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Abstract—Foreign Object Debris (FOD) detection has attracted
increased attention in the area of machine learning and computer
vision. However, a robust and publicly available image dataset
for FOD has not been initialized. To this end, this paper
introduces an image dataset of FOD, named FOD in Airports
(FOD-A). FOD-A object categories have been selected based
on guidance from prior documentation and related research
by the Federal Aviation Administration (FAA). In addition to
the primary annotations of bounding boxes for object detection,
FOD-A provides labeled environmental conditions. As such, each
annotation instance is further categorized into three light level
categories (bright, dim, and dark) and two weather categories (dry
and wer). Currently, FOD-A has released 31 object categories and
over 30,000 annotation instances. This paper presents the creation
methodology, discusses the publicly available dataset extension
process, and demonstrates the practicality of FOD-A with widely
used machine learning models for object detection.

Index Terms—Image Dataset, Foreign Object Debris, Com-
puter Vision, Machine Learning

I. INTRODUCTION

Accidents caused by Foreign Object Debris (FOD) are
responsible for severe injuries or death, and billions of dollars
in damages to aircraft [[I]. FOD is a critical safety hazard in
airports, and machine learning and computer vision (MLCV)
technology has been shown as a potential solution in ex-
ploratory research [2]—[5]. In order to facilitate this application
of MLCYV, a dataset of FOD images and annotations is required
to be utilized and organized for more sophisticated and robust
models and algorithms.

To foster future FOD-based MLCV work, we developed
the novel dataset named Foreign Object Debris in Airports
(FOD-A). FOD-A object categories are influenced by relevant
FAA documents and previous research [I]], [6]-[11]]. These
object categories are designed to cover several FOD types
while including specific labels that are descriptive. Images are
collected under varying light and weather conditions to ensure
accurate simulation of typical airport environments. Varying
conditions also ensure that the FOD-A dataset is challenging
for modern MLCV algorithms. As a preview, FOD-A images
with example bounding boxes are shown in Figure [T} Since
FOD is a continually evolving datatype, it is important that a
FOD dataset can be easily expanded. To enable extensibility,
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Fig. 1. FOD-A dataset images with bounding box annotation examples.

this dataset includes tools that allow the addition of new
data with ease. Since extensibility and consistency may be
contradictory traits, it will be important for several iterations
of FOD-A to remain available. Once algorithms are compared
using a consistent iteration of FOD-A, new algorithms can
be implemented using the most current FOD-A data. This
ensures all current FOD-A object categories are included in
final detection algorithms.

Currently, there are several well-known general datasets
available that contain diverse categories of common objects,
(e.g., bicycles, cars, desks, toasters) [12], [13]. Due to the
location of the FOD datatype (i.e. airports), these datasets [[12]],
do not properly cover necessary categories of FOD
(e.g., luggage items, aircraft parts, tools). Because of this,
comparisons to datasets of general objects will only be briefly
made in Section [II=C

The rest of this paper is organized as follows. The related
work is reviewed in Section A description of dataset
creation methodology, FOD-A statistics, and the extension pro-
cess is provided in Section [[ll Section [[V] presents the initial
experimentation and algorithmic results. Finally, Section [V]
concludes the paper and discusses future work. As a summary,
the major contributions of this work are as follows: 1) the
initialization and creation of the novel and publicly available



dataset FOD-A; 2) the design and development of an efficient
and abstractable method of image dataset creation; and 3)
the implementation and evaluation of an initial algorithmic
analysis of FOD-A.

II. RELATED WORK

The FAA published several documents [1], [6]-[11]] pro-
viding guidance on FOD detection and management. As the
main resource for FOD information, the object categories in
the FOD dataset are based off the FAA documentation [6], [7]].
The details of the category selection process are described in
Section

A. Existing FOD Datasets

A publicly accessible FOD dataset [4] does exist. How-
ever, this dataset primarily focused on material recognition,
including the following three object categories: metal, plastic,
and concrete [4]. Using only these three object categories
does not cover all common types of FOD according to the
FAA’s [7] information. For example, these object categories
cannot cover some types of tools, various common airport
garbage (e.g., paper, soda cans), animals and other natural
debris, some runway materials such as paint chips, and other
common FOD [1], [[7]. For comparison, FOD-A provides 31
object categories (see Figure [3).

Furthermore, images contained in the material recognition
dataset are in a zoomed-in format. It is likely that images col-
lected during applied FOD detection tasks will not be zoomed
into objects, so FOD-A provides images in a zoomed-out
format with bounding boxes (see Figure[I)). Also, the material
recognition dataset contains about 3000 object instances, while
the FOD-A dataset contains over 30,000 object instances. In
summary, the FOD-A dataset is more appropriate for FOD
detection tasks because it contains forms of annotation better
suited to the airport environment (i.e. bounding box annotation
plus weather and light categorization annotation), several more
object instances, and descriptive object categories.

