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Abstract
As a seminal tool in self-supervised representation
learning, contrastive learning has gained unprece-
dented attention in recent years. In essence, con-
trastive learning aims to leverage pairs of positive
and negative samples for representation learning,
which relates to exploiting neighborhood informa-
tion in a feature space. By investigating the con-
nection between contrastive learning and neigh-
borhood component analysis (NCA), we provide
a novel stochastic nearest neighbor viewpoint of
contrastive learning and subsequently propose a
series of contrastive losses that outperform the ex-
isting ones. Under our proposed framework, we
show a new methodology to design integrated con-
trastive losses that could simultaneously achieve
good accuracy and robustness on downstream
tasks. With the integrated framework, we achieve
up to 6% improvement on the standard accuracy
and 17% improvement on the robust accuracy.

1. Introduction
Contrastive learning has drawn much attention and has
become one of the most effective representation learn-
ing techniques recently. The contrastive paradigm (Oord
et al., 2018; Wu et al., 2018; He et al., 2020; Chen et al.,
2020a; Chuang et al., 2020; Grill et al., 2020) constructs
an objective for embeddings based on an assumed seman-
tic similarity between positive pairs and dissimlarity be-
tween negative pairs, which stems from instance-level clas-
sification (Dosovitskiy et al., 2015; Bojanowski & Joulin,
2017; Wu et al., 2018). Specifically, the contrastive loss
LCL (Oord et al., 2018; Chen et al., 2020a) is defined

as E x∼D,
x+∼D+

x ,

x−
i ∼D−

x

− log ef(x)T f(x+)

ef(x)T f(x+)+
N∑

i=1

ef(x)T f(x
−
i

)

where, for
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an input data sample x, (x, x+) denotes a positive pair and
(x, x−) denotes a negative pair. The function f is an en-
coder parameterized by a neural network and the number
of negative pairs N is typically treated as a hyperparam-
eter. Note that the contrastive loss can encode the inputs
and keys by different encoders if one considers the use of
memory bank or momentum contrast (Wu et al., 2018; He
et al., 2020; Chen et al., 2020b). In this work, we will focus
on the paradigm proposed in (Wang & Gupta, 2015; Ye
et al., 2019; Chen et al., 2020a) which has demonstrated
competitive results in representation learning.

When constructing loss LCL, ideally, one draws x+ from
the data distribution D+

x that characterizes the semantically-
similar (i.e., positive) samples to x; similarly, one wants
to draw x− from D−

x that characterizes the semantically-
dissimilar (negative) samples. However, the definition of
semantically-similar and semantically-dissimilar is heav-
ily contingent on downstream tasks: an image of a cat
can be considered semantically similar to that of a dog
if the downstream task is to distinguish between animal and
non-animal classes. Without the knowledge of downstream
tasks, D+

x and D−
x are hard to define. To provide a surro-

gate of measuring similarity, current mainstream contrastive
learning algorithms (He et al., 2020; Chen et al., 2020a;b;
Grill et al., 2020) typically build up D+

x by considering
data augmentation Daug

x of a data sample x. In the mean-
time, D−

x is approximated by the joint distribution D or
Daug

\x := ∪x′∈D\{x}Daug
x′ , and the resulting contrastive loss

is known as LSimCLR which was proposed in (Chen et al.,
2020a):

(SimCLR loss LSimCLR)

E
x∼D,

x+∼Daug
x ,

x−
i ∼Daug

\x

− log
ef(x)

T f(x+)

ef(x)T f(x+) +
N∑
i=1

ef(x)
T f(x−

i )

 . (1)

Although this formulation seems to put no assumptions on
the downstream task classes, we find that there are in fact
implicit assumptions on the class probability prior of the
downstream tasks. Specifically, we formally establish the
connection between the Neighborhood Component Analy-
sis (NCA) and the unsupervised contrastive learning in this
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Figure 1. The performance of existing methods and our proposal (IntNaCl & IntCl) in terms of their standard accuracy (x-axis) and
robust accuracy under FGSM attacks ϵ = 0.002 (y-axis). The transfer performance refers to fine-tuning a linear layer for CIFAR10 with
representation networks trained on CIFAR100.

paper for the first time (to our best knowledge). Inspired
by this interesting relationship to NCA, we further propose
two new contrastive loss (named NaCl) which outperform
existing paradigm. Furthermore, by inspecting the robust
accuracy of several existing methods (e.g., Figure 1’s y-axis,
the classification accuracy when inputs are corrupted by
crafted perturbations), one can see the insufficiency of ex-
isting methods in addressing robustness. Thus, we propose
a new integrated contrastive framework (named IntNacl
and IntCl) that accounts for both the standard accuracy and
adversarial cases: our proposed method’s performance re-
mains in the desired upper-right region (circled) as shown
in Figure 1.

We summarize our main contributions as follows:

• We establish the relationship between contrastive learn-
ing and NCA, and propose two new contrastive loss
dubbed NaCl (Neighborhood analysis Contrastive
loss). We provide theoretical analysis on NaCl and
show better generalization bounds over the baselines;

• Building on top of NaCl, we propose a generic frame-
work called Integrated contrastive learning (IntCl and
IntNaCl) where we show that the spectrum of recently-
proposed contrastive learning losses (Chuang et al.,
2020; Robinson et al., 2021; Ho & Vasconcelos, 2020)
can be included as special cases of our framework;

• We provide extensive experiments that demonstrate
the effectiveness of IntNaCl in improving standard
accuracy and robust accuracy. Specifically, IntNaCl
improves upon literature (Chen et al., 2020a; Chuang
et al., 2020; Robinson et al., 2021; Ho & Vasconcelos,
2020) by 3-6% and 4-16% in CIFAR100 standard and
robust accuracy, and 2-3% and 3-17% in CIFAR10
standard and robust accuracy, respectively.

2. Related Work and Preliminaries
Contrastive learning. In the early work of (Dosovitskiy
et al., 2015), authors treat every individual image in a dataset
as belonging to its own class and do multi-class classifica-
tion tasks under the setting. However, this regime will soon
become intractable as the size of dataset increases. To cope
with this, (Wu et al., 2018) designs a memory bank for
storing seen representations (keys) and utilize noise con-
trastive estimation (Gutmann & Hyvärinen, 2010; Mnih &
Teh, 2012; Jozefowicz et al., 2016; Oord et al., 2018) for
representation comparisons. (He et al., 2020) and (Chen
et al., 2020b) further improve upon (Wu et al., 2018) by
storing keys inferred from a momentum encoder other than
the representation encoder for x. To further reduce the com-
putational cost, besides the practical tricks introduced in
SimCLR (Chen et al., 2020a) (e.g. stronger data augmen-
tation scheme and projector heads), authors of SimCLR
get rid of the memory bank and instead makes use of other
samples from the same batch to form contrastive pairs.

In the rest of this paper, we will focus on the setups of Sim-
CLR and the related follow up work (Chuang et al., 2020;
Robinson et al., 2021; Ho & Vasconcelos, 2020) due to
computational efficiency. A temperature scaling hyperpa-
rameter t is normally used in contrastive learning to tune
the radius of the hypersphere that representations lie in. For
better readability, without loss of generality, we let t = 1
in all equations. We let g0(x, {x−

i }N ) denote the negative
term 1

N

∑N
i=1 e

f(x)T f(x−
i ), where the subscript i identifies

the summation index and the superscript N identifies the
summation limits. We omit the subscript i when the sample
index is one dimensional (e.g. x−

i has 1-D index, x−
ij has

2-D index). Then LSimCLR in Equation (1) can be re-written



as

(Re-written SimCLR loss LSimCLR)

E
x∼D,

x+∼Daug
x ,

x−
i ∼Daug

\x

[
− log

ef(x)
T f(x+)

ef(x)T f(x+) +Ng0(x, {x−
i }N )

]
. (2)

Designing negative pairs in contrastive learning. Sev-
eral works (Saunshi et al., 2019; Chuang et al., 2020) have
come to the awareness of the sampling bias of negative
pairs in Equation 2. Specifically, if the negative samples
are sampled from D, we will receive with 1/K probabil-
ity a positive sample in a K-class classification task with
balanced classes, hence biasing the contrastive loss. To over-
come this issue, (Chuang et al., 2020) proposes a de-biased
constrastive loss to mitigate the sampling bias by explicitly
including the class probability prior on the downstream tasks
(e.g., with probability 0.1, x−

i contains a positive example
in CIFAR10), and tune the prior τ+ as a hyperparameter.
We denote the loss from (Chuang et al., 2020) as LDebiased
and the full equation is shown below:

(Debiased loss LDebiased)

E
x∼D,

x+∼Daug
x ,

vj∼Daug
x ,

ui∼Daug
\x

[
− log

ef(x)
T f(x+)

ef(x)T f(x+) +Ng1(x, {ui}n, {vj}m)

]
,

(3)

where the estimator g1(x, {ui}n, {vj}m) is defined by

max{
∑n

i=1 ef(x)T f(ui)

(1−τ+)n − τ+ ∑m
j=1 ef(x)T f(vj)

(1−τ+)m , e−1/t} and n

and m represents the numbers of sampled points in Daug
\x

and Daug
x for the re-weighted negative term, τ+ is the class

probability prior, and t is the temperature hyperparame-
ter. Recently, (Robinson et al., 2021) proposes to weigh
sample pairs through the cosine distance in the estimator
g1(x, {ui}n, {vj}m) based on LDebiased, and we denote their
approach as LDebiased+HardNeg,

(Debiased+HardNeg loss LDebiased+HardNeg)

E
x∼D,

x+∼Daug
x ,

vj∼Daug
x ,

ui∼Daug
\x

[
− log

ef(x)
T f(x+)

ef(x)T f(x+) +Ng2(x, {ui}n, {vj}m)

]
,

(4)

where the estimator g2(x, {ui}n, {vj}m) is defined by

max{
∑n

i=1 κβ+1
i

(1−τ+)
∑n

i=1 κβ
i

− τ+ ∑m
j=1 ef(x)T f(vj)

(1−τ+)m , e−1/t} and

κi = ef(x)
T f(ui). A typical choice of n and m are n = N

and m = 1, and the hyperparameter τ+ in g2 is exactly the

same as that in g1 whereas the hyperparameter β controls
the weighting mechanism. Specifically, when τ+ = 0, we
denote LDebiased+HardNeg as LHardNeg; when β = 0, Equation
(4) degenerates to Equation (3) which is LDebiased.

