An End-to-End Conditional Generative Adversarial Network
Based on Depth Map for 3D Craniofacial Reconstruction

Niankai Zhang' , Junli Zhao!" , Fuging Duan? ", Zhenkuan Pan' , Zhongke Wu? , Mingquan Zhou? ,
Xianfeng Gu*
ICollege of Computer Science and Technology, Qingdao University, Qingdao 266071, China
%Virtual Reality Research Center of Ministry of Education, Beijing Normal University, Beijing 100875, China
3School of Information Science and Technology, Northwest University, Xi’an 710127, China
4Department of computer Science, Stony Brook University, Stony Brook, 11790, USA
* Correspondence authors: zhaojl@yeah.net, fqduan@bnu.edu.cn

ABSTRACT

Craniofacial reconstruction is fundamental in resolving forensic
cases. It is rather challenging due to the complex topology of the
craniofacial model and the ambiguous relationship between a skull
and the corresponding face. In this paper, we propose a novel ap-
proach for 3D craniofacial reconstruction by utilizing Conditional
Generative Adversarial Networks (CGAN) based on craniofacial
depth map. More specifically, we treat craniofacial reconstruction
as a mapping problem from skull to face. We represent 3D cran-
iofacial shapes with depth maps, which include most craniofacial
features for identification purposes and are easy to generate and
apply to neural networks. We designed an end-to-end neural net-
works model based on CGAN then trained the model with paired
craniofacial data to automatically learn the complex nonlinear rela-
tionship between skull and face. By introducing body mass index
classes(BMIC) into CGAN, we can realize objective reconstruction
of 3D facial geometry according to its skull, which is a complicated
3D shape generation task with different topologies. Through com-
parative experiments, our method shows accuracy and verisimili-
tude in craniofacial reconstruction results.
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1 INTRODUCTION

Craniofacial reconstruction(CFR) achieves the purpose of personal
identification by reestablishing a resemblance of the facial appear-
ance of an unknown body. When confronted with a decomposed,
mutilated, or skeletonized body with all the other methods failed,
craniofacial reconstruction can be the last technique to identify
the unknown body[38]. The first evident endeavor of the CFR
technique can date back to Neolithic times[43]. It is performed
by manually putting plasters over a skull. In the 19th century, sev-
eral attempts[16, 22, 45]had been made to obtain the soft tissue
depth measurements of the face, which leads traditional manual
reconstruction towards systematically scientific[43]. However, man-
ual reconstruction requires the performer to have a high degree
of anatomical and artistic modeling expertise, and it is also time-
consuming and subjective[4].

Craniofacial reconstruction is a more difficult task than general
task since it is to generated a correspondence face of a specified tar-
get skull, not a random face. Most of the craniofacial reconstruction
methods are based on the relationship between the soft tissues and
the underlying skull [38]. However, this relationship is nonlinear
and complex, and existing methods are controversial because of
the lack of complete understanding of this relationship [42]. More-
over, craniofacial data is high-dimensionally complex, and skull
and skin are of different topologies. Therefore, it isn’t easy to per-
form craniofacial reconstruction on 3D meshes directly, which are
difficulty to be applied to neural networks. A common approach is
to represent craniofacial data in feature space by dimensionality
reduction and perform craniofacial reconstruction in feature space.
These methods usually obtain accurate reconstructions. However,
the reconstructions often lack high-frequency details because of
the representation of craniofacial data in a low-dimensional feature
space.

In order to solve the above problems, we propose to represent 3D
craniofacial shapes with depth maps and use neural networks as a
regression model to learn the mapping from skull to face. Neural net-
works have a significant advantage in solving nonlinear problems
and retaining high-frequency details.Craniofacial reconstruction
can be realized according the relationship between the skull and
face, which is to be learned in our network. The use of depth map
representation avoids the problem of the different topologies of the
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skull and face. And depth map preserves the high-frequency details
of craniofacial data to a large extent.

