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A SHORT PROOF OF �2 DECOUPLING FOR THE MOMENT CURVE

By SHAOMING GUO, ZANE KUN LI, PO-LAM YUNG, and PAVEL ZORIN-KRANICH

Abstract. We give a short and elementary proof of the �2 decoupling inequality for the moment curve
in R̂

k , using a bilinear approach inspired by the nested efficient congruencing argument of Wooley.

1. Introduction. The sharp �2 decoupling inequality for the moment curve,
proved by Bourgain, Demeter, and Guth [3], implies Vinogradov’s mean value the-
orem with the optimal exponents. The optimal exponents in Vinogradov’s mean
value theorem have also been obtained by Wooley [18], using a nested efficient con-
gruencing argument. Efficient congruencing is a method of counting the number of
solutions to Diophantine systems, and counting arguments do not usually imply
decoupling inequalities. Nevertheless, in this article, we borrow insights from [18]
(see also Heath-Brown [10]), to give a short proof of the �2 decoupling inequality
for the moment curve, namely Theorem 1.2 below.

Let k ∈N and Γ : [0,1]→ R̂
k be the moment curve in R̂

k (the Pontryagin dual
of Rk, which is itself isomorphic to R

k), parametrized by Γ(ξ) := (ξ,ξ2, . . . , ξk).
For δ > 0, let P(δ) denote the partition of the interval [0,1] into dyadic inter-
vals with length 2�log2 δ

−1�. For a dyadic interval J , let UJ be the parallelepiped
of dimensions |J |1 × |J |2 × ·· · × |J |k whose center is Γ(cJ) and sides are par-
allel to ∂1Γ(cJ ), ∂2Γ(cJ ), . . . , ∂kΓ(cJ), where cJ is the center of J . We write
pk := k(k+1) for the critical exponent, and ‖ · ‖p := ‖ · ‖Lp(Rk).

Definition 1.1. For δ ∈ (0,1), the �2Lpk decoupling constant Dk(δ) for the
moment curve in R̂

k is the smallest number for which the inequality

∥
∥
∥
∥
∥

∑

J∈P(δ)

fJ

∥
∥
∥
∥
∥
pk

≤Dk(δ)

(
∑

J∈P(δ)

∥
∥fJ

∥
∥2
pk

)1/2

(1.1)

holds for any tuple of functions (fJ)J∈P(δ) with supp f̂J ⊆ UJ for all J .
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THEOREM 1.2. [3] For every k ∈ N and every ε > 0, there exists a finite con-
stant Ck,ε such that

Dk(δ)≤ Ck,εδ
−ε, for every δ ∈ (0,1).(1.2)

Strictly speaking, Theorem 1.2 was stated in [3] in a superficially weaker form,
but the proof given there also yields the result as stated in Theorem 1.2, see [9] or
[5, Chapter 11] for more details. It is now well known that Theorem 1.2 implies
the following Vinogradov’s mean value estimates (see [3, Section 4] for a proof):

COROLLARY 1.3. [3, 18] Let k ≥ 1 and s≥ 1. Then, for every ε > 0 and every
N ≥ 1, we have

ˆ
[0,1]k

∣
∣
∣
∣
∣

N∑

n=1

ane
(

nx1 + · · ·+nkxk
)

∣
∣
∣
∣
∣

2s

dx1 . . .dxk

�k,s,ε N
ε
(

1+N s−k(k+1)/2)
(

N∑

n=1

∣
∣an

∣
∣2

)s

.

(1.3)

Here e(t) := exp(2πit) is the unit character.