Designing positive pairs in contrastive learning. Instead
of modifying the negative pairs, another direction is to de-
sign the positive pairs (Ho & Vasconcelos, 2020; Kim et al.,
2020). Specifically, authors of (Ho & Vasconcelos, 2020)
define the concept of adversarial examples in the regime
of representation learning as the positive sample xadv that
maximizes LSimCLR in Equation (2) within a pre-specified
perturbation magnitude ϵ. The resulting loss function is
denoted as LAdv:

(Adversarial loss LAdv)

E
x∼D,

x+∼Daug
x ,

x−
i1

∼Daug
\x,

x−
i2

∼Dadv
\x

[
− log

ef(x)
T f(x+)

ef(x)T f(x+) +Ng0(x, {x−
i1
}N )

−α log
ef(x)

T f(xadv)

ef(x)T f(xadv) +Ng0(x, {x−
i2
}N )

]
, (5)

where the Dadv
\x is defined by ∪x′∈D\{x}x

′ ∪ x′,adv. Notably,
one can adjust the importance of the adversarial term by
tuning α in Equation (5).

Adversarial Robustness. Despite neural networks’
supremacy in achieving impressive performance, they have
been proved vulnerable to human-imperceptible perturba-
tions (Goodfellow et al., 2015; Szegedy et al., 2014; Nguyen
et al., 2015; Moosavi-Dezfooli et al., 2016). In the super-
vised learning setting, an adversarial perturbation δ is de-
fined to render inconsistent classification result of the input
x: r(x+ δ) ̸= r(x), where r is a neural network classifier.
A stronger adversarial attack means it can find δ with higher
success attack rate under the same ϵ-budget (∥δ∥p ≤ ϵ).
One of the most popular and classical attack algorithms is
FGSM (Goodfellow et al., 2015), where with a fixed pertur-
bation magnitude ϵ, FGSM finds adversarial perturbation by
1-step gradient descent. Another popular attack method we
consider in this paper is PGD (Madry et al., 2018), which
assembles the iterative-FGSM (Kurakin et al., 2016) but
with different initializations and learning rate constraints.

3. Two New NCA-inspired Contrastive Losses
and an Integrated Framework

In this section, we first derive a connection between Neigh-
borhood Component Analysis (NCA) (Goldberger et al.,
2004) and the unsupervised contrastive learning loss in Sec-
tion 3.1. Inspired by our result in Section 3.1, we propose



two new NCA-inspired contrastive losses in Section 3.2,
which we refer to as Neighborhood analysis Contrastive
loss (NaCl). To address a lack of robustness in existing
contrastive losses, in Section 3.3, we propose a useful
framework IntNaCl that integrates NaCl and a robustness-
promoting loss. A summary of definitions is given as Ta-
ble S1.

3.1. Bridging from supervised NCA to unsupervised
contrastive learning: a new finding

NCA is a supervised learning algorithm concerned with
learning a quadratic distance metric with the matrix A such
that the performance of nearest neighbour classification is
maximized. Notice that the set of neighbors for a data point
is a function of transformation A. However, it can remain un-
changed as A changes within a certain range. Therefore the
leave-one-out classification performance can be a piecewise-
constant function of A and hence non-differentiable. To
overcome this, the optimization problem is generally given
using the concept of stochastic nearest neighbors. In the
stochastic nearest neighbor setting, nearest neighbor selec-
tion is regarded as a random event, where the probability
that point xj is selected as the nearest neighbor for xi is
given as p(xj | xi) with

pij := p(xj | xi) =
e−∥Axi−Axj∥2∑
k ̸=i e

−∥Axi−Axk∥2 , j ̸= i. (6)

Let ci denote the label of xi, in the leave-one-out classifi-
cation loss, the probability a point is classified correctly is
given as pi =

∑
j|cj=ci

pij , where {j | cj = ci} defines an
index set in which all points xj belong to the same class
as point xi. We use M to denote the cardinality of this
set. By the definition of ci, the probability xi’s label is ci
is given as qi, which is exactly 11. Thus the optimization
problem can be written as minA

∑n
i=1 ℓ(qi,

∑
j|cj=ci

pij).
This learning objective then naturally maximizes the ex-
pected accuracy of a 1-nearest neighbor classifier. Two
popular choices for ℓ(·) are the total variation distance and
the KL divergence. In the seminal paper of (Goldberger
et al., 2004), the authors showed both losses give similar
results, thus we will focus on the KL divergence loss in this
work. For ℓ(·) = KL, the relative entropy from p to q is
DKL(q∥p) =

∑
i −qi log

pi

qi
=
∑

i − log pi when qi = 1.
By plugging in the definition of pi =

∑
j|cj=ci

pij and
Equation 6, the NCA problem becomes

min
A

n∑
i=1

− log

 ∑
j|cj=ci

e−∥Axi−Axj∥2∑
k ̸=i e

−∥Axi−Axk∥2

 . (7)

1For every data point, p and q are defined differently with their
supports being the class index. For every sample x, qi is the ground
truth probability of class labels and pi is the prediction probability.

With the above formulation, we now show how to estab-
lish the connection of NCA to the contrastive learning loss.
First, by assuming (a) positive pairs belong to the same class
and (b) the transformation Ax is instead parametrized by a
general function f(x)√

2
:= h(x)√

2∥h(x)∥ , where h is a neural net-
work, we could derive from Equation (7) to Equation (S1)
in Appendix A. Next, we show that with some manipula-
tions (details please see Appendix A), below Equation (8)
is equivalent to Equation (S1):

min
f

E
x∼D

− log


M∑
j=1

ef(x)
T f(x+

j )

M∑
j=1

ef(x)
T f(x+

j ) +Ng0(x, {x−
i }N )


.

(8)

Notice that Equation (8) is a more general contrastive loss
where the contrastive loss LSimCLR in (Chen et al., 2020a) is
a special case with M = 1, x+ ∼ Daug

x :

min
f

E
x∼D,

x+∼Daug
x ,

x−
i ∼Daug

\x

[
− log

(
ef(x)

T f(x+)

ef(x)T f(x+) +Ng0(x, {x−
i }N )

)]
.

With the above analysis, two new contrastive losses are
proposed based on Equation (8) in the next Section 3.2. As a
side note, as the computation of the loss grows quadratically
with the size of the dataset, the current method (Chen et al.,
2020a) uses mini batches to construct positive/negative pairs
in a data batch of size N to estimate the loss.

3.2. Neighborhood analysis Contrastive loss (NaCl)

Based on the connection we have built in Section 3.1, we
discover that the reduction from the NCA formulation to
LSimCLR assumes

1. the expected relative density of positives in the under-
lying data distribution is 1/N ;

2. the probability qi induced by encoder network f is 1.

By relaxing the assumptions individually, in this section,
we propose two new contrastive losses. Note that the two
neighborhood analysis contrastive losses are designed from
orthogonal perspectives, hence they are complementary to
each other. We use LNaCl to denote these two variant losses:
LNCA and LMIXNCA.

(I) Relaxing assumption 1: LNCA. When relating unsu-
pervised SimCLR to supervised NCA, we view two samples
in a positive pair as same-class samples. Since in SimCLR,
the number of positive pairs M = 1, which means that
{j | cj = ci} only contains one element. This implies the



relative density of positives in the underlying data distri-
bution is M/N = 1/N , where N is the data batch size.
However, as the expected relative density is task-dependent,
it’s more reasonable to treat the M/N ratio as a hyperpa-
rameter similar to the class probabilities τ+ introduced by
(Chuang et al., 2020). Therefore, we propose the more gen-
eral contrastive loss LNCA which could include more than
one element or equivalently M ̸= 1:

(NCA loss LNCA(G = g0,M))

E
x∼D,

x+
j ∼Daug

x ,

x−
i ∼Daug

\x

− log

M∑
j=1

ef(x)
T f(x+

j )

M∑
j=1

ef(x)
T f(x+

j ) +Ng0(x, {x−
i }N )

 .

We further provide the generalization results as follows: if
we let F be a function class, K be the number of classes,
LSup be the cross entropy loss of any downstream K-class
classification task, L̂NCA(g0,M) be the empirical NCA loss,
T be the size of the dataset, and RS(F) be the empirical
Rademacher complexity of F w.r.t. data sample S , then

Theorem 3.1. With probability at least 1−δ, for any f ∈ F
and N ≥ K − 1,

LSup(f̂) ≤ LNCA(g0,M)(f)

+O

√ 1

N
+

λRS(F)

T
+B

√
log 1

δ

T

 ,

where f̂ = argminf∈F L̂NCA(g0,M)(f), λ = 1
M , and

B = logN .

We can see from the term λ that LNCA(G = g0,M) im-
proves upon LSimCLR by using a M ̸= 1. The result extends
to G = g1 and for more details please refer to Appendix B.

