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Abstract
Tremendous progresses have been made in recent years

in developing better image captioning models, yet most of
them rely on a separate object detector to extract regional
features. Recent vision-language studies are shifting towards
the detector-free trend by leveraging grid representations
for more flexible model training and faster inference speed.
However, such development is primarily focused on image
understanding tasks, and remains less investigated for the
caption generation task. In this paper, we are concerned with
a better-performing detector-free image captioning model,
and propose a pure vision transformer-based image caption-
ing model, dubbed as ViTCAP, in which grid representations
are used without extracting the regional features. For im-
proved performance, we introduce a novel Concept Token
Network (CTN) to predict the semantic concepts and then
incorporate them into the end-to-end captioning. In particu-
lar, the CTN is built on the basis of a vision transformer, and
is designed to predict the concept tokens through a classifi-
cation task, from which the rich semantic information con-
tained greatly benefits the captioning task. Compared with
the previous detector-based models, ViTCAP drastically sim-
plifies the architectures and at the same time achieves com-
petitive performance on various challenging image caption-
ing datasets. In particular, ViTCAP reaches 138.1 CIDEr
scores on COCO-caption Karpathy-split, 93.8 and 108.6
CIDEr scores on nocaps and Google-CC captioning datasets,
respectively.

1. Introduction

The task of image captioning aims to generate human-
readable descriptive text from an image. Recent studies
have witnessed its great development which are primarily
reflected in the aspects of more advanced cross-modal fusion
architectures [11, 53, 58, 63, 66, 73, 75, 77, 81]; more expres-
sive object-centric features [4, 79] & tags [18, 25, 38, 67]
obtained from a pre-trained object detection model; or learn-
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Figure 1. Comparisons of different image captioning models.
Top: A general image captioning pipeline. Bottom: (a). Prevailing
conventional models [25, 39, 79] which are based on an object
detector to extract regional features. Object tags [38, 79] can be
optionally used to assist the text generation through a multi-modal
decoder network. This usually requires regional operations (REG.
OPE.) that are time consuming. (b). To eliminate the detection
module, a ResNet variant [22] or Vision Transformer [33] can be
applied as substitution to output the grid feature [71, 72]. This
replacement has been studied on the image understanding task
recently but very few works focus on the generation task. (c). Our
proposed ViTCAP, which is detector-free and incorporates a novel
Concept Token Network to predict semantic concepts as tokens for
the image captioning task.

ing general Vision and Language (VL) representations from
large image-text corpus [18, 38, 67, 71, 72, 82].

Despite these significant advances, most of the main-
stream captioning models [11, 53, 63, 81] rely heavily on a
bulky object detector to provide regional visual representa-
tions for the multimodal interaction, as shown in Figure 1-a.
In spite of the superior performance brought by the object
features, the ensuing difficulties occur as they: 1) lead to
heavy computational load due to the regional operations
(i.e., RPN, RoI Pooling, and NMS). These intermediate op-
erations unavoidably cause training inefficiency and high
inference latency at prediction stage [33, 67]; 2) require
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box annotations and largely limit the flexibility in training
and application. To address these challenges, there is an
emerging trend that more recent works propose to elimi-
nate the detector for the VL pre-training in an end-to-end
fashion [28, 29, 33, 71, 74]. In such detector-free design, a
general visual encoder serves as a substitute for the detec-
tor and from which the grid features are produced for later
cross-modal fusion, as in Figure 1-b. Heretofore, the major-
ity of these works mainly focus on the image understand-
ing task, which is typically cast as a classification problem,
and only a few of them shed light on the generation task.
In [72], the image is encoded with ResNet [22] and the per-
formance (117.3 CIDEr on COCO [72]) is still far from the
state-of-the-art detector-based approach (129.3 CIDEr with
VinVL-base [79]). The challenge remains uncharted and
insufficiently investigated regarding how to build a stronger
detector-free image captioning model.

Previous efforts [18, 25, 38, 67, 79] have demonstrated
that the object tags play an important role in improving
the captioning performance. Instead of gleaning the object
tags from the detector, we introduce a novel fully VIsion
Transformer based image CAPtioning model, dubbed ViT-
CAP, with a lightweight Concept Token Network (CTN) that
produces concept tokens (see Figure 1-c). ViTCAP is con-
structed on the basis of a vision transformer [13] as the stem
image encoder. Our vision transformer backbone starts with
encoding the image and produces grid features, on top of
which the CTN branch is then applied to predict semantic
concepts of images. We represent the semantic concepts at
the token level instead of the tag level to avoid the tokeniza-
tion. The multi-modal module then takes the input of both
grid representations and Top-K concept tokens for decoding.
During training, the CTN is optimized to predict the pseudo
ground-truth concepts extracted from image captions via a
simple classification task. We also investigate to adopt the
object tags from the detector as the pseudo ground-truth,
and empirically observe no further improvement. Overall,
this straight-forward design allows the injection of semantic
concepts into the multi-modal fusion module with abundant
semantics, and is critical for the improved captioning perfor-
mance.

Our ablative analysis suggests that, with no bells and
whistles, simple vanilla transformer architecture based ViT-
CAP 1) significantly outperforms existing detector-free cap-
tioning models; 2) surpasses most detector-based models and
3) approaches the state-of-the-art detector-based models. In
particular, ViTCAP achieves 138.1 CIDEr scores on COCO-
caption Karpathy split [43], 108.6 on Google-CC [61], and
95.4 on nocaps [1] datasets.
To summarize our contributions:

• We present a detector-free image captioning model ViT-
CAP with fully transformer architecture, where it leverages
grid representations without regional operations.

• We propose to inject semantic concepts into end-to-end
captioning by learning from open-form captions. We find
that our proposed concept classification training and con-
cept tokens significantly benefit the captioning task.

• Extensive evaluations on multiple captioning datasets con-
firm the validity of our method. ViTCAP achieves compet-
itive or even leading results amongst detector-based prior
arts with clear inference-time advantages.

