

Bulletin of the AAS • Vol. 54, Issue 4

An In-Situ Formation Model for Systems of Tightly-Packed Inner Planets

Spencer Wallace¹, Thomas Quinn¹

¹University of Washington, Seattle

Published on: Apr 25, 2022

URL: <https://baas.aas.org/pub/2022n4i302p03>

License: [Creative Commons Attribution 4.0 International License \(CC-BY 4.0\)](https://creativecommons.org/licenses/by/4.0/)

Using high-resolution N-body simulations, we investigate the outcome of terrestrial planet formation at short (< 100 day) orbital periods under a migration-free model. The collisional and dynamical evolution of systems of nearly 10^6 self-interacting planetesimals are directly followed through the final planet assembly phase. This is done by first modeling the planetesimal evolution with the tree-based N-body code ChaNGa, and then passing the results to the hybrid-symplectic N-body code genga, once the particle count has dropped sufficiently. Previously, we showed that oligarchic growth fails to operate at arbitrarily short orbital periods. This leaves a distinct feature in the mass and orbital distribution of the planetary embryos. In this most recent work, we explore whether this boundary between oligarchic and non-oligarchic growth leaves any kind of imprint on the terrestrial planets that form. If so, this would provide an important clue to evaluate whether migration played a significant role in shaping the architecture systems of tightly-packed inner planets.