(II) Relaxing assumption 2: LMIXNCA. To reduce the
reliance on the downstream prior, a practical relaxation can
be made by allowing neighborhood samples to agree with
each other with probability. This translates into relaxing the
specification of qi = 1 and consider a synthetic data point
x′ = λxi + (1 − λ)y, y ∼ D that belongs to a synthetic
class cλ,i. Assume the probability xi’s label is cλ,i is qλ,i =
λ+(1−λ)[cy = ci], then qλ,i should match the probability
pλ,i =

∑
j|cj=cλ,i

pij , where {j | cj = cλ,i} is a singleton

containing only the index of x′, which yields

(MIXNCA loss LMIXNCA(G = g0,M, λ))

E
x∼D,

x+∼Daug
x ,

x−
i1

,x−
i2j ,x

−
j ∼Daug

\x

[
− log

ef(x)
T f(x+)

ef(x)T f(x+) +Ng0(x, {x−
i1
}N )

− λ

M − 1

M−1∑
j=1

log Ωj −
1− λ

M − 1

M−1∑
j=1

log(1− Ωj)

 ,

where Ωj = e
f(x)T f(λx++(1−λ)x

−
j

)

e
f(x)T f(λx++(1−λ)x

−
j

)
+Ng0(x,{x−

i2j}N
i2

)
. Inter-

estingly, the construction of x′ herein assembles the
mixup (Zhang et al., 2018) philosophy in supervised learn-
ing. Recent work (Lee et al., 2021; Verma et al., 2021) have
also considered augment the dataset by including synthetic
data point and build domain-agnostic contrastive learning
strategies, however, their loss is different from this work
because they apply mixup on the data points x while we use
mixup to produce diverse positive pairs.

3.3. Integrated contrastive learning framework

Building on top of NaCl, we can propose a useful frame-
work IntNaCl that not only generalizes existing methods but
also achieves good accuracy and robustness simultaneously.
Before we introduce IntNaCl, we give an intermediate inte-
grated loss as IntCl, which consists of two components – a
standard loss and a robustness-promoting loss.

Motivated by LAdv (Ho & Vasconcelos, 2020), we consider
a robust-promoting loss defined by

LRobust(G,w):=E

[
− log

ef(x)
T f(xadv)

ef(x)T f(xadv) +NG(x, ·)
w(x)

]
,

where G can be chose from {g0, g1, g2}, and w(x) facili-
tates goal-specific weighting schemes. Note that w(x) can
be a general function and LAdv (Ho & Vasconcelos, 2020)
is a special case when w(x) = 1.

Adversarial weighting. Weighting sample loss based on
their margins has been proven to be effective in the ad-
versarial training under supervised settings (Zeng et al.,
2020). Specifically, it is argued that training points that
are closer to the decision boundaries should be given more
weight in the supervised loss. While the margin of a sam-
ple is underdefined in unsupervised settings, we can give
our weighting function as the value of the contrastive loss

ŵ(x) := − log ef(x)T f(x+)

ef(x)T f(x+)+NG(x,·)
. Using this, we see that

samples that are originally hard to be distinguished from
other samples (i.e. small probability) are now assigned with
bigger weights. Below, we propose a new integrated frame-
work to involve the robustness term LRobust(G,w) which can



Table 1. The relationship between IntNaCl framework and the literature: existing works are special cases of LIntNaCl

LIntNaCl
LNaCl(G

1,M, λ)
α

LRobust(G
2, w))

LNaCl G1 M λ G2 w
LSimCLR (Chen et al., 2020a) LNCA/LMIXNCA g0 1 - 0 - -

Existing LDebiased (Chuang et al., 2020) LNCA/LMIXNCA g1 1 - 0 - -
Work LDebiased+HardNeg (Robinson et al., 2021) LNCA/LMIXNCA g2 1 - 0 - -

LAdv (Ho & Vasconcelos, 2020) LNCA/LMIXNCA g0 1 - 1 g0 1
LIntCl in Fig. 1 LNCA/LMIXNCA g2 1 - 1 g2 ŵ(x)
LIntNaCl in Fig. 1 LMIXNCA g2 5 0.5 1 g2 ŵ(x)

Our LIntNaCl in Tab. 2 LNCA/LMIXNCA g0/g2 1-5 0.5/0.9 0 - -
Method LIntNaCl in Tab. 3 LNCA/LMIXNCA g2 1-5 0.5/0.7/0.9 1 g2 ŵ(x)

LIntNaCl in Fig. S2 LMIXNCA g0/g2 1-5 0.5-0.9 0 - -
LIntNaCl in Tab. 4 LNCA/LMIXNCA g0/g2 1/2/5 0.5/0.9 0/1 -/g2 -/ŵ(x)/1

greatly help on promoting robustness in contrastive learn-
ing. In particular, we show that many existing contrastive
learning losses are special cases of our proposed framework.

IntCl. For IntCl, the standard loss can be existing con-
trastive learning losses (Chen et al., 2020a; Chuang et al.,
2020; Robinson et al., 2021), which correspond to a form of

(IntCL loss LIntCL)

E

[
− log

ef(x)
T f(x+)

ef(x)T f(x+) +NG1(x, ·)

]
+ αLRobust(G

2, w),

with G1 and G2 being g0, g1, and g2. Unless otherwise
specified, we use the adversarial weighting scheme intro-
duced above throughout our experiments. Notice that LIntCL
reduces to LAdv when G1 = G2 = g0 and w(x) ≡ 1.

IntNaCl. To design a generic loss that accounts for robust
accuracy while keeping clean accuracy, we utilize LNaCl de-
veloped in Section 3.2 to strength the standard loss in LIntCL.
We call this ultimate framework Integrated Neighborhood
analysis Contrastive loss (IntNaCl), which is given by

LIntNaCl := LNaCl(G
1,M, λ) + αLRobust(G

2, w), (9)

where LNaCl(G
1,M, λ) can be chose from {LNCA(G

1,M),
LMIXNCA(G

1,M, λ)}. We remark that as LNCA and
LMIXNCA all reduce to one same form when M = 1, the
LIntNaCl under M = 1 is exactly LIntCl. This general frame-
work includes many of the existing works as special cases
and we summarize these relationships in Table 1.

4. Experimental Results
Implementation details. All the proposed methods are
implemented based on open source repositories provided
in the literature (Chen et al., 2020a; Ho & Vasconcelos,
2020; Robinson et al., 2021). Five benchmarking con-
trastive losses are considered as baselines that include:
LSimCLR (Chen et al., 2020a), LDebiased (Chuang et al., 2020),
LDebiased+HardNeg (Robinson et al., 2021), LAdv (Ho & Vas-
concelos, 2020) (i.e. Equation (2), Equation (3), Equation

(4), Equation (5)). We train representations on resnet18
and include MLP projection heads (Chen et al., 2020a). A
batch size of 256 is used for all CIFAR (Krizhevsky et al.,
2009) experiments and a batch size of 128 is used for all
tinyImagenet experiments. Unless otherwise specified, the
representation network is trained for 100 epochs. We run
five independent trials for each of the experiments and report
the mean and standard deviation in the entries. We imple-
ment the proposed framework using PyTorch to enable the
use of an NVIDIA GeForce RTX 2080 Super GPU and four
NVIDIA Tesla V100 GPUs.

Evaluation protocol. We follow the standard evaluation
protocal to report three major properties of representation
learning methods: standard discriminative power, transfer-
ability, and adversarial robustness. To evaluate the standard
discriminative power, we train representation networks on
CIFAR100/tinyImagenet, freeze the network, and fine-tune
a fully-connected layer that maps representations to outputs
on CIFAR100/tinyImagenet, which is consistent with the
standard linear evaluation protocol in the literature (Chen
et al., 2020a; Chuang et al., 2020; Grill et al., 2020; Ho &
Vasconcelos, 2020; Khosla et al., 2020; Tian et al., 2020;
Robinson et al., 2021; Saunshi et al., 2019; Kim et al., 2020;
HaoChen et al., 2021). To evaluate the transferability, we
use the representation networks trained on CIFAR100, and
only fine-tune a fully-connected layer that maps represen-
tations to outputs on CIFAR10. All the adversarial robust-
ness evaluations are based on the implementation provided
by (Wong et al., 2020). We supplement more FGSM and
PGD attack results in the appendix.

Experiment outline. Since the performance of the inte-
grated method LIntNaCl is attributed to multiple components
in the formulation (Equation 9), we do ablation studies in
the following sections to study their effectiveness individ-
ually. In Section 4.1, we evaluate the effect of LNaCl; in
Section 4.2, we evaluate the effect of LRobust; in Section 4.3,
we evaluate the effect of M , λ, and w.



Table 2. Performance comparisons of LNaCl (M ̸= 1) and i) Left: SimCLR (Chuang et al., 2020) (M = 1, G1 = g0) and ii) Right:
Debised+HardNeg (Robinson et al., 2021) (M = 1, G1 = g2) when α = 0. The best accuracy (%) within each loss type is in boldface
(larger is better).

M
α = 0, LNaCl(G

1,M, λ) = LNCA(g0,M) α = 0, LNaCl(G
1,M, λ) = LNCA(g2,M)

CIFAR100 CIFAR100 Adv. CIFAR10 CIFAR10 Adv. CIFAR100 CIFAR100 Adv. CIFAR10 CIFAR10 Adv.
1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 55.72±0.15 27.04±0.45 77.40±0.14 44.58±0.41 57.87±0.15 32.50±0.48 77.43±0.11 48.14±0.31
3 56.67±0.12 28.41±0.24 77.53±0.24 45.21±0.89 58.42±0.23 33.19±0.60 77.41±0.17 48.09±0.93
4 57.09±0.26 28.20±0.81 77.75±0.22 45.13±0.44 58.86±0.18 32.65±1.07 77.46±0.29 48.43±0.94
5 57.32±0.17 28.33±0.59 77.93±0.40 44.46±0.53 58.81±0.21 32.86±0.47 77.58±0.23 48.30±0.39

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g0,M, 0.9) α = 0, LNaCl(G

1,M, λ) = LMIXNCA(g2,M, 0.5)
1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 56.20±0.33 30.95±0.36 76.96±0.15 48.85±0.75 59.41±0.19 32.22±0.35 79.36±0.65 48.86±0.34
3 56.41±0.13 30.98±0.90 77.10±0.21 48.76±0.63 59.81±0.25 32.04±0.67 79.41±0.17 48.91±0.81
4 56.00±0.42 29.90±0.63 77.11±0.40 48.16±0.40 59.75±0.33 32.03±0.34 79.42±0.18 49.05±0.71
5 56.63±0.31 30.58±0.52 77.04±0.19 47.96±0.46 59.85±0.30 32.06±0.72 79.45±0.20 48.32±0.70

Table 3. Performance comparisons of LIntNaCl (M ̸= 1) and LIntCL (M = 1) when α = 1, G1 = G2 = g2, w = ŵ(x). The best accuracy
(%) within each loss type is in boldface (larger is better).

