P,L)
and a position-dependent variable, α(P,L), which allows the variance of gradient noise to be large when θ is
far from the true parameter θ∗. We note that this is a more general assumption compared to prior works
which assumed that the variance is uniformly bounded by σ2. It can be seen that our condition is more
nuanced and can be weaker: even if our condition holds, we would allow for a uniform bound on variance to
be large: α(P,L) supθ∈Θ ‖θ − θ∗‖2 + β(P,L). Whereas, a uniform bound on the variance could always be
cast as α(P,L) = 0 and β(P,L) = σ2. We will show that this more nuanced assumption is essential to obtain
tight bounds for linear regression problems.

We next provide some running examples to instantiate the above:

1. Mean estimation: Given observations x1, · · · , xn ∼ P where the distribution P with mean µ and a
bounded covariance matrix Σ. The minimizer of the following square loss is the mean µ of distribution
P :

L(θ, x) =
1

2
‖x− θ‖22 and µ = argmin

θ∈Rp
Ex∼P [L(θ, x)]. (4)

In this case, τ` = τu = 1, α(P,L) = 0 and β(P,L) = trace (Σ) satisfy the assumption in Eq.(3).

2. Linear regression: Given covariate-response pairs (x, y), where x, y are sampled from P and have a
linear relationship, i.e. y = 〈x, θ∗〉+ w, where θ∗ is the true parameter we want to estimate and w is
drawn from a zero-mean distribution. Suppose that under distribution P the covariate x ∈ Rp have
mean 0 and non-singular covariance matrix Σ. In this setting, we consider the squared loss:

L(θ, (x, y)) =
1

2
(y − 〈x, θ〉)2, and R(θ) =

1

2
(θ − θ∗)>Σ(θ − θ∗). (5)

The true parameter θ∗ is the minimizer of R(θ). We also note that τ` = λmin(Σ) and τu = λmax(Σ)
satisfies the assumption in Eq.(2) with α(P,L) = O(p‖Σ‖22), and β(P,L) = pσ2‖Σ‖2 satisfy the
assumption in Eq.(3). Note that if we had to uniformly bound the variance of the gradients as in
previous stochastic optimization work, that bound would need to scale as: O(p‖Σ‖22R2 + pσ2‖Σ‖2),
where R = supθ∈Θ ‖θ − θ∗‖, which will yield much looser bounds.

3 Main Results
In this section, we introduce our clipped stochastic gradient descent algorithm. We begin by formally defining
clipped stochastic gradients. For a clipping parameter λ ≥ 0:

clip(∇L(θ, x), λ) = min

(
1,

λ

‖∇L(θ, x)‖2

)
∇L(θ, x), (6)

where θ ∈ Θ, x ∼ P and ∇L(θ, x) is the stochastic gradient. The overall algorithm is summarized in
Algorithm 1, where we use PΘ to denote the (Euclidean) projection onto the domain Θ.
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Algorithm 1 Clipped stochastic gradient descent (clipped-SGD) algorithm.

Input: loss function L, initial point θ1, step size ηt, clipping level λ, samples x1, · · · , xN ∼ P .
1: for t = 1, 2, ..., N do
2: θt+1 ← PΘ

(
θt − ηtclip(∇L(θt, xt), λ)

)
.

Output: θN+1.

Next, we state our main convergence result for clipped-SGD in Theorem 1.

Theorem 1. (Streaming heavy-tailed stochastic optimization) Suppose that the population risk satisfies
the regularity conditions in Eq. (2) and stochastic gradient noise satisfies the condition in Eq. (3). Let
δ ∈ (0, 2e−1) and

γ
def
= 144 max

{
τu
τ`
,

96α(P,L)

τ2
`

}
log(2/δ) + 1. (7)

Given N samples x1, · · · , xN , the Algorithm 1 initialized at θ1 with ηt
def
= 1

τ`(t+γ) and

λ
def
= C1

√
τ2
` γ(γ − 1)‖θ1 − θ∗‖22

log(2/δ)2
+

(N + γ)β(P,L)

log(2/δ)
, (8)

where C1 ≥ 1 is a scaling constant can be chosen by users, returns θN+1 such that with probability at least
1− δ, we have

‖θN+1 − θ∗‖2 ≤ 100C1

γ‖θ1 − θ∗‖2
N + γ

+
1

τ`

√
β(P,L) log(2/δ)

N + γ

 . (9)

We explain our theoretical contribution and provide a proof sketch in Section 5. The complete proof can be
found in Appendix E.

Remarks: a) This theorem says that with a properly chosen clipping level λ, clipped-SGD has an asymptotic
convergence rate of O(1/

√
N) and enjoys sub-Gaussian style concentration around the true minimizer

(alternatively, its high probability bound scales logarithmically in the confidence parameter δ). The first term
in the error bound is related to the initialization error and the second term is governed by the stochastic
gradient noise. These two terms have different convergence rates: at early iterations when the initialization
error is large, the first term dominates but quickly decreases at the rate of O(γ/N). At later iterations the
second term dominates and decreases at the usual statistical rate of convergence of O(1/

√
N).

b) Note that ηt = O( 1
τ`t

) is a common choice for optimizing τ`-strongly convex functions [27, 48]. The only
difference is that we add a delay parameter γ to "slow down" the learning rate ηt and to stablize the training
process. The delay parameter γ depends on the position-dependent variance term α(P,L) and the condition
number τu/τ`. From a theoretical viewpoint, the delay parameter ensures that the true gradient is within the
clipping region with high-probability, i.e. ‖∇R(θt)‖2 ≤ λ for t = 1, ...., N with high probability and this in
turn allows us to control the variance and the bias incurred by clipped gradients. Moreover, it controls the
position-dependent variance term α(P,L)‖θt − θ∗‖22, especially during the initial iterations when the error
(and the variance of stochastic gradients) is large.

c) We choose the clipping level to be proportional to
√
N to balance the variance and bias of clipped gradients.

Roughly speaking, the bias is inversely proportional to the clipping level (Lemma 2). As the error ‖θN − θ∗‖2
converges at the rate O(1/

√
N), and this in turn suggests that we should choose the clipping level to be

O(
√
N).

d) Note that previous stochastic optimization algorithms use O(n) batch sizes for strongly convex objective
[9, 22, 43, 47]. To address this issue, the critical ingredients are the use of O(1/t) decayed learning rate and a
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delayed parameter γ to prevent it from diverging. Also, we explicitly control the variance of the gradient noise
by clipping the gradients, and are able to provide a more careful analysis. Whereas in previous algorithms,
they use a constant step size throughout the training process. Consequently, when getting close to the
minimizer, they must use an exponential growing batch size to reduce the gradient noise and to prevent
oscillations.

We also provide an error bound and sample complexity where, as in prior work, we assume the variance of
stochastic gradients are uniformly bounded by σ2, i.e. α(P,L) = 0 and β(P,L) = σ2 (as before, we assume
that the population loss R(·) is strongly-convex and smooth). We have the following corollary:

Corollary 2. Under the same assumptions and with the same hyper-parameters in Theorem 1 and letting
C1 = 1, with the probability at least 1− δ, we have the following error bound:

R(θN+1)−R(θ∗) ≤ O
(
τ3
u

τ3
`

· r0 log(1/δ)2

N2
+
τu
τ2
`

· σ
2 log(1/δ)

N

)
, (10)

where r0 = R(θ1)−R(θ∗) is the initialization error. In other words, to achieve R(θN+1)−R(θ∗) ≤ ε with
probability at least 1− δ, we need O

(
max

(√
τ3
u

τ3
`
· r0ε ,

τuσ
2

τ2
` ε

)
log
(

1
δ

))
samples.

With our general results in place we now turn our attention to deriving some important consequences for
mean estimation and linear regression.

4 Consequences for Heavy-tailed Parameter Estimation
In this section, we investigate the consequences of Theorem 1 for statistical estimation in the presence of
heavy-tailed noise. We plug in the respective loss functions L, the terms α(P,L) and β(P,L) capturing the
underlying stochastic gradient distribution, in Theorem 1 to obtain high-probability bounds for the respective
statistical estimators.

4.1 Heavy-tailed Mean Estimation
We assume that the distribution P has bounded covariance matrix Σ. Then clipped-SGD for mean estimation
has the following guarantee.

Corollary 3. (Streaming Heavy-tailed Mean Estimation) Given samples x1, · · · , xN ∈ Rp from a distribution
P and confidence level δ ∈ (0, 2e−1), the Algorithm 1 instantiated with a loss function L(θ, x) = 1

2‖x− θ‖
2
2,

an initial point θ1 ∈ Rp, γ = 144 log(2/δ) + 1, a learning rate ηt = 1
t+γ , and a clipping level

λ = C1

√
γ(γ − 1)‖θ1 − θ∗‖22

log(2/δ)2
+

(N + γ)trace (Σ)

log(2/δ)
,

where C1 ≥ 1 is a scaling constant can be chosen by users, returns θN+1 such that with probability at least
1− δ, we have

‖θN+1 − θ∗‖2 ≤ 100

(
γ‖θ1 − θ∗‖2
N + γ

+

√
trace (Σ) log(2/δ)

N + γ

)
. (11)

Remarks: a) The proposed mean estimator matches the error bound of the well-known geometric-median-of-

means estimator [42], achieving ‖θN − θ∗‖2 .
√

trace(Σ) log(1/δ)
N . This guarantee is still sub-optimal compared

to the optimal sub-Gaussian rate [39]. Existing polynomial time algorithms having optimal performance are
for the batch setting and require either storing the entire dataset [31, 8, 12, 30, 7, 36, 13] or have O(p log(1/δ))
storage complexity [10]. On the other hand, we argue that trading off some statistical accuracy for a large
savings in memory and computation is favorable in practice.
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Moreover, we claim that these algorithms are hard to be implemented in the streaming setting: Hopkins
[31], Cherapanamjeri et al. [8] use the semi-definite programming method, which is not yet practical.
Algorithms Diakonikolas et al. [12], Hopkins et al. [30], Cheng et al. [7], Lei et al. [36], Dong et al. [13] rely on
analyzing the spectrum of the covariance matrix. These approaches require polylogarithmic passes over data
to remove potential outliers in d orthogonal directions, making it unsuitable in our setting since computing
the covariance matrix already requires taking one pass over data.

b) One may argue that median-based approaches, e.g. coordinate-wise/geometric median-of-means or much
simpler coordinate-wise/geometric medians, can be implemented in a streaming fashion while retaining the
same rate as in the batch setting. Specifically, coordinate-wise/geometric median-of-means first divide the
data into b buckets of roughly equal size, compute the mean in each bucket, and then takes the coordinate-
wise/geometric median of these bucketed means. We argue that they are not favorable for the following
reasons.