B. Related MLCV FOD Detection Methods

FOD-focused MLCV research is becoming increasingly
common [2[|-[5]. Several papers have been published that
implement algorithms to detect FOD. These papers have
created their own private datasets and have generally kept
these datasets small. The effectiveness of major datasets in
several research tasks [[12]], [[13]] can partially be attributed to
focused dataset development and publicly accessible versions.
It is a much larger task to create a robust dataset [[14] when
also presenting new detection methods. Thus, FOD-A should
enable researchers to focus on the improvement of FOD
detection algorithms.

P. Li and H. Li [3] did create their own small dataset for
internal use. Their dataset consists of about 2000 images, with
100 images per object class [3]. Although their small and
private dataset may be feasible for their proposed algorithms,
it may not be suited to larger scale experiments.

Having considered the shortcomings and benefits of prior
works discussed above, we have developed FOD-A with
three main advantages: 1) FOD-A provides a wide range of
descriptive object categories selected by FAA documentation,
and includes a large number of instances for each category;
2) FOD-A is publicly available with documented expansion
processes; and 3) FOD-A considers realistic and challenging
data samples in varying weather and light conditions.

III. DATASET CONSTRUCTION

This section presents FOD-A in more details, including
the creation methodology, FOD-A statistics, and the extension
process.

A. Image Collection

According to the FAA, FOD commonly includes the follow-
ing: “aircraft and engine fasteners (nuts, bolts, washers, safety
wire, etc.); aircraft parts (fuel caps, landing gear fragments, oil
sticks, metal sheets, trapdoors, and tire fragments); mechanics’
tools; catering supplies; flight line items (nails, personnel
badges, pens, pencils, luggage tags, soda cans, etc.); apron
items (paper and plastic debris from catering and freight pal-
lets, luggage parts, and debris from ramp equipment); runway
and taxiway materials (concrete and asphalt chunks, rubber
joint materials, and paint chips); construction debris (pieces
of wood, stones, fasteners and miscellaneous metal objects);
plastic and/or polyethylene materials; natural materials (plant
fragments, wildlife and volcanic ash); and contaminants from
winter conditions (snow, ice)” [6].

The FAA suggests that metal objects are the most common
FOD (over 60 percent of the materials found in a one-year
airport study) [[6]. We generalize the FAA description into
categories suitable for MLCV applications with priority given
to objects that have the highest potential to harm aircraft (i.e.
become ingested and damage jet engines, shred tires, etc.).
The resultant categories for this implementation of the FOD-
A dataset can be found in Figure

In order to create a practical dataset that is applicable
to airport FOD management, we collect images in diverse
conditions. Weather and light conditions in airports vary, so a
dataset of FOD objects must incorporate this fact into included
data. Wet and dry environments provide weather variation
for FOD-A image collection. For light variation, the image
collection process incorporates bright, dim, and dark light
conditions. Since each of these environmental variations could
be easily abstracted to fit categorization tasks, FOD-A includes
categorization labels for weather (dry and wet) and light-level
(bright, dim, and dark). Example light-level categorization
images are provided in Figure Since snow is promptly
cleared from the airport environment, it is unnecessary to
include a snowy category. Any moisture that remains after
snow is cleared should still fit into the wet category. FOD-A’s
dry and wet weather categories should cover the majority of
weather types applicable to airports. Remarkably, the weather
and light-level catgorization annotations are in addition to the



Fig. 2. Example images from various FOD-A light-level categories. Example
bright image (left), an example dim image (middle), and an example dark
image (right).

focus of the FOD-A, which is bounding box annotations for
object detection.

Images of common FOD are collected in the video (mp4)
format using both portable and unmanned aerial vehicle (UAV)
cameras. UAV image collection allows variation in recording
distances that could not be achieved with handheld portable
cameras. The images gathered by the portable camera were
closer to the object, and camera angles changed more dras-
tically than the UAV camera. As a video is densely packed
with images, the video format allows for large-scale image
collection. However, utilizing the video format presented a
few initial issues. Some videos do not have the target object(s)
in each frame, and the empty frames could uselessly pollute
the dataset. A video would have to be trimmed to proper
intervals, and then each frame separated to an image format.
Performing this task by hand is very time-consuming and
prevents extensibility. We created a small command-line tool
to solve a few of these issues. The benefits of this tool are
as follows: 1) it allows for that dataset to be easily expanded
using simple instructions; 2) it makes the image collection
process more efficient; and 3) it normalizes the images.