M
α ̸= 0, LNaCl(G

1,M, λ) = LNCA(g2,M) α ̸= 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.5)

CIFAR100 CIFAR100 Adv. CIFAR10 CIFAR10 Adv. CIFAR100 CIFAR100 Adv. CIFAR10 CIFAR10 Adv.
1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 56.71±0.11 39.80±0.57 76.55±0.27 58.44±0.31 58.97±0.19 40.25±0.52 78.61±0.20 58.41±0.59
3 57.13±0.26 40.53±0.29 76.67±0.22 58.47±0.31 59.26±0.18 40.96±0.58 78.83±0.22 59.20±1.25
4 57.06±0.19 40.85±0.31 76.34±0.22 58.91±0.62 59.32±0.21 40.82±0.54 78.83±0.27 59.03±0.52
5 57.46±0.04 41.00±0.86 76.60±0.37 57.98±0.47 59.43±0.23 41.01±0.34 78.80±0.21 59.51±0.93

α ̸= 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.7) α ̸= 0, LNaCl(G

1,M, λ) = LMIXNCA(g2,M, 0.9)
1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.00±0.18 40.35±0.34 77.73±0.24 59.40±1.27 56.54±0.33 40.85±0.13 76.81±0.22 60.40±0.46
3 58.23±0.18 40.94±0.75 77.91±0.25 59.57±0.81 56.69±0.11 41.23±0.66 76.98±0.22 60.13±0.56
4 58.20±0.25 40.95±0.45 77.89±0.20 59.49±0.49 56.43±0.26 41.56±0.56 76.97±0.20 61.21±0.49
5 58.37±0.14 41.15±0.48 78.27±0.26 59.17±0.94 56.86±0.11 41.09±0.31 76.91±0.21 60.09±0.39

Table 4. Performance comparisons of LNaCl and LIntNaCl with baselines on TinyImagenet. The best accuracy (%) within each loss type is
in boldface (larger is better).

α = 0 LNaCl(G
1,M, λ) = LNCA(g0,M) LNaCl(G

1,M, λ) = LNCA(g2,M)
M TinyImagenet TinyImagenet Adv. TinyImagenet TinyImagenet Adv.
1 39.66±0.15 24.80±0.07 41.26±0.14 27.34±0.77
2 40.71±0.26 26.29±0.51 41.99±0.23 28.14±0.13

LNaCl(G
1,M, λ) = LMIXNCA(g0,M, 0.9) LNaCl(G

1,M, λ) = LMIXNCA(g2,M, 0.5)
1 39.66±0.15 24.80±0.07 41.26±0.14 27.34±0.77
2 40.23±0.37 26.47±0.24 43.91±0.20 28.29±0.33

α = 1 LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.5) LNaCl(G

1,M, λ) = LMIXNCA(g2,M, 0.5)
LRobust(G

2, w)) = LRobust(g2, ŵ(x))) LRobust(G
2, w)) = LRobust(g2, 1))

1 42.56±0.13 31.18±0.51 42.24±0.14 31.55±0.38
2 44.69±0.20 32.65±0.52 44.37±0.08 32.20±0.23
5 45.31±0.22 32.43±0.33 44.77±0.11 32.47±0.42

4.1. The effect of LNaCl

By evaluating the effect of LNaCl, we want to evaluate the
performance difference of our framework LIntNaCl when
M ≥ 1 and M = 1. In order to see that, we consider 2 cases:
(1) set α = 0 in Equation (9) and compare LNaCl(G

1,M ̸=
1, λ) with existing work LNaCl(G

1,M = 1, λ), or (2) set
α = 1 and compare LIntNaCl and LIntCl.

Case (1) α = 0. In Table 2, after setting α = 0, we experi-
ment with G1 = g0, g2. By referring to Table 1, our base-
line becomes exactly SimCLR (Chen et al., 2020a) when

G1 = g0, and becomes Debiased+HardNeg (Robinson et al.,
2021) when G1 = g2. From Table 2, one can see that when
M ̸= 1, LNCA and LMIXNCA can both improve upon the
baselines(M = 1) in all metrics (standard/robust/transfer
accuracy). When G1 = g0, LNCA’s improvement over Sim-
CLR also exemplifies our Theorem 3.1. Due to page limits,
we only select one λ when LNaCl = LMIXNCA and report
results together with the results of LNaCl = LNCA. Full
tables can be found in the appendix D. We further verify
the performance on TinyImagent and give results in Table 4.
Notice that now when G1 = g0, we are using a batch size



Table 5. Combining LNCA(g2, 5) and LMIXNCA(g2, 5, 0.5).
Accuracy (%) CIFAR100 CIFAR100 Adv. CIFAR10 CIFAR10 Adv.

LNCA 58.81±0.21 32.86±0.47 77.58±0.23 48.30±0.39
LMIXNCA 59.85±0.30 32.06±0.72 79.45±0.20 48.32±0.70

Combined 59.66±0.14 33.64±0.31 78.94±0.07 51.19±0.44

of N = 128 for 200-class TinyImagent task. Therefore, the
requirement of N ≥ K − 1 in Theorem 3.1 is not fulfilled.
However, we can still see improvements when going from
M = 1 to M = 2. Additionally, we combine LNCA and
LMIXNCA in training and give their results in Table 5. We see
that the robustness performance can be further boosted by
1-3% with the combined loss while keeping similar standard
accuracy to LMIXNCA.

Case (2) α = 1. In Table 3, after setting α = 1, we ex-
periment with G1 = G2 = g2 since g2 generally yields
better performance in Table 2. When LNaCl(G

1,M, λ) =
LMIXNCA(g2,M, λ), we give the results for λ = 0.5, 0.7, 0.9
to show an interesting effect: while LMIXNCA(g2,M, λ =
0.5) benefits a lot going from M = 1 to M = 5 (standard
accuracy increases from 56.22% to 59.43%), the improve-
ment is comparatively smaller with LMIXNCA(g2,M, 0.9)
(standard accuracy increases from 56.22% to 56.86%). In
Figure 1, we plot the robust accuracy defined under FGSM
attacks (Goodfellow et al., 2015) along the y-axis. Ide-
ally, one desires a representation network that pushes the
performance to the upper-right corner in the 2D accuracy
grid (standard-robust accuracy plot). We highlight the re-
sults of LIntNaCl and LIntCL in circles, through which we see
that while LIntCL can already train representations that are
decently robust without sacrificing the standard accuracy
on CIFAR100, the standard accuracy on CIFAR10 is infe-
rior to some baselines (HardNeg and Debiased+HardNeg).
Comparatively, LIntNaCl demonstrates high transfer standard
accuracy and wins over the baselines by a large margin on
both datasets, proving the ability of learning representation
networks that also transfer robustness property. For TinyIm-
agent, we only show the results when LNaCl(G

1,M, λ) =
LMIXNCA(g2,M, 0.5) since g2 generally achieves higher ac-
curacy and combines well with LMIXNCA. Importantly, with
the help of LNaCl module, the performance can be boosted
from 42.56% to 45.31% while maintaining good robust
accuracy 32.43%.

4.2. The effect of LRobust

By evaluating the effect of LRobust, we want to see the
performance difference of our framework LIntNaCl when
α ̸= 0 and α = 0. Therefore, we consider 2 cases: (1) set
M = 1 in Equation (9) and compare LIntCl with existing
work LNaCl(G

1,M = 1, λ), or (2) set M ̸= 1 and compare
LIntNaCl and LNaCl(G

1,M ̸= 1, λ).

Case (1) M = 1. Notice that LIntCL differs from standard

contrastive losses by including the term LRobust. Therefore,
one can easily evaluate the effect of LRobust by inspecting
the performance difference between LIntCl and the baselines
in Figure 1. Specifically, we let G1 = g2 for LIntCl in
Figure 1, hence a direct baseline is Debiased+HardNeg. By
adding a robustness-promoting term, the robust accuracy
can be boosted from 31.03% to 40.05% and transfer robust
accuracy from 48.38% to 59.33%, which is a significant
improvement.

Case (2) M ̸= 1. The effect of LRobust is also demon-
strated through the robust accuracy “jump” from Table 2
to Table 3. For example, we point out that in Table 2,
LNaCl(G

1,M, λ) = LNCA(g2, 3) gives the maximum robust
accuracy of 33.19%, while the robust accuracy obtained
with the same LNaCl(G

1,M, λ) = LNCA(g2, 3) and addi-
tional LRobust increases to 40.53% in Table 3. The robust
accuracy boost on TinyImagent with the help of LRobust is
also visible: when LNaCl(G

1,M, λ) = LMIXNCA(g2, 2, 0.5),
the robust accuracy increases from 28.29% to 32.65%.

4.3. The effect of M , λ, and w(x)

To evaluate the effect of M , we can see from Table 2 and
Table 3 that the performance is generally increasing as
M increases. However, this effect seems to be less visi-
ble for robust accuracy and transfer robust accuracy. In
practice, M = 5 does not require exactly 5 times train-
ing time since the number of training parameter remains
the same. In our experiment, we observe that M = 5 re-
quires roughly 3 times training time compared with the
baseline M = 1. To evaluate the effect of λ, we include in
Figure S2 the standard and robust accuracy on CIFAR100
and CIFAR10 as functions of λ. Intriguingly, we see that
the accuracy curves mainly show trends of increasing in
Figure S2(a). Comparatively, the standard accuracy on CI-
FAR100 and CIFAR10 shows trends of decreasing in Fig-
ure S2(b). One possible explanation is by the original base-
lines’ room for improvement. Since Debiased+HardNeg is
a much stronger baseline than SimCLR, it is closer to the
robustness-accuracy trade-off. However, we note that the
overall performance of NaCl on Debiased+HardNeg is still
better than NaCl on SimCLR regardless of the robustness-
accuracy trade-off. In the last row of Table 4, we list the
results when LNaCl(G

1,M, λ) = LMIXNCA(g2,M, 0.5) but
different LRobust(G

2, w)). Specifically, on the left we show
the case when w = ŵ(x) and on the right we show the case
when w = 1. One can then see that by using a goal-specific
weighting scheme, the performance can be further boosted.