2. Related Work
Image Captioning aims to produce an open-form and
human-readable textual description that summarizes the con-
tent of an image. Most previous captioning models unani-
mously [4, 15, 21, 25, 58, 63, 66, 73, 77] use detector based vi-
sual encoder like Faster-RCNN [57] to extract visual features,
and apply decoders like RNN, LSTM or Transformer for cap-
tion generation. Existing efforts on image captioning are re-
flected from the perspective of novel architectures [11,53,81],
more effective learning objectives [25, 48, 58], or large-scale
VL pre-training [38, 79, 82], etc. Some recent works [4, 81]
arrive at an empirical conclusion that a strong object detec-
tor is necessary, providing clean and unambiguous regional
features for objects. Li et al. [25, 38] show that object tags
output from the detectors play a critical role as anchoring
points in VL tasks across modalities. Following this, [79]
proposes to adopt a strengthened detector to obtain regional
features and expanded object tags covering both entities and
attributes for VL tasks. Nevertheless, object detectors hinder
the VL models to be deployed on edge devices, known for
their snail’s pace at inference.
Efficient VL Models. Several recent efforts build efficient
VL Models that either optimize the object detector for feature
extraction with faster inference speed, or adopt non-detector
image encoders. For instance, MiniVLM [67] first proposes
an EfficientNet [62] based lightweight detector. [29] revisits
grid features for VQA task with great performance and fast
inference speed. [14,28,33,71,72] also inherit such detector-
free design and use architecture like ResBlocks [22] for
image encoding. On the other side, DistillVLM [18] intro-
duces VL distillation that facilities VL pre-training & fine-
tuning for small transformer architectures; [20] proposes
to prune the transformer architecture and shows that close
performance can be maintained at 50%-70% model sparsity.

3. ViTCAP
Existing image captioning models usually consist of an

object detector module (Detector) to extract regional feature
(vT ) from the raw image ( I ), and a multi-modal module
(MM) to generate a textual description ( c ). Several recent
works [38, 79] show that the object tags (tT ) extracted from
the detector can serve as anchoring points across modalities,
and are essential for various VL tasks. This procedure can
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Figure 2. Architecture of our proposed ViTCAP image captioning model. ViTCAP is a detector-free image captioning model based on
the vision transformer, where image patches are encoded into continuous embeddings as grid representations. The CTN branch roots from
an intermediate block of the image encoder, and is a shallow transformer architecture (e.g., 4 self-attention blocks). The CTN is trained
via a classification task using object tags gleaned from the Teacher VLM’s detector as pseudo-labels and the keywords parsed from image
captions as the semantic concept ground-truth. During captioning, the CTN-produced concept tokens from the semantic concept vocabulary
are then concatenated with the grid representations and fed into the multi-modal module for decoding. Best viewed in color.

be expressed as follows:

(vT , tT ) = Detector( I ), c = MM(vT , tT ). (1)

Several VL models [28, 33, 72] obtain a great improvement
in inference speed by using general image encoders without
regional operations. However, these models are unable to
utilize the image tags due to the absence of a detector.

In this work, we aim to build a detector-free caption-
ing model with concept tokens containing rich semantics,
coming from a novel Concept Token Network (CTN). An
overview of ViTCAP is depicted in Figure 2. The raw image
is firstly fed into the image encoder to generate the interme-
diate representations (vi) and the final grid representations
(v). A CTN branch then takes vi as the input and predicts
concept tokens (t), followed by the multi-modal module
that allows the interactions across modalities and generates
caption (c). We adopt the fully transformer [64] framework
in all modules, but the image encoder and CTN modules
are not architecture-specific. The overall pipeline can be
summarized as:

(vi,v)=Encoder( I ), t=CTN(vi), c=MM(v, t). (2)

In the following, we first introduce how the vision trans-
former produces grid representations and our proposed CTN
in Section 3.1, and the overall training losses in Section 3.2.

3.1. Model Structure

Vision Transformer. The transformer architecture and its
instantiations (e.g., BERT [12], GPT [7]) are well-known for
their remarkable performances on natural language process-
ing tasks, which are mostly attributed to the self-attention

design. Recent efforts have advanced this to vision tasks, i.e.,
Vision Transformer (ViT) [13]. We use ViT as the backbone
of the image encoder to produce grid representations (vi
and v ). To be specific, the raw image I ∈ RH×W×3 is
partitioned into N disjoint patches. The size of each patch
is P ×P ×3 and the number of patches N is (HW )/P 2.
These patches are then flattened and projected into patch
embedding of dimension d via a trainable linear projection
layer. Concatenated with a special [CLS] token, these patch
representations are added with learnable positional embed-
dings and then sent into M consecutive transformer blocks
thereafter. To this end, we use the final representation as the
grid features v, and extract the output of the first M1 blocks
as the intermediate representations vi, which is the input
of the Concept Token Network for concept predictions as
detailed below.

Concept Token Network. The Concept Token Network
(CTN) is composed of M2 transformer blocks to process
the intermediate features vi. The output representation cor-
responding to [CLS] is used to predict the concept token
with a multi-linear perceptual (MLP) network. The vocabu-
lary of the concept token is identical with the one used for
the captions. It is noted that we predict the concept in the
token level rather than in the tag level, and thus the top-K
(K = 50 in our experiments) tokens can be directly used by
the multi-modal decoding module for auto-regressive decod-
ing. In [38, 79], the object tags are predicted from the object
detector, while we eliminate the detection module to remove
the dependency of the box annotations. Another difference
lies in the tag/concept vocabulary. The existing approaches
apply the tag list from the dataset as the vocabulary which



are pre-defined and need an extra tokenization operation.
Instead, our concept token vocabulary is shared with the one
for captions and also removes the tokenization step.

Multi-Modal Fusion Module. Our multi-modal fusion
module is a shallow network composed of multiple trans-
former blocks, and we follow [7, 55] to apply the seq2seq
attention mask to generate the caption token in an auto-
regressive way. First, the Top-K concept tokens’ indices are
mapped to token embeddings through an embedding layer
lc. Then, the module takes as input the concatenation of
concept token embeddings (t) and grid representations (v)
to generate the description, where we append a mask token
[MASK] to the previous generated tokens (empty at very
beginning) to predict the next token one by one. With the
seq2seq attention mask, the generated token (including
the appended [MASK] token) is able to access the preceding
tokens and (t,v), while (t,v) has no access to the generated
tokens. The generated caption token is also mapped through
an embedding layer ld. In experiments, we make the two
embedding layers (lc and ld) shared to reduce the parame-
ter size as the result is similar to two separate layers (see
Appendix for results).

3.2. Model Training

The training of ViTCAP is composed of the CTN and the
captioning training.

