
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Shuffle-based Private Set Union:
Faster and More Secure

Yanxue Jia and Shi-Feng Sun, Shanghai Jiao Tong University;
Hong-Sheng Zhou, Virginia Commonwealth University; Jiajun Du

and Dawu Gu, Shanghai Jiao Tong University
https://www.usenix.org/conference/usenixsecurity22/presentation/jia

Shuffle-based Private Set Union: Faster and More Secure

Yanxue Jia† , Shi-Feng Sun†? , Hong-Sheng Zhou‡? , Jiajun Du† , and Dawu Gu†?

†Shanghai Jiao Tong University, China
{jiayanxue,shifeng.sun,cqdujiajun,dwgu}@sjtu.edu.cn

‡Virginia Commonwealth University, USA
hszhou@vcu.edu

Abstract
Private Set Union (PSU) allows two players, the sender and
the receiver, to compute the union of their input datasets with-
out revealing any more information than the result. While
it has found numerous applications in practice, not much re-
search has been carried out so far, especially for large datasets.

In this work, we take shuffling technique as a key to de-
sign PSU protocols for the first time. By shuffling receiver’s
set, we put forward the first protocol, denoted as PR

PSU
, that

eliminates the expensive operations in previous works, such
as additive homomorphic encryption and repeated operations
on the receiver’s set. It outperforms the state-of-the-art design
by Kolesnikov et al. (ASIACRYPT 2019) in both efficiency
and security; the unnecessary leakage in Kolesnikov et al.’s
design, can be avoided in our design.

We further extend our investigation to the application sce-
narios in which both players may hold unbalanced input
datasets. We propose our second protocol PS

PSU
, by shuffling

the sender’s dataset. This design can be viewed as a dual ver-
sion of our first protocol, and it is suitable in the cases where
the sender’s input size is much smaller than the receiver’s.

Finally, we implement our protocols PR
PSU

and PS
PSU

in
C++ on big datasets, and perform a comprehensive evaluation
in terms of both scalability and parallelizability. The results
demonstrate that our design can obtain a 4-5⇥ improvement
over the state-of-the-art by Kolesnikov et al. with a single
thread in WAN/LAN settings.

1 Introduction

Private set operations allow mutually distrustful parties to
perform set operations (like intersection and union) on their
datasets, while revealing no more information about their own
private input than what can be deduced from the results. Over
the past decade, much progress has been made on Private Set
Intersection (PSI), which has become considerably efficient
and been deployed widely in practice [6,18,27–29,31,32,34].

? Corresponding authors.

In contrast, little attention has been drawn on Private Set
Union (PSU).

Like the well-researched PSI, PSU also has numerous ap-
plications [3, 4, 12, 19]. For example, it can be used for cyber
risk assessment and management. Specifically, “Individual
blacklists today suffer from several drawbacks that limit their
accuracy in malicious source identification. ... Aggregating
blacklists from different maintainers and across various at-
tack types can improve the accuracy of malicious source iden-
tification over any individual blacklist,” as pointed out by
Ramanathan et al. [37]. Therefore, it is significant for organi-
zations (namely, maintainers of IP blacklists) to compute the
joint list of individual IP blacklists, which will help minimize
vulnerabilities in their infrastructure. In addition, each indi-
vidual IP blacklist is generated based on a detection strategy
developed by the maintainer, which cannot be leaked; note
that certain attacks could be launched by the adversaries via
evading the detection strategy.

A straightforward way to obtain the joint list is to let the
organizations simply exchange their blacklists. However, this
will reveal the intersection of their blacklists. Then a curious
organization may deduce the detection strategy of the other
organization according to the IP addresses in the intersection1.
Whereas, he cannot do this via the IP addresses not in his own
blacklist2. Therefore, to mitigate the privacy concerns, what
we essentially need is to generate the joint blacklist with the
intersection hidden, which is exactly the functionality of PSU.

According to [1, 37], most blacklists in real scenarios con-
tain 1,000 - 500,000 IP addresses, and the update frequency
is expected to be 5 - 15 minutes. With our new PSU pro-
tocol PR

PSU
(cf. the high level ideas in Section 1.1), a joint

1The curious organization knows his own detection strategy that is used
to identify the IP addresses in the intersection. Thus, it is reasonable for him
to deduce that a similar detection strategy is used by the other organization.

2Different organizations usually monitor different areas of the Internet,
as mentioned in [37]. Therefore, the curious organization knows nothing
about the traffic through these IP addresses. Even if the curious organization
can monitor the traffic, it is difficult to deduce the detection strategy as e.g.,
some sensitive strategies are based on features that can be only extracted
from encrypted data.

USENIX Association 31st USENIX Security Symposium 2947

blacklist can be obtained from individual blacklists of size
220 in 67.756s (cf. our experiments in Section 4) with a single
thread in the WAN setting, which is efficient enough for this
use case.

In addition, as mentioned in [17,19], PSU can be employed
to compute the union of cancer patients of different hospitals
while hiding the identities of the patients who had cancer
treatment at multiple hospitals, which involves patient privacy.
Also, it can be used for privacy-preserving aggregation of
network traffic statistics [4], merger of two Internet providers
without revealing the information of their existing networks
[3], and private database supporting full join [19]. Therefore,
it is highly desirable to develop efficient, scalable, and secure
PSU protocols.

Many interesting variants of PSU (e.g., multi-party, set-
size hidden, and shared-output PSU) have been proposed for
real-world applications. In this paper, we focus on PSU in
the two-party setting, where a sender and a receiver hold
sets X and Y respectively, and aim to compute their union
X [Y without revealing any more information than the result
(especially what are the items in X \Y). Particularly, the goal
is to enable the receiver to learn no more information than
X [Y and the sender to learn nothing (see Section 2.1 for the
formal definition).

PSU for balanced datasets. The state-of-the-art work is by
Kolesnikov et al. [19]; there, they proposed the first scal-
able two-party PSU protocol based on symmetric-key tech-
niques. Before that, except for the circuit-based PSU [2], all
designs [7, 9, 17] rely on public-key operations like addi-
tive homomorphic encryption (AHE), which make the con-
structed protocols unscalable in practice, especially for large
datasets. To develop efficient PSU protocols, Kolesnikov et
al. introduced the notion of Reverse Private Membership Test
(RPMT) functionality as a basic building block.
A unified view for PSU design with single sender’s item.
Interestingly, when focusing on a special case of two-party
PSU where the sender’s data-size is 1, we observe that, the
designs [7, 9, 19] can be presented in the same framework3.
Please see Figure 1: the sender has only one item x and the re-
ceiver holds a set Y = {y1, · · · ,yn}, and we denote this special
case of PSU by (1,n)-PSU. We note that, protocols in this
design framework, consist of two phases: (1) the two parties
execute a RPMT functionality, through which the receiver ob-
tains a bit b, where b = 0 means x /2 Y , otherwise x 2 Y . The
receiver knows no more information about x beyond whether
x belongs to Y , and the sender learns nothing about Y . (2) if
b = 0 (which means x /2 Y), the receiver obtains x (and thus
{x}[Y) while the sender learns nothing.

Under this framework, in [7,9] the RPMT functionality has
been realized by employing homomorphic encryption, and in
this case the receiver is able to obtain x by a straightforward

3More precisely, [7,9,19] all realize a relaxed RPMT functionality where
if x /2 Y , the information about x can be leaked to the receiver.

Sender () Receiver ()

if

-

Figure 1: Design framework for (1,n)-PSU protocols.

decryption. As pointed out in [19], however, the public-key
operations have become the workhorse of these works. There-
fore, Kolesnikov et al. [19] proposed a new way of realizing
RPMT in the first phase, based only on symmetric-key oper-
ations, and then they implemented the second phase of the
design by using Oblivious Transfer (OT).
PSU design: From single to multiple sender’s items. Now
let’s consider how to extend the special case (1,n)-PSU into a
more general (m,n)-PSU, where m can be a very large integer.
Two different approaches, as shown in Figure 2, have been
proposed in [7, 9] and in [19], respectively.

For :

Sender () Receiver ()

-

if

-

(a) [7, 9]

Sender () Receiver ()

/

/

/

-

(b) [19]

Figure 2: Two design frameworks for (m,n)-PSU protocols.

More concretely, in [7, 9], a generalized version of RPMT,
denoted as g-RPMT, has been used, to support a large input
set X = {x1,x2, . . . ,xm} from the sender. Please refer to Fig-
ure 2(a). The receiver needs only to encrypt Y once, and the
ciphertext for xi can be used to test if xi 2 Y for all i 2 [m].
However, we note that the schemes in [7,9] suffer from heavy
public-key operations.

In contrast, in [19] based on symmetric-key operations,
for each xi 2 X from the sender, a (1,n)-PSU sub-protocol
will be executed; to implement (m,n)-PSU, thus, in total, m
number of (1,n)-PSU sub-protocols will be executed. Please
refer to Figure 2(b). Here for each (1,n)-PSU sub-protocol,
the receiver needs to perform a polynomial interpolation with
degree n for Y , which requires time O(n log2 n). Thus when
X’s size m = n, this approach will result in a quadratic com-
putation complexity O(n2 log2 n).
Bucketing techniques: The gain and the loss. To further
improve the performance, Kolesnikov et al. [19] introduced
the bucketing technique in PSU protocol design for the first
time. Please see Figure 3: First, the sets X and Y are inserted
into two simple hash tables with b bins, respectively, which
means that the set X (resp., Y) is divided into b disjoint sub-

2948 31st USENIX Security Symposium USENIX Association

sets X1, · · · ,Xb (resp., Y1, · · · ,Yb). Then, each bin is padded
with dummy items up to the maximum bin size r. Note that
b = O(n/ logn) and r = O(logn) in [19]. The two parties
perform a (r,r)-PSU sub-protocol on the items of each bin
separately. In this way, the complexity of each sub-protocol
on each bin is O(r2 log2 r), so the total cost can be reduced
to O(br2 log2 r) = O(n logn log2 logn).

Sender ()

-

-

Receiver ()

-

Figure 3: Bucketing technique in [19].

However, as mentioned by Kolesnikov et al. [19], the buck-
eting technique will incur certain information leakage about
the items in the intersection, during the execution; intuitively,
the receiver could learn if there are items in X \Y in certain
subsets Yi, where Yi ⇢Y . Note that in the ideal PSU, from the
view of receiver, any item in the entire set Y could be an item
in X \Y . But here, the receiver can know that some subsets
have items in X \Y and others do not. To address this issue,
Kolesnikov et al. proposed to add special items to each bin,
with the goal of reducing the leakage. Unfortunately, we find
that their way of adding only special items, is insufficient to
resolve the problem (More details are given in Section 5).

Kolesnikov et al.’s bucketing technique [19] is significant
since it improves the performance of the PSU design a lot;
however, we must note that, the downside of this bucketing
technique is that, the designed protocols will suffer from cer-
tain level of information leakage. This leakage may not be
necessary! Recall that, in prior works [7, 9] under the design
framework in Figure 2(a), all items in the receiver’s set Y
are processed at the same time; although the involved public-
key operations make the design much less scalable (than that
in [19]) for large datasets, the resulting protocol does not
suffer from the information leakage issue (as that in [19]).
Main question. Based on above discussions, we ask the fol-
lowing natural question:

Is it possible to design a PSU protocol to achieve the “best
of the two worlds,” i.e., (1) fast and scalable, and at the same
time, (2) without any unnecessary information leakage?

We will give an affirmative answer to this question. In
particular, we propose a practical, scalable two-party PSU
protocol named PR

PSU
under the design framework in Fig-

ure 2(a) by shuffling the receiver’s set. Our protocol PR
PSU

relies only on lightweight symmetric-key primitives (along
with some OTs; we note the OTs are also needed in the state-
of-the-art result [19]). More details will be shown in Section
1.1 and Section 3.