First of all, simply using coordinate-wise/geometric medians of these N samples is inconsistent. These
medians are consistent estimators for the medians of underlying distributions. To use them in the mean
estimation, it incurs a large bias when the underlying distribution is asymmetric. For instance, the distance
between the mean and the median for a one-dimensional Pareto distribution is a constant.

Second, it’s not obvious how to turn these algorithms into the steaming setting. Current analyses for geometric
median are asymptotic [3] or only applied after a large number of iterations [4] because estimating streaming
geometric median incurs a large bias in the early iterations. Moreover, in practice, it might require one to wait
for a bucket of samples to calculate bucketed means, which is not an ’any-time’ algorithm as our algorithm.

Coordinate-wise median-of-means has similar issues. Also, even in the batch setting, the confidence parameter
delta in their guarantee gets scaled by dimension, which can not be applied to very high-dimensional spaces
[42].

4.2 Heavy-tailed Linear Regression
We consider the linear regression model described in Eq.(5). Assume that the covariates x ∈ Rp have bounded
4th moments and a non-singular covariance matrix Σ with bounded operator norm, and the noise w has
bounded 2nd moments. We denote the minimum and maximum eigenvalue of Σ by τ` and τu. More formally,
we say a random variable x ∈ Rp has a bounded 4th moment if there exists a constant C4 such that for every
unit vector v ∈ Sp−1, we have

E[〈x− E[x], v〉4] ≤ C4 (E[〈x− E[x], v〉])2
. (12)

Corollary 4. (Streaming Heavy-tailed Regression) Given samples (x1, y1), · · · , (xN , yN ) ∈ Rp × R and
confidence level δ ∈ (0, 2e−1), the Algorithm 1 instantiated with loss function in Eq. (5), initial point θ1 ∈ Rp,

γ = 144 max

{
τu
τ`
,

192(C4 + 1)pτ2
u

τ2
`

}
log(2/δ) + 1,

learning rate ηt = 1
τ`(t+γ) , and clipping level

λ = C1

√
τ2
` γ(γ − 1)‖θ1 − θ∗‖22

log(2/δ)2
+

(N + γ)σ2pτu
log(2/δ)

,

where C1 is a scaling constant can be chosen by users and C4 is the constant in Eq.(12), returns θN+1 such
that with probability at least 1− δ, we have

‖θN+1 − θ∗‖2 ≤ 100C1

(
γ‖θ1 − θ∗‖2
N + γ

+
σ

τ`

√
pτu log(2/δ)

N + γ

)
. (13)
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5 Proof Sketch of Theorem 1
In this section, we provide an overview of the arguments that constitute the proof of Theorem 1 and explain
our theoretical contribution. The full details of the proof can be found in Section E in Appendix. Our proof
is improved upon previous analysis of clipped-SGD with constant learning rate and O(n) batch size [24] and
high probability bounds for SGD with O(1/t) step size in the sub-Gaussian setting [28]. Our analysis consists
of three steps: (i) Expansion of the update rule. (ii) Selection of the clipping level. (iii) Concentration of
bounded martingale sequences.

Notations: Recall that we use step size ηt = 1
τ`(t+γ) . We will write εt = ∇R(θt) − clip(∇L(θt, xt), λ)

is the noise indicating the difference between the stochastic gradient and the true gradient at step t. Let
Ft = σ(x1, · · · , xt) be the σ-algebra generated by the first t steps of clipped-SGD. We note that clipping
introduce bias so that Ext [εt|Ft−1] is no longer zero, so we decompose the noise term εt = εbt + εvt into a bias
term εbt and a zero-mean variance term εvt , i.e.

εt = εbt + εvt , where ε
b
t = Ext [εt|Ft−1] and εvt = εt − Ext [εt|Ft−1]

(i) Expansion of the update rule: We start with the following lemma that is pretty standard in
the analysis of SGD for strongly convex functions. It can be obtained by unrolling the update rules
θt+1 = PΘ

(
θt − ηtclip(∇L(θt, xt), λ)

)
and using properties of τ`-strongly-convex and τu-smooth functions.

Lemma 1. Under the conditions in Theorem 1, for any 1 ≤ i ≤ N , we have

‖θi+1 − θ∗‖22 ≤
γ(γ − 1)‖θ1 − θ∗‖22
(i+ γ)(i+ γ − 1)︸ ︷︷ ︸

the initialization error

+

∑i
t=1(t+ γ − 1)

〈
εbt + εvt , θ

t − θ∗
〉

τ`(i+ γ)(i+ γ − 1)︸ ︷︷ ︸
the first noise term

+
2
∑i
t=1

(
‖εvt ‖22 + ‖εbt‖22

)
τ2` (i+ γ)(i+ γ − 1)︸ ︷︷ ︸
the second noise term

.

(ii) Selection of the clipping level: Now, to upper bound the noise terms, we need to choose the clipping
level λ properly to balance the variance term εvt and the bias term εbt . Specifically, we use the inequalities of
Gorbunov et al. [24], which provides us upper bounds for the magnitude and variance of these noise terms.

Lemma 2. (Lemma F.5, [24] ) For any t = 1, 2, .., N , we have

‖εvt ‖2 ≤ 2λ. (14)

Moreover, for all t = 1, 2, .., N , assume that the variance of stochastic gradients is bounded by σ2
t , i.e.

Ext [‖∇L(θt, xt)−∇R(θt)‖22|Ft−1] ≤ σ2
t and assume that the norm of the true gradient is less than λ/2, i.e.

‖∇R(θt)‖2 ≤ λ/2. Then we have

‖εbt‖2 ≤
4σ2

t

λ
and Ext [‖εvt ‖22|Ft−1] ≤ 18σ2

t for all t = 1, 2, ..., N. (15)

This lemma gives us the dependencies between the variance, bias and clipping level: a larger clipping level
leads to a smaller bias but the magnitude of the variance term ‖εvt ‖2 is larger, while the variance of the
variance term Ext [‖εvt ‖22|Ft−1] remains constant. These three inequalities are also essential for us to use
concentration inequalities for martingales. However, we highlight the necessity for these inequalities to hold:
the true gradient lies in the clipping region up to a constant, i.e. ‖∇R(θt)‖2 ≤ λ/2. This condition is necessary
since without this, we could not have upper bounds of the bias and variance terms. Therefore, the clipping
level should be chosen in a very accurate way. Below we informally describe how do we choose it.

We note that ‖θt − θ∗‖2 should converge with 1/
√
t rate for strongly convex functions with O(1/t) step

size [48, 28]. To make sure the first noise term upper bound by O(1/i) , one should expect each summand
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t
〈
εbt , θ

t − θ∗
〉

= O(1) for 1 ≤ t ≤ i, which implies ‖εbt‖2 = O(1/
√
t). This motivates us to choose the clipping

level to be proportional to
√
t by Eq.(15). Also, from the detailed proof in Section E, we will show that the

delay parameter γ makes sure ‖∇R(θt)‖2 ≤ λ/2 holds with high probabilities and the position dependent
noise α(P,L) is controlled.

(iii) Concentration of bounded martingale sequences: A significant technical step of our analysis is
the use of the following Freedman’s inequality.

Lemma 3. (Freedman’s inequality [18]) Let d1, d2, · · · , dT be a martingale difference sequence with a uniform
bound b on the steps di. Let Vs denote the sum of conditional variances, i.e. Vs =

∑s
i=1 Var(di|d1, · · · , di−1).

Then, for every a, v > 0,

Pr

(
s∑
i=1

di ≥ a and Vs ≤ v for some s ≤ T

)
≤ exp

(
−a2

2(v + ba)

)
.

Freedman’s inequality says that if we know the boundness and variance of the martingale difference sequence,
the summation of them has exponential concentration around its expected value for all subsequence

∑s
i=1 di.

Now we turn our attention to the variance term in the first noise term, i.e.
∑i
t=1(t+ γ − 1) 〈εvt , θt − θ∗〉. It is

the summation of a martingale difference sequence since E[εvt |Ft−1] = 0. Note that Lemma 2 has given us
upper bounds for boundness/variance for εvt . However, the main technical difficulty is that each summand
involves the error of past sequences, i.e. ‖θt − θ∗‖2.

Our solution is the use of Freedman’s inequality, which gives us a loose control of all past error terms with
high probabilities, i.e. ‖θt − θ∗‖22 ≤ O

(
N/t2

)
for 1 ≤ t ≤ N . On the contrary, a recurrences technique used

in the past works [22, 23, 24] uses an increasing clipping levels λt and calls the Bernstein inequality ( , which
only provides an upper bound for the entire sequence, ) N times in order to control ‖θt − θ∗‖2 for every t. As
a result, it incurs an extra factor log(N) on their bound since it imposes a too strong control over past error
terms.