CTN is used to predict the image concepts. However, the
widely-used VL pre-training dataset contains only the image
descriptions without the tags. To address the issue, one can
simply retrieve the concepts from the open-form captions
(e.g., by extracting nouns or adjective words as keywords) as
the pseudo ground-truth concepts, or alternatively leverage a
pre-trained object detector (e.g. on Visual Genome [34]) to
produce the image tags (remove the bounding boxes). Empir-
ically, we observe that by using caption extracted concepts
lead to better results. We optimize the CTN to predict the tar-
get concepts via a multi-label classification task. Due to the
extremely imbalanced semantic concepts distribution (cer-
tain concepts appear much frequently than the rest), we adopt
the simplified asymmetric focal loss [6, 43, 44] which shows
great performances handling sample imbalance problems
for the multi-label classification task. The overall concept
classification loss can be expressed as:

Lvc = Evi∼Dfθ(p | vi), (3)

fθ(p | vi) =
1

K

K∑
k=1

{
(1− pk)γ+ · log(pk), +,

p
γ−
k · log(1− pk), −,

(4)

pk ∈ [0, 1] denotes the output probability for the k-th class
and ± specifies whether the class is the pseudo ground-truth
concept. Despite the rarity of positive samples, setting pa-
rameters γ+ < γ− decouples its decay rates from the deluge

of negative samples and emphasizes more the contribution of
the positive. We set parameters γ+ = 0 and γ− = 1 as [44]
in our experiment.

For the captioning training, the multi-modal module takes
the Caption-Concept Token-Feature triple (c, t,v) as input,
where c = {c1, . . . cT } are the masked input words after
tokenization and we set the mask probability = 15%. The
masked tokens are replaced with the special token [MASK].
The prediction of masked token at the position t is condi-
tioned on the preceding tokens (c<t), visual representations
(v) and the concept tokens (t). We train our model param-
eters θ by minimizing the negative log-likelihood over the
masked tokens:

Lcap = −ET∼D

[
log
∏

ĉt∼CM

Pθ(ĉt|c<t, t,v)
]
, (5)

where CM refers to the ground-truth set of the masked to-
kens.

Recent works [18,45] reveal that by leveraging the knowl-
edge distillation technique [24], the VL model can be im-
proved compared to the non-distilled counterpart using a pre-
trained Teacher VL model. In our training, we experiment
with applying a trained detector-based captioning model as
the Teacher (parameterized by θt), i.e., VinVL [79], to assist
the training of ViTCAP. Note that the Teacher model is a two-
stage VL model adopting regional features and object tags
from the detector, yielding discrepant visual features with
ViTCAP, and hence the distillation objectives like attention-
map loss and hidden-states loss are not directly applicable
as in [18]. We adopt the classification distillation loss over
the masked token probabilities between the predictions from
the Student (Pθ) and Teacher (Pθt ) models:

Ldis = ET∼D

[ ∑
ĉt∼CM

KL
(
Pθ(ĉt), Pθt(ĉt)

)]
, (6)

where KL( , ) is the Kullback–Leibler divergence. Overall,
our final loss is then the combination of the terms:

L = Lvc + Lcap + Ldis. (7)

4. Experiment

We now introduce the implementation details of ViT-
CAP and empirically verify the validity of our proposed
training schema from different aspects. To highlight the
generalizability of ViTCAP, we benchmark performances of
ViTCAP and compare it with prior arts on multiple image
captioning testbeds. We then exhaustively study the effect
of our proposed concept tokens, the benefits of pre-training
at scale, the effect of VL distillation, etc. In the end, we vi-
sualize the attention maps of ViTCAP and provide in-depth
discussion.



4.1. Datasets

Pre-training Datasets. In our experiment, we aggre-
gate image-text pairs from Google-CC [61], SBU Caption
dataset [51], MS COCO [43] and Visual Genome dataset [34]
to form the pre-training corpus. In total, our pre-training cor-
pus contains 9.9M image-text pairs and 4.1M independent
images, and we follow [47] to de-duplicate testing images
exist in evaluating datasets. Details of the pre-training corpus
can be found in the Appendix.
Evaluation Datasets. We report performances of ViT-
CAP on COCO captions (Karpathy split) [43], Google-
CC [61], and nocaps [1] datasets. We follow Karpathy’s
split and use 113k, 5k and 5k images for training, valida-
tion and testing respectively on MS COCO dataset. As re-
gards to Google-CC, we follow [61] and use its training split
containing 3M image-text pairs for training, and report the
performances on validation split with 16K image-text pairs.
To test the generalization of ViTCAP, we also report the
performances on nocaps dataset [1], a benchmark consisting
of 166k human-generated captions describing 15k images in
the wild collected from the OpenImages dataset [60].

4.2. Implementation Details

Architecture. Our ViTCAP is based on a Vision Trans-
former base (ViT/b) architecture consisting of M = 12
consecutive transformer blocks, with hidden size as 768, and
12 attention heads. In our experiment, we set the patch size
as 16×16 and resize the shorter side of the image to 384. We
use M1 = 8 transformer blocks in Stem Image Encoder to
extract the intermediate grid representations and useM2 = 4
transformer blocks for the CTN branch. When enlarging the
size of CTN and Feature Extractor to M2 = 12 transformer
blocks, it is equivalent to two independent networks for the
computation of Concept Token/Embedding and Grid Feature
respectively. We adopt this design with more learnable pa-
rameters in our ViTCAP with large scale pre-training (see
ViTCAP∗ in Table 1). Data augmentations are applied on
raw images before the linear projection as [13] including
ColorJitter, horizontal flipping, etc.
Two-stage Training. Training both the CTN branch jointly
with the captioning task jointly from scratch is challenging,
we observe that using a pre-trained CTN with stable and
consistent concept prediction throughout the training leads
to superior captioning results. Thus in practice, we first
conduct concept classification training for a good concept
prediction, and then train the model with both tasks. Such
strategy prevents the “cold-start” issue when the initially pro-
duced concepts are mostly random, impairing the captioning
training. During the joint captioning & concept branch train-
ing, we reduce the learning rate for both the Stem Image
Encoder and CTN branch by a factor of α (α = 10) and keep
the predicted concepts relatively consistent but still slowly

adapted throughout the training.

• Concept Classification. The concept classification is con-
ducted on an aggregated dataset with 4.1M images (see
later section for details). To obtain the pseudo ground-
truth concepts, we experiment with using the NLTK [46]
toolkit to parse out the nouns and adjectives as the target
concepts, or simply use all tokens in captions as targets for
the classification task. For the detector-produced tags, we
take advantage of a ResNeXt-152 C4 architecture based
object-attribute detector that has been well-trained [79] to
produce image tags as pseudo-labels for concept classifi-
cation training. We only retain image tags with confidence
score > 0.2 from the detector and acquire 50 tags at most
per image. For classification training, the model is initial-
ized from the ImageNet-21k [35] pre-trained checkpoint1,
and is optimized for 10 epochs using AdamW [56, 78]
optimizer. The batch size is 1, 024. The initial learning
rate is 5e− 5 and is linearly decayed to 0.