5. Conclusion
In this paper, we discover the relationship between con-
trastive loss and Neighborhood Component Analysis (NCA),
which motivates us to generalize the existing contrastive loss



to a set of Neighborhood analysis Contrastive losses (NaCl).
We further propose a generic and integrated contrastive
learning framework (IntNaCl) based on NaCl, which learns
representations that score high in both standard accuracy
and adversarial accuracy in downstream tasks. With the
integrated framework, we can boost the standard accuracy
by 6% and the robust accuracy by 17%.
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A. Derivation from Equation (7) to (8)

Since a generalization of contrastive learning loss in Equation (2) can be given by assuming (a) positive pairs belong to
the same class and (b) the transformation Ax is instead parametrized by a general function f(x)√

2
:= h(x)√

2∥h(x)∥ , where h is a
neural network, Equation (7) becomes Equation (S1):

min
f

n∑
i=1

− log

 M∑
j=1

e−
1
2∥f(xi)−f(x+

ij)∥2∑
k ̸=i e

− 1
2∥f(xi)−f(xk)∥2

 . (S1)

Then we can prove

argmin
f

n∑
i=1

− log

 M∑
j=1

e−
1
2∥f(xi)−f(x+

ij)∥2∑
k ̸=i e

− 1
2∥f(xi)−f(xk)∥2


=argmin

f

n∑
i=1

− log

 M∑
j=1

ef(xi)
T f(x+

ij)−
1
2∥f(xi)∥2− 1

2∥f(x+
ij)∥2∑

k ̸=i e
f(xi)T f(xk)− 1

2∥f(xi)∥2− 1
2∥f(xk)∥2

 (S2)

=argmin
f

n∑
i=1

− log

 M∑
j=1

ef(xi)
T f(x+

ij)−1∑
k ̸=i e

f(xi)T f(xk)−1

 (S3)

=argmin
f

n∑
i=1

− log


M∑
j=1

ef(xi)
T f(x+

ij)∑
k ̸=i e

f(xi)T f(xk)



=argmin
f

n∑
i=1

− log


M∑
j=1

ef(xi)
T f(x+

ij)∑
k ̸=i,xk∈{x+

ij}
ef(xi)T f(xk) +

∑
k ̸=i,xk /∈{x+

ij}
ef(xi)T f(xk)

 (S4)

=argmin
f

Ex∼D

− log


M∑
j=1

ef(x)
T f(x+

j )

M∑
j=1

ef(x)
T f(x+

j ) +
N∑
i=1

ef(x)
T f(x−

i )


 (S5)

=argmin
f

Ex∼D

− log


M∑
j=1

ef(x)
T f(x+

j )

M∑
j=1

ef(x)
T f(x+

j ) +Ng0(x, {x−
i }N )


 ,

where we go from Equation (S2) to Equation (S3) based on the fact that ∥f(x)∥ = 1, and from Equation (S4) to Equation
(S5) assuming that set {xk : k ̸= i} = {x+

j : 1 ≤ j ≤ M} ∪ {x−
i : 1 ≤ i ≤ N}.



B. Generalization Bounds
We extend the theorems from (Chuang et al., 2020) to get results for LNCA. The results we have here apply to G = g0 and
g1. The case when G = g2, LMIXNCA, and LIntNaCl are left as future work.

B.1. Bridging the empirical estimator and asymptotic objective

We introduce an intermediate unbiased loss in order to extend our results. Let h(x, y) = ef(x)
⊤f(y), then the unbiased loss

with multiple positive pairs is given as

L̃M,N
Unbiased(f) = E x∼p

x+
i ∼p+

x

[
log

∑M
i=1 h(x, x

+
i )∑M

i=1 h(x, x
+
i ) +M ·N · Ex−∼p−

x
h(x, x−)

]

Then we can define a debiased loss by

LM,N,n,m
Debiased (f) = E x∼p

x+
i ∼p+

x

ui∼p;vi∼p+
x

[
log

∑M
i=1 h(x, x

+
i )∑M

i=1 h(x, x
+
i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)

]
.

Theorem B.1. For any embedding f and finite N and M , we have

∣∣∣L̃M,N
Unbiased(f)− LM,N,n,m

Debiased (f)
∣∣∣ ≤ e3/2

τ−

√
π

2n
+

e3/2τ+

τ−

√
π

2m
.

The proof of B.1 is the same as the proof of Theorem 3 in (Chuang et al., 2020) with the help of the following slightly
modified version of Lemma A.2 in (Chuang et al., 2020). Now if we let

∆ =

∣∣∣∣− log

∑M
i=1 h(x, x

+
i )∑M

i=1 h(x, x
+
i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)

+ log

∑M
i=1 h(x, x

+
i )∑M

i=1 h(x, x
+
i ) +M ·N · Ex−∼p−

x
h(x, x−)

∣∣∣∣,
where h(x, x̄) = expf(x)

⊤f(x̄), then one has the following lemma:

Lemma B.2. Let x and x+ in X be fixed. Further, let {ui}ni=1 and {vi}mi=1 be collections of i.i.d. random variables sampled
from p and p+x respectively. Then for all ε > 0,

P(∆ ≥ ε) ≤ 2 exp

(
−nε2(τ−)2

2e3

)
+ 2 exp

(
−mε2(τ−/τ+)2

2e3

)
.

Proof of Lemma B.2. We first decompose the probability as

P(
∣∣∣∣− log

∑M
i=1 h(x, x

+
i )∑M

i=1 h(x, x
+
i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)

+ log

∑M
i=1 h(x, x

+
i )∑M

i=1 h(x, x
+
i ) +M ·N · Ex−∼p−

x
h(x, x−)

∣∣∣∣ ≥ ε)

= P(
∣∣∣∣ log { M∑

i=1

h(x, x+
i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)

}
− log

{ M∑
i=1

h(x, x+
i ) +M ·N · Ex−∼p−

x
h(x, x−)

}∣∣∣∣ ≥ ε)

= P(log
{ M∑

i=1

h(x, x+
i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)

}
− log

{ M∑
i=1

h(x, x+
i ) +M ·N · Ex−∼p−

x
h(x, x−)

}
≥ ε)

+ P(− log
{ M∑

i=1

h(x, x+
i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)

}
+ log

{ M∑
i=1

h(x, x+
i ) +M ·N · Ex−∼p−

x
h(x, x−)

}
≥ ε)



where the final equality holds simply because |X| ≥ ε if and only if X ≥ ε or −X ≥ ε. The first term can be bounded as

P(log
{ M∑

i=1

h(x, x+
i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)

}
− log

{ M∑
i=1

h(x, x+
i ) +M ·N · Ex−∼p−

x
h(x, x−)

}
≥ ε)

= P(log
∑M

i=1 h(x, x
+
i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)∑M

i=1 h(x, x
+
i ) +M ·N · Ex−∼p−

x
h(x, x−)

≥ ε)

≤ P(
M ·N ·G(x, {ui}ni=1, {vi}mi=1)−M ·N · Ex−∼p−

x
h(x, x−)∑M

i=1 h(x, x
+
i ) +M ·N · Ex−∼p−

x
h(x, x−)

≥ ε)

= P(G(x, {ui}ni=1, {vi}mi=1)− Ex−∼p−
x
h(x, x−) ≥ ε

{
1

M ·N

M∑
i=1

h(x, x+
i ) + Ex−∼p−

x
h(x, x−)

}
)

≤ P(G(x, {ui}ni=1, {vi}mi=1)− Ex−∼p−
x
h(x, x−) ≥ εe−1). (10)

The first inequality follows by applying the fact that log x ≤ x − 1 for x > 0. The second inequality holds since
1

M ·N ·
∑M

i=1 h(x, x
+
i )+Ex−∼p−

x
h(x, x−) ≥ e−1. Next, we move on to bounding the second term, which proceeds similarly,

using the same two bounds.

P
{
− log

( M∑
i=1

h(x, x+
i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)

}
+ log

{ M∑
i=1

h(x, x+
i ) +M ·N · Ex−∼p−

x
h(x, x−)

}
≥ ε)

= P(log
∑M

i=1 h(x, x
+
i ) +M ·N · Ex−∼p−

x
h(x, x−)∑M

i=1 h(x, x
+
i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)

≥ ε)

≤ P(
M ·N · Ex−∼p−

x
h(x, x−)−M ·N ·G(x, {ui}ni=1, {vi}mi=1)∑M

i=1 h(x, x
+
i ) +M ·N ·G(x, {ui}Ni=1, {vi}Mi=1)

≥ ε)

= P(Ex−∼p−
x
h(x, x−)−G(x, {ui}ni=1, {vi}mi=1) ≥ ε

{
1

M ·N

M∑
i=1

h(x, x+
i ) +G(x, {ui}ni=1, {vi}mi=1)

}
)

≤ P(Ex−∼p−
x
h(x, x−)−G(x, {ui}ni=1, {vi}mi=1) ≥ εe−1). (11)

Combining equation (10) and equation (11), we have

P(∆ ≥ ε) ≤ P(
∣∣G(x, {ui}ni=1, {vi}mi=1)− Ex−∼p−

x
h(x, x−)

∣∣ ≥ εe−1).

Lastly, one needs to bound the right hand tail probability. This part of the proof remains exactly the same as in (Chuang
et al., 2020) and is therefore omitted.

B.2. Bridging the asymptotic objective and supervised loss

Lemma B.3. For any embedding f , whenever N ≥ K − 1 we have

LSup(f) ≤ Lµ
Sup(f) ≤ L̃M,N

Unbiased(f).