This tool takes a video file as an input, and then creates
a folder structure, a trimmed version of the video, and the
frames for the video. The trimmed video can then be used
as input into Computer Vision Annotation Tool (CVAT) [[15]],
which makes the annotation processes efficient. Further details
of the annotation process are described in section [[IlI-B] Each
folder structure, once the annotations are added, corresponds
to the set of annotations and frames for one video. The folder
structures are stored together; this forms the original FOD-A
format. We provide the tools that can convert the FOD-A for-
mat to the Pascal Visual Object Classes format (called Pascal
VOC) [12]] as commonly required by algorithmic processes.

The expansion tool is designed to further edit the video by
automatically reducing the FPS of each video to 15. The tool
then generates the frames after the FPS reduction. Because
the original FPS of each video was about 60 FPS, this is
an effective method to prevent duplicate images. The output
location for the folders and frames is stored in a settings file
to allow efficient expansion. Based on different settings, the
expansion tool can automatically apply to either create a new
dataset (if targeting a new folder) or to expand an existing
dataset (if targeting an existing directory). The abstract design
of the tools can enable the process and format to fit any image
datatype.

Because each of the original videos include consistent

light and weather conditions, the expansion tool automatically
generates the categorization annotations once the weather
and light conditions are specified. As the tool outputs each
individual frame to the folder structure, it saves the correct
categorization annotations along with a relative file path to
the new image in a Comma-Separated Values (CSV) file.

The produced images and annotations for FOD-A have been
uploaded to the the GitHub repository| in the original format
and in the Pascal VOC format [12]]. This GitHub page also
contains the detailed dataset expansion instructions. These
instructions can also be used to create new image datasets.
Additional images can be added to the dataset by inputting
more videos into the expansion tool. Required changes to
the dataset, such as format extension and data preparation,
are made automatically by the expansion tool after additions.
Inserting annotations to the created folder structure is the only
additional requirement for extension. This enables the dataset
expansion process to be efficient.

B. Image Annotation

To create a robust dataset, it is best to include as many in-
stances of FOD objects as possible. Therefore, an efficient and
quality annotation process was implemented. Video data can
be quickly and accurately annotated using the existing tracking
algorithms for videos. The efficient annotation process was
provided by the open source tool, CVAT [15]. Since the FOD-
A expansion tool outputs a matching trimmed video as well
as the video’s frames, the images are annotated as if they are
still a video format. CVAT’s video annotation algorithm only
requires every ten frames (an interval that can be modified)
to be annotated, with manual adjustments as necessary. The
annotations for other frames are generated mathematically
using the two manually created annotations. The in-between
frames still need to be validated to ensure accuracy, but we
found that this only requires minor adjustments. We then
export the annotations in a standard XML format (i.e., Pascal
VOC) [12]. Once exported, we simply place annotations in the
relevant folder created by the expansion tool.

Once the annotation process was completed for the initial
data, the size of the dataset was too cumbersome for typical
object detection methods and for ease of storage. At this point,
the images included sizes that varied anywhere from 2k to
4F resolution, and a total dataset size of over 100 gigabytes.
To overcome this issue while producing an extensible dataset,
we created a second command-line tool. This resizing tool
targets all applicable folders within the target folder, so it
can be utilized on a single annotation/image combo or on
the entire dataset at once. Once the images and annotations
are resized, the dataset storage size is drastically reduced (to
about 5 gigabytes in this case).

This resizing tool scales all properly formatted XML and
image data to the specified size, whether smaller or larger than
current size. We resize the images and annotations to 400 x 400
resolution to facilitate unified-size modeling, while the original
images are also made available. The resize tool can optionally
display all the images with their bounding boxes and labels.


https://github.com/FOD-UNOmaha/FOD-data
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Fig. 3. Instances per category in the FOD-A dataset.

The images displayed in Figure [I] are an example output of
this tool. This simply allows images to be visually inspected as
the dataset is resized. Some major annotation errors in famous
datasets been found [|16]. This visual inspection process allows
additional validation of annotations as FOD-A expands, which
aids in the prevention of similar errors [16].

C. Dataset Statistics

After the initialization of the FOD-A dataset, there are
a total of 31 object categories and over 30,000 annotation
instances. Figure [3] shows instances per category for the
bounding box annotations and Table [[] shows the statistics for
the light-level and weather categories.

TABLE I
CATEGORIZATION STATISTICS

Weather Light-Level
Dry Wet | Dark Dim Bright
26647 7216 | 4387 12464 17012

The material recognition dataset discussed in Section |H| (4],
contained a total of 3 object categories and 3,440 annotation
instances. As such, the potential applications of FOD-A and
the materials recognition dataset [4] may differ greatly. A few
datasets may be considered when analysing FOD-A, such as
the Pascal VOC [12] and the Microsoft COCO [13]] datasets.
However, the object categories contained in these datasets are
of everyday objects and have a more general application scope
than FOD-A. Image datasets of debris in airports should con-
tain FOD specific object categories. For this reason, datasets
of everyday objects are not directly comparable to FOD-A.