PSU for unbalanced datasets. To the best of our knowledge,

previous works on PSU mainly focus on designing efficient
protocols for balanced datasets. We now investigate how to
design practical PSU protocols in the unbalanced application
scenarios, in which the receiver’s input size is significantly
larger than the sender’s, or vice versa. In fact, existing proto-
cols (including our PR

PSU
above) are already very fast when

the size of receiver’s input is significantly smaller than the
sender’s, as the relatively heavy operations mainly depend on
the size of receiver’s set. However, in the case that the size of
receiver’s input is much larger than the sender’s, the perfor-
mance of these protocols is reduced significantly. Hence, the
second question we ask is:

Is it possible to design a fast and scalable PSU protocol
when the sender’s input size is much smaller than the re-
ceiver’s?

We answer this question affirmatively by presenting a new
protocol named PS

PSU
; this new protocol can be viewed as

the dual version of PR
PSU

, exactly by shuffling the sender’s
set. More details about protocol PS

PSU
are given in Section

1.1 and Section 3.

1.1 Technical Overview
Protocol PR

PSU
: shuffling receiver’s set. We now present

how to construct practical two-party PSU protocols follow-
ing the design framework in Figure 2(a). A big challenge is
that, we need to efficiently realize the functionality g-RPMT,
which allows the receiver to perform membership tests while
not revealing the receiver’s set Y to the sender. In previous
works [7, 9], functionality g-RPMT has been realized but not
efficiently due to the heavy public-key operations.

The high-level idea of our design is shown in Figure 4 and
the details are as follows. Initially, each item y2Y is split into
two shares s and y� s by an additive secret sharing, where s
is distributed uniformly at random and perfectly hides y. The
set Y = {y1, · · · ,yn} can be shared into two sets {s1, · · · ,sn}
and {y1� s1, · · · ,yn� sn}; the receiver will keep the former
herself, and send the latter to the sender. Now we can see that
for each item xi 2 X , if it belongs to Y (i.e., 9 j s.t. xi = y j),
then xi� y j� s j = s j. Thus the sender can compute and send
{xi�y1�s1, · · · ,xi�yn�sn} to the receiver, and the receiver
can check if the sender’s item xi belongs to Y by computing
the intersection of this set and {s1 · · · ,sn}. If empty, it means
xi /2 Y . Otherwise, the receiver learns that xi 2 Y .

Now, the receiver can learn if xi 2Y without revealing Y to
the sender. However, if xi 2 Y , the receiver can additionally
figure out which item of Y is exactly equal to xi according
to s j 2 {xi� y1� s1, · · · ,xi� yn� sn}\ {s1, · · · ,sn} as she
knows the mapping of the shares {s1, · · · ,sn} to the items in
Y . Note that such information is not allowed to be obtained
by the receiver in the RPMT. Thus, next we need to find a
way to defend against such information leakage.

Recall that, the receiver is able to obtain additional in-
formation is due to the fact that the receiver knows which

USENIX Association 31st USENIX Security Symposium 2949

Sender () Receiver ()

multi-point

 /
 /

if s.t. ,
 ;
else, .

 For :

Figure 4: Core design idea of protocol PR
PSU

for (m,n)-PSU.

share corresponds to which item in Y . Our key design idea
now is to break the mapping by shuffling the receiver’s set
(and shares) with a permutation not known to the receiver.
Together with the additive secret sharing explained before,
what we essentially need is a Permute+Share functional-
ity: taking as input a set Y = {y1, · · · ,yn} from the receiver
and a permutation p (over {1,2, · · · ,n}) from the sender,
the functionality outputs the shares {sp(1), · · · ,sp(n)} and
{yp(1)� sp(1), · · · ,yp(1)� sp(n)} to the receiver and the sender,
respectively. After executing this functionality, the sender
computes {xi� yp(1)� sp(1), · · · ,xi� yp(n)� sp(n)} and sends
it to the receiver. Then the receiver can check if the sender’s
item belongs to Y as before. Following this way, the receiver
will learn that there is an item sp(j) 2 {sp(1), · · · ,sp(n)} equal
to xi�yp(j)� sp(j) if xi 2Y , but she is unable to find out yp(j)
according to sp(j), as she does not know p.

At this point, it seems that xi can be completely hidden from
the receiver at the first glance. Unfortunately, xi�yp(j)� sp(j)
may still leak partial information about xi to the receiver. This
is because yp(j)� sp(j) is not distributed uniformly and inde-
pendently from the perspective of the receiver who knows
sp(j) and yp(j). To overcome this obstacle, we further em-
ploy multi-point Oblivious Pseudorandom Function (OPRF)4

F(k, ·) to conceal {x� yp(1) � sp(1), · · · ,x� yp(n) � sp(n)}.
More concretely, the receiver takes {sp(1), · · · ,sp(n)} as the
input to multi-point OPRF, then the sender receives the PRF
key k and the receiver obtains {F(k,sp(1)), · · · ,F(k,sp(n))}.
In this case, the sender with the key k can compute Ii =
{F(k,xi� yp(1)� sp(1)), · · · ,F(k,xi� yp(n)� sp(n))} for each
xi and sends it to the receiver. Then the receiver proceeds to
perform the membership test as before, but learns nothing
about xi as she does not know the PRF key k. For the second
phase, the receiver can receive xi /2 Y through OT as in [19].
Optimization. Following our core idea, it can be seen that the
protocol executes Permute+Share and multi-point OPRF

4Multi-point OPRF is evaluated on different inputs with the same key,
while single-point OPRF is evaluated with a different key for each input.

Sender Receiver

Cuckoo
hash
table

(1)

(2)

(3)

(4)

Figure 5: PR
PSU

: Optimization via Cuckoo hashing.

only once for all xi 2 X , but needs to send m sets (i.e.,
I1, · · · , Im) to receiver. In addition, the sender and receiver
need to execute OT sub-protocol m times. Fortunately, we
find that the functionality Permute+Share (resp. multi-
point OPRF) can be securely realized by the protocols in
[5, 22] (resp. [6]) with computation and communication cost
O(n logn) (resp. O(n)). However, the sender needs to com-
pute and send Ii containing n PRF values for each xi 2 X ,
thus it results in a quadratic computation and communication
complexity O(mn).

The main reason for this quadratic complexity is that the
sender does not know which item in Y may be equal to
his item xi, so he has to XOR xi with all shares {yp(1) �
sp(1), · · · ,yp(n)� sp(n)}. To improve the efficiency, our key
idea is to reduce the number of items in Y that could be equal
to xi by leveraging Cuckoo hashing [26] (defined in Sec-
tion 2.2). Briefly, we insert Y into a Cuckoo hash table with g
hash functions, e ·n bins and stash size 05, and then execute
PR

PSU
over the hash table. To make it clear, we take a con-

crete example to explain the optimization via Cuckoo hashing,
as illustrated in Figure 5. In particular, we assume that the
sender’s item to be checked is xi, and that the receiver’s set
Y = {y1, · · · ,y6}, can be inserted to the Cuckoo hash table
with 8 bins and 2 hash functions h1(·) and h2(·)6. Then the
optimized protocol works as follows: (1) The receiver inserts
Y into the Cuckoo hash table and adds a dummy item d to
each empty bin, then obtains the filled table denoted by Y ⇤. (2)
The receiver and the sender execute Permute+Share with a
randomly chosen permutation p and Y ⇤ as inputs, and obtain
the shuffled secret share sets Sh1 and Sh2, respectively. Here,
s1

d and s2
d in Sh1 are the shares of dummy item and s1

d 6= s2
d .

The dotted arrows mean that after permutation p, the 4-th
(resp. 7-th) item in Sh1 is the share of the 2-th (resp. 6-th)
item in Y ⇤, but the receiver does not know the corresponding
relations. In addition, the other share is the 4-th (resp. 7-th)
item in Sh2. (3) With h1(·) and h2(·), the sender computes

5According to the empirical analysis in [34], the stash size can be reduced
to 0 by increasing the number of hash functions while achieving a hashing
failure probability of 2�40.

6Note that the parameters used here are to simplify the explanation, please
refer to Section 4.1 for the concrete parameter choices.

2950 31st USENIX Security Symposium USENIX Association

h1(xi) and h2(xi), say h1(xi) = 2 and h1(xi) = 6; we note that
according to the principle of filling the Cuckoo hash table, the
potential item of Y that is equal to xi must be inserted to the
position h1(xi) or h2(xi) of Y ⇤. Then he uses p to locate the
corresponding shares (namely, 4-th and 7-th items) in Sh2 and
generates Ii with them. (4) The sender sends Ii to the receiver
and the receiver proceeds as before.

Based on the above optimization, we can reduce the num-
ber of items in Ii to a constant g that is the number of hash
functions. Hence, the computation and communication cost
incurred by {I1, · · · , Im} can be reduced to O(gm). In Table 1,
we summarize the computation and communication costs of
main steps in our PR

PSU
. And we will give a more detailed

complexity analysis by taking account of the error rate and
security parameters in Section 3.3.

Table 1: The computation and communication costs of PR
PSU

.
Permute+Share multi-point OPRF {Ii}i2[m] OT

Costs O(n logn) O(n) O(m) O(m)

m is the sender’s set size; n is the receiver’s set size.

Protocol PS
PSU

: shuffling sender’s set. From Table 1 we can
see that when m� n the overall cost of PR

PSU
is dominated by

{Ii}i2[m] and OT that are linear in m. However, when m⌧ n
the cost is dominated by Permute+Share that is superlinear
in n. Therefore, when considering unbalanced datasets, PR

PSU

is more suitable for the case that the sender’s set size is much
larger than the receiver’s (i.e., m� n). To develop efficient
solutions for the other case where m⌧ n, we propose a second
protocol PS

PSU
by shuffling the sender’s set. As a whole, it

can be regarded as the dual version of PR
PSU

. The high-level
idea is shown in Figure 6.

Sender () Receiver ()

multi-point

if

 For :

Figure 6: Core idea of PS
PSU

for (m,n)-PSU.

The basic idea of PS
PSU

is to share the sender’s set X into
two share sets obtained by the sender and the receiver, respec-
tively. Then, the sender sends the shares of the items in X \Y
to the receiver such that the receiver can recover the items
in X \Y . While being shared, the sender’s set X needs to be
shuffled by a permutation not known by the sender such that
the sender cannot know the correspondence between shares
and the items in X . PS

PSU
can also be optimized via Cuckoo

hashing following the similar idea as in PR
PSU

. More specifi-
cally, the sender’s set X and the receiver’s set Y are inserted
into a Cuckoo hash table and a simple hash table (defined in
Section 2.2), respectively. Then, the receiver uses the items
stored in each bin (of the simple hash table), rather than all the
items in Y , to generate Ii. Therefore, the size of Ii is reduced
to the maximum bin size of the simple hash table. As pointed
out in [19], however, the receiver may learn if each bin has
any item in X \Y . To avoid this leakage, we use the shuffling
technique again. For sake of clarity, we include an example
in the full version [16] to illustrate our main idea of PS

PSU
.

1.2 Our Contributions
We explore new techniques of designing two-party PSU pro-
tocols for both balanced and unbalanced datasets, and propose
two efficient and secure PSU protocols PR

PSU
and PS

PSU
sup-

porting big datasets in Section 3. More specifically, our main
contributions are summarized as below.

New protocols. We for the first time, give a scalable and se-
cure construction, named PR

PSU
, for realizing two-party PSU.

Note that the state-of-the-art design by Kolesnikov et al. [19]
faces the issue of partial information leakage of items in inter-
section. While this protocol is efficient for balanced datasets,
we further extend our study to the unbalanced case in the
sense that the receiver’s input size is significantly larger than
the sender’s, or vice versa. Then we propose a second efficient
and secure protocol, dubbed PS

PSU
. This protocol is suitable in

the applications where the sender’s input size is much smaller
than the receiver’s; this can be viewed as a dual version of our
first protocol which is more suitable for the opposing case.