The proof of Theorem 1.2 in [3] uses a multilinear variant of the decoupling
inequality, whose proof relies crucially on (multilinear) Kakeya–Brascamp–Lieb
type inequalities. On the contrary, we will use a bilinear variant of the decoupling
inequality. In our proof, the transversality that was captured in [3] by Kakeya–
Brascamp–Lieb type inequalities is instead exploited via introducing certain asym-
metric bilinear decoupling constants. Such bilinear decoupling constants are care-
fully designed to facilitate an efficient way of induction on the dimension k. In
fact, an averaging argument involving Fubini’s theorem allows us to apply very
neatly the uncertainty principle, and gain access to lower degree decoupling. To
sum up, instead of using Kakeya–Brascamp–Lieb type estimates, we will rely only
on lower degree decoupling and Hölder inequalities in the induction step.

A related bilinear argument has been developed by Wooley in the context of
Vinogradov mean value estimates; see [18] and references therein. For a compar-
ison between Wooley’s efficient congruencing approach and Bourgain-Demeter-
Guth’s decoupling approach, we refer the reader to [14]. In the context of de-
coupling inequalities, the bilinear approach was previously implemented for the
parabola (case k = 2 of Theorem 1.2) in [13] and the cubic moment curve in [6].
Note, however, that the decoupling theorem proved in [6] is weaker than the k = 3
case of Theorem 1.2; it follows from Theorem 1.2 by estimating the �2 sum on
the right-hand side of (1.1) by an �4 sum times δ−1/4. Moreover, the method in [6]
does not seem to work for degree k ≥ 4. The reason is exactly the same as why the
arguments in [10, 17] do not generalize to the cases k ≥ 4, which was explained
at the end of Section 3 of [10]. In short, if one follows the approach of [10] and
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[17] in the case k≥ 4, then “singular” solutions to the Vinogradov system will start
dominating and prevent an optimal estimate on the number of solutions.

Notation. For a sequence of real numbers (Aθ)θ∈Θ, we write �2
θ∈ΘAθ :=

(∑

θ∈Θ
∣
∣Aθ

∣
∣2
)1/2

. For C > 0 and a parallelepiped U , we will denote by CU the
parallelepiped similar to U , with the same center but C times the side lengths. For
a dyadic interval I , we let P(I,δ) be the partition of I into dyadic intervals with
length 2�log2 δ

−1�. If δ ∈ (0,1), I is a dyadic interval of length ≥ δ, and a family of
functions (fJ) has been chosen so that supp f̂J ⊆ UJ for every J ∈ P(I,δ), then
we will write fI :=

∑

J∈P(I,δ) fJ .

Acknowledgments. S. Guo and Z. Li would like to thank the Department of
Mathematics at the Chinese University of Hong Kong for their kind hospitality
during their visits, where part of this work was done. The authors would also like to
thank Alan Chang, Maksym Radziwiłł, and the anonymous referee for corrections
and comments improving the exposition.

2. Passage from linear to bilinear decoupling. The main reason allow-
ing for the proof of decoupling inequalities in [1] is that they can be reduced to
multilinear inequalities by an argument introduced in Bourgain–Guth [4]. Since
the moment curve is one-dimensional, and we are able to treat bilinear, rather than
multilinear, inequalities, we managed to use a simpler argument based on a Whit-
ney decomposition of the square [0,1]2 around the diagonal.

Definition 2.1. For δ ∈ (0,1/4), the symmetric bilinear decoupling constant
B(δ) for the moment curve Γ in R̂

k is the smallest constant such that, for any
pair of intervals I,I ′ ∈ P(1/4) with dist(I,I ′) ≥ 1/4 and any tuple of functions
(fJ)J∈P(I,δ)∪P(I ′,δ) with supp f̂J ⊆ UJ for all J , the following inequality holds:

ˆ
Rk

∣
∣fI

∣
∣pk/2∣∣fI ′

∣
∣pk/2

≤ B(δ)pk
⎡

⎣
∑

J∈P(I,δ)

∥
∥fJ

∥
∥2
pk

⎤

⎦

pk/4⎡

⎣
∑

J ′∈P(I ′,δ)

∥
∥fJ ′

∥
∥2
pk

⎤

⎦

pk/4

.