IV. ALGORITHMIC ANALYSIS

To validate dataset functionality in abstract scenarios, it is
necessary to implement FOD-A in several common MLCV
algorithms. As mentioned previously, this dataset focuses on
bounding-box based object detection functionality, but the
potential of FOD-A is expanded by including categorization
annotations. The categorization annotations are tested using
a simple binary classification model described later in this
section. The viability of the bounding box annotations are
tested using the two famous algorithms: You Only Look
Once Version 3 (YOLOv3) [17] and Single-Shot Multi-box
detector (SSD) [[18]]. Existing implementations of SSD [19]]
and YOLOv3 [20] are used. The categorization accuracy
and mean intersection over union [21] (IOU) metrics are
used to compare results between the algorithms. Both metrics
are calculated using predictions on the validation dataset.

Accuracy is computed as the number of correct categorization
predictions over the total number of predictions. To calculate
the mean IOU [21], the IOU value of predictions in true
positive categorization cases are averaged. IOU values from
only true positive categorization cases facilitates separation
from accuracy results.

The initial experimentation began using YOLOv3. As
shown in Figure [{b), the loss reaches a value of about 7.05.
For this implementation [20]], the loss is calculated using the
method presented in the original YOLOV3 paper [[17]. In this
experimentation, YOLOvV3 produces categorization accuracy
of 12.42% and a mean IOU of 47.58% on FOD-A validation
data. As the accuracy and mean IOU metrics suggest, the
YOLOV3 algorithm commonly predicts an incorrect catego-
rization label, but regularly produces correct bounding boxes.

As shown in Figure Eka), SSD loss reaches a value of about
6.51; the loss result approaches convergence after about 140
epochs. The loss in this implementation [19] is calculated
using the method defined in the original SSD paper [18]. SSD
provides categorization accuracy of 71.81% and a mean IOU
of 68.05%.

In this experimentation, SSD produced better results than
YOLOv3. However, the scope of this paper is mostly re-
stricted to the presentation of the FOD-A dataset, as algo-
rithm optimization for FOD-A is future work. As intended,
FOD-A proved to be difficult for the modern YOLOv3 and
SSD algorithms. This provides room for future algorithmic
enhancement, in both efficiency and accuracy.

Since FOD-A also includes categorization annotations, we
examine this functionality with a binary categorization model
using transfer learning. With the output layer removed and
substituted for both a max pooling and a fully-connected layer
with two output neurons, this binary classification model was
built using the MobileNetv2 [22] architecture with weights
pretrained on ImageNet [23]]. FOD-A includes weather and
light categorization annotations. To test the functionality of the
categorization annotations, we conducted experiments using
the two weather annotations, wet and dry. The binary cat-
egorization model quickly became skillful, and was able to
effectively distinguish between a wet and dry background in
FOD-A images. The accuracy quickly improved to the maxi-
mum percentage on validation data. The model is capable of
correctly categorizing most images, but there were still some
outlier predictions on the testing data. Although the weather
classification alone can be solved quickly, the combination of
the categorization and bounding box detection prove difficult
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Fig. 4. Loss curve from SSD and YOLO experiments.

for modern algorithms. Additionally, the weather and light
annotations could prove useful in future practical work.

V. CONCLUSION

MLCV has produced promising results for various tasks
in FOD. However, to the best of our knowledge, a proper
publicly available dataset of FOD has not been initialized
prior to the proposed work. This paper introduces FOD-A and
proposes an abstractable method of image dataset creation.
As discussed previously, FOD-A object categories have been
selected based on prior FAA documentation and research. This
enables comprehensive coverage of common FOD. Moreover,
we have developed an efficient and publicly documented
expansion process and intend to make several extensions
of FOD-A available on the GitHub repository. An efficient
expansion process is important since FOD is a continually
evolving datatype. To simulate airport environments, images
in FOD-A contain varying light and weather conditions. In
addition to the bounding box annotation, we provide these
weather and light conditions as categorization labels. We
also validate these approaches for both the object detection
and the categorization functionalities of FOD-A on different
algorithms. The experimental results demonstrate FOD-A’s
practicality and difficulty.

There are several research paths that could be followed to
build on this work. One direction for future work is to develop
more efficient and accurate object detection techniques for the
FOD datatype. Once detection algorithms are improved, fur-
ther works could explore practical experimentation in airports.

VI. RESOURCES
GitHub: https://github.com/FOD-UNOmaha/FOD-data
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