Finally, we describe why clipped-SGD allows a O(1) batch size at a high level. For previous works of
stochastic optimization with strongly convex and smooth objective, they use a constant step size throughout
their training process [22, 47, 9, 43]. However, to ensure their approach make a constant progress at each
iteration, they should use an exponential growing batch size to reduce variance of gradients. Whereas in
our approach, we explicitly control the variance by using a decayed learning rate and clipping the gradients.
Therefore, we are able to provide a careful analysis of the resulted bounded martingale sequences.

6 Experiments
To corroborate our theoretical findings, we conduct experiments on mean estimation and linear regression to
study the performance of clipped-SGD. Another experiment on logistic regression is presented in the Section
D.3 in the Appendix.

Methods. We compare clipped-SGD with vanilla SGD, which takes stochastic gradient to update without
a clipping function. For linear regression, we also compare clipped-SGD with Lasso regression [44], Ridge
regression and Huber regression [50, 33]. All methods use the same step size 1

t+γ at step t.

To simulate heavy-tailed samples, we draw from a scaled standardized Pareto distribution with tail-parameter
β for which the kth moment only exists for k < β. The smaller the β, the more heavy-tailed the distribution.
Due to space constraints, we defer other results with different setups to the Appendix.
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Figure 2: Results for robust mean estimation for N = 1024 and p = 256. Smaller Qδ(θ̂) is better.

Choice of Hyper-parameter. Note that in Theorem 1, the clipping level λ depends on the initialization
error, i.e. ‖θ1 − θ∗‖2, which is not known in advance. Moreover, we found that the suggested value of γ
has a too large of a constant factor and substantially decreases the convergence rate especially for small N .
However, standard hyper-parameter selection techniques such as cross-validation and hold-out validation
require storing the entire validation set, which are not suitable for streaming settings.

Consequently, we use a sequential validation method [34], where we do "training" and "evaluation" on the
last q percent of the data. Formally, given candidate solutions {θ̂1, · · · , θ̂m} trained from samples x1, · · · , xN ,
let θti be the estimated parameter for candidate i at iteration t. Then we choose the candidate that minimizes
the empirical mean of the risk of the last q percents of samples, i.e.

j∗ = argmin
1≤j≤m

1

qN

N∑
t=(1−q)N+1

L(θ̂tj , xt) (16)

Specifically, at the last q percents of iterations, when a sample xt comes, we first calculate the risk induced
by θtj and xt and then use this sample to update the parameter θtj . Therefore, instead of storing the entire
validation set, we only need O(mp) space to store the candidate parameters {θ̂1, · · · , θ̂m} and the validation
losses of the candidates.

In our experiment, we choose q = 0.2 to tune the delay parameter γ, the clipping level λ, regularization
factors for Lasso, Ridge and Huber regression, and the step size for streaming coordinate-wise/geometric
median-of-means.

Metric. For any estimator θ̂, we use the `2 loss `(θ̂) = ‖θ̂ − θ∗‖2 as our primary metric. To measure the
tail performance of estimators (not just their expected loss), we also use Qδ(θ̂) = inf(α : Pr(`(θ̂) > α) ≤ δ),
which is the bound on the loss that we wish to hold with probability 1− δ. This could also be viewed as the
100(1− δ) percentile of the loss (e.g. if δ = 0.05, then this would be the 95th percentile of the loss).

6.1 Synthetic Experiments: Mean estimation
Setup. We obtain samples {xi}Ni=1 ⊆ Rp from a scaled standardized Pareto distribution with tail-parameter
β = 2.1. We initialize the mean parameter estimate as θ1 = [1, · · · , 1] ∈ Rp, γ = 0, and fix the step size to
ηt = 1/t for clipped-SGD and Vanilla SGD. We note that in this setting, it can be seen that θ̂tSGD =

∑t
i=1 zi/t

is the empirical mean over t samples by some simple algebra.

We also compare our approach with streaming coordinate-wise/geometric median-of-means(MoM), where we
use the number of buckets b = dlog(1/δ)e with δ = 0.05 as in the batch setting [39] and a step size of ηt = c

tb

10



(a) Expected convergence curve. (b) Last iteration quantile loss. (c) log2(Qδ(θ
N )) v.s. λ.

(d) Expected convergence curve
for different γ.

(e) log2(Qδ(θ
N )) v.s. σ2 for δ =

0.01.
(f) log2(Qδ(θ

N )) v.s. p for δ =
0.01 and N = 1024.

Figure 3: Results for robust linear regression for N = 1024, p = 256, γ = 256 and σ2 = 0.75.

[4], where c is a constant selected by the validation method and tb is a counter for bucketed means. Specifically,
we first wait for

⌊
n
b

⌋
points and calculate their running mean as a initial point. Then we calculate bucketed

means for the remaining points in the same way and use them to update the coordinate-wise/geometric
median with an averaged stochastic gradient algorithm. Each metric is reported over 50000 trials. See more
implementation details in Appendix C.

Results. Figure 2 shows the performance of all algorithms. In the first panel, we can see clipped-SGD
has expected error that converges as O(1/N) as our theory indicates. Also, the 99.9 percent quantile loss of
Vanilla SGD is over 10 times worse than the expected error as in the second panel while the tail performance
of clipped-SGD is similar to its expected performance. Moreover, streaming coordinate-wise/geometric
median-of-means have a much worse expected performance and their tail performance is not well-controlled.

In the third panel, we can see that clipped-SGD performs better across different λ. When the clipping level λ
is too small, it takes too small a step size so that the final error is high. While if we use a very large clipping
level, the performance of clipped-SGD is similar to Vanilla SGD.

6.2 Synthetic Experiments: Linear Regression
Setup We generate covariate x ∈ Rp from an scaled standardized Pareto distribution with tail-parameter
β = 4.1. The true regression parameter is set to be θ∗ = [ 1√

p , · · · ,
1√
p ] ∈ Rp and the initial parameter is set

to θ1 = [0, 0, · · · , 0]. The response is generated by y = 〈x, θ∗〉+ w, where w is sampled from scaled rescaled
Pareto distribution with a zero mean, a variance σ2 and a tail-parameter β = 2.1. We select τ` = λmin(Σ) = 1.
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Each metric is reported over 50000 trials.

Results We note that in this experiment, our hyperparameter selection technique yields γ = 256. Figure
3(a), 3(b) show that clipped-SGD performs the best among all baselines in terms of average error and
quantile errors across different probability levels δ. Also,

√
log2(1/δ) has linear relation to Qδ(θ̂) as Corollary

4 indicates. In Figure 3(c), we plot quantile loss against different clipping levels. It shows a similar trend to
the mean estimation.

Next, in Figure 3(d), we plot the averaged convergence curve for different delay parameters γ. This shows
that it is necessary to use a large enough γ to prevent it from diverging. This phenomenon can also be
observed for different baseline models. Figure 3(e), 3(f) shows that clipped-SGD performs the best across
different noise level σ2 and different dimension p.

7 Conclusion and Future Direction
In this paper, we provide a streaming algorithm for statistical estimation under heavy-tailed distribution. In
particular, we close the gap in theory of clipped stochastic gradient descent with heavy-tailed noise. We show
that clipped-SGD can not only be used in parameter estimation tasks, such as mean estimation and linear
regression, but also a more general stochastic optimization problem with heavy-tailed noise. There are several
avenues for future work, including a better understanding of clipped-SGD under different distributions, such
as having higher bounded moments or symmetric distributions, where the clipping technique incurs less bias.
Finally, it would also be of interest to extend our results to different robustness setting such as Huber’s
ε-contamination model [33], where there are a constant portion of arbitrary outliers in observed samples.
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A Organization
The Appendices contain additional technical content and are organized as follows. In Appendix B, we provide
additional details for related work, which contain a detailed comparison of previous work on stochastic
optimization. In Appendix C, we detail hyperparameters used for experiments in Section 6. In Appendix
D, we present supplementary experimental results for different setups for heavy-tailed mean estimation and
linear regression. Additionally, we show a synthetic experiment on logistic regression. Finally, in Appendix E
and F, we give the proofs for Theorem 1 and corollaries respectively.

B Related work : Additional details
Heavy-tailed stochastic optimization. In this paragraph, we present a detailed comparison of existing
results of stochastic optimization. In Table 1, we compare existing high probability bounds of stochastic
optimization for strongly convex and smooth objectives.

Since our work focus on large-scale setting (where we need to access data in a streaming fashion), we assume
the number of samples N is large so that the required ε is small. In such setting, O( 1

ε ) is the dominating
term and the error is driven by the stochastic noise term σ2. If ignoring the difference in logarithmic factors
and assuming τu/τ` is small, all methods for heavy-tailed noise in Table 1 achieve O( σ

2

τ`ε
) log( 1

δ ) and are
comparable to algorithms derived under the sub-Gaussian noise assumption.

However, we can see that all of the existing methods require O( 1
ε ) batch size except ours. Their batch sizes

are not constants because they use a constant step size throughout their training process. Although they can
achieve linear convergence rates for initialization error r0, they should use an exponential growing batch size
to reduce variance induced by gradient noise. Additionally, in large scale setting where the noise term is the
dominating term, the linear convergence of initial error is not important. On the contrary, we choose a O( 1

T )
step size, which is widely used in stochastic optimization for strongly convex objective [48, 28]. Our proposed
clipped-SGD can therefore enjoy O( 1

T ) convergence rate while using a constant batch size.