The main contributions of our work are as follow:(1) We design a
novel end-to-end, CGAN-based neural networks model for craniofa-
cial reconstruction. Meanwhile, body mass index classes(BMIC) are
introduced to improve the accuracy of reconstruction. we apply an
end-to-end CGAN to 3D craniofacial reconstruction successfully,
which is a difficult 3D shape generation task between different
typology models. (2) We selected a suitable representation for 3D
craniofacial data, depth maps. Depth map is easy to generate and in-
cludes most of the craniofacial features for identification purposes.
It is also convenient to apply neural networks, especially light-
weighted and efficient Convolutional Neural Networks(CNNs). (3)
Through comparative experimentation with existing end-to-end
GANSs, we demonstrate the superiority of our model in craniofa-
cial reconstruction. We also conducted an ablation study on our
approach to better understand the impact of different parts of our
model on craniofacial reconstruction.

2 RELATED WORK

2.1 Computer-assisted Craniofacial
Reconstruction

Computer-assisted methods can mainly be divided into knowledge-
based methods and learning-based methods. Knowledge-based
methods reconstruct the facial characteristics based on pre-measured
craniofacial soft tissue thickness at different locations [36, 40]. This
category of methods is a machinery reproduction of traditional
manual reconstruction, e.g., Gietzen [11].

In learning-based methods[20, 26, 34], high-dimensional and
complex craniofacial data are usually represented in a low- dimen-
sional feature space. Later a mapping function from skull to face is
obtained in the low-dimensional feature space by machine learning.
Li [26] established a statistical model of craniofacial data and trained
a least square support vector regression model in the parameter
space. Paysan [34]used ridge regression to learn the mapping in the
parameter space and specified attributes, e.g., age, weight for the
reconstruction target. Duan [6] used multilinear subspace analysis
to extract the features of craniofacial subspace with the attributes,
e.g., age and BMI for establishing a mapping based on partial least
square regression. Xiao [46] used Gaussian Process Latent Variable
Models to represent craniofacial data and employed least square
support vector machine regression to establish the mapping from
skull to face in the latent space. Learning-based methods usually
obtain accurate reconstructions, but the reconstructions often miss
the details of the face due to the use of statistical models[14].

2.2 Generating 3D Shape with Neural Networks

Recently, with Convolutional Neural Networks(CNNs) [23] show-
ing promising in image generation, manipulation, and completion,
etc., some works have been trying to apply CNNs to 3D shapes.
However, traditional CNNs can not be directly applied to non-
Euclidean 3D shapes. Researchers put forward two kinds of meth-
ods to solve this problem: defining convolution-like structures in
non-Euclidean space and representing 3D shapes in Euclidean space.
The first type of method [2, 15, 28, 31, 44] is usually applied to 3D

shapes with large shape differences, e.g., tables and chairs; there-
fore, it is not suitable for our question. CFR-GAN[35] proposed a
deep generative model for craniofacial reconstruction which has
the ability to generate high-fidelity face images. 3D face provides a
more sufficient way for personal identification, but above method
are not for 3D craniofacial reconstruction.

In the second type of method, the most common representation
is images. Gilani [12] calculate the depth, azimuth, and elevation of
each vertex of a mesh and use it to generate a three-channel image.
Galteri [9] used the same method to get the image representation of
a 3D mesh, except they replaced the azimuth value with curvature,
as their work values the curvature more. Feng [8] proposed to store
coordinates of points of a 3D face model in a UV position map.
Instead of directly dealing with 3D shapes, some methods try to
regress the parameters of a statistic model of 3D shapes by using
differentiable renderers[10, 28].

In our case, a depth map is a good option for Euclidean repre-
sentation, for it is easy to generate and convenient for applying
neural networks. And a depth map projected from the frontal face
preserves most of the facial features, which meets the need for
craniofacial reconstruction to a large extent.