New design techniques. To avoid the leakage incurred by
the leverage of bucketing technique on the receiver’s set, our
key point is to process the receiver’s set at the same time.
Then we design PR

PSU
under the framework in Figure 2(a) by

shuffling the receiver’s set. Regarding designing PSU proto-
cols for unbalanced datasets, our observation is to perform
heavy operations on the smaller dataset. Thus we design PS

PSU

by shuffling the sender’s set for the case that the sender’s
set size is much smaller than the receiver’s. With the key
technique shuffling, our design avoids expensive computa-
tions like public-key operations and repeated operations on
sender/receiver’s set. Furthermore, we reduce the communi-
cation and computation overhead by employing the Cuckoo
hashing, which is for the first time used in PSU.

Implementation & evaluation. We implement our proto-
cols in C++ and perform a comprehensive evaluation in Sec-
tion 4. The results demonstrate that PR

PSU
is 4-5⇥ faster than

the state-of-the-art PSU protocol [19] with a single thread
in WAN/LAN settings. Moreover, we show that our proto-
cols support parallelization; PR

PSU
and PS

PSU
can achieve a

speedup of 2.89⇥ and 3.49⇥ respectively at 8 threads in LAN
setting. Beyond, the results indicate that our protocols are also

USENIX Association 31st USENIX Security Symposium 2951

efficient and scalable for unbalanced datasets.
New leakage analysis. In Section 5 we show the bucketing
technique adopted in the state-of-the-art design [19] will leak
the information of intersection. Specifically, we demonstrate
that after knowing all the sender’s items in a bin belong to the
intersection, the receiver can learn that her corresponding bin
has items in X \Y with an extremely large probability.

1.3 Related Work
As a special case of secure two-party computation, privacy-
preserving set operation also includes generic and custom
constructions. The generic PSI protocol (also called circuit-
based PSI) was firstly proposed by Huang et al. [13], and the
first generic PSU protocol was proposed in [2]. In general,
the generic protocols are less efficient than the custom ones
but more flexible to support different functionalities. In this
work, we are mainly interested in the custom constructions.

Over the past decades, a large amount of work has been
done on specific PSI (e.g., [6, 18, 21, 27–29, 31, 32, 34]). The
recent works are mainly based on oblivious transfer extension
[25, 29, 33, 39] and various OPRF constructions [6, 18, 27, 28,
40]. The state-of-the-art protocols have become considerably
efficient for practical applications.

Although PSI and PSU are similar and they share some
building blocks (e.g., OPRF [18, 19, 27]), PSU cannot be
obtained by directly employing existing PSI techniques, and
little process has been made towards practical PSU so far.

The first PSU protocol was proposed by Kissner and Song
in [17], and realized by using threshold additively homomor-
phic encryption (AHE) and polynomial representation. Later,
Frikken [9] proposed a new PSU protocol with intersection
hidden by leveraging similar techniques. Roughly, their pro-
tocol works as follows: the receiver holding the secret key of
AHE sends to the sender the encrypted polynomial represen-
tation Enc(f) of her own set Y , then the sender with set X
calculates the tuples (Enc(x f (x)),Enc(f (x))) for each x 2 X ,
and sends them to the receiver. If x 2 Y , the receiver can only
recover (0,0) from the tuple without learning any information
about x. Otherwise, the receiver can recover (x f (x), f (x)) and
then obtain x. Following the similar idea in [9], Davidson and
Cid [7] presented a new protocol by replacing polynomial
representation with inverted Bloom Filter7.

All the above protocols encrypt the (polynomial or Bloom
Filter) representation of the receiver’s set using AHE and
perform a large number of operations in an encrypted man-
ner. As pointed out by Kolesnikov et al. in [19], the public-
key operations have become the workhorse of these works.
Then they proposed the first scalable PSU protocol using only
symmetric-key techniques. In their work, a polynomial is also
used to represent the receiver’s set, but the receiver is required
to re-generate her polynomial representation for testing each

7If there is an item mapped to an entry of Bloom Filter, the entry will be
filled with a bit 0, otherwise, with a bit 1.

item of the sender. By this way, the design in [19] avoids the
usage of the expensive additive homomorphic encryption, but
still suffers from the repeated high-degree polynomial interpo-
lations. To further reduce this cost, Kolesnikov et al. proposed
an efficient optimization by using the bucketing technique.

Next, we summarize the asymptotic complexities of the
above PSU protocols [7, 9, 17, 19] and ours in Table 2. In
terms of asymptotic complexity, the scheme in [7] is the most
efficient. However, according to the experimental comparison
shown in [19], the protocol in [7] is 7607⇥ slower than [19]
due to heavy public-key operations. Note that our protocol
PR

PSU
is 4-5⇥ faster than [19]. On the other hand, the PSU pro-

tocols in [19] and our work are only based on symmetric-key
operations, but the complexities are super-linear. Therefore,
designing a PSU protocol with linear complexity by using
symmetric-key operations is still left open.

Protocol Comm. (bits) Comp. (#Ops)
pub-key symm-key

[17] O(n2) O(n2) -
[9] O(n) O(n log log(n)) -
[7] O(n) O(n) -

[19] O(n log(n)) - O(n log(n))
PR/S
PSU

O(n log(n)) - O(n log(n))

Table 2: Comparisons of asymptotic communication (bits) and
computation (#operations) costs of two-party PSU protocols
in the semi-honest setting. pub/symm-key: public/symmetric-
key operations. Here, n is the size of the parties’ input sets.
For [19] and ours, we ignore the pub-key cost of k base OTs
where k is computational security parameter.

We now provide a concrete comparison for the state-of-the-
art results on PSU and on PSI for the large datasets of size 220

in LAN setting. We can see that the performance of PSI is far
better than that of PSU. Our PR

PSU
outperforms Kolesnikov

et al. [19] by a factor of 5.4, but is still 20⇥ lower than the
PSI protocol in [18]. More research on PSU design should be
encouraged to further improve the performance.

PSU PSI
[19] PR

PSU
[18] [40]

Time (s) 263.476 48.703 2.441 5.396
Comm.(MB) 2470.11 1338.79 128.5 53.55

Table 3: Comparisons of total runtime (in seconds) and com-
munication (in MB) between the state-of-the-art works on
PSU and PSI for set size 220 in LAN setting.

Finally, we remark that in a concurrent and independent
work, Garimella et al. [10] improve the results in [19] by
a factor of 2 - 2.5⇥ also by leveraging shuffling technique.
Similar to that in [19], polynomial representation is also used
for receiver’s set in [10]; the difference is that, repeated poly-
nomial interpolations can be avoided in [10], leading to better
performance than that in [19]. However, we note that in our
work the polynomial interpolations can be entirely avoided;
thus we can obtain even better performance than that in [10].

2952 31st USENIX Security Symposium USENIX Association

2 Preliminaries

Notation. We denote by k and l the computational and statis-
tical security parameters, respectively. We use [m] to denote
the set {1,2, · · · ,m}, and X = {x1, · · · ,xn} to denote a set
with size |X |= n. Given a permutation p on n items, we use
p(X) to denote the set {xp(1),xp(2), · · · ,xp(n)}.

2.1 Security Model
Our PSU protocol involves two parties, and we follow the
static semi-honest security definition in [20] for secure two-
party computation in this work.

Static Semi-Honest Security. There are two parties de-
noted by P0 and P1. Let fi(X ,Y) be the output for Pi in
the ideal functionality F and f (X ,Y) = (f0(X ,Y), f1(X ,Y))
be the joint output. Let the view of Pi during an execu-
tion of P on inputs (X ,Y) be viewP

i (X ,Y) that consists of
the input X or Y , the contents of Pi’s internal random tape
and the messages received during the execution. Similarly,
outputP

i (X ,Y) is the output of Pi during an execution of P
on inputs (X ,Y) and can be computed from the P’s view.
And the joint output of both parties is outputP(X ,Y) =
(outputP

0 (X ,Y),outputP
1 (X ,Y)).

Definition 2.1. A protocol P securely computes F against
static semi-honest adversaries if there exist probabilistic
polynomial-time (PPT) algorithms Sim0 and Sim1 such that

(Sim0(X , f0(X ,Y)), f (X ,Y))
c⌘ (viewP

0 (X ,Y),outputP(X ,Y)),

(Sim1(Y, f1(X ,Y)), f (X ,Y))
c⌘ (viewP

1 (X ,Y),outputP(X ,Y)).

PSU Functionality. The ideal functionality for PSU, denoted
as F n1,n2

PSU
, is shown in Figure 7 (except for the text marked in

blue). This functionality allows two players, the sender and
the receiver, who hold private datasets with size n1 and n2,
respectively, to compute the union of the both input datasets.
Note that our formulation of PSU functionality is identical to
that in [19], and we allow only the receiver, not the sender, to
obtain the union of the two input sets.

We remark that, in this formulation, based on the obtained
output, the receiver can easily calculate the size of the inter-
section of the two input sets. However, the receiver is not
allowed to learn any additional information about the data
items in the intersection. On the other hand, the sender is
not allowed to learn any information about the union or the
intersection of the two private input sets.

With the goal of investigating PSU design comprehensive,
we further consider a natural relaxation of the ideal PSU
functionality, by allowing the sender to learn the size of the
intersection; as mentioned above, the receiver by default, is
allowed to obtain the intersection size. We denote the relaxed
ideal functionality as F n1,n2

PSU
⇤ ; we also show it in Figure 7 while

the difference from F n1,n2
PSU

is marked in blue.

Parameters:
• Set size for sender S is n1, set size for receiver R is n2;

• Maximum length of all elements is `.

Functionality:
1. Wait for input X = {x1, · · · ,xn1} from S , abort if |X | 6= n1

or 9 xi 2 X such that |xi|> `;

2. Wait for input Y = {y1, · · · ,yn2} from R , abort if |Y | 6= n2
or 9 yi 2 Y such that |yi|> `;

3. Give output |X \Y | to S , and give output X [Y to R , then
R can compute |X \Y |= n1 +n2� |X [Y |.

Functionality F n1,n2
PSU

/ F n1,n2
PSU

⇤

Figure 7: Ideal Functionalities for PSU (The difference is
marked in blue).

2.2 Building Blocks
We briefly recollect the main cryptographic tools, includ-
ing Permute+Share, multi-point Oblivious PRF, 1-out-of-2
Oblivious Transfer, simple hashing and Cuckoo hashing.

Permute + Share. The Permute+Share functionality FPS

is defined by Chase et al. in [5]. There are two parties
P0 and P1 in this functionality, where P0 possesses a set
X = {x1, · · · ,xn} of size n and P1 picks a permutation p on
n elements. The goal of FPS is to let P0 learn the shares
{sp(1),sp(2), · · · ,sp(n)} and P1 learn nothing but the other
shares {xp(1)� sp(1),xp(2)� sp(2), · · · ,xp(n)� sp(n)}. As men-
tioned in [5], some earlier works [13, 22] can also be used
for securely realizing FPS. These solutions all have computa-
tion/communication complexity O(n logn). The functionality
FPS is shown in Figure 11 in Appendix A.