Finally, our analysis improves the dependency on the confidence level term log( 1
δ ): it does not have extra

logarithmic terms and does not depend on ε. Although our bound has a worse dependency on the condition
number τu/τ`, we argue that our bound has an extra τu/τ` term because our bound is derived under the
square error, i.e. ‖θt − θ∗‖22 instead of the difference between objective values R(θt)−R(θ∗). As a result, we
believe the dependency on τu/τ` of our bounds can be improved by slightly revising Lemma 5.

Gradient clipping. Gradient clipping is a well-known optimization technique for both convex/non-convex
optimization problems [26, 52, 45]. It has been shown to accelerate neural network training [53], stablize
the policy gradient algorithms [20] and design different private optimization algorithms [6, 1]. Gradient
clipping has also been shown to be robust to label noise [37].



Method Sample complexity Batch size

Sub-Gaussian noise
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log
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δ log( r0ε )

)))
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)
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Heavy-tailed noise
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(
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)
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where C ′ = log( τuτ` ) log
(

1
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log
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1
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Table 1: Comparison of existing high probability upper bound for stochastic optimization for any τ`-strongly
convex and τu-smooth objective function R(·) with sub-Gaussian/heavy-tailed noise. The second column
provides number of samples needed to achieved an ε-approximated solution θ̂ such that R(θ̂)−R(θ∗) < ε
with probability at least 1 − δ. In this table, we assume a gradient distribution has a uniformly bounded
variance σ2, i.e. α(P,L) = 0 and β(P,L) = σ2 in Eq.(3). We use r0 = R(θ0) −R(θ∗). For RSMD, R is the
diameter of the domain where the optimization problem is defined. The third column indicates the batch
size, which is the number of samples used in a single step.
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C Experimental Details

C.1 Experimental Details of Figure 1
In Figure 1, we consider the mean estimation task with a loss function R(θ) = Ex

[
‖x− θ‖22

]
, where x is

either from a sub-Gaussian distribution or a Pareto distribution with tail parameter 2.1. Both distributions
are 10-dimensional and have zero mean and an identity covariance matrix. We use N = 100 samples and run
100, 000 trials to estimate each confidence level δ. We choose the clipping level to be λ = 1.5.

C.2 Experimental Details of Mean Estimation
In this section, we describe the algorithms of streaming coordinate-wise/geometric median-of-means and
present details of the synthetic experiment of mean estimation in Section 6.1 and Appendix D.1.

C.2.1 Streaming coordinate-wise/geometric median-of-means algorithms

Given points z1, · · · , zn ∈ Rd, coordinate-wise/geometric medians of these n points are defined as the
minimizers of the following convex objective.

coordinate-wise median: mc
def
= argmin

u∈Rd

n∑
i=1

‖zi − u‖1. (17)

geometric median: mg
def
= argmin

u∈Rd

n∑
i=1

‖zi − u‖2. (18)

These objectives are convex and therefore can be minimized via stochastic gradient descent [3, 4, 17]. In the
experiment, we use the step sizes of c

tb
, where c is a constant selected by using our sequential validation method

and tb is the number of steps. In Algorithm 2 and 3 ,we describe the streaming coordinate-wise/geometric
median-of-means algorithm.

Algorithm 2 Streaming coordinate-wise median-of-means algorithm.
Input: step size ηtb , number of buckets b, samples x1, · · · , xN ∼ P .

1: Streaming calculate the bucketed mean θ1 = Average(x1, · · · , xb).
2: for tb = 1, 2, ...,

⌊
N
b

⌋
do

3: Streaming calculate the bucketed mean z̄tb = Average(xbtb+1, · · · , xb(tb+1)).
4: θtb+1 ← θtb − ηtbsign(θtb − z̄tb).

Output: θb
N
b c+1.

Algorithm 3 Streaming geometric median-of-means algorithm.
Input: initial point θ1, step size ηtb , number of buckets b, samples x1, · · · , xN ∼ P .

1: Streaming calculate the bucketed mean θ1 = Average(x1, · · · , xb).
2: for tb = 1, 2, ...,

⌊
N
b

⌋
do

3: Streaming calculate the bucketed mean z̄tb = Average(xbtb+1, · · · , xb(tb+1)).

4: θtb+1 ← θtb − ηtb
θtb−z̄tb
‖θtb−z̄tb‖2

.

Output: θb
N
b c+1.

C.2.2 Hyperparameter Selection

For each setup (N, p), we use the hyper-parameter selection technique described in Section 6 and choose the
hyperparameters from the candidate sets in Table 2.
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Hyper-parameters Candidate sets

clipping level λ {c
√
Np | c ∈ {0.01, 0.06, · · · , 1.01}}

Number of buckets for streaming
geometric/coordinate-wise median-of-means d8 log(1/δ)e with δ = 0.05 [39]

Step sizes for streaming
geometric/coordinate-wise median-of-means { ctb |c ∈ {10−1, 10−

3
4 , 10−

1
2 , 10−

1
4 , 1, 10

1
4 , 10

1
2 , 10

3
4 }}

Table 2: Candidate set for different hyper-parameters for mean estimation.

C.3 Experimental Details of Linear Regression
In this section, we present details of the synthetic experiment of linear regression in Section 6.2 and D.2. For
each setup (N, p), we use the hyper-parameter selection technique described in Section 6 and choose the
hyperparameters from the candidate sets in Table 3.

Hyper-parameters Candidate sets

delay parameter γ {0.1p, p, 10p}
clipping level λ {c

√
Np | c ∈ {0.01, 0.06, · · · , 1.01}}

regularization parameter for Lasso {c
√
Np | c ∈ {0.001, 0.006, · · · , 0.101}}

regularization parameter for Ridge {c
√
Np | c ∈ {0.001, 0.006, · · · , 0.101}}

regularization parameter for Huber {c
√
Np | c ∈ {0.001, 0.006, · · · , 0.101}}

Table 3: Candidate sets for different hyper-parameters for linear regression.
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D Extra experiments

D.1 Extra Experiments on Mean Estimation
Figure 4 shows extra experimental results for p = 20 and N = 100, 500, 1000. The experimental setting is the
same as in Section 6.1. We can see clipped-SGD consistently outperforms all other baselines in expected
performance and tail performance.

(a) Expected convergence curve for
N = 100 and p = 20.

(b) Last iteration quantile loss for
N = 100 and p = 20.

(c) Expected convergence curve for
N = 500 and p = 20.

(d) Last iteration quantile loss for
N = 500 and p = 20.

hfill
(e) Expected convergence curve for
N = 1000 and p = 20.

(f) Last iteration quantile loss for
N = 1000 and p = 20.

Figure 4: Results for robust mean estimation for different settings.
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D.2 Extra Experiments on Linear Regression
Figure 5 shows extra experimental results for p = 20 and N = 100, 500, 1000. The experimental setting is the
same as in Section 6.2. We can see clipped-SGD consistently outperforms other baselines.

(a) Expected convergence curve for
N = 100 and p = 20.

(b) Last iteration quantile loss for
N = 100 and p = 20.

(c) Expected convergence curve for
N = 500 and p = 20.

(d) Last iteration quantile loss for
N = 500 and p = 20.

(e) Expected convergence curve for
N = 1000 and p = 20.

(f) Last iteration quantile loss for
N = 1000 and p = 20.

Figure 5: Results for robust linear regression for p = 20, γ = 20, σ2 = 0.75 and N = 100, 500, 1000.

Moreover, we compare our algorithm when the true parameter θ∗ is sparse, which is favorable for regularized
linear regression (esp. Lasso). Specifically, we set the true parameter θ∗ = [ 1√

r
, · · · , 1√

r
, 0, · · · , 0] ∈ Rp, where

r is a sparsity parameter indicating the last p− r dimensions of θ∗ are zero. We generate covariate x ∈ Rp
from an scaled standardized Pareto distribution with tail-parameter β = 4.1. The initial parameter is set
to θ1 = [−1√

p ,
−1√
p , · · · ,

−1√
p ]. The response is generated by y = 〈x, θ∗〉 + w, where w is sampled from scaled

rescaled Pareto distribution with mean 0, variance σ2 and tail-parameter β = 2.1.

Figure 6 shows the results of sparse linear regression when p = 20,r = 3, N = 500, 1000. In sparse setting,
Lasso performs better than in the dense setting but is still worse than our clipped-SGD.
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(a) Expected convergence
curve for N = 500 and p =
20.

(b) Last iteration quantile
loss for N = 500 and p =
20.

(c) Expected convergence
curve for N = 1000 and
p = 20.

(d) Last iteration quantile
loss for N = 500 and p =
20.

Figure 6: Results for robust sparse linear regression for p = 20, r = 3, σ2 = 0.75, γ = 20 and N = 500, 1000.

D.3 Synthetic Experiments: Logistic regression
In this section, we present an extra experimental results on logistic regression.

Logistic regression model. In this model, we observe covariate-response pairs (xi, yi) ∈ Rp × {0, 1} for
1 ≤ i ≤ N , where each pair (x, y) is sampled from the true distribution P . The conditional distribution of
the response y given the covariate x is

Pr(y|x) =

{
1

1+exp(−〈x,θ∗〉) , if y = 1.
1

1+exp(〈x,θ∗〉) , if y = 0.
(19)

We focus on the random design setting where the covariates x ∈ Rp have mean 0 and covariance matrix Σ.
The loss function we used is negative log-likelihood function:

L(θ, (x, y)) = −y 〈x, θ〉+ log(1 + exp(〈x, θ〉)). (20)

The true parameter is the minimizer of the resulting population risk. The gradient of the loss function is
given by

∇L(θ, (x, y)) =

(
y − 1

1 + exp(−〈x, θ〉)

)
x. (21)

The hessian matrix of the population risk is

∇2R(θ) = E
[

exp(〈x, θ〉)
(1 + exp(〈x, θ〉))2

xx>
]
. (22)

We note that λmin(∇2R(θ)) approaches to 0 as θ diverges and the objective function is no longer strongly
convex. Therefore, in this case, we restrict the domain of θ to be a bounded convex set Θ.