• Captioning Training. For the joint optimization, we ap-
ply the well-trained model after concept classification to
initialize Stem Image Encoder, CTN and the feature ex-
tractor. The initial weights in the feature extractor are
copied from the CTN branch, as the architecture for grid
feature extractor is the same as the CTN branch. We set
base learning rate lr = 1e− 4, batch-size = 512 and train
the model for 30 epochs using AdamW optimizer, and set
weight decay= 0.05.

Evaluation. We evaluate the quality of the generated cap-
tions using the prevailing metrics including BLEU@4 [54],
METEOR [5], CIDEr [65], ROUGE [41] and SPICE [3].
During inference, we use beam search (beam size = 1)
for decoding. There exist many evaluating metrics study-
ing the qualities of the generated captions, including Self-
CIDEr [69], SMURF [19] and from different aspects [23, 30,
70]. In the Appendix, we conduct more studies studying the
diction quality of our generations using SMURF [19] metric.

4.3. Main Results

We perform extensive comparisons of ViTCAP with the
prior arts. Table 1 presents the captioning results on MS
COCO dataset where the models are trained with cross-
entropy loss or optimized with CIDEr as reward [58]. We
compare ViTCAP with 1). “detector w/o VLP” models with
complex architectural modifications. These models [11,
27, 53, 81] all come unanimously with heavy computational
burdens and extra learnable parameters. 2). “detector w.
VLP”: prevailing detector-based VL models pre-trained with
a large VL corpus and then fine-tuned on image captioning
tasks. 3). “detector-free” methods: the end-to-end trainable

1https://github.com/lucidrains/vit-pytorch.

https://github.com/lucidrains/vit-pytorch


Methods V. ENC. # I-T
Cross-Entropy Loss CIDEr Optimization

B@4 M R C S B@4 M R C S
Detector w.o. VLP

RFNet [31] Ensemble 7 35.8 27.4 56.5 112.5 20.5 36.5 27.7 57.3 121.9 21.2

BUTD [4] F-RCNN101 7 36.2 27.0 56.4 113.5 20.3 36.3 27.7 56.9 120.1 21.4

LBPF [76] F-RCNN101 7 37.4 28.1 57.5 116.4 21.2 38.3 28.5 58.4 127.6 22.0
SGAE [75] F-RCNN101 7 36.9 27.7 57.2 116.7 20.9 38.4 28.4 58.6 127.8 22.1

AoANet [27] F-RCNN101 7 37.2 28.4 57.5 119.8 21.3 38.9 29.2 58.8 129.8 22.4

M2 Transfm. [11] F-RCNN101 7 - - - - - 39.1 29.2 58.6 131.2 22.6

X-LAN [53] F-RCNN101 7 38.2 28.8 58.0 122.0 21.9 39.5 29.5 59.2 132.0 23.4

RSTNet [81] RESNeXt152 7 - - - - - 40.1 29.8 59.5 135.6 23.3
Detector-Free w.o. VLP

ViTCAP (Ours) ViTb 7 35.7 28.8 57.6 121.8 22.1 40.1 29.4 59.4 133.1 23.0
Detector w. VLP

UVLP [82] F-RCNN101 4M 36.5 28.4 - 116.9 21.2 39.5 29.3 - 129.3 23.2

MiniVLM [67] Eff-DET 14M 35.6 28.6 - 119.8 21.6 39.2 29.7 - 131.7 23.5

DistillVLM [18] Eff-DET 7M 35.6 28.7 - 120.8 22.1 - - - - -
OSCARb [38] F-RCNN101 7M 36.5 30.3 - 123.7 23.1 40.5 29.7 - 137.6 22.8

UNIMOb [37] F-RCNN101 9M 38.8 - - 124.4 - - - - - -
VL-T5 [10] F-RCNN101 9M - - - 116.5 - - - - - -
VinVLb [79] RESNeXt152 9M 38.2 30.3 - 129.3 23.6 40.9 30.9 - 140.4 25.1
Detector-Free w. VLP

ViLT-CAP ♠ ViTb 10M 33.7 27.7 56.1 113.5 20.9 - - - - -
E2E-VLP [72] ResNet50 6M 36.2 - - 117.3 - - - - - -
ViTCAP∗ (Ours) ViTb 10M 36.3 29.3 58.1 125.2 22.6 41.2 30.1 60.1 138.1 24.1

Table 1. Performance comparisons on COCO-caption Karpathy split [32], where B@4, M, R, C denote BLEU@4, METEOR, ROUGE-L,
CIDEr and SPICE scores. All values are reported as percentages (%). We compare the ViTCAP with previous state-of-the-art detector-based
baselines (without the VLP) in the first section, and detector-based baselines (with large scale pre-training) in the third section, and the
detector-free methods with pre-training in the last section. V. ENC. denotes visual encoders for feature extraction; # I-T refers to the number
of image-text pairs used in pre-training (in millions). ViTCAP∗ is a larger version of ViTCAP with more parameters. ♠ is the results we
achieved using the ViLT [33] pre-trained checkpoint for image captioning task (see Appendix for more explanation).

image captioning models without object detector (with or
without pre-training).
Without VLP. To compare fairly with the detector-based
baselines without VLP, we adopt the VinVL tags as con-
cept sources instead of the captions to guarantee that no
additional captions have been exploited during the concept
classification training. Note that the knowledge distillation
objective is not applied for this experiment as it introduces
extra knowledge from the pre-training of Teacher model. On
COCO-caption Karpathy split, our ViTCAP achieves simi-
lar results and even surpasses most existing detector-based
methods, i.e., CIDEr score 121.8, using caption extracted
concepts. It is worth mentioning that the architectures of
most existing detector-based methods are deliberately de-
signed, e.g., the self-attention module in X-LAN [53] has 2nd

interactions for multi-modal inputs, M2 Transformer [11] has
the multi-level representation of the relationships between
image regions, etc. ViTCAP adopts the simplest vanilla
transformer architecture without any bells and whistles. This
proves the effectiveness of our proposed learning paradigm.

The ablations in the later section comprehensively explore
the benefits of CTN and the knowledge distillation technique.
With VLP. We observe a clear performance gain of ViT-
CAP after the large scale pre-training (3.0 higher CIDEr
scores), better than most detector-based VL methods: e.g.,
125.2 vs. 123.7 (OSCARb), and 0.8 higher than UNIMOb,
8.7 higher than VL-T5 when pre-trained on similar VL cor-
pus. This conclusion is further supported by results of other
metrics. ViTCAP approaches the state of the art, only 2.3
lower than VinVL in CIDEr scores after CIDEr optimization,
considering the fact that VinVL used ResNeXt152-based
object detector. Compared with detector-free baselines, ViT-
CAP outperforms all existing works with an obvious discrep-
ancy: 11.7 CIDEr scores higher than the ViLT-CAP [33] and
7.9 higher than E2E-VLP [72].