Proof. We first show that N = K − 1 gives the smallest loss:

L̃M,N
Unbiased(f) = E x∼p

x+
i ∼p+

x

[
− log

∑M
i=1 e

f(x)T f(x+
i )∑M

i=1 e
f(x)T f(x+

i ) +M ·NEx−∼p−
x
ef(x)T f(x−)

]

≥ E x∼p

x+
i ∼p+

x

[
− log

∑M
i=1 e

f(x)T f(x+
i )∑M

i=1 e
f(x)T f(x+

i ) +M · (K − 1)Ex−∼p−
x
ef(x)T f(x−)

]
= LM,K−1

Unbiased (f)



To show that LM,K−1
Unbiased (f) is an upper bound on the supervised loss Lsup(f), we additionally introduce a task specific class

distribution ρT which is a uniform distribution over all the possible K-way classification tasks with classes in C. That is, we
consider all the possible task with K distinct classes {c1, . . . , cK} ⊆ C.

LM,K−1
Unbiased (f)

= E x∼p

x+
i ∼p+

x

[
− log

∑M
i=1 e

f(x)T f(x+
i )∑M

i=1 e
f(x)T f(x+

i ) +M · (K − 1)Ex−∼p−
x
ef(x)T f(x−)

]

= ET ∼DEc∼ρT ;x∼p(·|c)
x+
i ∼p(·|c)

[
− log

∑M
i=1 e

f(x)T f(x+
i )∑M

i=1 e
f(x)T f(x+

i ) +M · (K − 1)ET ∼DEρT (c−∼|c− ̸=h(x))Ex−∼p(·|c−)ef(x)
T f(x−)

]

≥ ET ∼DEc∼ρT ;x∼p(·|c)

− log

∑M
i=1 e

f(x)TE
x
+
i

∼p(·|c)
f(x+

i )

∑M
i=1 e

f(x)TE
x
+
i

∼p(·|c)
f(x+

i )
+M · (K − 1)ET ∼DEρT (c−|c− ̸=h(x))Ex−∼p(·|c−)ef(x)

T f(x−)


≥ ET ∼DEc∼ρT ;x∼p(·|c)

− log

∑M
i=1 e

f(x)TE
x
+
i

∼p(·|c)
f(x+

i )

∑M
i=1 e

f(x)TE
x
+
i

∼p(·|c)
f(x+

i )
+M · (K − 1)EρT (c−|c− ̸=h(x))Ex−∼p(·|c−)ef(x)

T f(x−)


= ET ∼DEc∼ρT ;x∼p(·|c)

[
− log

Mef(x)
TEx+∼p(·|c)f(x

+)

Mef(x)
TEx+∼p(·|c)f(x

+) +M · (K − 1)EρT (c−|c− ̸=h(x))Ex−∼p(·|c−)ef(x)
T f(x−)

]

≥ ET ∼DEc∼ρT ;x∼p(·|c)

[
− log

ef(x)
TEx+∼p(·|c)f(x

+)

ef(x)
TEx+∼p(·|c)f(x

+) + (K − 1)EρT (c−|c− ̸=h(x))e
f(x)TEx−∼p(·|c−)f(x

−)

]

= ET ∼DEc∼ρT ;x∼p(·|c)

[
− log

exp
(
f(x)Tµc

)
exp(f(x)Tµc) +

∑
c−∈T ,c− ̸=c exp(f(x)

Tµc−)

]
= ET ∼DL

µ
Sup(T , f)

= L̄µ
Sup(f)

where the three inequalities follow from Jensen’s inequality. The first and third inequality shift the expectations Ex+∼p+
x,T

and Ex−∼p(·|c−), respectively, via the convexity of the functions and the second moves the expectation ET ∼D out using
concavity. Note that L̄Sup(f) ≤ L̄µ

Sup(f) holds trivially.

B.3. Generalization bounds

We wish to derive a data dependent bound on the downstream supervised generalization error of the debiased contrastive
objective. Recall that a sample (x, {x+

i }Mi=1, {ui}ni=1, {vi}mi=1) yields loss

− log

{ ∑M
i=1 e

f(x)⊤f(x+
i )∑M

i=1 e
f(x)⊤f(x+

i ) +M ·N ·G(x, {ui}ni=1, {vi}mi=1)

}
= log

{
1 +M ·NG(x, {ui}ni=1, {vi}mi=1)∑M

i=1 e
f(x)⊤f(x+

i )

}
,

which is equal to ℓ

({
ef(x)⊤f(uj)∑M

i=1 ef(x)⊤f(x
+
i

)

}n

j=1

,

{
ef(x)⊤f(vj)∑M

i=1 ef(x)⊤f(x
+
i

)

}m

j=1

)
, where we define

ℓ({ai}ni=1, {bi}mi=1) := log

{
1 +M ·N max

(
1

τ−
1

n

n∑
i=1

ai −
τ+

τ−
1

m

m∑
i=1

bi, e
−1

)}

L̂M,N,n,m
Debiased (f) :=

1

T

T∑
t=1

ℓ

{ ef(xt)
⊤f(utj)∑M

i=1 e
f(xt)⊤f(x+

ti)

}n

j=1

,

{
ef(xt)

⊤f(vtj)∑M
i=1 e

f(xt)⊤f(x+
ti)

}m

j=1


f̂ := argmin

f∈F
L̂M,N,n,m

Debiased (f)



Theorem B.4. With probability at least 1− δ, for all f ∈ F and N ≥ K − 1,

LSup(f̂) ≤ LM,N,n,m
Debiased (f) +O

 1

τ−

√
1

n
+

τ+

τ−

√
1

m
+

λRS(F)

T
+B

√
log 1

δ

T

 ,

where λ = 1
M

√
1

τ−2 (
m
n + 1) + τ+2( n

m + 1) and B = logN
(

1
τ− + τ+

)
.

Proof. Considering the samples to be
{(

xt,
{
x+
ti

}M
i=1

, {uti}ni=1 , {vti}
m
i=1

)}T

t=1
. Then, we can use the standard bounds

for empirical versus population means of any B−bounded function g belonging to a function class G, we have that with
probability at least 1− δ

2 .

E[g(x)] ≤ 1

T

T∑
t=1

g(xi) +
2RS(G)

T
+ 3B

√
log
(
4
δ

)
2T

(12)

In order to calculate RS(G) we use the same trick as in (Saunshi et al., 2019). We express it as a composition of functions
g = ℓ

(
h
(
f
(
xt,
{
x+
ti

}M
i=1

, {uti}ni=1 , {vti}
m
i=1

)))
where f ∈ F just maps each sample to corresponding feature vector

and h maps the feature vectors to the {a}ni=1, {b}mi=1. Then we use contraction inequality to bound RS(G) with RS(F). In
order to do this we need to compute the Lipschitz constant for the intermediate function h in the composition.

For h, we see that the Jacobian has the following form

∂ai
∂f(x)

= ai

∑M
j=1(f(ui)− f(xj))e

f(x)⊤f(x+
j )∑M

j=1 e
f(x)⊤f(x+

j )
;

∂bi
∂f(x)

= bi

∑M
j=1(f(vi)− f(xj))e

f(x)⊤f(x+
j )∑M

j=1 e
f(x)⊤f(x+

j )

∂ai

∂f(x+
j )

= −ai
f(x)ef(x)

⊤f(x+
j )∑M

k=1 e
f(x)⊤f(x+

k )
;

∂bi

∂f(x+
j )

= −bi
f(x)ef(x)

⊤f(x+
j )∑M

k=1 e
f(x)⊤f(x+

k )

∂ai
∂f(uj)

= f(x)aiδ(i− j);
∂bi

∂f(vj)
= f(x)biδ(i− j)

Using the fact that ∥f(·)∥2 = 1, we get e−2

M ≤ ai, bi ≤ e2

M and

∥J∥22 ≤ ∥J∥2F ≤
n∑

i=1

a2i


∥∥∥∥∥∥
∑M

j=1(f(ui)− f(xj))e
f(x)⊤f(x+

j )∑M
j=1 e

f(x)⊤f(x+
j )

∥∥∥∥∥∥
2

2

+ ∥f(x)∥22

∑M
j=1 e

2f(x)⊤f(x+
j )(∑M

j=1 e
f(x)⊤f(x+

j )
)2 + ∥f(x)∥22


+

m∑
i=1

b2i


∥∥∥∥∥∥
∑M

j=1(f(vi)− f(xj))e
f(x)⊤f(x+

j )∑M
j=1 e

f(x)⊤f(x+
j )

∥∥∥∥∥∥
2

2

+ ∥f(x)∥22

∑M
j=1 e

2f(x)⊤f(x+
j )(∑M

j=1 e
f(x)⊤f(x+

j )
)2 + ∥f(x)∥22


≤

n∑
i=1

a2i (4 + 1 + 1) +
m∑
i=1

b2i (4 + 1 + 1) ≤ 6(n+m)e4

M2

Using this and the Lipschitz constant, O
(√

1
nτ−2 + τ+2

m

)
of ℓ derived in (Chuang et al., 2020), we get RS(G) = λRS(F)

where λ = O
(

1
M

√
1

τ−2 (
m
n + 1) + τ+2( n

m + 1)
)

. From (Chuang et al., 2020), we also get B = O
(
logN

(
1
τ− + τ+

))
.

Combining this with Equation 12 gives us that with probability at least 1− δ
2

LM,N,n,m
Debiased (f̂) ≤ L̂M,N,n,m

Debiased (f̂) +O

λRS(F)

T
+B

√
log 1

δ

T





Using Theorem B.2, we get that

LM,N
Unbiased(f̂) ≤ LM,N,n,m

Debiased (f̂) +O

(
1

τ−

√
1

n
+

τ+

τ−

√
1

m

)

≤ L̂M,N,n,m
Debiased (f̂) +O

 1

τ−

√
1

n
+

τ+

τ−

√
1

m
+

λRS(F)

T
+B

√
log 1

δ

T


Using Lemma B.3, we get

LSup(f̂) ≤ LM,N
Unbiased(f̂) ≤ L̂M,N,n,m

Debiased (f̂) +O

 1

τ−

√
1

n
+

τ+

τ−

√
1

m
+

λRS(F)

T
+B

√
log 1

δ

T


Finally we see that for any f , we can use M Hoeffding’s inequality to show that with at least 1− δ

2 probability

L̂M,N,n,m
Debiased (f) ≤ LM,N,n,m

Debiased (f) + 3B

√
log
(
2
δ

)
2T

Combining all of the above results gives us that with probability at least 1− δ,

LSup(f̂) ≤ LM,N
Unbiased(f̂) ≤ L̂M,N,n,m

Debiased (f̂) +O

 1

τ−

√
1

n
+

τ+

τ−

√
1

m
+

λRS(F)

T
+B

√
log 1

δ

T


≤ L̂M,N,n,m

Debiased (f) +O

 1

τ−

√
1

n
+

τ+

τ−

√
1

m
+

λRS(F)

T
+B

√
log 1

δ

T


≤ LM,N,n,m

Debiased (f) +O

 1

τ−

√
1

n
+

τ+

τ−

√
1

m
+

λRS(F)

T
+B

√
log 1

δ

T

+O

B

√
log
(
1
δ

)
T





C. Table of Definitions

Table S1. A summary of definitions.