Setup. We generate covariate x ∈ Rp from an scaled standardized Pareto distribution with tail-parameter
β = 4.1. The true regression parameter is set to be θ∗ = [ 1√

p , · · · ,
1√
p ] ∈ Rp and the initial parameter is set

to θ1 = 0.75θ∗. The response is generated by Eq.(19). We select τ` = λmin(Σ) = 1. To ensure λmin(∇2R(θ))
is lower bounded, we restrict the domain Θ to a unit ball centered at θ∗, i.e. Θ = {v | ‖v − θ∗‖2 ≤ 1}. We
set τ` = 0.1. Each metric are reported over 5000 trials.
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Results. Figure 7 shows the results of heavy-tailed logistic regression. In Figure 7(a), we plot expected
convergence curves for different γ for SGD algorithm. We can see that γ = 2000 yields the best performance.
Therefore, we fix γ = 2000 and compare SGD algorithm with clipped-SGD. Figure 7(b), shows expected
convergence curves for different clipping levels λ. We can see that the red curve (λ = 0.5) clearly outperforms
Vaniila SGD. The tail performance of λ = 0.5 is also the best as in Figure 7(c).

We note that the tail performance of Vanilla SGD is well-controlled for logistic regression, as can be seen in
Figure 7(c). The reason may be that the distribution of stochastic gradient is not as heavy as the distribution
of covariate x. If we see the formula of stochastic gradients in Eq.(21), when ‖x‖2 is large, the response y has
high probability to be exponentially close to 1/(1 + exp(−〈x, θ〉)). Therefore, the term inside the bracket is
exponentially small with high probability. The stochastic gradient may not be as heavy-tailed as the covariate
x. However, our results show that using clipped gradient is helpful in logistic regression.

(a) Expected convergence curves for
different γ.

(b) Expected convergence curves for
different λ (γ = 2000).

(c) Quantile loss for different clipping
level λ.

Figure 7: Results for heavy-tailed logistic regression for p = 10 and N = 1000.
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E Proof of Theorem 1
Proof. First of all, we let the clipped gradient at step t be gt = clip(∇L(θt, xt), λ) and let εt = ∇R(θt)−gt be
the difference between the stochastic gradient and the true gradient at step t. Also, we let Ft = σ(x1, · · · , xt)
be the σ-algebra generated by the first t steps of clipped-SGD. Our first step is unrolling the update rule:
θt+1 = PΘ

(
θt − ηtclip(∇L(θt, xt), λ)

)
.

Lemma 4. [Lemma 3.11, [2]] Let f be M -smooth and m-strongly convex in Rp, then for all x, y ∈ Rp, we
have

〈∇f(x)−∇f(y), x− y〉 ≥ mM

m+M
‖x− y‖22 +

1

m+M
‖∇f(y)−∇f(x)‖22.

Lemma 5. Under the conditions in theorem 1, for any 1 ≤ t ≥ N , we have

‖θt+1 − θ∗‖22 ≤
γ(γ − 1)

(t+ γ)(t+ γ − 1)
‖θ1 − θ∗‖22 +

∑t
i=1(i+ γ − 1)

〈
εi, θ

i − θ∗
〉

τ`(t+ γ)(t+ γ − 1)
+

∑t
i=1 ‖εi‖22

2τ2
` (t+ γ)(t+ γ − 1)

. (23)

Proof. By the strong convexity of R(θ) and the fact that θ∗ minimizes R(θ) in Θ, we have〈
∇R(θt), θt − θ∗

〉
≥ R(θt)−R(θ∗) +

τ`
2
‖θt − θ∗‖22, (24)

and
R(θt)−R(θ∗) ≥ τ`

2
‖θt − θ∗‖22. (25)

Putting these two inequality together, we have〈
∇R(θt), θt − θ∗

〉
≥ τ`‖θt − θ∗‖22. (26)

Also, since Θ is a convex set, we have ‖PΘ(θ)− θ∗‖2 ≤ ‖θ− θ∗‖2 since θ∗ ∈ Θ. By rewinding the update rule
of clipped-SGD algorithm, we have the following:

‖θt+1 − θ∗‖22 (27)

= ‖PΘ(θt − ηtgt)− θ∗‖22
≤ ‖θt − ηtgt − θ∗‖22
= ‖θt − θ∗‖22 − 2ηt

〈
θt − θ∗, gt

〉
+ η2

t ‖gt‖22
= ‖θt − θ∗‖22 − 2ηt

〈
∇R(θt), θt − θ∗

〉
+ 2ηt

〈
εt, θ

t − θ∗
〉

+ η2
t ‖∇R(θt) + εt‖22

≤ ‖θt − θ∗‖22 − 2ηt
〈
∇R(θt), θt − θ∗

〉
+ 2ηt

〈
εt, θ

t − θ∗
〉

+ 2η2
t ‖∇R(θt)‖22 + 2η2

t ‖εt‖22, (28)

where the last inequality is by Cauchy-Schwarz inequality. Then we apply Lemma 4 by initiating with
f = R(·), x = θt and y = θ∗. By the regularity assumption in Eq. (2), we have

(τ` + τu)
〈
∇R(θt), θt − θ∗

〉
− τ`τu‖θt − θ∗‖22 ≥ ‖∇R(θt)‖22.
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Combining the above inequality and Eq. (28), we have

‖θt+1 − θ∗‖22
≤ (1− 2η2

t τ`τu)‖θt − θ∗‖22 − (2ηt − 2η2
t (τ` + τu))

〈
∇R(θt), θt − θ∗

〉
+ 2ηt

〈
εt, θ

t − θ∗
〉

+ 2η2
t ‖εt‖22

(i)

≤ (1− 2η2
t τ`τu)‖θt − θ∗‖22 − (2ηt − 2η2

t (τ` + τu))τ`‖θt − θ∗‖22 + 2ηt
〈
εt, θ

t − θ∗
〉

+ 2η2
t ‖εt‖22

= (1− 2ηtτ` − 2η2
t τ

2
` )‖θt − θ∗‖22 + 2ηt

〈
εt, θ

t − θ∗
〉

+ 2η2
t ‖εt‖22

≤ (1− 2ηtτ`)‖θt − θ∗‖22 + 2ηt
〈
εt, θ

t − θ∗
〉

+ 2η2
t ‖εt‖22

≤
(

1− 2

t+ γ

)
‖θt − θ∗‖22 +

2

τ`(t+ γ)

〈
εt, θ

t − θ∗
〉

+
2‖εt‖22

τ2
` (t+ γ)2

, (29)

where (i) is due to ∀ t ≥ 0, 2ηt ≥ 2η2
t (τ` + τu)⇔ γ ≥ τu/τ` and Eq. (26). The last inequality follows from

the definition of ηt. Then we unwind this formula till t = 1 and we get that for any t > 1,

‖θt+1 − θ∗‖22

≤

 t∏
j=1

j + γ − 2

j + γ

 ‖θ1 − θ∗‖22 +
t∑
i=1

〈
εi, θ

i − θ∗
〉

τ`(i+ γ)

 t∏
j=i+1

j + γ − 2

j + γ

+
t∑
i=1

‖εi‖22
2τ2
` (i+ γ)2

 t∏
j=i+1

j + γ − 2

j + γ


≤ γ(γ − 1)

(t+ γ)(t+ γ − 1)
‖θ1 − θ∗‖22 +

∑t
i=1(i+ γ − 1)

〈
εi, θ

i − θ∗
〉

τ`(t+ γ)(t+ γ − 1)
+

∑t
i=1 ‖εi‖22

2τ2
` (t+ γ)(t+ γ − 1)

, (30)

where the last equation is due to

t∏
j=i+1

j + γ − 2

j + γ
=

(i+ γ)(i+ γ − 1)

(t+ γ)(t+ γ − 1)
.

Now come back to the proof of Theorem 1. We note that clipping introduces bias, which influences the
convergence of this method. Hence, we decompose the noise term εi = clip(∇L(θi, xi), λ)−∇R(θi) into a
bias term εbi and a variance term εvi , i.e.

εi = εbi + εvi , where εbi = Exi [εi|Fi−1] and εvi = εi − Exi [εi|Fi−1] (31)

since εi is Fi−1-measurable. Putting the definition and the result of Lemma 5, we have

‖θt+1 − θ∗‖22

≤ γ(γ − 1)

(t+ γ)(t+ γ − 1)
‖θ1 − θ∗‖22 +

∑t
i=1(i+ γ − 1)

〈
εi, θ

i − θ∗
〉

τ`(t+ γ)(t+ γ − 1)
+

∑t
i=1 ‖εi‖22

2τ2
` (i+ γ)(i+ γ − 1)

≤ γ(γ − 1)

(t+ γ)(t+ γ − 1)
‖θ1 − θ∗‖22 +

∑t
i=1(i+ γ − 1)

〈
εvi , θ

i − θ∗
〉

τ`(t+ γ)(t+ γ − 1)
+

∑t
i=1(i+ γ − 1)

〈
εbi , θ

i − θ∗
〉

τ`(t+ γ)(t+ γ − 1)

+
2
∑t
i=1

(
‖εvi ‖22 − Exi [‖εvi ‖22|Fi−1]

)
τ2
` (t+ γ)(t+ γ − 1)

+
2
∑t
i=1 Exi [‖εvi ‖22|Fi−1]

τ2
` (t+ γ)(t+ γ − 1)

+
2
∑t
i=1 ‖εbi‖22

τ2
` (t+ γ)(t+ γ − 1)

. (32)

where the inequality follows from ‖a+ b‖22 ≤ 2‖a‖22 + 2‖a‖22. The rest of the proof is based on the analysis of
inequality (32). To bound it, we first introduce the Freedman’s inequality for martingale differences. The
following version of Freedman’s inequality is in Theorem 1.2A in Victor et al. [51].
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Lemma 6. (Freedman’s inequality) Let d1, d2, · · · , dT be a martingale difference sequence with a uniform
bound b on the steps di. Let Vs denote the sum of conditional variances, i.e.