2.3 GAN-based Image-to-image Mapping

Recently, Generative Adversarial Network(GAN) has attracted a lot
of attention because of its ability to produce high-dimensionally
complex and verisimilar data. GAN proposed by Goodfellow [13],
which models data probability distribution through adversarial
learning. GAN also learns the mapping between the input domain
and the target domain. For example, the original GAN maps the
noise to the target. CGAN[32] maps the noise and label conditions
to the target of different categories. GAN-based mapping between
image domains has been widely studied and achieved great success.
Some works conditioned the generator on the input image through
L, regression loss, e.g., image repair [33], image super-resolution
[24]. Pix2Pix [19]conditioned the discriminator on input to reduce
the specificity of the task. CycleGAN[47] proposed the use of cycle
consistency loss for self-supervision, which is quite effective. Li et
al.[27] present a craniofacial reconstruction method that synthe-
sizes craniofacial images from 2D computed tomography scan of
skull data based on deep generative adversarial nets. However, we
have never seen the method to solve the problem of craniofacial
reconstruction on 3D craniofacial data with CGAN.

The problem we aim to solve can be regarded as a mapping from
the 3D skull domain to the 3D face domain. Therefore, a GAN-
based structure would be suitable for reconstructing realistic faces.
Furthermore, through mapping 3D craniofacial data to 2D depth
images, the problem of complex 3D craniofacial data applied to the
neural network is solved successfully.

3 METHOD
3.1 Overview

Our proposed method treats craniofacial reconstruction as a map-
ping problem, where a CGAN performs the mapping process. Our
model learns a mapping function from the skull domain to the face
domain with paired skull-face data. To better utilize neural net-
works, we first represent 3D craniofacial shapes with depth maps,



then used a CGAN to perform an image-to-image mapping from
skull image to face image based on BMIC. After that, the generated
skin images are converted back into 3D shapes, as shown in Fig. 1.
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Figure 1: Overview of the proposed approach. The proposed
approach contains three steps: (a)representing 3D craniofa-
cial data with depth maps (b)training a CGAN model with
paired skull-face depth maps to translate a skull into a face;
Our model consists of a generator G, a discriminator D and a
Classifier C (c)converting the generated face depth map back
into a 3D shape.

3.2 Representation of Craniofacial Data

We represent 3D craniofacial geometry data with a 2D image, where
the only channel represents the depth of the 3D shape. This rep-
resentation allows us to construct our neural networks with 2D
convolutional networks. It contains more comprehensive infor-
mation and details than prior craniofacial representation method.
Galteri [9] inspires this approach, where they used a 3-channel
image to represent the geometry of a 3D shape, and the three chan-
nels contain respectively the depth value, the elevation value of the
normal, and the mean curvature value. In our case, we experimen-
tally found that the elevation channel and the curvature channel
do not benefit the reconstruction. On the opposite, it introduces
noises to our model and makes the reconstruction visually obscure.
Hence we only adopted the depth channel for our model, and we
elaborated on the tests of different representations in Sec.4.3.1.

The data used in this work are 3D skull-face mesh pairs facing
directly in a positive y-axis direction. To obtain the required depth
map, we employed a orthographic projection along the negative Y-
axis to get the image plane and used the Y coordinate of the point as
depth value, as shown in Fig.2. For the given point P(x, y, z){x,y,z €
(0,1)}, the index and pixel value in the image plane after projection
become

Py = —%x X w+ %w

Py=-3zxh+%h (1)

Piepth =y

, where w and h are the width and height of the image con-

tent respectively. The depth values are rescaled in the range of
[0,255] to fit with the pixel value. Then a pixel value interpolation
is conducted based on the triangle information to fill the void in
the projected image. For a given blank pixel P, we calculate its
barycentric coordinates (w1, W, w3) in the corresponding triangle
(P1, P2, P3) in Eq.(2).

Figure 2: The depth map representation of craniofacial data
was obtained by projection.(D)The vertices of the 3D mesh are
projected to the 2D image plane.@2) The void in the projected
image plane is filled by triangular interpolation.

Pindex = W1P1igex + WaP2iq0 + W3P3, 40, @)
The pixel value at pixel P is calculated as the weighted average
of pixel values at the triangle vertices by barycentric coordinates

in Eq.(3).

Ppixel = WlPlpixel + W2P2pixel + W3P3pixel ®3)
At last, a depth buffer is employed to prevent pixel value override
when different points project to the same pixel.