4.4. Ablative Study

We now comprehensively study ViTCAP’s performance
gain from different aspects, i.e., knowledge distillation, the
effect of concept tokens, and large-scale pre-training.



Concept Source
COCO Captioning

B@4 M R C S
7 33.9 27.8 56.4 114.8 21.3

BUTD [4] 35.0 28.2 56.9 117.4 21.3

VinVL [79] 35.6 28.6 57.4 119.7 21.8

CAPTION 35.6 28.7 57.6 120.9 21.8

VinVL → CAP.♠ 35.9 28.6 57.6 121.3 21.9

CAPTION♠ 35.7 28.8 57.6 121.8 22.1

Table 2. Adopting various sources of semantic concept leads to
different performances. “CAPTION” represents the baseline ex-
tracting keywords from open-form captions; “♠” is the baseline us-
ing all words in captions as target concepts; “BUTD” and “VinVL”
represent using the object tags produced by the object detector
from [4] and [79] as target semantic concepts, respectively. “VinVL
→ CAP.” represents adopting detector tags [79] during first stage
of concept classification and using caption extracted tags during
the second stage.

Semantic Concept Sources. We study the effects of dif-
ferent semantic concept sources, i.e., from object detec-
tors [4, 79], captions-extacted concepts, and the combina-
tion of them. Table 2 lists the performances of ViTCAP on
the COCO caption dataset with various semantic concepts
sources. Open-form captions are the most accessible source
to directly obtain semantic concepts, although these descrip-
tions can sometimes be noisy, inaccurate and incomplete.
“CAPTION” in Table 2 is the result using nouns and adjec-
tives parsed from captions using NLTK [46] toolkit as target
concepts. This leads to an obvious improvement over the
baseline (without CTN): CIDEr 120.9 vs. 114.8. We also
attempt to leverage all tokens from the captions as concept
targets in case of omitting essential words during parsing
(see “CAP.♠”), which brings further incremental improve-
ment and yield best result. Although using all tokens in the
caption might inevitably introduce more noisy or irrelevant
words, e.g., connection and stop words, it also broadens the
semantic concepts vocabulary as some rare entities/attributes
might be missed using just keywords.

We then experiment with using the detectors in [79]
and [4] to produce image-level tags as target concepts. We
observe that using the detector of VinVL yields better per-
formances than BUTD, i.e., 119.7 vs. 117.4 CIDEr scores.
This is mainly because of the more diverse collection of
semantic concepts involved in [79] than BUTD [4]. The
second last row is the experiment where the model is firstly
trained using VinVL tags on large scale dataset (in the first
stage), and then using the caption tokens during the second
stage of captioning. This indicates that, when no captions
are attainable, it is also viable to leverage detector-produced
tags to improve the performance.
Effect of Different Modules. In Table 3, we show in details
the independent performance gains from each design, viz.,

Methods Cross-Entropy Loss
B@4 M R C S

ViT/B 33.9 27.8 56.4 114.8 21.3

ViT/B+ KD 35.4 28.5 57.5 120.0 21.7

ViT/B+ CTN-TAG 35.2 28.0 57.0 117.1 21.4

ViT/B+ OD-TAG 34.3 28.2 57.4 117.4 21.7

ViTCAP+ CTN-TOK 35.7 28.8 57.6 121.8 22.1

ViTCAP+ CTN-TOK+ PRE+KD 36.3 29.3 58.1 125.2 22.6

Table 3. Comparisons of ViTCAP with or without knowledge distil-
lation, large-scale pre-training and with CTN. Performances are re-
ported on COCO-caption Karpathy split optimized by cross-entropy
loss. +OD-TAG indicates the result using the detector produced off-
the-shelf tags as [38]. +CTN-TOK is the result of ViTCAP using the
initialization after first-stage concept classification. KD and PRE are
results obtained with masked token classification distillation and
pre-training at scale respectively.

with or without concept tokens, masked token distillation
loss, pre-training and the combinations of them. We report
the result of the baseline model which reaches CIDEr scores
114.8 on COCO caption dataset. With the aim of isolating
the performance gain from concept tokens, we first decode
the image-level semantic concepts and store them as offline
tags for the captioning task. We then follow [38] to tokenize
them and concatenate the tag embedding with visual features
for captioning task. This allows us to directly compare the
effect of CTN-produced concepts with detector tags without
the concept classification initialization. Adopting the explicit
tags predicted by the CTN leads to obvious improvements:
2.3 higher CIDEr and 1.3 higher BLEU@4 scores, reaching
similar results with that using VinVL’s detector tags directly
(see ViT/B+OD-TAG): 117.4 vs. 117.1 CIDEr scores. This
proves that our generated semantic concepts play a signifi-
cant role in the captioning task and have a similar effect as
the VinVL’s detector tags. Next, we apply the pre-trained
weights after the concept classification to initialize the ViT-
CAP for the captioning task, and find further improvement
(see ViTCAP+CTN-TOK). This proves that both the predicted
concept tokens and the concept classification training are
beneficial for captioning tasks. For the knowledge distil-
lation experiment, we use the VinVL-base [79] optimized
on COCO-caption dataset as the Teacher and keep it frozen
during distillation. The application of KD on masked token
prediction (ViT/B+KD) is also evidently helpful: there is an
over 5.0 CIDEr scores improvement over the baseline. Note
that the KD objective is only applied in the downstream for
the ViTCAP baseline after VLP for fair comparison with
previous works. Finally, by pre-training the ViTCAP with
large scale VL corpus continuously contributes to the results.
Performances on other Benchmarks. To evaluate the gen-
eralizability of ViTCAP, we continue to expand the testbeds
to other challenging captioning benchmarks, i.e., Google-
CC [61] and nocaps [1] datasets. For the Google-CC dataset,



Methods CC-3M dev
CIDEr

FRCNN [8] 89.2

Ultra [8] 93.7

ViLT-CAP [33]♠ 83.8

VinVL [79]♠ 103.4

CC-3M [9] 100.9

CC-12M [9] 105.4

ViTCAP 108.6 +3.2

Table 4. Performances of ViT-
CAP model on Conceptual Captions
(Google-CC 3M dev-split) [61] bench-
mark. We compare with the baseline
methods FRCNN [8], Ultra [8] and [9].
The ViLT-CAP♠ and VinVL represent
our reproduced results with pre-trained
checkpoint from [33] and [79].