Vs =
s∑
i=1

Var(di|d1, · · · , di−1).

Then, for every a, v > 0,

Pr

(
s∑
i=1

di ≥ a and Vs ≤ v for some s ≤ T

)
≤ exp

(
−a2

2(v + ba)

)
.

Next, to apply Freedman’s inequality to bound the martingale difference sequence, e.g.
〈
εvi , θ

i − θ∗
〉
in the

second term in Eq. (32), we should control the conditional variance Exi [‖εvi ‖22|Fi−1] and the upper bound of
L2-norm ‖εvi ‖2. Also, as in the third and sixth term in Eq. (32), we should control the magnitude of the bias
term, ‖εvi ‖2 for all 0 ≤ i ≤ t. We introduce the following lemma to control these noise terms:

Lemma 7. (Lemma F.5, [24] ) For any i = 0, 2, .., t, we have

‖εvi ‖2 ≤ 2λ. (33)

Moreover, for all i = 1, 2, .., N , assume that the variance of stochastic gradients is bounded by σ2
i , i.e.

Exi [‖∇L(θi, xi)−∇R(θi)‖22|Fi−1] ≤ σ2
i and assume that the norm of the true gradient is less than λ/2, i.e.

‖∇R(θi)‖2 ≤ λ/2. Then we have

‖εbi‖2 ≤
4σ2

i

λ
, and (34)

Exi [‖εvi ‖22|Fi−1] ≤ 18σ2
i for all i = 1, 2, ..., N. (35)

Also, recall that we have an assumption about the variance of stochastic gradient in Eq. (3): there exist
α(P,L) and β(P,L) such that for every θ ∈ Θ:

Ex∼P [‖∇L(θ, x)−∇R(θ)‖22] ≤ α(P,L)‖θ − θ∗‖22 + β(P,L).

For brevity, in the rest of the proof, let α = α(P,L) and β = β(P,L). Also, to apply Lemma 7, we let
σ2
i = α‖θi − θ∗‖22 + β. Then, we have

⇒ Exi [‖∇L(θi, zi)−∇R(θi)‖22|Fi−1] ≤ σ2
i = α‖θi − θ∗‖22 + β.

Now, with these two lemmas in hands, we start to analyze Eq. (32). We first define a new constant A and C:

A = C2
1

(
γ(γ − 1)‖θ1 − θ∗‖22 +

(N + γ)β log(2/δ)

τ2
`

)
and C = 5000. (36)

Recall that C1 ≥ 1 is a scaling constant in Theorem 1. We note that the clipping level λ can be written in
the following form:

λ =
τ`
√
A

log(2/δ)
. (37)

Then we introduce new random variables: for 1 ≤ i ≤ N .

ζi =

{
θi − θ∗ , if ‖θi − θ∗‖22 ≤ CA

(i+γ−1)(i+γ−2) .

0 , otherwise.
(38)
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We note that these random variables are bounded almost surely, i.e.

Pr

(
‖ζi‖2 ≤

√
CA

(i+ γ − 1)(i+ γ − 2)

)
= 1.

Next, we introduce the following claim to control these two martingale difference sequences:{(i + γ −
1) 〈εvi , ζi〉}1≤i≤N and {‖εvi ‖22−E[‖εvi ‖22|Fi−1]}1≤i≤N , which appeared in the second and forth terms in Eq.(32)
respectively.

Claim 1. Define Xi = (i+ γ − 1) 〈εvi , ζi〉 and Yi = ‖εvi ‖22 − Exi [‖εvi ‖22|Fi−1] for 1 ≤ i ≤ N be two sequence
and let

vi = Var[Xi|Fi−1] and ui = Var[Yi|Fi−1] for 1 ≤ i ≤ N

be its conditionally variances. Then with probability at least 1− δ, the following event holds: for all 1 ≤ s ≤ N ,

s∑
i=1

Xi < 20τ`A
√
C + 2Aτ`C

3/4 or
s∑
i=1

vi >
36A2Cτ2

`

log(2/δ)
+

3A2C3/2τ2
`

4 log(2/δ)
, (39)

and
s∑
i=1

Yi < 118τ2
` A+ 15Aτ2

` C
1/4 or

s∑
i=1

ui >
108A2τ4

`

√
C

log(2/δ)
+

5184τ4
` A

2

log(2/δ)
. (40)

We will explain the choice of these parameters in Claim 1 later. Now, we denote E be the event that Eq.
(39) and (40) holds for all 1 ≤ s ≤ N . We note that by Claim 1, E holds with probability 1− δ, i.e.

Pr(E) ≥ 1− δ.

Then we prove that if E holds,

‖θt − θ∗‖22 ≤
AC

(t+ γ − 1)(t+ γ − 2)
, (41)

for 1 ≤ t ≤ N + 1 by induction.

First of all, we prove that it holds for t = 1. From our definition of constant A in Eq.(36) and the fact that
C1 ≥ 1, this case holds trivially, i.e.

‖θ1 − θ∗‖22 ≤
C

γ(γ − 1)

(
γ(γ − 1)‖θ1 − θ∗‖22 +

(N + γ)β log(2/δ)

τ2
`

)
=

AC

γ(γ − 1)
.

Next, we assume that Eq. (41) holds for t = 1, · · · , n. When t = n+ 1, by Eq. (32), we have

(n+ γ)(n+ γ − 1)‖θn+1 − θ∗‖22

≤ γ(γ − 1)‖θ1 − θ∗‖22︸ ︷︷ ︸
¬

+

∑n
i=1(i+ γ − 1)

〈
εvi , θ

i − θ∗
〉

τ`︸ ︷︷ ︸
­

+

∑n
i=1(i+ γ − 1)

〈
εbi , θ

i − θ∗
〉

τ`︸ ︷︷ ︸
®

+
2
∑n
i=1 ‖εvi ‖22 − Ezi [‖εvi ‖22|Fi−1]

τ2
`︸ ︷︷ ︸

¯

+
2
∑n
i=1 Ezi [‖εvi ‖22|Fi−1]

τ2
`︸ ︷︷ ︸

°

+
2
∑n
i=1 ‖εbi‖22
τ2
`︸ ︷︷ ︸

±

. (42)
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Check conditions in Lemma 7: Before we upper bound ¬ ∼ ±, we first prove that ‖∇R(θt)‖2 ≤ 2λ.
Since R(·) is τu-smooth by assumption in Eq.2, or its gradient is τu-Lipschitz, for 1 ≤ t ≤ n we have

‖∇R(θt)‖2 ≤ τu‖θt − θ∗‖2
(41)
≤ τu

√
AC

(t+ γ − 1)(t+ γ − 2)

t≥1

≤ τu

√
AC

γ(γ − 1)

≤ τu
γ − 1

√
AC

(8)
≤ 2τ`C1

√
A

log(2/δ)
= 2λ, (43)

where the last inequality is due to the definition of γ − 1 >
√
C
2

τu
τ`

log(2/δ). Therefore, the condition in
Lemma 7 holds for 1 ≤ t ≤ n, which means we could use Eq.(34) and (35) to control the bias and variance
terms for 1 ≤ t ≤ n.

Upper bounds for ¬:

¬ ≤ C2
1

(
γ(γ − 1)‖θ1 − θ∗‖22 +

(N + γ)β log(2/δ)

τ2
`

)
= A. (44)

Upper bounds for ­: Recall that our definition of bounded variable ζi in Eq. (38) and martingale
difference sequence {Xi}1≤i≤n in Claim 1. Under the induction hypothesis, we have

ζi = θi − θ∗ for 1 ≤ i ≤ n and ­ =

∑n
i=1Xi

τ`
.

We first show that the sum of its conditional variances are upper bounded, i.e.

n∑
i=1

Var[X2
i |Fi−1] =

n∑
i=1

vi ≤
36A2Cτ2

`

log(2/δ)
+

3A2C3/2τ2
`

4 log(2/δ)
.

28



Since Xi = (i+ γ − 1) 〈εvi , ζi〉 for 1 ≤ i ≤ n, we have

n∑
i=1

vi ≤
n∑
i=1

(i+ γ − 1)2E[‖ζi‖22‖εvi ‖22|Fi−1]

(38)
≤

n∑
i=1

(i+ γ − 1)2CA

(i+ γ − 1)(i+ γ − 2)
E[‖εvi ‖22|Fi−1]

≤ 2CA
n∑
i=1

E[‖εvi ‖22|Fi−1]

(33),(3)
≤ 2CA

n∑
i=1

18(α‖θi − θ∗‖22 + β)

(41)
≤ 36CA

(
nβ + α

n∑
i=1

AC

(i+ γ − 1)(i+ γ − 2)

)

≤ 36CA

(
nβ + αAC

n∑
i=1

(
1

i+ γ − 2
− 1

i+ γ − 1

))

≤ 36CA

(
nβ +

αAC

γ − 1

)
n≤N
≤ 36βNAC +

36αA2C2

γ − 1
. (45)

Since we have A
(36)
≥ (N+γ)β log(2/δ)

τ2
`

≥ βN log(2/δ)
τ2
`

and γ − 1
(8)
≥ 48α

√
C log(2/δ)
τ2
`

, we have

n∑
i=1

vi ≤ 36(βN)AC +
36αA2C2

γ − 1

≤ 36A2Cτ2
`

log(2/δ)
+

3A2C3/2τ2
`

4 log(2/δ)
. (46)

Therefore, we know the second inequality in Eq. (39) does not hold, so the first one must hold for t = n, i.e.

n∑
i=1

Xi < 20τ`A
√
C + 2Aτ`C

3/4.