LNCA(G
1,M) Ex∼D,x+

j ∼Daug
x ,x−

i ∼Daug
\x
[− log

M∑
j=1

e
f(x)T f(x

+
j

)

M∑
j=1

e
f(x)T f(x

+
j

)
+NG1(x,{x−

i }N )

]

Ex∼D,x+∼Daug
x ,x−

i1
,x−

i2j ,x
−
j ∼Daug

\x
[− log ef(x)T f(x+)

ef(x)T f(x+)+NG1(x,{x−
i1

}N )

LMIXNCA(G
1,M, λ)

− λ
M−1

M−1∑
j=1

log e
f(x)T f(λx++(1−λ)x

−
j

)

e
f(x)T f(λx++(1−λ)x

−
j

)
+NG1(x,{x−

i2j}N
i2

)

− 1−λ
M−1

M−1∑
j=1

log

(
1− e

f(x)T f(λx++(1−λ)x
−
j

)

e
f(x)T f(λx++(1−λ)x

−
j

)
+NG1(x,{x−

i2j}N
i2

)

)
]

g0(x, {x−
i }Ni ) 1

N

∑N
i=1 e

f(x)T f(x−
i )

g1(x, {ui}n, {vj}m) max{ 1
1−τ+ (

1
n

∑n
i=1 e

f(x)T f(ui) − τ+ 1
m

∑m
j=1 e

f(x)T f(vj)), e−1/t}

g2(x, {ui}n, {vj}m) max{ 1
1−τ+ (

∑n
i=1 e(β+1)f(x)T f(ui)∑n

i=1 eβf(x)T f(ui)
− τ+ 1

m

∑m
j=1 e

f(x)T f(vj)), e−1/t}

ŵ(x) − log ef(x)T f(x+)

ef(x)T f(x+)+NG(x,·)



D. Complete Tables of Results
We give the full table of results in Section 4 in the following. Notably, we gather the standard accuracy, robust accuracy,
transfer accuracy, and transfer robust accuracy for each specification.

Table S2. The effectiveness evaluation of NaCl on SimCLR (i.e. α = 0, G1 = g0). The best performance within each loss type is in
boldface.

M
α = 0, LNaCl(G

1,M, λ) = LNCA(g0,M)
CIFAR100 Acc. FGSM Acc. CIFAR10 Acc. FGSM Acc.

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 55.72±0.15 27.04±0.45 77.40±0.14 44.58±0.41
3 56.67±0.12 28.41±0.24 77.53±0.24 45.21±0.89
4 57.09±0.26 28.20±0.81 77.75±0.22 45.13±0.44
5 57.32±0.17 28.33±0.59 77.93±0.40 44.46±0.53

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g0,M, 0.5)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 54.76±0.29 23.66±0.27 76.78±0.26 40.76±0.66
3 55.21±0.17 24.46±0.44 77.45±0.18 41.78±0.80
4 55.68±0.27 24.19±0.46 77.40±0.24 41.33±0.34
5 55.85±0.16 24.01±0.91 77.50±0.16 40.77±0.66

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g0,M, 0.6)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 54.84±0.35 25.94±0.81 77.11±0.15 42.81±0.83
3 55.49±0.13 26.25±0.89 76.95±0.32 42.99±0.96
4 55.65±0.24 25.41±0.53 77.39±0.37 42.69±1.20
5 55.66±0.22 26.01±0.60 77.26±0.48 43.06±0.79

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g0,M, 0.7)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 55.57±0.32 27.67±0.60 77.09±0.27 44.68±0.71
3 55.83±0.25 27.72±0.59 77.23±0.28 43.68±0.72
4 56.29±0.25 27.92±0.60 77.33±0.29 44.69±0.82
5 56.37±0.32 27.78±0.54 77.40±0.20 45.07±0.98

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g0,M, 0.8)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 55.75±0.21 29.30±0.86 76.80±0.20 46.56±1.02
3 56.27±0.26 29.96±0.29 77.11±0.37 46.52±0.50
4 56.39±0.26 29.49±0.65 77.34±0.31 46.79±0.93
5 56.23±0.13 29.47±0.95 77.40±0.14 47.36±0.69

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g0,M, 0.9)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 56.20±0.33 30.95±0.36 76.96±0.15 48.85±0.75
3 56.41±0.13 30.98±0.90 77.10±0.21 48.76±0.63
4 56.00±0.42 29.90±0.63 77.11±0.40 48.16±0.40
5 56.63±0.31 30.58±0.52 77.04±0.19 47.96±0.46



Table S3. The effectiveness evaluation of NaCl on Debised+HardNeg (i.e. α = 0, G1 = g2). The best performance within each loss type
is in boldface.

M
α = 0, LNaCl(G

1,M, λ) = LNCA(g2,M)
CIFAR100 Acc. FGSM Acc. CIFAR10 Acc. FGSM Acc.

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 57.87±0.15 32.50±0.48 77.43±0.11 48.14±0.31
3 58.42±0.23 33.19±0.60 77.41±0.17 48.09±0.93
4 58.86±0.18 32.65±1.07 77.46±0.29 48.43±0.94
5 58.81±0.21 32.86±0.47 77.58±0.23 48.30±0.39

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.5)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 59.41±0.19 32.22±0.35 79.36±0.65 48.86±0.34
3 59.81±0.25 32.04±0.67 79.41±0.17 48.91±0.81
4 59.75±0.33 32.03±0.34 79.42±0.18 49.05±0.71
5 59.85±0.30 32.06±0.72 79.45±0.20 48.32±0.70

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.6)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 58.94±0.29 32.65±0.36 78.67±0.15 49.86±0.59
3 59.43±0.35 32.91±0.40 78.94±0.19 48.84±1.09
4 59.54±0.28 33.02±0.62 78.92±0.29 49.64±0.74
5 59.52±0.28 33.10±0.50 79.29±0.21 49.39±1.02

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.7)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 58.24±0.19 33.24±0.90 78.30±0.31 50.40±0.83
3 58.74±0.26 33.12±0.59 78.49±0.30 49.85±0.38
4 58.79±0.38 33.63±0.53 78.51±0.29 49.88±0.75
5 58.99±0.18 32.93±0.81 78.57±0.12 49.53±1.55

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.8)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 57.60±0.15 34.14±0.22 77.96±0.07 51.82±0.68
3 58.04±0.28 33.93±0.45 77.55±0.18 50.30±0.81
4 58.05±0.16 34.16±0.54 77.90±0.21 50.40±0.43
5 58.43±0.27 33.87±0.62 77.90±0.17 50.78±0.95

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.9)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 57.16±0.15 34.25±0.55 77.19±0.09 51.42±0.45
3 57.08±0.10 33.96±0.19 77.21±0.26 51.30±1.05
4 57.36±0.19 34.29±0.15 77.34±0.34 51.16±0.55
5 57.38±0.16 34.25±0.30 77.13±0.16 50.68±0.74



Table S4. The effectiveness evaluation of NaCl (M ̸= 1) on IntCl (M = 1) when α = 1, G1 = G2 = g2. The best performance within
each loss type is in boldface.

M
α ̸= 0, LNaCl(G

1,M, λ) = LNCA(g2,M)
CIFAR100 Acc. FGSM Acc. CIFAR10 Acc. FGSM Acc.

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 56.71±0.11 39.80±0.57 76.55±0.27 58.44±0.31
3 57.13±0.26 40.53±0.29 76.67±0.22 58.47±0.31
4 57.06±0.19 40.85±0.31 76.34±0.22 58.91±0.62
5 57.46±0.04 41.00±0.86 76.60±0.37 57.98±0.47

α ̸= 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.5)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.97±0.19 40.25±0.52 78.61±0.20 58.41±0.59
3 59.26±0.18 40.96±0.58 78.83±0.22 59.20±1.25
4 59.32±0.21 40.82±0.54 78.83±0.27 59.03±0.52
5 59.43±0.23 41.01±0.34 78.80±0.21 59.51±0.93

α ̸= 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.6)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.55±0.34 40.85±0.62 78.34±0.22 59.56±0.88
3 59.05±0.21 40.83±0.44 78.41±0.12 59.14±0.78
4 59.06±0.25 40.80±0.89 78.61±0.22 58.41±1.00
5 59.10±0.23 40.68±0.50 78.63±0.21 58.92±0.76

α ̸= 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.7)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.00±0.18 40.35±0.34 77.73±0.24 59.40±1.27
3 58.23±0.18 40.94±0.75 77.91±0.25 59.57±0.81
4 58.20±0.25 40.95±0.45 77.89±0.20 59.49±0.49
5 58.37±0.14 41.15±0.48 78.27±0.26 59.17±0.94

α ̸= 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.8)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 57.07±0.24 41.29±0.57 77.27±0.28 60.16±0.51
3 57.62±0.22 40.93±0.49 77.54±0.27 59.47±0.52
4 57.61±0.25 41.36±0.41 77.50±0.34 60.28±0.68
5 57.56±0.18 40.71±0.34 77.58±0.42 59.99±0.30

α ̸= 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.9)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 56.54±0.33 40.85±0.13 76.81±0.22 60.40±0.46
3 56.69±0.11 41.23±0.66 76.98±0.22 60.13±0.56
4 56.43±0.26 41.56±0.56 76.97±0.20 61.21±0.49
5 56.86±0.11 41.09±0.31 76.91±0.21 60.09±0.39



E. Robust Accuracy
For a more comprehensive study of adversarial robustness, we extend Table S3 to include PGD attack results with the same
strength as FGSM attacks (ϵ = 0.002). One can readily see from Table S5 that the robust accuracy under PGD attacks of the
same magnitude is slightly lower (roughly 2-3% lower) as PGD is a stronger attack. Nevertheless, the trend is consistent –
the models that exhibit better adversarial robustness w.r.t. FGSM attacks also demonstrate superior adversarial robustness
w.r.t. PGD attacks.