3.3 Architecture of Our Model

Our model consists of a generator G for skull image to face im-
age translation, a discriminator D for face image discrimination,
and a classifier C for face image classification by its body mass
index class(BIMC). As shown in Fig.3, generator G is trained by a
combined constraint of pixel loss, adversarial loss, and BMIC loss.

3.3.1  Skull-face Generator G. Generator G is an end-to-end net-
work for skull-to-face translation. It takes a symmetrical encoder-
decoder as its structure. This symmetrical structure is constructed
with three parts, starting with a convolutional layer and two down-
sample convolutional layers. Several residual blocks are in the mid-
dle, ending with two upsample transpose convolutional layers and
another convolutional layer. We conditioned generator G on BMIC
labels to generate face images with certain BMICs. To satisfy this
purpose, we represent the BMIC label with a 3-channel feature map
and insert the 3-channel feature map before the residual blocks.
Moreover, we insert a convolutional layer to change the concate-
nated feature map back to the same channels. Details of generator
G are shown in Tab. 1. Convolutional layers treat a local area of
feature maps as a whole with connections, which allows our model
to learn the relationship between skull and face as local-area to
local-area mapping instead of point-to-point mapping. In which
case, each point in the reconstructed face is based on the character-
istics of a specific area of the target skull, rather than just a single
point.

3.3.2  Face Discriminator D. Discriminator D aims to boost the
generated face image towards real face image data distribution,
making the generated face images more similar to real face images
with more clear facial features. We use 70 x 70 PatchGAN][19, 24,
25, 47]for our discriminator. It consists of six convolutional layers
without fully connected layers, starting with three downsample
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Figure 3: Detailed architecture of our networks. @ denotes concatenation. Generator G translates input skull A into output face
G(A, ¢) conditioned on BMIC label ¢ by adding c before the residual block. Classifier C predicts the BMIC of G(A, ¢). Discriminator
D discriminates whether G(A, ¢) is real data. Generator G is trained by optimizing the weighted sum of pixel loss, BMIC loss,

and adversarial loss.

convolutional layers, following one convolutional layer, in the end,
a convolutional layer with the output of 70 X 70 X 1. Discriminator
D classifies whether every patch of all 70 X 70 patches is real or fake
and outputs the average of all patches. In such a manner, our model
would have fewer parameters and a shorter training duration.

3.3.3  BMIC Classifier C. With generator G and discriminator D
as our neural networks model, some of the reconstructions are
accurate, but the others are less than satisfactory. We experimentally
found that those test samples with good results are those with
an average body mass. This situation is because the relationship
between skull and face is not one-to-one, and the appearance of
an individual varies with weight changing while the skull remains
the same [34]. Aiming at this problem, we conditioned the input of
generator G on BMIC labels. We manually divide the craniofacial
data into five classes from level one to level five based on the visual
estimation of an individual’s body mass index(BMI) through its
face. Since this classification is related to BMI, we referred to it as
BMIC for short. To discriminate whether the generated faces match
the right BMIC, classifier C is employed. We use LeNet[23] as our
classifier, which is a classical classifier, and experimentally proved
efficient to our task. We experimentally found that it is challenging
for classifier C to classify with only face images as input. However,
with both skull image and face image pair as input, the valuation
of correct classification is high. Fig.4 showed the ground truth and
the reconstructions with five different BMICs.

3.4 Loss Functions

To restrain the property of the output and guarantee wanted results,
three types of losses are defined as explained below.

3.4.1 Pixel Loss. To control the generated face image comparable
to the target face image, we define pixel loss in Eq.(4). Where y is
the target face, and G(x) is the generated face, and pixel loss Lpix is
Lp norm between y and G(x) in pixel level. In our case, we choose
p =1, as it has shown the best performance in our experiments.

Lpix = [ly = G()llp 4)

Q < @
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Figure 4: Same input skull, different reconstructions with
different BMICs.