Then we can upper bound ­:

­ =

∑n
i=1Xi

τ`
≤ A(20

√
C + 2C3/4) (47)
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Upper bound ®: By Eq.(34) in Lemma 7, we have ‖εbt‖2 ≤
4(α‖θt−θ∗‖22+β)

λ . Then we have

® =

∑n
i=1(i+ γ − 1)

〈
εbi , θ

i − θ∗
〉

τ`

≤
∑n
i=1(i+ γ − 1)‖εbi‖2‖θi − θ∗‖2

τ`
(34)
≤
∑n
i=1 4(i+ γ − 1)(α‖θi − θ∗‖32 + β‖θi − θ∗‖2)

λτ`

(37),(41)
≤

∑n
i=1 4(i+ γ − 1)

√
CA

(i+γ−1)(i+γ−2) ( CAα
(i+γ−1)(i+γ−2) + β) log(2/δ)

τ2
`

√
A

≤
∑n
i=1 8

√
CA( CAα

(i+γ−1)(i+γ−2) + β) log(2/δ)

τ2
`

√
A

≤

∑n
i=1 8β

√
C log(2/δ) + 8αAC

√
C log(2/δ)

(
1

(i+γ−2) −
1

(i+γ−1)

)
τ2
`

n≤N
≤ 8Nβ

√
C log(2/δ)

τ2
`

+
8αAC

√
C log(2/δ)

τ2
` (γ − 1)

. (48)

Next, since

A ≥ (N + γ)β log(2/δ)

τ2
`

≥ Nβ log(2/δ)

τ2
`

and γ − 1
(8)
≥ 48α

√
C log(2/δ)

τ2
`

,

We have

® ≤ 8
√
C
Nβ log(2/δ)

τ2
`

+
AC

6
× 48α

√
C log(2/δ)

τ2
` (γ − 1)

≤ A
(

8
√
C +

C

6

)
. (49)

Upper bound of ¯: Recall that our definition of martingale difference sequence {Yi}1≤i≤n in Claim 1.
We have

¯ =
2
∑n
i=1

(
‖εvi ‖22 − Ezi [‖εvi ‖22|Fi−1]

)
τ2
`

=
2
∑n
i=1 Yi
τ2
`

.

We first show that the sum of its conditional variances is upper bounded, i.e.

n∑
i=1

Var[Y 2
i |Fi−1] =

n∑
i=1

ui ≤
108A2τ4

`

√
C

log(2/δ)
+

5184τ4
` A

2

log(2/δ)
.
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Since we have ‖εvi ‖2 ≤ 2λ by Eq. (33), we get
∣∣‖εvi ‖22 − Ezi [‖εvi ‖22|Fi−1]

∣∣ (33)
≤ 4λ2 + 4λ2 = 8λ2. Then,

n∑
i=1

ui ≤
n∑
i=1

Ezi
[(
‖εvi ‖22 − Ezi [‖εvi ‖22|Fi−1]

)2 |Fi−1

]
≤

n∑
i=1

8λ2Ezi
[∣∣‖εvi ‖22 − Ezi [‖εvi ‖22|Fi−1]

∣∣ |Fi−1

]
≤

n∑
i=1

8λ2 × 2Ezi [‖εvi ‖22|Fi−1]

(35)
≤ 16λ2

n∑
i=1

18(α‖θi − θ∗‖22 + β)

(37),(41)
≤ 288τ2

` A

log(2/δ)2

n∑
i=1

18

(
αAC

(
1

i+ γ − 2
− 1

i+ γ − 1

)
+ β

)
n≤N
≤ 5184ατ2

` A
2C

log(2/δ)2(γ − 1)
+

5184Nβτ2
` A

log(2/δ)2
. (50)

Next, since δ ≤ 2e−1 and

A ≥ (N + γ)β log(2/δ)

τ2
`

≥ Nβ

τ2
`

and γ − 1
(8)
≥ 48α

√
C log(2/δ)

τ2
`

,

We have
n∑
i=1

ui ≤
5184ατ2

` A
2C

log(2/δ)2(γ − 1)
+

5184Nβτ2
` A

log(2/δ)2

δ≤2e−1

≤ 108A2τ4
`

√
C

log(2/δ)
+

5184τ4
` A

2

log(2/δ)
.

Therefore, we know that the second inequality in Eq. (40) does not hold, so that the first one must be
satisfied, i.e.

n∑
i=1

Yi < 118τ2
` A+ 15Aτ2

` C
1/4.

Finally, we have

¯ =
2
∑n
i=1 Yi
τ2
`

≤ A(236 + 30C1/4). (51)

Upper bound of °: By equation Eq.(35) in Lemma 7, we have Ezt [‖εvt ‖22|Ft−1] ≤ 18(α‖θt − θ∗‖22 + β).
Then we have

° =
2
∑n
i=1 Ezi [‖εvi ‖22|Fi−1]

τ2
`

(35),(41)
≤ 36nβ

τ2
`

+
36αAC

∑n
i=1

(
1

i+γ−2 −
1

i+γ−1

)
τ2
`

n≤N
≤ 36Nβ

τ2
`

+
36αAC

(γ − 1)τ2
`

. (52)
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Next, since

A ≥ (N + γ)β log(2/δ)

τ2
`

δ≤2e−1

≥ Nβ log(2/δ)

τ2
`

and γ − 1 ≥ 48α
√
C log(2/δ)

τ2
`

δ≤2e−1

≥ 48α
√
C

τ2
`

.

We have

° ≤ A(36 +
3
√
C

4
) ≤ A(36 +

√
C). (53)

Upper bound of ±: By equation Eq.(34) in Lemma 7, we have ‖εbt‖2 ≤
4(α‖θt−θ∗‖22+β)

λ . Then we have

± =
2
∑n
i=1 ‖εbi‖22
τ2
`

(34)
≤

32
∑n
i=1

(
β + α‖θi − θ∗‖22

)2
λ2τ2

`

≤
64
∑n
i=1

(
β2 + α2‖θi − θ∗‖42

)
λ2τ2

`

(Cauchy-Schwarz)

n≤N,(41)
≤

64Nβ2 + 64A2C2α2
∑n
i=1

1
(i+γ−2)2(i+γ−1)2

λ2τ2
`

(i)

≤
64Nβ2 + 64A2C2α2

(γ−1)2

λ2τ2
`

(37)
=

64Nβ2 log(2/δ)2

Aτ4
`

+
64AC2α2 log(2/δ)2

τ4
` (γ − 1)2

, (54)

where (i) is due to

n∑
i=1

1

(i+ γ − 2)2(i+ γ − 1)2
≤

(
n∑
i=1

1

(i+ γ − 2)(i+ γ − 1)

)2

≤

(
n∑
i=1

1

i+ γ − 2
− 1

i+ γ − 1

)2

≤ 1

(γ − 1)2
.

A ≥ (N + γ)β log(2/δ)

τ2
`

δ≤2e−1

≥ Nβ log(2/δ)

τ2
`

and γ − 1 ≥ 48α
√
C log(2/δ)

τ2
`

.

We have

± ≤ 64

AN
× N2β2 log(2/δ)2

τ4
`

+
64AC2α2 log(2/δ)2

τ4
` (γ − 1)2

≤ A(
64

N
+
C

36
)
N≥1

≤ A(64 +
C

36
). (55)

Upper bounds for ¬ + ­ + ® + ¯ + ° + ±: Now, we have derived the upper bounds for ¬ ∼ ±. By
combining Eq. (44),(47),(49),(51),(53),(55), we have
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(n+ γ)(n+ γ − 1)‖θn+1 − θ∗‖22 ≤ ¬ + ­ + ® + ¯ + ° + ±

≤ A(1 + 20
√
C + 2C3/4 + 8

√
C +

C

6
+ 236 + 30C1/4 + 36 +

√
C + 64 +

C

36
)

= A(337 + 30C1/4 + 29
√
C + 2C3/4 +

7C

36
)

≤ AC, (56)

where the last inequality follows from the definition of C = 5000. Therefore, we can conclude our induction
proof.

Lastly, by plugging in n = N and the definition of A in the above equation, we have, with probability at least
1− δ (so that E holds),

‖θN+1 − θ∗‖22 ≤
CC2

1

(
γ(γ − 1)‖θ1 − θ∗‖22 + (N+γ)β log(2/δ)

τ2
`

)
(N + γ)(N + γ − 1)

≤ 2CC2
1

(
γ2‖θ1 − θ∗‖22

(N + γ)2
+
β(P,L) log(2/δ)

(N + γ)τ2
`

)
, (57)

where the last inequality is due to (N + γ − 1) ≥ N+γ
2 . If we take square root on the both sides and use the

inequality
√
a+ b ≤

√
a+
√
b for a, b ∈ R+, we have

‖θN+1 − θ∗‖2 ≤ 100C1

γ‖θ1 − θ∗‖2
N + γ

+
1

τ`

√
β(P,L) log(2/δ)

N + γ

 . (58)

E.1 Proof of Claim 1
Proof. (Bounds for the first martingale difference sequence): for martingale difference sequence
{(i+ γ − 1) 〈εvi , ζi〉}0≤i≤T−1,

(i) we first check that it is conditionally unbiased, i.e.