nocaps validation set
Methods in-domain near-domain out-of-domain overall

C S C S C S C S
Human 84.4 14.3 85.0 14.3 95.7 14.0 87.1 14.2
UpDown [1] 78.1 11.6 57.7 10.3 31.3 8.3 55.3 10.1

UpDown + CBS 80.0 12.0 73.6 11.3 66.4 9.7 73.1 11.1

UpDown + ELMO + CBS 80.0 12.0 73.6 11.3 66.4 9.7 73.1 11.1

OSCAR [38] 79.6 12.3 66.1 11.5 45.3 9.7 63.8 11.2

OSCAR + CBS 83.4 12.0 81.6 12.0 77.6 10.6 81.1 11.7

VIVO [25] 90.4 13.0 84.9 12.5 83.0 10.7 85.3 12.2

VIVO + CBS 92.2 12.9 87.8 12.6 87.5 11.5 88.3 12.4

ViTCAP 99.3 13.2 90.4 12.9 78.1 11.9 89.2 12.7

ViTCAP + CBS 98.7 13.3 92.3 13.3 95.4 12.7 93.8 13.0
∆ +6.5 +0.4 +4.5 +0.7 +7.9 +1.2 +5.5 +0.6

Table 5. Performances of ViTCAP in nocaps validation split. We compare our ViTCAP with
previous state-of-the-art models at “in-domain”, “near-domain” and “out-of-domain”. Re-
sults are reported with constrained beam search (CBS) decoding [2].

we train the ViTCAP on the training split, which consists
of ∼3.3M image-caption pairs, and test it on the dev split.
We follow the same training protocols as previously men-
tioned and optimize the ViTCAP for 120 epochs. Follow-
ing previous works, we evaluate the performances using
the CIDEr metric and Table 4 shows the results of ViT-
CAP compared with previous captioning models. In par-
ticular, ViTCAP achieves the state-of-the-art results CIDEr
108.6 scores (without the knowledge distillation), surpassing
all detector-based captioning models. CC-12M is the model
trained with 12M image-caption pairs [9]. Again, when
evaluating on nocaps dataset, ViTCAP shows promissing re-
sults across all in-domain, near-domain, and out-of-domain
splits. For example, ViTCAP achieves 98.7 and 93.8 CIDEr
scores on in/out-domain splits, 6.5 and 5.5 higher than the
VIVO [25], which exploits OpenImage [36] dataset to learn
semantic concepts for captioning task. The great generaliza-
tion ability of ViTCAP can be partly ascribed to its ability
to recognize expansive semantic concepts extracted from the
open-form captions. Compared to predicting the pre-defined
tags as in the detector, the usage of caption extracted con-
cepts largely expands the concept vocabulary. This provides
the ViTCAP with robust and broad concept tokens, which is
essential for the images with novel concepts.

Qualitative Examples. We show visualization examples
of the attention maps from ViTCAP in Figure 3 together
with their generated concepts&captions. Interestingly, we
observe obvious correlations between the attended regions
across different layers and predicted concepts. For example,
“dog” is notably highlighted according to the mean-averaged
attention maps, yet the “man” is more attended in shallower
transformer blocks. We conjecture that instead of relying
on an object detector to glean object locations, training the
detector-free VL model properly via image-text supervisions
might potentially lead to a strong grounding model.

Lay. 1 Lay. 4 Mean Att.

Pred. Concept:[dog, bench, man, white, park, leash …]

Pred. Concept:  [wine, motorcycle, stand, bar, shelf, blue …]

Pred. Caption: A man sitting on the bench with a dog in park.

Pred. Caption: A motorcycle parked in front of a bunch of bottles of wine.

Figure 3. Visualization of the attention maps from ViTCAP and its
produced concepts&captions. “ ” refers to the concepts appear
in captions. Best viewed in color.

5. Conclusion

In this paper, we propose the ViTCAP, a detector-free
image captioning model in the full transformer architec-
ture fashion. Compared with existing captioning models,
ViTCAP can be trained in an end-to-end fashion without
intermediate regional operations using grid representations.
Our proposed Concept Token Network learns broad seman-
tic concepts and encodes them as the concept tokens that
largely benefit the captioning task on a series of challeng-
ing captioning benchmarks. Extensive experiments indicate
that ViTCAP achieves competing performances, approach-
ing most detector-based models. We anticipate that ViTCAP
will lead to more future works in building efficient Vision
and Language models.
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Supplementary Materials

In this supplementary materials, we provide additional de-
tails about experimental settings, and then further compare
effect of different semantic concept sources, more ablative
studies regards training, different architectural instantia-
tions, and further showcase more qualitative examples of
predicted semantic concepts.

Source VG [34] COCO [43] CC [9] SBU [51]

Image 108K 113K 3.1M 875K
Text 5.4M 567K 3.1M 875K

Table 6. Statistics of the VL pre-training datasets.

6. Pre-training VL Corpus
As previous works in [79], we carry out the pre-training

of ViTCAP on the aggregation of several common datasets,
which include COCO [43], Conceptual Caption [9], SBU
Captions [51], and Visual Genome [34]. We have the detailed
statistics of the aggregated datasets in Table 6. In total, we
use 4.2 millions of images and 9.9M captions for the pre-
training. Following [47], we de-duplicate images that exist in
both pre-training corpus and COCO Karpathy testing splits
for fair comparisons.

7. Ablative Studies
This section further presents additional ablative studies

about ViTCAP, which includes: some examples and basic
statistics about semantic concepts, the effect of different
concept sources, results of different concept classification
losses, different other training strategies.
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Figure 4. Inference speed in FLOPs (in G), number of parameters
(in M) of multiple VL models and ViTCAP.

Examples and Stats of Concepts. In practice, we experi-
ment with utilizing semantic concepts gleaned from 1). open-
form image captions by language parsing (or simple as using
all tokens as classification ground-truth) or 2). an object
detector.

As previously mentioned, we notice that the concepts
from both sides are all severely long-tailed distributed (an
example of the detector-produced concept distribution is
shown in Figure 5). Notably, certain concepts appear
more frequently across the whole COCO training split, e.g.,
“person”, “tree”, “window” obviously exist far more
frequent than the remaining. We also resort to different ob-
ject detectors to acquire high-quality semantic concepts, i.e.,
a ResNet101 base Faster-RCNN [4] that has been pre-trained
on Visual-Genome dataset [34] (denoted as BUTD), and
a ResNext152 based modified Faster-RCNN detector with
broader categories of the visual attribute as detection targets
(denoted as VinVL). These detector-produced image-level
tags are actually accurate with less noise than in captions, but
they also require a pre-defined categorical dictionary with a
fixed set of concepts. This largely limits the scope of their
applications.