(2.1)

LEMMA 2.2. (Bilinear reduction) If δ = 2−N , then

Dk(δ)�
(

1+
N∑

n=2

B(2−N+n−2)2

)1/2

.(2.2)

The proof of this lemma relies on affine rescaling, an idea that already under-
pinned the arguments in [4, 1, 3]. The idea is based on the observation that, for any
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interval I = [a,a+κ], the affine map AI : R̂k → R̂
k, defined by

(

AI

(

η1, . . . ,ηk
))

j
:=

k∑

j ′=0

(
j

j′

)

aj−j ′κj
′
ηj ′ , 1 ≤ j ≤ k,

where, by convention, η0 = 1, satisfies AIΓ(t) = Γ(a+ tκ) for all t ∈R, and hence
(

DAI

)

∂iΓ(t) = κi
(

∂iΓ
)

(a+ tκ) for all i≥ 1 and t ∈ R.

It follows that, for dyadic intervals I,J with J ⊆ I ⊆ [0,1], we have

A−1
I UJ = UJI ,

where JI := κ−1(J −a) if I = [a,a+κ]. This implies

LEMMA 2.3. (Affine rescaling) Let I ∈ P(2−n) for some integer n ≥ 0. For
any δ ∈ (0,2−n) and any tuple of functions (fJ)J∈P(I,δ) with supp f̂J ⊆ UJ for all
J , the following inequality holds:

∥
∥fI

∥
∥
pk

≤Dk(2
nδ)

⎛

⎝
∑

J∈P(I,δ)

∥
∥fJ

∥
∥2
pk

⎞

⎠

1/2

.(2.3)

Similarly, let I , I ′ ∈ P(2−n) for some integer n≥ 2 with 2n dist(I,I ′)∈ {1,2}. For
any δ ∈ (0,2−n) and any tuple of functions (fJ)J∈P(I,δ)∪P(I ′,δ) with supp f̂J ⊆ UJ

for all J , the following inequality holds:
ˆ
Rk

∣
∣fI

∣
∣pk/2∣∣fI ′

∣
∣pk/2

≤ B(2n−2δ
)pk

⎡

⎣
∑

J∈P(I,δ)

∥
∥fJ

∥
∥2
pk

⎤

⎦

pk/4⎡

⎣
∑

J ′∈P(I ′,δ)

∥
∥fJ ′

∥
∥2
pk

⎤

⎦

pk/4

.

(2.4)

Proof. To prove (2.3), suppose that I = [a,a+2−n]. For J ∈ P(I,δ) and K =

JI ∈P(2nδ), let the function gK be such that f̂J ◦AI = ĝK . Applying (1.1) to (gK)

in place of (fJ), and changing variables on both sides, we obtain (2.3). A similar
argument proves (2.4), which we omit. �

Proof of Lemma 2.2. Suppose that δ = 2−N . Set W1 := /0. For integers n ≥ 2,
define iteratively

Wn :=

{

(

I1, I2
) ∈ P(

2−n
) | 2n dist

(

I1, I2
) ∈ {1,2}

and I1 × I2 
⊂
⋃

(I ′1,I
′
2)∈Wn−1

I ′1 × I ′2
}

.
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These are the squares of scale 2−n in the Whitney decomposition of the unit square
around the diagonal. Let also

W̃n :=
{(

I1, I2
) ∈ P(

2−n
) | dist

(

I1, I2
)

= 0
}

be the squares of scale 2−n that touch the diagonal. For N ≥ 2, let

WN :=
N⋃

n=2

Wn∪W̃N ,

so that the squares I1 × I2 with (I1, I2) ∈WN form an essentially disjoint (up to
boundaries) covering of [0,1]2. Let (fJ)J∈P(δ) be as in Definition 1.1 for Dk(δ).
Then