Ezi∼P [εvi |Fi−1] = 0⇒ Ezi∼P [(i+ γ − 1) 〈εvi , ζi〉 |Fi−1] = 0,

since ζi is determinant conditioned on Fi−1.

(ii) We check each summand is bounded, i.e.

‖(i+ γ − 1) 〈εvi , ζi〉 ‖2
(33),(38)
≤ (i+ γ − 1)(2λ)

√
CA

(i+ γ − 1)(i+ γ − 2)
≤ 4λ

√
A =

4Aτ`
√
C

log(2/δ)

for 1 ≤ i ≤ N .

(iii) Let Vs =
∑s
i=1 vi be the sum of its conditional variance. Then we apply the Freedman’s inequality in

Lemma 6 instantiated with the following parameters

b =
4Aτ`

√
C

log(2/δ)
, v =

36A2Cτ2
`

log(2/δ)
+

3A2C3/2τ2
`

4 log(2/δ)
and a = 2b log(2/δ) +

√
2v log(2/δ).

33



We will specify our choices of parameters later. Then we have

Pr

(
s∑
i=1

(i+ γ − 1) 〈εvi , ζi〉 ≥ a and Vs ≤ v for some s ≤ N

)
≤ exp

(
−a2

2(v + ba)

)
≤ δ

2
, (59)

where the last inequality is due to

exp

(
−a2

2(v + ba)

)
≤ δ

2
⇔ −a2

2(v + ba)
≤ log(

δ

2
)

⇔ a2 − 2b log(
δ

2
)a− 2v log

(
δ

2

)
≥ 0

⇔ a ≥ b log(
δ

2
) +

√
(b log(

δ

2
))2 + 2v log(

δ

2
). (60)

The choice of a satisfies the above inequality due to the fact that
√
x+ y ≤

√
x+
√
y for x, y ∈ R+. Also, we

have

a = 2b log(2/δ) +
√

2v log(2/δ)

= 8Aτ`
√
C +

√
72A2Cτ2

` +
3A2C3/2τ2

`

2

≤ 8Aτ`
√
C + 12Aτ`

√
C + 2AC3/4τ`

= 20τ`A
√
C + 2Aτ`C

3/4. (61)

Therefore, by Eq. (59), we have

1− δ

2

≥ Pr

(
s∑
i=1

(i+ γ − 1) 〈εvi , ζi〉 ≥ a and Vs ≤ v for some s ≤ N

)

= 1− Pr

(
s∑
i=1

(i+ γ − 1) 〈εvi , ζi〉 < a or Vs > v for all 1 ≤ s ≤ N

)

≥ 1− Pr

(
s∑
i=1

(i+ γ − 1) 〈εvi , ζi〉 < 20τ`A
√
C + 2Aτ`C

3/4 or Vs >
36A2Cτ2

`

log(2/δ)
+

3A2C3/2τ2
`

4 log(2/δ)
for all 1 ≤ s ≤ N

)
.

(62)

2.(Bounds for the second martingale difference sequence): For martingale difference sequence
{‖εvi ‖22 − E[‖εvi ‖22|Fi−1]}1≤i≤N , (i) we first check that it is conditionally unbiased, i.e.

E
[
‖εvi ‖22 − E[‖εvi ‖22|Fi−1] |Fi−1

]
= 0

(ii) We check each summand is bounded, i.e.∣∣‖εvi ‖22 − E[‖εvi ‖22|Fi−1]
∣∣ ≤ ‖εvi ‖22 + E[‖εvi ‖22|Fi−1]

(33)
≤ 4λ2 + 4λ2 = 8λ2 =

8Aτ2
`

log2(2/δ)
≤ 8Aτ2

`

log(2/δ)

for 1 ≤ i ≤ N since ‖εvi ‖2 ≤ 2λ.

(iii) Let Us =
∑s
i=1 u

2
i be the sum of its conditional variance. Then we apply the Freedman’s inequality

instantiated with parameters

b =
8Aτ2

`

log(2/δ)
, v =

108A2τ4
`

√
C

log(2/δ)
+

5184τ4
` A

2

log(2/δ)
and a = 2b log(2/δ) +

√
2v log(2/δ).
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We will specify our choices of parameters later. Then we have

Pr

(
s∑
i=1

‖εvi ‖22 − E[‖εvi ‖22 ≥ a and Us ≤ v for some s ≤ N

)
≤ exp

(
−a2

2(v + ba)

)
(60)
≤ δ

2
(63)

for all 1 ≤ i ≤ N . The choice of a satisfies the above inequality due to the fact that
√
x+ y ≤

√
x+
√
y for

x, y ∈ R+. Also, we have

a = 2b log(2/δ) +
√

2v log(2/δ)

= 8Aτ2
` +

√
216A2τ4

`

√
C + 10368τ4

` A
2

≤ 8Aτ2
` + 15Aτ2

` C
1/4 + 110τ2

` A

= 118Aτ2
` + 15Aτ2

` C
1/4. (64)

Therefore, by Eq. (63), we have

1− δ

2

≥ Pr

(
s∑
i=1

‖εvi ‖22 − E[‖εvi ‖22 ≥ a and Us ≤ v for some s ≤ N

)

= 1− Pr

(
s∑
i=1

‖εvi ‖22 − E[‖εvi ‖22 < a or Us > v for all 1 ≤ s ≤ N

)

≥ 1− Pr

(
s∑
i=1

‖εvi ‖22 − E[‖εvi ‖22 < 118Aτ2
` + 15Aτ2

` C
1/4 or Us >

108A2τ4
`

√
C

log(2/δ)
+

5184τ4
` A

2

log(2/δ)
for all 1 ≤ s ≤ N

)
.

(65)

Therefore, by combining Eq.(62) and (65), we have, with probability at least 1− δ, for all 1 ≤ s ≤ N ,

s∑
i=1

Xi < 20τ`A
√
C + 2Aτ`C

3/4 or
s∑
i=1

vi >
36A2Cτ2

`

log(2/δ)
+

3A2C3/2τ2
`

4 log(2/δ)
, (66)

and
s∑
i=1

Yi < 118τ2
` A+ 15Aτ2

` C
1/4 or

s∑
i=1

ui >
108A2τ4

`

√
C

log(2/δ)
+

5184τ4
` A

2

log(2/δ)
. (67)
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F Proofs of Corollaries
In this section, we provide proofs for Corollary 2, 3 and 4.

F.1 Proof of Corollary 2
Since R(·) is τ`-strongly convex and τu-smooth, we have, for all θ ∈ Θ

τ`
2
‖θ − θ∗‖22 ≤ R(θ)−R(θ∗) ≤ τu

2
‖θ − θ∗‖22. (68)

Also, by Theorem 1, we have

‖θN+1 − θ∗‖22 ≤ O
(
γ2‖θ1 − θ∗‖22

(N + γ)2
+

1

τ2
`

β(P,L) log(1/δ)

N + γ

)
= O

(
τ2
u‖θ1 − θ∗‖22 log(1/δ)2

τ2
`N

2
+

1

τ2
`

σ2 log(1/δ)

N

)
.

Therefore, by combining these equations, we obtain

R(θN+1)−R(θ∗) ≤ τu
2
‖θN+1 − θ∗‖22

≤ O
(
τ3
u‖θ1 − θ∗‖22 log(1/δ)2

τ2
`N

2
+
τu
τ2
`

σ2 log(1/δ)

N

)
= O

(
τ3
u

(
τ`‖θ1 − θ∗‖22

)
log(1/δ)2

τ3
`N

2
+
τu
τ2
`

σ2 log(1/δ)

N

)

≤ O
(
τ3
u(R(θ1)−R(θ∗)) log(1/δ)2

τ3
`N

2
+
τu
τ2
`

σ2 log(1/δ)

N

)
= O

(
τ3
ur0 log(1/δ)2

τ3
`N

2
+
τu
τ2
`

σ2 log(1/δ)

N

)
.

F.2 Proof of Corollary 3
Since ∇θL(θ, x) = θ − x, we have

Ez∼P ‖∇θL(θ, x)−∇θR(θ)‖22 = Ez∼P ‖x− E[x]‖22 = trace (Σ) . (69)

Therefore, the corresponding α(P,L) and β(P,L) in Eq. (3) are 0 and trace (Σ). Also, we note that τ` = τu = 1
for the loss function L(θ, x) = 1

2‖x− θ‖
2
2. By plugging these parameters to Theorem 1, we get the desired

clipping level λ and the upper bound for ‖θN+1 − θ∗‖2.

F.3 Proof of Corollary 4
From Lemma 7 of Prasad et al. [47], we have

E[∇L(θ, (x, y))] = Σ(θ − θ∗), and (70)

‖Cov(∇L(θ, (x, y)))‖2 ≤ 2(C4 + 1)‖Σ‖22‖θ − θ∗‖22 + σ2‖Σ‖2, (71)

where Σ = E[xx>] is the covariance matrix of random variable X, Cov(∇L(θ, (x, y))) denotes the covariance
matrix of ∇L(θ, (x, y)) and C4 is the constant related to 4th bounded moment defined in Eq. (12). Since we
have

E‖∇θL(θ, (x, y))−∇θR(θ)‖22 = trace
(
Cov(∇L(θ, (x, y)))

)
≤ p‖Cov(∇L(θ, (x, y)))‖2.
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We obtain α(P,L) = 2p(C4 + 1)‖Σ‖22 and β(P,L) = pσ2‖Σ‖2 in Eq. (3). Also, by calculating the hessian
matrix of population loss function R(θ), we have τ` = λmin(Σ) and τu = ‖Σ‖2. Finally, by plugging these
values to Theorem 1, we got the desired bound and hyper-parameters.
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