Multi-Point Oblivious PRF. Oblivious PRF (OPRF) is a
protocol involving two parties P0 and P1, where P1 obtains
the key of the PRF F(·, ·) and P0 takes as input x and ob-
tains F(k,x). OPRF has been widely used in PSI protocols,
and extensive efforts have been made to develop efficient
single-point OPRF protocols [8, 11, 18, 30]. Most recently,
Pinkas et al. [27] proposed for the first time to use multi-
point OPRF to realize more efficient PSI protocols. Particu-
larly, in a multi-point OPRF, P0 takes as input {x1, · · · ,xn}n�1
and obtains {F(k,x1), · · · ,F(k,xn)}n�1 while P1 obtains the
PRF key k. Later, Chase et al. [6] designed a more efficient
multi-point OPRF with computation complexity O(n) while
the computation cost of [27] is O(n log2 n). Moreover, the
scheme in [6] only involves efficient OT extension and AES
operations, rather than the high-degree polynomial interpola-
tion/evaluation over a large field as in [27]. The functionality
FmpOPRF is shown in Figure 12 in Appendix A.

1-out-of-2 Oblivious Transfer. 1-out-of-2 oblivious transfer
(OT) is a two-party protocol, where party P0 takes as input
two strings {x0,x1}, and the other party P1 chooses a random
bit b and obtains nothing other than xb while P0 learns noth-

USENIX Association 31st USENIX Security Symposium 2953

ing about b. The first OT protocol was proposed by Rabin
in [36]. And due to the lower bound in [14], all the OT proto-
cols require expensive public-key operations. To improve the
performance, Ishai et al. [15] introduced the concept of OT
extension that enables us to carry out many OTs based on a
small number of basic OTs. The functionality FOT is shown
in Figure 13 in Appendix A.

Simple Hashing. In the simple hashing scheme, there are
g hash functions h1, · · · ,hg : {0,1}⇤ ! [b] used to map n
items into b bins B1, · · · ,Bb. An item x will be added into
Bh1(x),Bh2(x), · · · ,Bhg(x), regardless of whether these bins are
empty. According to the following inequality [23], the maxi-
mum bin size r can be set to ensure that no bin will contain
more than r items except with probability 2�l when hashing
n items into b bins.

Pr[9 bin with � r items] b

"
n

Â
i=r

✓
n
i

◆
·
✓

1
b

◆i

·
✓

1� 1
b

◆n�i
#

Cuckoo Hashing. Cuckoo hashing was introduced by Pagh
and Rodler in [26]. In this hashing scheme, there are g hash
functions h1, · · · ,hg used to map n items into b = en bins and
a stash, and we denote the i-th bin as Bi. Unlike the simple
hashing, the Cuckoo hashing can guarantee that there is only
one item in each bin, and the approach to avoid collisions is
as follows: For an item x, it can be inserted into any empty bin
of Bh1(x),Bh2(x), · · · ,Bhg(x). If there are no empty bins in the k
bins, randomly select a bin Bhr(x) in these g bins, and evict the
prior item y in Bhr(x) where hr(x) = hr(y) to a new bin Bhi(y)
where i 6= r. The above procedure is repeated until no more
evictions are necessary, or until the number of evictions has
reached a threshold. In the latter case, the last item will be put
in the stash. According to the empirical analysis in [34], we
can adjust the values of g and e to reduce the stash size to 0
while achieving a hashing failure probability of 2�40.

3 Private Set Union via Shuffling

In this section, we propose two scalable PSU protocols PR
PSU

and PS
PSU

by leveraging shuffling and Cuckoo hashing tech-
niques. The first protocol PR

PSU
realizes F n1,n2

PSU
, which is ob-

tained by shuffling the receiver’s set. In contrast, the sec-
ond PS

PSU
realizes F n1,n2

PSU
⇤ , which is obtained by shuffling the

sender’s set. To ease the understanding of our main idea, we
also present the simplified versions of PR

PSU
and PS

PSU
(with-

out using the Cuckoo hashing) denoted by P̂R
PSU

and P̂S
PSU

,
respectively, in the full version [16].

3.1 Protocol PR
PSU: Shuffling Receiver’s Set

The first protocol PR
PSU

is designed under the framework in
Figure 2(a). Our basic idea is to realize the functionality g-
RPMT by shuffling the secret shares of the receiver’s set. In

the following, we first give a brief description of this protocol
and then present the details in Figure 8.

We assume that the sender’s set is X = {x1, · · · ,xn1} and the
receiver’s set is Y = {y1, · · · ,yn2}. Then the protocol proceeds
as follows. Firstly, the receiver chooses the parameters of
Cuckoo hash table without a stash, including the number of
bins b= e ·n2 and g hash functions h1, · · · ,hg. Then she inserts
Y into this table and pads each empty bin with a dummy item
d. Please refer to Section 2.2 for the details of Cuckoo hashing.
After successfully inserting Y into the Cuckoo hash table, the
receiver sends the parameters to the sender. Hereafter, we
denote by YC the Cuckoo hash table filled with Y and YC[i] the
item in the i-th bin of the table.

Secondly, the two parties invoke FPS with inputs YC
and p randomly chosen by the receiver. After this, the
sender and receiver obtain the shares {a01,a

0
2, · · · ,a0b} and

{a1,a2, · · · ,ab} respectively, where a0i� ai = YC[p(i)]. Fur-
ther through FmpOPRF with {ai}i2[b] as the input, the sender
receives PRF key k and the receiver obtains {F(k,ai)}i2[b]
where F(k,ai) 2 {0,1}`2 .

Next, for each xi 2X , the sender generates a set Ii so that the
receiver can test if xi 2 Y via Ii. If not, the receiver can obtain
the item xi. However, we observe that if the sender picks items
from X in a special order, then when the receiver obtains
a certain item xi she can obtain extra information about X
according to the order8. To avoid this leakage, the sender
permutes his set X to p0(X) = {x01, · · · ,x0n1

} by a randomly
chosen permutation p0, and then generates Ii for each item x0i
of p0(X) in turn, the details of which are shown below.

Note that for each item x0i 2 p0(X), if there is an item y 2Y
equal to x0i, then y must be inserted into one of the positions
of YC indexed by {h j(x0i)} j2[g], according to the property of
the Cuckoo hashing. Hence, to test if x0i 2 Y , we need only
to check if x0i 2 {YC[h1(x0i)], · · · ,YC[hg(x0i)]}. To do so, the
sender first uses the permutation p of FPS to identify the
shares of YC[h1(x0i)], · · · ,YC[hg(x0i)] from {a01,a

0
2, · · · ,a0b}, say

{a0q1
,a0q2

, · · · ,a0qg}, where q j = p�1(h j(x0i)) for j 2 [g]. Then
he computes Ii as Ii = {F(k,x0i � a0q1

), · · · ,F(k,x0i � a0qg)}.
However, we notice that if there are distinct hash functions,
say h js and h jt s.t. h js(x0i) = h jt (x0i), then we have Ii[js] = Ii[jt],
from which the receiver may learn partial information about
x0i. To overcome this shortcoming, Ii is generated in a slightly
different way: Ii[js] is computed and recorded in Ii as before,
but Ii[jt] is replaced with a random value r $ � {0,1}`2 . In Par-
ticular, for each x0i, the sender initializes a set Ii = /0 and a set
Qi = /0, where Qi is used to record the indices of the shares (in
{a01, · · · ,a0b}) that are XORed with x0i. Then for each j 2 [g],
the sender computes q j = p�1(h j(x0i)). If it does not appear
before (i.e., q j /2 Qi), the sender adds it into Qi and records
F(k,x0i�a0q j

) into Ii. Otherwise, the sender randomly chooses

8For example, assuming that X consists of the ages of a group people, if
the sender picks the items of X in an ascending order and the receiver obtains
an item x = 16 through the third OT, then the receiver can learn that two
people in X are under the age of 16.

2954 31st USENIX Security Symposium USENIX Association

Parameters:
• Hash functions h1, · · · ,hg : {0,1}`1 ! [b];

• A Cuckoo hash table based on h1, · · · ,hg with b = e ·n2
bins, stash size s = 0;

• Ideal functionalities FPS, FOT and FmpOPRF (the
underlying PRF is F(k, ·) : {0,1}`1 ! {0,1}`2);

Inputs:
• Sender S : set X = {x1, · · · ,xn1},xi 2 {0,1}`1 ;

• Receiver R : set Y = {y1, · · · ,yn2},yi 2 {0,1}`1 ;

Protocol:
1. R inserts set Y into the Cuckoo hash table based on

h1, · · · ,hg as shown in Section 2.2, and adds a dummy item
d in each empty bin, then denotes the filled Cuckoo hash
table as YC and the item in i-th bin as YC[i];

2. S and R invoke the ideal functionality FPS:

– R acts as P0 with input set YC, and S acts as P1 with
a permutation p;

– R obtains the shuffled shares {a1,a2, · · · ,ab}, and S
obtains the other shuffled shares {a01,a

0
2, · · · ,a0b}

where YC[p(i)] = a0i�ai;

3. S and R invoke the ideal functionality FmpOPRF:

– R acts as P0 with her shuffled shares {ai}i2[b], and
obtains the outputs {F(k,ai)}i2[b];

– S obtains the key k;

4. R initializes set Z = /0, S randomly selects a permutation p0,
and obtains p0(X) = {x01,x

0
2, · · · ,x0n1

};

5. For i 2 [n1] :

– S initializes sets Qi = /0 and Ii = /0;

– For j 2 [g]:
- S computes q j = p�1(h j(x0i));
- if q j /2 Qi,

Qi = Qi[{q j}, Ii = Ii[{F(k,x0i�a0q j
)},

else,
r $ � {0,1}`2 and Ii = Ii[{r};

– S sends Ii to R ;

– R checks if {F(k,a j)} j2[b]\ Ii 6= /0. If so, R sets
bi = 1, otherwise, sets bi = 0;

– S and R invoke the ideal functionality FOT:

- S acts as P0 with input {x0i,?};
- R acts as P1 with input b;
- if bi = 0, R obtains x0i, otherwise, obtains ?;

– Once receiving x0i, R sets Z = Z[{x0i};

6. R outputs Y [Z;

Protocol PR
PSU

using Cuckoo hashing

Figure 8: Protocol PR
PSU

using Cuckoo Hashing.

r 2 {0,1}`2 and records it into Ii. At the end, the sender sends
Ii to the receiver. Recall that if x0i 2 Y , then there is an item in
Ii that belongs to {F(k,ai)}i2[b].

Finally, upon receiving Ii, the receiver checks if the intersec-
tion of Ii and {F(k,a j)} j2[b] is non-empty. If not, the receiver
sets bi = 0 and obtains xi through FOT and adds it to an ini-
tially empty set Z, otherwise sets bi = 1 and obtains nothing.
At last, the receiver outputs Y [Z.

Next we first argue that the protocol PR
PSU

in Figure 8
realizes the functionality F n1,n2

PSU
correctly, and then show it

satisfies the security properties.

Correctness. The receiver obtains the Cuckoo hash table YC
filled with the set Y and dummy items d. Then through FPS,
the receiver obtains the shuffled secret share set {a1, · · · ,ab}
of YC and the sender receives the other shares {a01, · · · ,a0b},
where a0i� ai = YC[p(i)]. For an item x⇤ 2 X , if x⇤ 2 Y , say
x⇤ = yi, then yi must be inserted into one of the bins of YC
indexed by {h j(x⇤)} j2[g], and so the share of yi held by the
sender must belong to {a0q1

, · · · ,a0qg} where q j = p�1(h j(x⇤))
for all j 2 [g]. Without loss of generality, we assume that the
share of yi is a0qw , then x⇤ � a0qw = yi� a0qw = aqw , and thus
F(k,x⇤ � a0qw) = F(k,aqw). So in this case the intersection
of I⇤ = {F(k,x⇤ �a0q j

)} j2[g] and {F(k,ai)}i2[b] is non-empty,
the receiver sets b⇤ = 1 and receives nothing from FOT. Oth-
erwise (i.e., x⇤ /2 Y), we have x⇤ � a0q j

6= aq j for all j 2 [g].
Moreover, for any at where t 2 [b] \ {q j} j2[g], x⇤ � a0q j

6= at
with an overwhelming probability, as long as the length `1
of the share is sufficiently large. Thus the intersection of
{F(k,x⇤ �a0q j

)} j2[g] and {F(k,ai)}i2[b] is empty except for a
negligible probability, then the receiver will set b⇤ = 0 and
receive x⇤ through FOT.