Table S5. The complete Table S3 (Table 1 right column) with additional PGD accuracy.

M
α = 0, LNaCl(G

1,M, λ) = LNCA(g2,M)
CIFAR100 Acc. FGSM Acc. PGD Acc. CIFAR10 Acc. FGSM Acc. PGD Acc.

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 57.87±0.15 32.50±0.48 30.25±0.60 77.43±0.11 48.14±0.31 45.81±0.43
3 58.42±0.23 33.19±0.60 30.93±0.59 77.41±0.17 48.09±0.93 45.67±0.93
4 58.86±0.18 32.65±1.07 30.22±1.09 77.46±0.29 48.43±0.94 45.99±1.15
5 58.81±0.21 32.86±0.47 30.57±0.55 77.58±0.23 48.30±0.39 45.80±0.48

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.5)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 59.41±0.19 32.22±0.35 30.11±0.43 79.36±0.65 48.86±0.34 46.67±0.40
3 59.81±0.25 32.04±0.67 29.87±0.65 79.41±0.17 48.91±0.81 46.61±0.86
4 59.75±0.33 32.03±0.34 29.85±0.36 79.42±0.18 49.05±0.71 46.70±0.80
5 59.85±0.30 32.06±0.72 29.99±0.76 79.45±0.20 48.32±0.70 45.89±0.82

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.6)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 58.94±0.29 32.65±0.36 30.16±0.27 78.67±0.15 49.86±0.59 47.38±0.70
3 59.43±0.35 32.91±0.40 30.36±0.52 78.94±0.19 48.84±1.09 46.24±1.32
4 59.54±0.28 33.02±0.62 30.68±0.72 78.92±0.29 49.64±0.74 47.15±0.88
5 59.52±0.28 33.10±0.50 30.63±0.48 79.29±0.21 49.39±1.02 46.89±1.12

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.7)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 58.24±0.19 33.24±0.90 30.40±1.06 78.30±0.31 50.40±0.83 47.50±0.89
3 58.74±0.26 33.12±0.59 29.94±0.62 78.49±0.30 49.85±0.38 46.69±0.32
4 58.79±0.38 33.63±0.53 30.70±0.60 78.51±0.29 49.88±0.75 47.01±0.96
5 58.99±0.18 32.93±0.81 29.89±0.99 78.57±0.12 49.53±1.55 46.41±1.91

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.8)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 57.60±0.15 34.14±0.22 31.35±0.25 77.96±0.07 51.82±0.68 48.81±0.85
3 58.04±0.28 33.93±0.45 31.31±0.62 77.55±0.18 50.30±0.81 47.41±0.76
4 58.05±0.16 34.16±0.54 31.41±0.61 77.90±0.21 50.40±0.43 47.58±0.47
5 58.43±0.27 33.87±0.62 31.23±0.76 77.90±0.17 50.78±0.95 47.96±1.12

α = 0, LNaCl(G
1,M, λ) = LMIXNCA(g2,M, 0.9)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 57.16±0.15 34.25±0.55 31.83±0.57 77.19±0.09 51.42±0.45 49.09±0.53
3 57.08±0.10 33.96±0.19 31.56±0.34 77.21±0.26 51.30±1.05 48.60±1.28
4 57.36±0.19 34.29±0.15 31.93±0.32 77.34±0.34 51.16±0.55 48.64±0.61
5 57.38±0.16 34.25±0.30 31.89±0.26 77.13±0.16 50.68±0.74 48.14±0.83

In Figure S1, we show the robust accuracy as a function of the FGSM attack strength ϵ. Specifically, we range the attack



strength from 0.002 to 0.032 and give the robust accuracy of our proposals (IntCl & IntNaCl) together with baselines under
all attacks. From Figure S1, one can see that among all baselines, Adv demonstrates the best adversarial robustness, whereas
our proposals still consistently win over it by a noticeable margin.

Figure S1. The robust accuracy under FGSM attacks of different strength on CIFAR100.



F. The Effect of λ

(a) NaCl on SimCLR (Chen et al., 2020a), i.e. α = 0,LNaCl = LMIXNCA, G
1 = g0 in Eq. (9)

(b) NaCl on Debiased+HardNeg (Robinson et al., 2021), i.e. α = 0,LNaCl = LMIXNCA, G
1 = g2 in Eq. (9)

Figure S2. The standard and robust accuracy (%) on CIFAR100 and CIFAR10 as functions of λ in Eq. (9) when α = 0,LNaCl = LMIXNCA.



G. Extended Runtime
As training the representation with more epochs can also expose the data to more augmentations, we carry out an additional
experiments to compare the efficiency and ultimate accuracy of LNaCl, LSimCLR, and LDebiased+HardNeg. In Table S6, we give
the standard accuracy of NaCl on SimCLR and NaCl on Debiased+HardNeg at different epochs. Same as before, we only
select one λ when LNaCl = LMIXNCA and report its results together with those of LNaCl = LNCA. In Figure S3, we plot
the best standard accuracy achieved as a function of training epochs. Specially, (HaoChen et al., 2021) has reported a
LSimCLR CIFAR100 accuracy of 54.74% after 200 epochs, compared to LNCA(g0, 2)’s 55.72% after 100 epochs. In our
reproduction of the LSimCLR 200-epoch result2, we have witnessed an accuracy of 57.45% however at the cost of 1.34X
training time (cf. 200 epochs with LSimCLR takes 211 mins vs. 100 epochs with LNCA(g0, 2) takes 158 mins). Overall, we
see that NaCl methods demonstrate better efficiency when applying on SimCLR and better ultimate accuracy when applying
on Debiased+HardNeg.

#epoch 100 200 400 600 800 1000 1200 1400 1600 1800 2000
LSimCLR 53.69 57.45 60.06 60.96 61.27 61.90 61.94 62.53 62.44 62.10 62.06

LNCA(g0, 2) 55.72 59.31 61.19 61.66 62.49 61.95 62.06 62.39 62.39 62.52 62.54
LMIXNCA(g0, 2, 0.9) 56.20 58.98 61.81 62.43 62.46 63.48 63.48 64.13 64.14 64.21 64.31
LDebiased+HardNeg 56.83 59.35 61.77 62.74 62.68 63.12 63.22 63.08 62.86 62.90 63.38
LNCA(g2, 2) 57.87 60.06 62.36 62.58 62.86 63.07 63.29 63.65 63.13 63.73 63.20

LMIXNCA(g2, 2, 0.5) 59.41 62.14 64.06 65.59 65.53 66.29 66.64 67.14 66.94 67.53 67.85

Table S6. The CIFAR100 linear evaluation results (%) after different numbers of training epochs.

(a) NaCl on SimCLR (Chen et al., 2020a) (b) NaCl on Debiased+HardNeg (Robinson et al., 2021)

Figure S3. The standard accuracy (%) on CIFAR100 with extended runtime.

2We let the dataloader shuffle the whole dataset to form new batches after every epoch, so by doubling the training epoch, one will
effectively expose the network to more diverse negative pairs.



H. Experimental Details
Architecture. We follow (Chen et al., 2020a; Robinson et al., 2021) to incorporate an MLP projection head during the
contrastive learning on resnet18.

Optimizer. Adam optimizer with a learning rate of 3e− 4.

Training epochs. The representation network is trained for 100 epochs. For CIFAR100 and CIFAR10, the downstream
fully-connected layer is trained for 1000 epochs. For TinyImagenet, the fully-connected layer is trained for 200 epochs.

Methodological hyperparameters. Throughout out experiments, we use τ+ = 0.01 and β = 1.0 for LDebiased (Chuang
et al., 2020) and LDebiased+HardNeg (Robinson et al., 2021), α = 1 for LAdv (Ho & Vasconcelos, 2020). The same set of
hyperparameters are used in our IntCl and IntNaCl.

Data augmentation. Our data augmentation includes random resized crop, random horizontal flip, random grayscale,
and color jitter. Specifically, we implement the color jitter by calling torchvision.transforms.ColorJitter(0.8 ∗ s, 0.8 ∗
s, 0.8 ∗ s, 0.2 ∗ s) and execute with probability 0.8. Random grayscale is performed with probability 0.2.

Adversarial hyperparameters. When evaluating the adversarial robustness using the codebase provided in (Wong et al.,
2020), we use a PGD step size of 1e− 2, 10 iterations, and 2 random restarts.

Error bar. We run five independent trials for each of the experiments and report the mean and standard deviation for all
tables and figures. The error bars in Figure S1 is omitted for better visual clarity.



I. Supervised Learning Baseline
We give in the following the standard and robust accuracy of a supervised learning baseline with the same network
architecture, optimizer, and batch size. In our self-supervised representation learning experiments, we train the representation
network for 100 epochs and train the downstream fully-connected classifying layer for 1000 epochs. Therefore, to obtain a
fair supervised learning baseline, we train the complete network end-to-end for 1000 epochs. We follow the same procedures
in evaluating the transfer standard accuracy and robust accuracy as described in Section 4.

CIFAR100 (std. acc., FGSM acc., PGD acc.): 65.16±0.32, 35.89±0.23, 32.62±0.23.

Transfer CIFAR10 (std. acc., FGSM acc., PGD acc.): 77.45±0.21, 44.39±0.47, 40.35±0.52.