Layer Filter = Output Shape
Conv 7Xx7 256 X 256 X 64
Conv(downsample) 3x3 128 x128x 128
Conv(downsample) 3x3 64 X 64 X 256
Concat - 64 X 64 X 258
Conv 3x3 64 X 64 X 256
ResidualBlock 3%x3 64 X 64 X 256
ResidualBlock 3x3 64 X 64 X 256
ResidualBlock 3x3 64 X 64 X 256
ResidualBlock 3x3 64 X 64 X 256
ResidualBlock 3x3 64 X 64 X 256
ResidualBlock 3%x3 64 X 64 X 256
ResidualBlock 3x3 64 X 64 X 256
ResidualBlock 3x3 64 X 64 X 256
ResidualBlock 3x3 64 X 64 X 256

128 X 128 X 128
256 X 256 X 64
256 X 256 X 1

TransConv(upsample) 3 X3
TransConv(upsample) 3 X3
Conv 3x3

Table 1: The network structure of generator G

3.4.2  Adversarial Loss. With only the pixel loss, generator G can
generate face images similar to the target face images. However, the
generated images are lack details, which means the generated im-
ages are unclear to human visual perception, especially in the eyes,



nose, and mouth regions of the face. To overcome this problem,
we employed adversarial loss, as shown in Eq.(5). In Eq.(5), x and
y are the depth map representation of the skull data and the face
data. G(x) denotes the face depth map generated by generator G by
feeding input skull x. D(y) and D(G(x)) denote the discriminant
results of discriminator D for real face y and generated face G(x),
respectively. The generator G tries to trick the discriminator D by
minimizing L,g,. The discriminator D attempts to recognize the
face generated by generator G by maximizing L, ,. The adversar-
ial loss pushes the generated face image towards real face image
data distribution through adversarial learning of discriminator and
generator.

Lads(G, D) =Ey~p . (y) 109D (y)]
+ By pegeuts (%) [log(1 — D(G(x)))]

3.4.3 BMIC Loss. BMIC loss is calculated between the BMIC clas-
sifying result of classifier C on the generated face and the BMIC
label. The classical cross-entropy loss in the classification networks
is adopted for BMIC loss, as shown in Eq.(6). Lppy;c(G) prompts
generator G to generate face images with correct BMICs. In Eq. (7),
Lemic(C) is the cross-entropy loss between the BMIC classifying
result of classifier C on the real face image and the BMIC label, and
it is for classifier C training.

®)

n
Lemic(G) = = ) eilog(C(G(x))) ©)
i=1
n
Lemic(C) = = ), cilog(C(y)) ™
i=1
When optimizing generator G, we used L, a sum of the weighted
Lpix, Lady, and Lppgc, as the optimization target. As shown in
Eq.(8), Wp, Wa and w, are the weights of Lpix> Lados and Lgymic,
respectively.

Lg = wpLpix + WaLagy + WeLBMIC ®)

4 EXPERIMENTS

In this section, we elaborated on the implementation details of the
proposed method. We conducted an ablation study on our proposed
approach to fully understand and evaluate the role and effect of
each part for craniofacial reconstruction. Finally, we compared the
proposed craniofacial reconstruction method with other end-to-end
GANs and traditional machine learning methods.

4.1 Implementation Details

The coding part of our work was inspired by CycleGAN [47] and
implemented in the PyTorch framework. In our networks, discrimi-
nator D uses 70 X 70 Patch-GANs [19, 24, 25, 47], and generator G
is adapted from Johnson [21], in which BMIC conditions are added.
For classifier C, we used the classical classification network LeNet
[23], and test accuracy in the classification of BMIC was as high
as 99%. For adversarial loss, we tested the original GAN loss [13],
the LSGAN loss [30], and the WGAN loss [1], among which the
LSGAN loss showed the best performance. We set the weight of the

different parts of generator loss as wy, = 1, wg = 0.01, w, = 0.005,
which showed the best performance in training.

For the training of generator G and discriminator D, we followed
the training procedure of Shrivastav[39]. We maintained a buffer
pool of generated face images of the last epoch of training to update
the discriminator. As to the training of classifier C, we only used
real craniofacial data. Classifier C is trained simultaneously with
generator G and discriminator D but separately updating parame-
ters.