We remark that the correctness error comes from the fol-
lowing two types of collisions. Specifically, the first type is
incurred by the secret shares, that is, for x⇤ /2 Y and some
j 2 [g], x⇤ � a0q j

2 {a1, · · · ,ab} holds. The other case is in-
curred by PRF, that is F(k,x⇤ � a0q j

) = F(k,at) for some
x⇤ � a0q j

6= at . To make the correctness hold with an over-
whelming probability, we need to ensure the probability of
collisions happening is less than 2�l. To this end, we set both
the share length `1 and the PRF output length `2 to be at least
l+ log(en2)+ log(gn1).

Security. Now we proceed to show the semi-honest security
of PR

PSU
in the {FPS,FmpOPRF,FOT}-hybrid model.

Theorem 3.1. The protocol PR
PSU

presented in Figure 8
securely realizes F n1,n2

PSU
in the {FPS,FmpOPRF,FOT}-hybrid

model, in the presence of semi-honest adversaries.

Proof (sketch). We construct SimS and SimR to simu-
late the views of corrupted sender S and corrupted re-
ceiver R , respectively. Roughly speaking, SimS randomly
chooses {a01, · · · ,a0b} and a key k as the outputs of FPS

and FmpOPRF, and receives the input of FOT. Then SimS

USENIX Association 31st USENIX Security Symposium 2955

can leverage the simulators of these subroutine function-
alities to simulate the view of corrupted sender S . On the
other hand, SimR also randomly chooses {a1, · · · ,ab} and
{F(k,a1), · · · ,F(k,ab)} as the outputs of FPS and FmpOPRF.
When constructing {Ii}i2[n1], SimR needs to simulate that
there are |X \Y | items in {Ii}i2[n1] that have an intersection
with {F(k,a1), · · · ,F(k,ab)}. Once receiving bi for FOT, if
bi = 0, SimR takes one item from {X [Y}�Y in random or-
der as the output, otherwise, SimR takes? as the output. Like-
wise, SimS can leverage the simulators of these subroutine
functionalities to simulate the remaining view of corrupted
receiver R . Due to lack of space, more details of the proof
are given in the full version [16]. ⇤

The protocol PR
PSU

is very scalable for balanced datasets,
as demonstrated in Section 4. When considering unbalanced
datasets, we observe that it is already considerably efficient
for the case that the sender’s set size is much larger than the
receiver’s, but not so friendly for the opposite case. To deal
with this case, we propose a second protocol PS

PSU
as below.

3.2 Protocol PS
PSU: Shuffling Sender’s Set

In contrast to PR
PSU

, the core idea of designing PS
PSU

is to
shuffle the sender’s set, rather than the receiver’s. A brief de-
scription is given below and the details are shown in Figure 9.

Similarly, the sender’s set and the receiver’s set are assumed
to be X = {x1, · · · ,xn1} and Y = {y1, · · · ,yn2}, respectively.
Then the protocol works as follows. Firstly, the sender in-
serts X into the Cuckoo hash table with b bins by using g
hash functions {h1, · · · ,hg} and fills each empty bin with a
dummy item d. After that, the sender sends to the receiver the
parameters of the Cuckoo hashing. Then the receiver inserts
Y into a simple hash table with b bins by using the same hash
functions. In general, when n items are inserted into a simple
hash table with m bins using g hash functions, the maximum
bin size is O(gn/m)9 when n > m logm according to [35].
Therefore, the maximum bin size r of simple hash table is
O(gn2/b). For simplicity, we denote by XC and YB the filled
Cuckoo hash table and simple hash table, respectively.

Secondly, the sender and the receiver invoke FPS with input
XC and a random permutation p, respectively. Then the sender
obtains the shuffled secret shares {a1, · · · ,ab} of X while
the receiver obtains other shares {a01, · · · ,a0b}. Further, by
running FmpOPRF with the input {ai}i2[b] the sender obtains
{F(k,ai)}i2[b] and the receiver obtains the PRF key k.

Thirdly, for i 2 [b] the receiver generates a set Ii with her
i-th share a0i and sends it to the sender, so that the sender can
test if the item of X associated with a0i belongs to Y . Note
that as the receiver selects the permutation p, she knows that
a0i is the share of the p(i)-th item of XC, whereas the sender
does not know which item of XC is being tested. Moreover,
if XC[p(i)] 2 Y , then the item in Y equal to XC[p(i)] must be

9To be precise, the maximum bin size should be Q(gn/m).

Parameters:
• Hash functions h1, · · · ,hg : {0,1}`1 ! [b];

• A Cuckoo hash table based on h1, · · · ,hg, with b = e ·n1
bins, stash size s = 0;

• A simple hash table based on h1, · · · ,hg, with b = e ·n1 bins
and bin size r, where r = O(gn2/b);

• Ideal functionalities FPS and FmpOPRF (the underlying
PRF is F(k, ·) : {0,1}`1 ! {0,1}`2);

Inputs:
• Sender S : set X = {x1, · · · ,xn1},xi 2 {0,1}`1 ;

• Receiver R : set Y = {y1, · · · ,yn2},yi 2 {0,1}`1 ;

Protocol:
1. S inserts set X into the Cuckoo hash table, and fills empty

bins with the dummy item d, then denotes the filled
Cuckoo hash table as XC and the item in i-th bin as XC[i];
R inserts set Y into the simple hash table, and deletes the
duplicates in each bin, then denotes the set of items in the
i-th bin as YB[i];

2. S and R invoke the ideal functionality FPS:

– S acts as P0 with input set XC, and R acts as P1 with
a permutation p;

– S obtains the shuffled shares {a1,a2, · · · ,ab}, R
obtains the another shuffled shares {a01,a

0
2, · · · ,a0b}

where XC[p(i)] = a0i�ai;

3. S and R invoke the ideal functionality FmpOPRF:
– S acts as P0 with his shuffled shares {ai}i2[b], and

obtains the outputs {F(k,ai)}i2[b];
– R obtains the key k;

4. R initializes a set Z = /0, S initializes a string U = 0b;

5. For i 2 [b]:
– R initializes a set Ii = /0;
– For each y j 2 YB[p(i)], R adds F(k,y j�a0i) to Ii;

– R pads Ii up to bin size r by different r $ � {0,1}`2 ,
and sends Ii to S ;

– S checks if F(k,ai) is in Ii, if not, S sets U [i] = 1,
otherwise, sets U [i] = 0;

6. S and R invoke the ideal functionality FPS:
– R acts as P0 with input set {a0i}i2[b], and S acts as P1

with a random permutation p0;
– S and R obtains the shuffled share sets

{s1
1,s

1
2, · · · ,s1

b} and {s2
1,s

2
2, · · · ,s2

b} respectively, where
s1
i � s2

i = a0p0(i);

7. For i 2 [b]:
– If U [p0(i)] = 1, S sets zi = ap0(i)� s1

i , otherwise, sets
zi =?, then sends zi to R ;

– If zi 6=? and zi� s2
i 6= d, R sets Z = Z[{zi� s2

i };

8. R outputs Y [Z;

PS
PSU

Protocol using Cuckoo hashing

Figure 9: Protocol PS
PSU

using Cuckoo Hashing.

2956 31st USENIX Security Symposium USENIX Association

contained in the p(i)-th bin of YB. So to check if XC[p(i)] 2Y ,
we need only to check if XC[p(i)] 2 YB[p(i)]. To do so, the re-
ceiver computes the XOR of a0i and each item in YB[p(i)], then
evaluates PRFs over them, namely {F(k,y j� a0i)}y j2YB[p(i)],
and adds them into set Ii. To further hide from the sender the
actual number of items in Y mapped to the bin, the receiver
pads Ii with r� |YB[p(i)]| random values from {0,1}`2 if the
number (i.e., |YB[p(i)]|) of items in Ii is less than the maxi-
mum bin size r. Note that if there is a y j that is mapped to the
bin multiple times using different hash functions, PS

PSU
only

puts it to the bin once, and thus there are no duplicates in Ii.
Finally, after receiving Ii ◆ {F(k,y j � a0i)}y j2YB[p(i)], the

sender checks if F(k,ai) 2 Ii. If not, the sender sends ai to the
receiver in order for the receiver to obtain XC[p(i)] = ai�a0i,
otherwise sends ?. By this way, however, the receiver will
learn that an item belonging to X \Y is in the bin YB[p(i)] if
she receives?, which will leak the information about intersec-
tion to the receiver as mentioned in [19]. On the other hand,
if the receiver obtains the sender’s item, she may learn partial
information about the whole sender’s set as she knows the
position in Cuckoo hash table to which the item is mapped.

To solve the above problems, we opt to postpone send-
ing the sender’s shares. More specifically, instead of send-
ing the share directly, the sender first records which shares
should be sent using a bit-string U and then sends them in
a new order. Since the receiver needs to match the shares
from the sender with her shares, the receiver also needs to
permute her shares in the same order. To this end, we leverage
FPS again. Roughly speaking, the receiver takes her shares
{a01,a

0
2, · · · ,a0b} as the input and the sender randomly chooses

a permutation p0 as his input. After FPS, the sender receives
the shuffled shares {s1

1,s
1
2, · · · ,s1

b}, and the receiver obtains
the other shares {s2

1,s
2
2, · · · ,s2

b} where s1
i � s2

i = a0p0(i). As the
sender knows the permutation p0, he can check if ap0(i) should
be sent to the receiver according to U [p0(i)]. If so, the sender
sends zi = ap0(i)� s1

i to the receiver, otherwise sends zi =?.
Once receiving zi from the sender, if it is not ?, the receiver
can calculate zi� s2

i = ap0(i)� s1
i � s2

i = ap0(i)� a0p0(i). If the
recovered item is not the dummy item d, the receiver will add
it into Z. Finally, the receiver outputs Y [Z.

In what follows, we first show the correctness of the proto-
col PS

PSU
in Figure 9 and then argue that it securely realizes

the functionality F n1,n2
PSU

⇤ .

Correctness. The analysis is similar to that of PR
PSU

, and we
show it in the full version [16] due to the limited space.

Security. Now we show that PS
PSU

securely realizes F n1,n2
PSU

⇤ .

Theorem 3.2. The protocol PS
PSU

presented in Figure 9 se-
curely realizes F n1,n2

PSU
⇤ in the {FPS,FmpOPRF}-hybrid model,

in the presence of semi-honest adversaries.

The proof of Theorem 3.2 is similar to Theorem 3.1. Due to
the limited space, the details are given in the full version [16].

3.3 Cost Analysis
Given the statistical security parameter l, according to [34],
we choose the parameters of Cuckoo hashing without stash,
exactly including b = e · n bins (where n = n2 for PR

PSU

and n = n1 for PS
PSU

) and g hash functions, to ensure that
the hashing failure probability is less than 2�l. Besides, to
guarantee the error rate incurred by collisions is less than
2�l in PR

PSU
, we set the share/item length `1 and the out-

put length `2 of F(k, ·) to be at least l+ log(gn1)+ log(en2).
Likewise, the output length `2 of F(k, ·) in PS

PSU
is at least

l+ log(en1)+ log(gn2). In addition, the costs of PR
PSU

and
PS

PSU
also rely on the sub-protocols used to realize the build-

ing blocks. Particularly, we realize FPS, FmpOPRF and FOT

with the protocols in [22], [6] and [15], respectively.