In Figure 4, we present the inference speed and the num-
ber of learnable parameters of prevailing detector-based VL
models compared with ViTCAP Notably, with on-par pa-
rameters, ViTCAP consumes only ∼ 10% FLOPs of the
prevailing VL models (97G for ViTCAP vs. 1, 025G for
VinVL).

More About Concept Sources. Open-form captions are the
most ideal source to obtain semantic concepts as they natu-
rally carry abundant semantic concepts with no vocabulary
limitation. Notwithstanding that most of these descriptions
can be noisy, inaccurate, and incomplete. In practice, we
leverage different ways to extract the concepts from them
by 1) using the NLTK [46] toolkit and parsing out only the
nouns and adjectives as the semantic concepts for the classi-
fication task (see “CAPTION” baseline in main paper); 2)
we also simply attempt to leverage all tokens from the cap-
tions as concept targets in case of omitting essential words
during parsing (see “♠” in main paper). We first extract
these tags as “off-the-shelf ” annotations for the concept clas-
sification task and then apply the initialization of ViTCAP
after the first stage of training for the joint captioning train-
ing. Note that we conduct and compare all these ablations
without VL pre-training. It is beneficial to further adopt the
concept classification loss during the joint training, as the
semantic concepts in the COCO-caption dataset vary with
the concept classification dataset. Also, captions in these
two domains might vary from the aspect of textual styles: for
example, length of captions, the use of synonyms, cognate
and conjugate words, or various tenses.

Concept Classification Training. We now study the ef-
fect of different losses for the concept classification task,
namely binary cross-entropy loss and focal loss, and the ef-
fect of the initialization after the classification training. The
extremely imbalanced sample distribution usually leads to
sub-optimal classification performances, as also studied in
previous works like face recognition [49, 80] and object de-
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Figure 5. Top-150 most frequently appeared semantic concepts
produced by VinVL’s object detector. The produced tags are
severely long-tail distributed and certain concepts dominates across
all samples. This arises the necessity to apply focal loss as counter-
measure.

tection [40, 52], etc. As countermeasures, there exist works
designing advanced losses [42, 80] re-weighting different
samples. In Table 7, we list the performances of ViTCAP
using different losses. In specific, the top-two rows are the
baseline results 1). Baseline: vanilla Encoder-Decoder ar-
chitecture without CTN branch, and 2). Encoder-Decoder
architecture using VinVL’s OD tags as [38]. “Tag” denotes
the results are reported using concepts as the offline tags

COCO Captioning

EPOCH B@4 M R C S
Baseline - 33.9 27.8 56.4 114.8 21.3

VinVL-Tag - 35.4 28.1 57.2 117.7 21.3

BCETag 10 33.9 27.9 56.5 115.0 21.4

FOCALTag 10 35.2 28.0 57.0 117.1 21.4

FOCALTag+Init 10 36.0 28.4 57.5 120.5 22.0

FOCALInit 10 35.0 28.2 57.1 118.0 21.6

FOCALTag+Init 40 35.9 28.4 57.6 121.1 22.1

Table 7. Performances of ViTCAP using focal loss, binary classifi-
cation loss as concept classification training target.

without concept classification & its initialization. We ob-
serve that by applying the BCE loss trained offline concepts
as offline tags, the results are only incrementally improved
over the baseline, and it still shows a great performance gap
w.r.t. the VinVL’s tag. Notably, using focal loss obviously
improves the quality of produced concepts, reaching 117.1
CIDEr scores. To this end, we apply the concept classifi-
cation pre-trained initialization, and this further improves
the performances to a great extent. It is discernible that the
experiment “Init” gives worse result than the “Tag+Init”. This
validates that both the concept classification task and the pre-
dicted concepts are helpful for the captioning task. Results
show that they are complementary to each other.

Tokenization
COCO Captioning

B@4 M R C S
Caption Tokenizer 35.5 28.5 57.5 119.7 21.8

Classifier Tokenizer 35.6 28.4 57.4 119.8 21.8

Independent Tokenizer 35.9 28.5 57.6 120.1 21.9

Table 8. Performances of ViTAP using different strategies for
concept tokenization.

Representing Concepts as Tokens. There are multiple
ways to encode the predicted concepts as continuous em-
bedding for the decoding stage. We study three different
ways of encoding and present the results in Table 8, namely,
1). use the tokenizer for captioning, 2). use the concept
classifier’s tokenizer (in concept classification, we simply
use the BERT tokenizer to encode the semantic concepts),
3). use an independent and untrained tokenizer. Though
in practice, all three tokenizers are implemented based on
the BERT tokenizer [12], the embeddings from the three
are entirely different. From the results, we observe a fairly
negligible performance gap: using an independent tokenizer
only yields a 0.4 higher CIDEr score. Though adopting an
independent tokenizer yield the best result, it introduces ad-
ditional parameters and thus we choose to share the tokenizer
for captioning instead.



COCO Captioning

B@4 M R C S
GT Concepts 35.5 28.4 57.3 119.1 21.7

GT + PRED. Concepts 35.2 28.5 57.3 119.2 21.8

PRED. Concepts 36.1 28.6 57.6 120.6 21.7

Table 9. Performances of VitCAP using either ground-truth con-
cepts for captioning, the concept network predicted concept tokens
or the mixture of them during training.

We experiment with different ways to train with the con-
cept tokens. In Table 9, we list the results of training us-
ing GT semantic concepts encoded as tokens, GT concepts
mixed with predicted concepts, and fully predicted concepts.
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Figure 6. The overall training paradigm of ViTCAP can be un-
derstood as the knowledge distillation procedure where a detector-
based Teacher VLM to assist the training of ViTCAP as a knowl-
edge distillation paradigm. The CTN branch in ViTCAP learns to
predict the semantic concepts as conceptual tokens for captioning.

We find that by using the predicted concepts for training
leads to optimal results. This is mostly because the pre-
trained CTN can already produce reasonable concepts at the
captioning fine-tuning stage.