4.2 Data Augmentation

The experimental data used in this paper are head CT images. In
order to obtain meshes, we first extracted the boundary of skulls
and faces from the CT images[7] and then reconstructed meshes
using the Marching Cube algorithm[29]. To obtain a uniform pro-
jected depth map, we adjusted the skull and face mesh to Frankfurt
coordinate system [17], then performed TPS registration[18]. After
the above process, the meshes of the front half skull and face, with
the same scale and unified posture, are obtained.

With a total of 209 skull and skin 3D mesh pairs for experiments,
among which 60 pairs are randomly selected for testing, and the
remaining 149 pairs are for training. If one mesh is converted into
one depth map, 149 pairs of images will be generated for training,
which is far from sufficient to support the training of our networks.
Therefore, we performed data augmentation by rotating the 3D
mesh around X, Y, and Z-axis at random angles(-3,3) and then
performed projections to obtain different depth maps. A 3D shape
gets nine images, and a total of 1341 images could be obtained
for the training of our model. The data augmentation we took
increases not only the size of the training data but also enhances
the robustness of our model for the problem of incomplete unity of
face and skull posture.

4.3 Results and Analysis

4.3.1 Ablation Study. In this chapter, in order to more clearly un-
derstand the influence of different parts of our model on craniofacial
reconstruction, we carried out an ablation study for this model. Fig.5
shows different reconstruction results when adding or deleting dif-

ferent components in our model.
) B
e
) (c) depth+elev+curv

(a) ground truth (b dpth+elev+azmt
(f) Lpix

(d) full model (€) Lpix + Lado

Figure 5: An ablation study on the impact of different com-
ponents of our method on craniofacial reconstruction.



Reconstruction Error  depth+elev+azmt depth+elev+curv  full model Lpix Lpix + Lado
Min 0.00000092 0.00000038 0.00000015 0.00000040 0.00000077

Mean 0.02060362 0.01221315 0.00787630 0.00775745 0.01865223

Max 0.08330410 0.06238850 0.05656357 0.05278093 0.08557593
Variance 0.00029790 0.00011250 0.00003635 0.00003678 0.00021415

Table 2: Reconstruction error statics of models tested in the ablation study experiment for 60 tests
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Figure 6: The histogram of the mean error for 60 reconstruc-
tions of models tested in the ablation study
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Figure 7: The mean error for 60 reconstructions of models
tested in the ablation study

We conducted the ablation study from two aspects, different rep-
resentations of craniofacial data and loss function. From different
representations, we added geometric information, e.g., curvature,
elevation, and azimuth, to the depth map to form a 3-channel image.
According to the training strategy by Galteri [9], we make the dis-
criminator accept only the depth value as input to reduce the noises
that other channels introduced. However, the reconstruction results
showed that the geometrical information did not make the recon-
struction more accurate but introduced noise. It may suggest that
curvature, elevation, and azimuth has little effect on craniofacial
reconstruction.

From different loss functions, we can see from the obtained
results that Lp;x controls the generated face to have an overall sim-
ilarity with the ground truth but can’t guarantee clear local details.
La4, guarantees the generation of realistic details. For individuals

with very high or very low BMI, Lp;x and L4, could not control
the accuracy of the results generated, and the results were more
accurate by adding Lpprc.

At the same time, we conducted error statistics for 60 reconstruc-
tion results of the above five models, as shown in Fig.6,Fig.7,and
Tab.2. Among these, the model only used Ly;x has the lowest error,
including mean error and maximum error. And most of the mean
reconstruction errors fall in a low range, which conforms to our
expectation that the overall similarity brings the lowest error. The
reconstruction error increases with the addition of L,4,, but the
high-frequency details of the reconstruction results are improved.
After the addition of Lgpsyc, the error dropped to a level only higher
than that of Lp;x alone. It is in line with our explanation in Sec.3.4.3,
the addition of Lgyyc improved the accuracy of the reconstruction.
For the input of depth, elevation, and azimuth and the input of
depth, elevation, and curvature, even with the full model (with
the addition of Lgpyc) , there is still a high error, indicating that
elevation, azimuth, and curvature introduce a lot of noise.