Table 4: The costs of PR
PSU

and PS
PSU

Part-1 Part-2 Part-3 Part-4
Comp. O(b logb) O(b) O(gn) O(n1)
Comm. O(`1b logb) O(b) O(`2gn) O(`1n1)

PR
PSU

: b = en2, n = n1; PS
PSU

: b = en1, n = n2 and Part-1 is executed twice.

Since PR
PSU

and PS
PSU

mainly consist of 4 parts: (1)
Permute+Share, (2) multi-point OPRF, (3) computing and
sending {Ii}, and (4) obtaining items in X \Y , we for clarity
summarize their complexities in Table 4 according to each
part. In PR

PSU
(resp. PS

PSU
), Part-1 and Part-2 are performed

on the receiver’s set Y (resp. the sender’s set X) while Part-3
is performed on the sender’s set X (resp. the receiver’s set Y),
and thus b = en2,n = n1 (resp. b = en1,n = n2).

4 Performance Evaluation

In this section, we experimentally evaluate our PSU protocols
PR

PSU
and PS

PSU
. In Section 4.1, we first give our benchmark-

ing environment. In section 4.2, we compare our protocols
with the state-of-the-art work [19] in terms of communica-
tion cost and single-threaded runtime on different networks,
and the results are reported in Table 5. To demonstrate the
scalability and parallelizability of our protocols, we evalu-
ate our two protocols on small and large sets with different
threads in Section 4.3, and show the results in Table 6, Table 7
and Table 8. Besides the equal set sizes, we also consider
the unbalanced sets in Section 4.4. We perform PR

PSU
in the

cases where the sender’s set is larger than the receiver’s set,
and PS

PSU
in the opposite cases, and show the results in Ta-

ble 9. Our complete implementation is available on GitHub:
https://github.com/dujiajun/PSU.

4.1 Benchmarking Environment
We implement PR

PSU
and PS

PSU
in C++, and run our experi-

ments on a single Intel Xeon with 2.39GHz and 128GB RAM.
We evaluate our protocols in two networks settings, LAN
network with 10Gbps bandwidth and 0.02 ms RTT and WAN

USENIX Association 31st USENIX Security Symposium 2957

https://github.com/dujiajun/PSU

set size n
Protocol 28 210 212 214 216 218 220 222

[19] 1.064 1.379 2.164 5.326 17.541 86.358 333.073 1459.539
PR
PSU

000...666777111 000...888999222 111...111333222 111...777777888 444...444111222 111666...111000444 666777...777555666 333444111...777555888WAN
PS
PSU

0.712 0.993 1.238 2.214 6.233 22.78 102.039 458.731
[19] 0.578 0.69 1.278 3.551 13.285 69.19 263.476 1191.703Time (s)

PR
PSU

000...222666555 000...333000888 000...444111222 000...888777 222...777000222 111000...777555111 444888...777000333 222555111...000999111LAN
PS
PSU

0.274 0.32 0.434 1.051 3.452 13.382 60.16 279.97
[19] 0.41 1.86 7.72 31.8 131.17 600.62 2470.11 10233.28

PR
PSU

000...222222 000...888111444 333...555777666 111555...888444888 777000...111999888 333000777...111999222 111333333888...777999 555777777999...555999999Comm.(MB)
PS
PSU

0.376 1.554 7.019 31.381 140.604 617.654 2725.932 11746.69

Table 5: Comparisons of total runtime (in seconds) and communication (in MB) between PR
PSU

, PS
PSU

and [19] with a single
thread in WAN/LAN settings where n1 = n2 = n. Best results are marked in bold.

P̂R
PSU

P̂S
PSU

28 210 212 214 28 210 212 214

Time (s)

T=1 0.620 5.582 89.862 1423.955 0.526 5.827 86.037 1425.376
T=2 0.432 3.108 45.295 722.29 0.358 2.862 44.967 719.325
T=4 0.356 1.722 23.094 363.270 0.295 1.861 22.231 360.131
T=8 0.349 1.067 11.713 183.181 0.261 0.986 11.640 183.838

Comm. (MB) 0.665 9.624 162.759 2828.476 0.641 9.588 162.63 2827.972

Table 6: Runtime (in seconds) and communication (in MB) of P̂R
PSU

and P̂S
PSU

for small set (n1 = n2 2 {28,210,212,214}) and
threads T 2 {1,2,4,8} threads in LAN setting.

network with 400Mbps and 80ms RTT, which are emulated
using Linux tc command. We set the computational security
parameter k = 128 and statistical security parameter l = 40,
and the item length in bits `1 is 128.

Our protocols are built on Permute+Share, multi-point
OPRF, and OT extension. We implement Permute+Share
with the design in [22] and OT extension [15] using libOTe
library [38] with Naor-Pinkas Base OT [24]. For multi-point
OPRF, we use the source code from [6].
Parameters about Cuckoo Hashing. For the equal set sizes,
Permute+Share sub-protocol costs most of the runtime, and
thus we need to minimize the number of items to be shuffled
as far as possible. Moreover, items in the stash of Cuckoo
hashing need to be compared with each item of the other
party rather than certain items picked out by the hash func-
tions. Hence, we also need to limit the stash size to be 0.
The empirical analysis in [34] shows that increasing the num-
ber of hash functions can drastically reduce the number of
bins and the required stash size. According to the results re-
ported in [34], we decide to use 4 hash functions to implement
Cuckoo hashing with 1.09 ·n bins and 0 stash. However, for
the unbalanced set sizes, calculating PRFs will dominate, to
reduce the number of PRFs calls and keep the stash size 0,
we choose to use 3 hash functions and 1.27 ·n bins.

4.2 Performance Comparisons
In this section, we compare PR

PSU
, PS

PSU
and [19] in terms

of runtime and communication, and the results are reported
in Table 5. More concretely, compared to [19], our PR

PSU

can obtain a 4-5⇥ improvement in runtime for large datasets

(n1 = n2 � 214) in both WAN and LAN settings. And the
communication is about 50% communication of [19].

Although we also consider PS
PSU

in this comparison, it is
worth noting that PS

PSU
realises a different functionality than

the other two protocols, because the sender can obtain the
intersection size in advance. Moreover, to avoid the leak-
age of intersection information, PS

PSU
has to execute the

Permute+Share sub-protocol twice (cf. Section 3.2 for more
details). Therefore, the runtime of PS

PSU
is longer than that of

PR
PSU

. Nevertheless, compared to [19], our PS
PSU

can still
obtain a 3-4⇥ improvement in runtime for large datasets
(n1 = n2 � 214) in both WAN and LAN settings. But for com-
munication, the cost of PS

PSU
is almost equal to that of [19].

4.3 Scalability and Parallelizability
In this section, we show that our two protocols can be effi-
ciently executed on small sets without Cuckoo hashing, which
can simplify development in practice. And using Cuckoo hash-
ing, our protocols can be scaled to large sets. Moreover, we
show that our protocols can be executed in parallel. Specif-
ically, for the set of size 222, PR

PSU
and PS

PSU
can achieve a

speedup of 3.49⇥ and 2.89⇥ using 8 threads, respectively.
The cases with small sets. In table 6, we show that P̂R

PSU

and P̂S
PSU

can be executed on small sets directly without
Cuckoo hashing (please see the full version [16] for more
details of P̂R

PSU
and P̂S

PSU
). In LAN setting, they cost about

10 seconds with 8 threads on the set of size 212 However,
we can see that as the set size increases, the runtime and
communication increase dramatically. For set size of 214,
the two protocols both need more than 3 minutes with 8

2958 31st USENIX Security Symposium USENIX Association

set size n
212 214 216 218 220 222

WAN

T=1 1.132 1.778 4.412 16.104 67.756 341.758
T=2 1.127 1.658 3.315 11.025 48.321 230.218
T=4 1.117 1.553 2.965 8.852 37.847 181.657
T=8 0.957 1.512 2.626 7.666 34.701 163.82

LAN

T=1 0.412 0.87 2.702 10.751 48.703 251.091
T=2 0.367 0.615 1.721 6.221 29.812 148.538
T=4 0.351 0.489 1.256 3.96 21.272 107.298
T=8 0.325 0.477 1.093 3.582 14.304 71.782

Speedup 111...333111-111...222666⇥⇥⇥ 111...111888-111...999555⇥⇥⇥ 111...666888-222...444777⇥⇥⇥ 222...111000-333...000000⇥⇥⇥ 111...999555-333...444000⇥⇥⇥ 222...000888-333...444999⇥⇥⇥
Table 7: Scaling of PR

PSU
with set size (n1 = n2 = n) and number of threads (T 2 {1,2,4,8}) in WAN/LAN settings.

set size n
212 214 216 218 220 222

WAN

T=1 1.238 2.214 6.233 22.78 102.039 458.731
T=2 1.368 1.984 4.731 16.346 77.137 347.897
T=4 1.388 1.79 3.909 13.856 65.319 292.226
T=8 1.196 1.711 3.504 12.041 59.736 258.244

LAN

T=1 0.434 1.051 3.452 13.382 60.16 279.97
T=2 0.378 0.764 2.322 7.863 38.434 175.485
T=4 0.356 0.614 1.685 5.632 25.842 116.678
T=8 0.408 0.606 1.397 5.204 20.992 96.723

Speedup 111...000444-111...000666⇥⇥⇥ 111...222999-111...777333⇥⇥⇥ 111...777888-222...444777⇥⇥⇥ 111...888999-222...555777⇥⇥⇥ 111...777000-222...888777⇥⇥⇥ 111...777888-222...888999⇥⇥⇥
Table 8: Scaling of PS

PSU
with set size (n1 = n2 = n) and number of threads (T 2 {1,2,4,8}) in WAN/LAN settings.

LAN WAN
n2 (resp. n1) 28 212 28 212

n1 (resp. n2) 216 220 224 216 220 224 216 220 224 216 220 224

PR
PSU

0.487 3.17 47.788 0.524 3.648 51.513 1.266 5.101 64.109 1.396 5.341 67.802
PS
PSU

0.511 2.918 44.606 0.581 2.958 48.379 1.042 3.759 51.043 1.406 3.789 57.352

Table 9: Runtime (in seconds) of PR
PSU

for unbalanced set sizes (n1 2 {216,220,224},n2 2 {28,212}) and PS
PSU

for unbalanced
set sizes (n1 2 {28,212},n2 2 {216,220,224}) with 8 threads in WAN/LAN settings.

threads, and the communication is so much that it will affect
the protocol executed in the WAN setting. Therefore, for large
sets, we test the runtime and communication of the protocols
with Cuckoo hashing.

The cases with large sets. In both PR
PSU

and PS
PSU

, PRF val-
ues in set I are independent of each other, and thus can be
calculated in parallel. In addition, the Permute+Share sub-
protocol in [22] and the multi-point OPRF sub-protocol in [6]
can be partially parallelized. We demonstrate the scalability
and parallelizability of PR

PSU
and PS

PSU
by evaluating it on

the large set sizes n1 = n2 = n2 {212,214,216,218,220,222} in
parallel with T 2 {1,2,4,8} threads. Table 7 shows the exper-
imental results of PR

PSU
in both WAN/LAN settings, and the

last row presents the ratio between the runtime of the single
thread and 8 threads. We can see that, the speedup becomes
better as the set size increases. Specifically, when the set size
is 222, we can obtain a speedup of 2.08⇥ in WAN setting
and 3.49⇥ in LAN setting. Similarly, we report the results
of PS

PSU
in Table 8. On the whole, as the set sizes and num-

ber of threads increase, the runtime of PS
PSU

changes in the
same way as that of PR

PSU
. However, the speedup of PS

PSU
is

less than that of PR
PSU

, since PS
PSU

performs Permute+Share
sub-protocol twice, which is not completely parallelized.