ViTCAP Architecture. To give a more detailed explanation
of the architecture of ViTCAP: it consists of a stem image en-
coder with 8 transformer blocks (shared for both grid feature
extractor and CTN), a CTN branch with 4 transformer blocks,
and a grid feature extractor with 4 transformer blocks, the
multi-modal module is also a 4 transformer blocks module.
When M1 = 12, the model can be understood as consisting
of two parallel branches, with one for concept prediction
and one for grid representation. We does find that mini-
mizing the shared blocks can bring extra performance gains

Architecture
COCO Captioning

B@4 M R C S
SIN-TOW32×32 32.5 27.1 55.4 109.5 20.2

+EFF. OD-Tags 32.8 27.4 55.5 110.9 20.6

+VinVL-Tags 33.5 27.8 56.1 114.6 21.1

ENC-DEC32×32 33.4 27.5 56.0 112.1 20.6

+EFF. OD-Tags 33.8 27.9 56.4 114.6 21.3

+VinVL-Tags 34.4 27.9 56.6 115.8 21.1

+ViTCAP-Tags 34.0 27.7 56.3 114.2 20.8

SIN-TOW16×16 33.8 27.8 56.2 113.9 21.0

+EFF. OD-Tags 33.8 27.9 56.4 114.6 21.3

+VinVL-Tags 34.3 28.2 56.7 117.4 21.7

ENC-DEC16×16 33.9 27.8 56.4 114.8 21.3

+VinVL-Tags 35.4 28.1 57.2 117.7 21.3

+ViTCAP-Tags 35.2 28.0 57.0 117.1 21.4

ViTCAP 35.7 28.8 57.6 121.8 22.1

Table 10. We compare different instantiations of ViTCAP with
architectural variations of ViT based captioning model: single-
tower (SIN-TOW), encoder-decoder structure (ENC-DEC), two-
tower ViTCAP, and ViTCAP with various numbers of sharing
blocks in stem image encoder. All experiments are conducted
without VL pre-training and are trained by cross-entropy loss.

but this inevitably increases the model size very obviously.
We only adopt this two-tower design in the experiment with
large scale pre-training where we follow a two-step training
schema as OSCAR [38]: we first leverage the CTN to predict
the semantic concepts of all pre-training images; Then, we
use these concepts as the off-the-shelf tags (similar as the
object detector tags) for the pre-training.

Architectural Variations. We then experiment with dif-
ferent architectural variations of ViTCAP and report their
performances on COCO-caption in Table 10. The baseline
models include single-tower (SIN-TOW) that shares the ViT
backbone for both modalities; Encoder-decoder (ENC-DEC)
that use a ViT as visual encoder and 4 separate transformer
blocks as modal fusion. This is similar to [33], however,
we modify it by using seq-to-seq attention maps for the
captioning training which prevents the model from seeing
bidirectional context; Two-tower (TWO-TOW) uses an in-
dependent ViT/b architecture as a conceptual token network
and another architecture as the visual encoder.
More Evaluations. In addition to previous benchmarks, we
also use the recently proposed rule-based SMURF metric
which demonstrates SOTA correlation with human judgment
and improved explainability. SMURF is the first caption
evaluation algorithm to incorporate diction quality into its
evaluation. We observe that our method preserves both se-
mantic performance and the descriptiveness of terms used in
the sentence.



Methods SMURF

w/ only periods removed
VinVL 0.66
M2 Transformer 0.49
X-Transformer 0.51
ViTCAP 0.55

w/ all punctuation removed
VinVL 0.59
M2 Transformer 0.42
X-Transformer 0.46
ViTCAP 0.49

Table 11. Performance of ViTCAP comparing with previous mod-
els under SMURF [19] metric. Note that this results is evaluated
using ViTCAP without pre-training.

8. Discussions

Qualitative Examples. We demonstrate more qualitative ex-
amples of the attention maps produced by ViTCAP together
with their predicted semantic concepts in Figure 7.

Can ViTCAP Ground Concepts? Interestingly, we ob-
serve that the attention maps produced from transformer
blocks closely relate to the concepts and various layers have
different focuses while the averaged attention maps cover
broad holistic regions. We present more visualizations in
Figure 8 which contain a single object per image for more
direct analysis. The topmost row is a picture with multiple
“wild gooses” and all regions of them are highlighted
according to the attention maps. Despite so, it seems ViT-
CAP suffers from identifying the clear borders of the object
that it may only recognize part of the objects, e.g., ViTCAP
only highlights the part of the “traffic light” and the
“tie”. This indicates the potential application of ViCAP
for weakly supervised textual grounding tasks for the im-
age [16, 17, 59, 68] and video [26, 50].

VL Distillation Schema. Our distillation schema can be
indeed viewed as an extension of the VL distillation schema,
where the Student model not only mimics the predicted
masked token probability but also learns from the Teacher
OD’s object tags. As is shown in Figure 6. Note that our
distillation technique is only applied on the ViTCAP with VL
pre-training, as the teacher VL model contains knowledge
acquired from large-scale pre-training and so it is unfair
to compare the ViTCAP with other methods without VL
pre-training.

Detector Tags vs. Caption Extracted Concepts. Empirical
studies show that the caption extracted concepts lead to
better ViTCAP. We conjecture that this is mainly because
the captions contain much broader image concepts contained

in open-form texts, yet the detector tags are pre-defined with
much more limited vocabulary. However, perfectly aligned
image-text pairs are not always attainable considering that
most existing image-level annotations are collected from the
Web. These image captions can be as noisy as alt text or
short phrases, from which the extracted concepts only cover
part of the image content. Thus in practice, it is also an
important aspect to explore the feasibility of adopting the
non-caption-extracted concepts, e.g., from an object detector
as a substitution. This provides a flexible source of the
concepts.



ATT. Lay. 1 ATT. Lay. 2 ATT. Lay. 4 ATT. Lay. 8 AVG. Lay.<=4 AVG. Lay.<=12

Predicted Concepts: [ motorcycle, road, man, dirt, bike, mountain, red, muddy ]

Predicted Concepts: [ table, cake, food, girl, woman, young, person, ice, bowl ]

Predicted Concepts: [ kitchen, sink, window, counter, large, stove, house, wooden ]

Predicted Concepts: [ train, man, bike, red, bicycle, front, passenger, track ]

Predicted Concepts: [ table, wooden, wood, room, old, kitchen, set, chair ]

Predicted Concepts: [ bathroom, shower, glass, toilet, sink, large, modern, bath ]

Predicted Concepts: [ toilet, sink, bathroom, white, mirror, wall, paper, cabinet ]

Predicted Concept: [ airport, plane, airplane, window, large, terminal, jet, rain ]

Figure 7. ViTCAP produced class-agnostic attention maps and their associated semantic concepts of random images from COCO caption
dataset. We exhibit attention maps of 1, 2, 4, 8th transformer blocks of ViTCAP and the mean-average attention maps of first 4 and the
entire 12 transformer blocks (last two columns).



Predicted Concept:[bird, cloudy, beach, etc ]

Predicted Concept:[traffic, light, red, pole, etc ]

Predicted Concept:[water, geese, pond, lake, etc ]

Predicted Concept:[man, tie, black, shirt, young, etc ]

Figure 8. From left to right, we show the original image, average attention maps of the front 4 and 8 transformer blocks.
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