4.3.2 Comparisons with deep learning methods. In this chapter, we
compared our proposed approach with other domain-to-domain
mapping GANs. We calculated the reconstruction errors to eval-
uate the efficiency of the proposed method. Fig.8 shows some of
the reconstruction results and reconstruction error graphs repre-
sented in rainbow color scale. Here, we calculated the geometric
deviation between the reconstructed face and the ground truth for
the reconstruction error by employing the algorithm from [37, 41].
Fig.8 tells that the reconstruction results obtained by our method
are similar to the ground truth in human visual perception, while
Pix2Pix reconstructions appear blurred and CycleGAN reconstruc-
tions are less identical to the ground truth. It also shows a lower
reconstruction error our method has.

Reconstruction Error Pix2Pix CycleGAN Ours

Min 0.00000450  0.00000020  0.00000015
Mean 0.01759093 0.01136900  0.00787630
Max 0.07239635 0.05715283  0.05656357
Variance 0.00007280  0.00013470  0.00003635

Table 3: Reconstruction error comparison with CycleGAN
and Pix2Pix, lower is better.

We conducted reconstruction error statistics on the reconstruc-
tion results of 60 sets of test data. Compared with Pix2Pix and Cy-
cleGAN, the average error of the reconstructions by our model was
significantly lower, as shown in Fig.10(a). In addition, among the
60 test data, more than 80% of the average error of reconstruction
results of our model fell in a low range (< 0.01), which was much
higher than both Pix2Pix and CycleGAN, as shown in Fig.10(b). It
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Figure 8: Reconstruction result quality comparison. RE denotes Reconstruction Error. From left to right are: the ground truth,
the reconstruction results of our method, the reconstruction error graph of our method, the CycleGAN reconstruction results,
the reconstruction error graphs of CycleGAN, the Pix2Pix reconstruction results, the reconstruction error graphs of Pix2Pix.

suggests the high robustness of our model. At the same time, the
minimum, maximum, and variance of the reconstruction errors
by our model are all lower than Pix2Pix and CycleGAN, as shown
in Tab.3. It is a good indication that our approach works well for
craniofacial reconstruction.

4.3.3 Comparison with traditional machine learning methods . We
also compared our proposed approach with traditional machine
learning methods. Fig.9 shows some of the reconstruction results
and reconstruction error graphs represented in rainbow color scale.
Fig.9 tells that the reconstruction results obtained by our method
are much more similar to the ground truth than HF-GGR[20], FMM-
GR[3], and PCA [5]. It also shows a lower reconstruction error our
method has.

We conducted reconstruction error statistics on the reconstruc-
tion results of 60 sets of test data. As shown in Fig.10(c), our method
has the lowest mean reconstruction error. At the same time, the
minimum, maximum, and variance of the reconstruction errors by
our model are all lower than HF-GGR[20], FMM-GR[3], and PCA
[5], as shown in Tab.4. It also shows a lower reconstruction error
our method has and illustrates the effectiveness of our approach.

Reconstruction Error  FMM-GR HF-GGR PCA Ours

Min 0.00013065  0.00000050  0.00245142  0.00000015
Mean 0.02080330  0.01738085  0.05504495  0.00787630
Max 0.07067193  0.06589645  0.15359872  0.05656357

Variance 0.00007280  0.00017700  0.00109160  0.00003635

Table 4: Reconstruction error statics comparison with tradi-
tional machine learning methods, lower is better.

5 CONCLUSION

Craniofacial reconstruction plays a very important role in forensic
investigations. In this paper, we propose a method for 3D craniofa-
cial reconstruction by utilizing neural networks. With the help of
the domain-to-domain mapping capability of GANs, we construct
a novel end-to-end network that directly maps the input skull to
the output face. In future work, we plan to apply a more accurate
representation for 3D geometric craniofacial data to improve the
accuracy of the reconstruction results. On this basis, we plan to gen-
erate the texture information of the corresponding face according
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Figure 9: Reconstruction result quality comparison with machine learning methods. RE denotes Reconstruction Error. From
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Figure 10: The mean error for 60 reconstructions

to some physical attributes of the input skull data, e.g., age, gender,
or race, to make the result more realistic.
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