4.4 Design for Unbalanced Datasets

In this section, we show that PR
PSU

and PS
PSU

can be chosen
according to the sizes of the two sets. Considering that the set
to be shuffled is small (28 or 212) and the items that will be
calculated PRFs are too many (more than 216, 220 or 224), we
adjust the parameters of Cuckoo hashing to 3 hash functions
and 1.27 ·n bins with stash size s = 0 according to the results
in [34]. Table 9 shows the performances of PR

PSU
and PS

PSU

with 8 threads in WAN/LAN settings.
When the receiver’s set is much smaller than the sender’s

set (i.e., n2 ⌧ n1), we perform PR
PSU

to obtain the union.
We can see that for the sender’s set of size 224, PR

PSU
only

needs about 50 seconds in LAN setting, and about 65 seconds
in WAN setting, which is reasonable in practice. As for the
opposite unbalanced cases (i.e., n1⌧ n2), PS

PSU
can obtain a

better performance since it replaces OT related to the larger
set with Permute+Share just related to the smaller set.

USENIX Association 31st USENIX Security Symposium 2959

Table 10: The probability of Case2 for different set sizes

parameters set size n
28 210 212 214 216 218 220 222

a 0.043 0.055 0.05 0.053 0.058 0.052 0.06 0.051
Pr(⇥10�11) 7.946 1270 206.1 639.4 3252 444.8 5778 305.1
Here, an is the number of bins.

5 Leakage Analysis of Protocol in [19]

In this section, we first recall the optimization via bucketing
in [19], and then explain in detail why the usage of bucketing
technique will leak the intersection information. Please refer
to Appendix B.1 for more details of the protocol in [19]. Also,
we further explain why the protocol in [19] cannot benefit
from Cuckoo hashing in Appendix B.2.

Sender ()

-

-

-

-

-

pad with
special item

add a
special

item to
each bin

pad with different
dummy items

Receiver ()

or

Figure 10: The bucketing technique in [19].

Optimization via bucketing. In order to improve the per-
formance, Kolesnikov et al. [19] proposed to optimize their
protocol by using the bucketing technique, as shown in Fig-
ure 10. More specifically, the sender and receiver in [19] first
assign their items in X and in Y , into two simple hash tables
with the same number of bins, and the maximum bin sizes are
assumed to be r1 and r2, respectively. Then they perform the
(r1,r2)-PSU sub-protocol on the items of each bin separately.
As pointed out by Kolesnikov et al. in [19], however, the buck-
eting technique will leak the information “which bins contain
items in X \Y ” to the receiver. To avoid this leakage, in [19]
the receiver is required to put a special item ? into each bin,
and to pad the bins with different dummy items d, while the
sender pads his bins with the special item ?. For example, in
Figure 10, the items {x6,x2,x10} of X are mapped to the first
bin of the sender’s simple hash table, and the items {y3,y8}
of Y are mapped to the first bin of the receiver’s hash table.
Without the special item ?, if x2 = y3, the receiver can learn
that an item belonging to X \Y is in {y3,y8} after executing
the (r1,r2)-PSU. By adding the special item ? to both sides,
if the receiver learns that an item from the sender belongs to
{y3,?,y8,d}, it seems that the receiver cannot know whether
the item is a real item (namely, in X) or the special item ?.
Unfortunately, we observe that this strategy is insufficient
to avoid the leakage incurred by the bucketing technique. A
detailed analysis is given below.

Leakage analysis. For ease of exposition, we take the 4th
(r1,r2)-PSU sub-protocol in Figure 10 as an example to ex-
plain why the optimization in [19] fails to hide the intersection
information. After the execution of the sub-protocol over the
4th bins, if the receiver does not obtain any items from the
sender (that is, all items in the sender’s 4th bin belong to
the subset in the receiver’s 4th bin i.e., {d,?,y5,y7}), then
the receiver could obtain additional information about the
intersection. Concretely, one of the following will occur:

Case1: all the real items that are mapped to the sender’s
bin (say x4 in Figure 10) belong to {y5,y7};
Case2: no real items are mapped to the sender’s bin (i.e.,
all items are special item ?).

We denote the probability that Case1 and Case2 occur by
Pr[Case1] and Pr[Case2], respectively. Clearly, if the receiver
is able to determine that Case1 occurs with certain (high)
probability, she will know that items belonging to X \Y
are in {y5,y7} with the same probability. Next we provide
our estimation of the probability that Case1 occurs. Note
Pr[Case1] = 1�Pr[Case2]; we now bound Pr[Case2]. In gen-
eral, assuming that there are an bins and n items and the hash
mapping is a random oracle, the probability Case2 occurs is
P = Pr[Case2] = (1� 1

an)
n ⇡ e�1/a.

Based on the parameters in [19], we calculate the proba-
bility P for different set sizes as shown in Table 10. From
the results, we can see that the probability P is very small.
For example, when the set size is n = 220, P = 5.778⇥10�8.
This means that when the receiver finds that all items in a bin
belong to the intersection, she can learn that this bin has at
least one real item with probability 1�5.778⇥10�8, and that
her corresponding bin contains at least an item in X \Y with
the same probability. Hence, their approach is insufficient to
avoid the leakage incurred by the bucketing technique.

On the contrary, in our PR
PSU

shown in Figure 8, for an item
xi in X \Y , the receiver will find a F(k,a j) 2 Ii where a j is
the share of yp�1(j), which means that yp�1(j) is the item equal
to xi. But from the receiver’s point of view, any item in Y may
corresponds to F(k,a j) as she does not know p, and thus any
item in Y may be the item in X \Y . In our PS

PSU
shown in

Figure 9, the receiver’s set Y is inserted into a simple hash
table as in [19], but our protocol does not suffer from the
leakage analyzed before. This is because we use the shuffling
technique to hide which bins contain items in X \Y . To sum
up, in PR

PSU
and PS

PSU
, any item in Y may be the item in X\Y ,

whereas in the protocol [19], the receiver can know that items

2960 31st USENIX Security Symposium USENIX Association

belonging to X \Y are in a bin (namely, a subset of Y) with a
overwhelming probability.

6 Discussion

In this work, we focus on designing efficient PSU protocols
for both balanced and unbalanced datasets. Somewhat sur-
prisingly, our techniques can also be used for designing PSI
protocols with only slight modification. With our techniques,
it is extremely convenient to design fast protocols when both
functionalities, set intersection and set union, are required;
details are below.

Recall that in PR
PSU

, the receiver sets bi depending on
whether the sender’s item xi belongs to her set Y ; if xi 2 Y ,
sets bi = 1, otherwise bi = 0. Then through FOT the receiver
obtains xi if bi = 0, and nothing otherwise. To obtain a PSI
protocol from PR

PSU
, the receiver only needs to set b0i = bi�1

and obtains the sender’s items through FOT according to b0i,
rather than bi. In this way, the receiver will obtain the sender’s
items belonging to Y . Thus we obtain a PSI protocol, denoted
by PR

PSI
. In PS

PSU
, the sender sends the shares of the items

in X \Y according to the bit string U , then the receiver uses
them to recover the items in X \Y . Therefore, the sender can
send the shares associated with the items in X \Y by flipping
each bit in U , and then the receiver will obtain items in X \Y .
Thus we obtain a PSI protocol, denoted by PS

PSI
.

It can be seen that PR
PSI

and PS
PSI

are obtained from the
PSU protocols with almost no extra overhead. Therefore, it is
believed that they have nearly the same performance as the
proposed PSU protocols. Due to the page limit, we leave their
formal descriptions and security analysis to future work.

In addition, as stated in Section 1.3, it is desirable to have
better PSU protocols designed. Notice that our protocols,
PR

PSU
and PS

PSU
are designed in a modular manner; thus,

a natural way to achieve better performance is to improve
the performance of the underlying building blocks. More
concretely, if the underlying Permute+Share protocol can
be designed with linear complexity, the cost of PR

PSU
and

PS
PSU

can be reduced to be linear. Finally, it is also interesting
to design PSU with better security (e.g., defending against
malicious adversaries) and/or with better functionalities (e.g.,
new variants of PSU including multi-party PSU and PSU
with payload).

Acknowledgments

We thank the anonymous reviewers and especially our shep-
herd, Mayank Varia, for their insightful suggestions and com-
ments, that substantially helped in improving the paper. This
work was supported in part by the National Key Research
and Development Project 2020YFA0712300. Hong-Sheng
Zhou acknowledges support by NSF grant CNS-1801470, a

Google Faculty Research Award and a research gift from Ergo
Platform.

References

[1] SSL blacklist. https://sslbl.abuse.ch/

blacklist/.

[2] Marina Blanton and Everaldo Aguiar. Private and obliv-
ious set and multiset operations. In Heung Youl Youm
and Yoojae Won, editors, ASIACCS 12, pages 40–41.
ACM Press, May 2012.

[3] Justin Brickell and Vitaly Shmatikov. Privacy-
preserving graph algorithms in the semi-honest model.
In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788
of LNCS, pages 236–252. Springer, Heidelberg, Decem-
ber 2005.

[4] Martin Burkhart, Mario Strasser, Dilip Many, and Xeno-
fontas A. Dimitropoulos. SEPIA: Privacy-preserving ag-
gregation of multi-domain network events and statistics.
In USENIX Security 2010, pages 223–240. USENIX
Association, August 2010.

[5] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya.
Secret-shared shuffle. In ASIACRYPT 2020, volume
12493 of Lecture Notes in Computer Science, pages 342–
372, 2020.

[6] Melissa Chase and Peihan Miao. Private set intersection
in the internet setting from lightweight oblivious PRF.
In CRYPTO 2020, volume 12172 of Lecture Notes in
Computer Science, pages 34–63, 2020.

[7] Alex Davidson and Carlos Cid. An efficient toolkit for
computing private set operations. In Josef Pieprzyk
and Suriadi Suriadi, editors, ACISP 17, Part II, volume
10343 of LNCS, pages 261–278. Springer, Heidelberg,
July 2017.

[8] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword search and oblivious pseu-
dorandom functions. In Joe Kilian, editor, TCC 2005,
volume 3378 of LNCS, pages 303–324. Springer, Hei-
delberg, February 2005.

[9] Keith B. Frikken. Privacy-preserving set union. In
Jonathan Katz and Moti Yung, editors, ACNS 07, volume
4521 of LNCS, pages 237–252. Springer, Heidelberg,
June 2007.

[10] Gayathri Garimella, Payman Mohassel, Mike Rosulek,
Saeed Sadeghian, and Jaspal Singh. Private set opera-
tions from oblivious switching. In Juan A. Garay, editor,
Public-Key Cryptography – PKC 2021, pages 591–617,
Cham, 2021. Springer International Publishing.

USENIX Association 31st USENIX Security Symposium 2961

https://sslbl.abuse.ch/blacklist/
https://sslbl.abuse.ch/blacklist/

[11] Carmit Hazay and Yehuda Lindell. Efficient protocols
for set intersection and pattern matching with security
against malicious and covert adversaries. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 155–
175. Springer, Heidelberg, March 2008.

[12] K. Hogan, N. Luther, N. Schear, E. Shen, D. Stott,
S. Yakoubov, and A. Yerukhimovich. Secure multiparty
computation for cooperative cyber risk assessment. In
2016 IEEE Cybersecurity Development (SecDev), pages
75–76, 2016.

[13] Yan Huang, David Evans, and Jonathan Katz. Private set
intersection: Are garbled circuits better than custom pro-
tocols? In NDSS 2012. The Internet Society, February
2012.

[14] Russell Impagliazzo and Steven Rudich. Limits on the
provable consequences of one-way permutations. In
21st ACM STOC, pages 44–61. ACM Press, May 1989.

[15] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending oblivious transfers efficiently. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages
145–161. Springer, Heidelberg, August 2003.

[16] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du,
and Dawu Gu. Shuffle-based private set union: Faster
and more secure. Cryptology ePrint Archive, Report
2022/157, 2022. https://ia.cr/2022/157.

[17] Lea Kissner and Dawn Xiaodong Song. Privacy-
preserving set operations. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 241–257.
Springer, Heidelberg, August 2005.

[18] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek,
and Ni Trieu. Efficient batched oblivious PRF with ap-
plications to private set intersection. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages
818–829. ACM Press, October 2016.

[19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao
Wang. Scalable private set union from symmetric-key
techniques. In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT 2019, Part II, volume 11922 of
LNCS, pages 636–666. Springer, Heidelberg, December
2019.

[20] Yehuda Lindell. How to simulate it - A tutorial on the
simulation proof technique. Cryptology ePrint Archive,
Report 2016/046, 2016. http://eprint.iacr.org/

2016/046.

[21] Catherine Meadows. A more efficient cryptographic
matchmaking protocol for use in the absence of a contin-
uously available third party. In 1986 IEEE Symposium
on Security and Privacy, pages 134–134, 1986.

[22] Payman Mohassel and Seyed Saeed Sadeghian. How to
hide circuits in MPC an efficient framework for private
function evaluation. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 557–574. Springer, Heidelberg, May 2013.

[23] Rajeev Motwani and Prabhakar Raghavan. Randomized
algorithms. Cambridge university press, 1995.

[24] Moni Naor and Benny Pinkas. Oblivious transfer and
polynomial evaluation. In 31st ACM STOC, pages 245–
254. ACM Press, May 1999.

[25] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Ac-
tively secure 1-out-of-N OT extension with application
to private set intersection. In Helena Handschuh, editor,
CT-RSA 2017, volume 10159 of LNCS, pages 381–396.
Springer, Heidelberg, February 2017.

[26] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. In Algorithms - ESA 2001, volume 2161 of
Lecture Notes in Computer Science, pages 121–133.
Springer, 2001.

[27] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. SpOT-light: Lightweight private set intersection
from sparse OT extension. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III,
volume 11694 of LNCS, pages 401–431. Springer, Hei-
delberg, August 2019.

[28] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. PSI from PaXoS: Fast, malicious private set
intersection. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS,
pages 739–767. Springer, Heidelberg, May 2020.

[29] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection us-
ing permutation-based hashing. In Jaeyeon Jung and
Thorsten Holz, editors, USENIX Security 2015, pages
515–530. USENIX Association, August 2015.

[30] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and
Stephen C. Williams. Secure two-party computation is
practical. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 250–267. Springer, Hei-
delberg, December 2009.

[31] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient circuit-
based PSI with linear communication. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019,
Part III, volume 11478 of LNCS, pages 122–153.
Springer, Heidelberg, May 2019.

2962 31st USENIX Security Symposium USENIX Association

https://ia.cr/2022/157
http://eprint.iacr.org/2016/046
http://eprint.iacr.org/2016/046

[32] Benny Pinkas, Thomas Schneider, Christian Weinert,
and Udi Wieder. Efficient circuit-based PSI via cuckoo
hashing. In Jesper Buus Nielsen and Vincent Ri-
jmen, editors, EUROCRYPT 2018, Part III, volume
10822 of LNCS, pages 125–157. Springer, Heidelberg,
April / May 2018.

[33] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on OT extension. In
Kevin Fu and Jaeyeon Jung, editors, USENIX Security
2014, pages 797–812. USENIX Association, August
2014.

[34] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable private set intersection based on ot extension.
ACM Trans. Priv. Secur., 21(2), January 2018.

[35] Martin Raab and Angelika Steger. “balls into bins” — a
simple and tight analysis. In Michael Luby, José D. P.
Rolim, and Maria Serna, editors, Randomization and
Approximation Techniques in Computer Science, pages
159–170, Berlin, Heidelberg, 1998. Springer Berlin Hei-
delberg.

[36] Michael O. Rabin. How to exchange secrets with
oblivious transfer. Cryptology ePrint Archive, Report
2005/187, 2005. http://eprint.iacr.org/2005/

187.

[37] Sivaramakrishnan Ramanathan, Jelena Mirkovic, and
Minlan Yu. BLAG: improving the accuracy of blacklists.
In 27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020.

[38] Peter Rindal. libote: an efficient, portable, and easy to
use oblivious transfer library. https://github.com/
osu-crypto/libOTe.

[39] Peter Rindal and Mike Rosulek. Malicious-secure pri-
vate set intersection via dual execution. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017, pages 1229–1242. ACM
Press, October / November 2017.

[40] Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast
oprf and circuit-psi from vector-ole. In Anne Can-
teaut and François-Xavier Standaert, editors, Advances
in Cryptology – EUROCRYPT 2021, pages 901–930,
Cham, 2021. Springer International Publishing.

A Additional Materials for Section 2:
Building blocks

In this section, we show the formal functionalities of the main
building blocks, including Permute+Share functionality

FPS in Figure 11, multi-point OPRF functionality FmpOPRF

in Figure 12, and 1-out-of-2 Oblivious Transfer functionality
FOT in Figure 13.

Parameters:
• Two parties: P0 and P1;

• Set size n for P0;

• Length of element `.

Functionality:
1. Wait for input X = {x1, · · · ,xn} from P0, abort if |X | 6= n, or
9 xi 2 X such that |xi|> `;

2. Wait for input a permutation p from P1, abort if p is not a
permutation on n items;

3. Give output shuffled shares {sp(1),sp(2), · · · ,sp(n)} to P0,
and another shuffled shares
{xp(1)� sp(1),xp(2)� sp(2), · · · ,xp(n)� sp(n)} to P1.

Functionality FPS

Figure 11: Permute+Share functionality.

Parameters:
• Two parties: P0 and P1;

• A PRF F(·, ·).
Functionality:

1. Wait for input X = {x1, · · · ,xn} from P0;

2. Randomly select a key k for F(·, ·);
3. Give output {F(k,x1),F(k,x2), · · · ,F(k,xn)} to P0, and the

key k to P1.

Functionality FmpOPRF

Figure 12: Multi-Point OPRF functionality.

Parameters:
• Two parties: P0 and P1.

Functionality:
1. Wait for input {x0,x1} from P0;

2. Wait for input b 2 {0,1} from P1;

3. Give output xb to P1.

Functionality FOT

Figure 13: 1-out-of-2 Oblivious Transfer functionality.

B Additional Materials for Section 5

In this section, we first describe the protocol in [19], and then
further explain why the protocol in [19] and earlier construc-
tions [7, 9] cannot benefit from Cuckoo hashing.

USENIX Association 31st USENIX Security Symposium 2963

http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe

B.1 Details of the protocol in [19]

According to the design idea in [19], we first give the protocol
for (1,n)-PSU where the sender only holds an item x⇤ and
the receiver holds a set Y = {y1, · · · ,yn} in Figure 14. More
specifically, their protocol works in the following way: the
two parties first execute an OPRF sub-protocol for F , then
the sender obtains F(k,x) without knowing k and the receiver
obtains the PRF key k. After that, the receiver interpolates a
polynomial P over points {(y,s�F(k,y))}y2Y , where s is a
random value chosen by the receiver, and sends P to the sender.
Once receiving the polynomial P, the sender calculates s0 =
P(x)�F(k,x) and sends s0 to the receiver. Then the receiver
checks if s0= s. If not, meaning that x /2Y , the receiver obtains
x through OT, otherwise obtains a dummy item.

Kolesnikov et al. [19] extend (1,n)-PSU to the general
case (namely, (n1,n2)-PSU) by repeatedly using (1,n)-PSU.
Then in Figure 15, we give the protocol for (n1,n2)-PSU
where the sender and receiver hold X = {x1, · · · ,xn1} and
Y = {y1, · · · ,yn2}, respectively. Note that for each sender’s
item, both the secret value s and the key k for OPRF need
to be refreshed, otherwise the sender can learn information
about the intersection.

Parameters:
• A bit-length `;

• Ideal functionalities FOT and FOPRF (F(k,x) 2 {0,1}s);

• A collision-resistant hash function h(x) : {0,1}`! {0,1}s;

Inputs:
• Sender S : x⇤ 2 {0,1}`;
• Receiver R : set Y = {y1, · · · ,yn},yi 2 {0,1}`;

Protocol:
1. S acts as FOPRF receiver, sends x⇤ to FOPRF, and S

receives q⇤ = F(k,x⇤) and R receives k;

2. R randomly picks s $ � {0,1}s, and interpolates a
polynomial P(y) over points {(h(yi),s�qi)} where
qi = F(k,yi),8i 2 [n]. Here s�qi is computed as operation
on s-bit strings.

3. R sends the coefficients of P(y) to S ;

4. S computes s⇤ = P(h(x⇤))�q⇤ and sends it to R ;

5. S and R invoke FOT:

– R acts as receiver with input 1 if s⇤ = s and input 0
otherwise;

– S acts as sender with input (x⇤,?);

6. If s⇤ = s, then R gives output Y . Otherwise, it learns x⇤ and
outputs Y [x⇤.

(1,n)-PSU protocol in [19]

Figure 14: (1,n)-PSU protocol in [19].

B.2 Discussion about Cuckoo hashing
As for Cuckoo hashing, Kolesnikov et al. [19] pointed out that
"this hashing scheme (and the corresponding performance
improvement) does not immediately fit in the PSU case."
Recall that the protocols [7, 9, 19] share the same design
framework as in Figure 1. We can see that the sender’s set can
be inserted into Cuckoo hash table. Then, for the item in each
bin of Cuckoo hash table, the receiver will check if it belongs
to the intersection, if not, the receiver will get the item. Note
that the receiver also knows the item’s position in Cuckoo
hash table. Since the position of an item in Cuckoo hash table
is also affected by other items, the receiver can obtain partial
information about the sender’s entire input set based on the
received item and its position in Cuckoo hash table.

Parameters:
• A bit-length ` and n =max(n1,n2);

• Number of bins b = b(n), hash function H : {0,1}`! [b],
and max bin size m;

• A special item ?2 {0,1}⇤;
Inputs:

• Sender S : X = {x1, · · · ,xn1},xi 2 {0,1}`

• Receiver R : set Y = {y1, · · · ,yn2},yi 2 {0,1}`;
Protocol:

1. S and R hash items of their sets X and Y into b bins under
hash function H. Let BS [i] and BR [i] denote the set of
items in the sender’s and receiver’s i-th bin, respectively;

2. S pads each bin BS [i] with the special item ? up to the
maximum bin size m+1, and randomly permutes all items
in this bin;

3. R pads each bin BR [i] with one special item ? and
different dummy items to the maximum bin size m+1;

4. R initializes set Z = /0;

5. For each bin i 2 [b], for each item x j 2 BS [i]:

– S and R invoke the (1,n)-PSU sub-protocol in
Figure 14 and n = m+1:

* S acts as sender with input x j;

* R acts as receiver with input set BR [i];

* R obtains output Zi, j and sets Z = Z[Zi, j;

6. R outputs Z.

(n1,n2)-PSU protocol in [19]

Figure 15: (n1,n2)-PSU protocol in [19].

2964 31st USENIX Security Symposium USENIX Association

	Introduction
	Technical Overview
	Our Contributions
	Related Work

	Preliminaries
	Security Model
	Building Blocks

	Private Set Union via Shuffling
	Protocol PSUR: Shuffling Receiver's Set
	Protocol PSUS: Shuffling Sender's Set
	Cost Analysis

	Performance Evaluation
	Benchmarking Environment
	Performance Comparisons
	Scalability and Parallelizability
	Design for Unbalanced Datasets

	Leakage Analysis of Protocol in AC:KRTW19
	Discussion
	Additional Materials for Section 2: Building blocks
	Additional Materials for Section 5
	Details of the protocol in AC:KRTW19
	Discussion about Cuckoo hashing