∥
∥
∥
∥
∥
∥

∑

J∈P(δ)

fJ

∥
∥
∥
∥
∥
∥
pk

=

∥
∥
∥
∥
∥
∥

∑

(I,I ′)∈WN

fIfI ′

∥
∥
∥
∥
∥
∥

1/2

pk/2

≤
⎛

⎝
∑

(I,I ′)∈WN

∥
∥fIfI ′

∥
∥
pk/2

⎞

⎠

1/2

≤
⎛

⎝
∑

(I,I ′)∈˜WN

∥
∥fI

∥
∥
pk

∥
∥fI ′

∥
∥
pk
+

N∑

n=2

∑

(I,I ′)∈Wn

∥
∥fIfI ′

∥
∥
pk/2

⎞

⎠

1/2

.

(2.5)

We estimate the first term by

∑

(I,I ′)∈˜WN

(∥
∥fI

∥
∥2
pk

+
∥
∥fI ′

∥
∥2
pk

)

≤ 6
∑

I∈P(2−N )

∥
∥fI

∥
∥2
pk
,

since each I appears at most 6 times in the pairs W̃N . In the second term, by affine
rescaling (2.4), for every (I,I ′) ∈Wn, we have

∥
∥fIfI ′

∥
∥
pk/2 � B(2−N+n−2)2

(

�2
J∈P(I,2−N )

∥
∥fJ

∥
∥
pk

)(

�2
J ′∈P(I ′,2−N )

∥
∥fJ ′

∥
∥
pk

)

� B(2−N+n−2)2
((

�2
J∈P(I,2−N )

∥
∥fJ

∥
∥
pk

)2
+
(

�2
J ′∈P(I ′,2−N )

∥
∥fJ ′

∥
∥
pk

)2
)

.

Since each I ∈ P(2−n) appears at most 8 times in Wn, it follows that

∑

(I,I ′)∈Wn

∥
∥fIfI ′

∥
∥
pk/2 � B(2−N+n−2)2

(

�2
J∈P(2−N )

∥
∥fJ

∥
∥
pk

)2
.

Inserting these bounds in (2.5), we obtain the desired estimate. �

3. Lower degree decoupling. In this section, we first introduce k new
asymmetric bilinear decoupling constants for the moment curve in R̂

k, and relate
them to the symmetric ones in Section 2 (Lemma 3.4). We then show how these
new asymmetric bilinear constants can be bounded efficiently via decoupling for
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moment curves of degrees < k (Lemma 3.9). The key is certain transversality as
displayed in Lemma 3.5. Lemma 3.9 will allow us to prove Theorem 1.2 in Sec-
tion 4, by induction on k.

3.1. Asymmetric bilinear decoupling constants. For a dyadic interval I ,
let U◦

I denote the parallelepiped centered at the origin polar to UI , that is,

U◦
I :=

{

x ∈ R
k | ∣∣〈x,∂iΓ(cI

)〉∣
∣≤ |I|−i, 1 ≤ i≤ k

}

.

It is a parallelepiped of dimension ∼ |I|−1 ×|I|−2 ×·· ·× |I|−k. Let

φI(x) :=
∣
∣U◦

I

∣
∣−1

inf
{

t≥ 1 | x/t ∈ U◦
I

}−10k
.

This is an L1 normalized positive bump function adapted to U◦
I .

Definition 3.1. For l ∈ {0, . . . ,k− 1}, a,b ∈ [0,1] and δ ∈ (0,1), the (asym-
metric) bilinear decoupling constant Bl,a,b(δ) for the moment curve Γ in R̂

k is the
smallest constant such that, for all pairs of intervals I ∈ P(δa), I ′ ∈ P(δb) with
dist(I,I ′)≥ 1/4 and all tuples of functions (fJ)J∈P(I,δ)∪P(I ′,δ) with supp f̂J ⊆ UJ

for all J , the following inequality holds:

ˆ
Rk

(∣
∣fI

∣
∣pl ∗φI

)(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)

≤ Bl,a,b(δ)
pk

⎡

⎣
∑

J∈P(I,δ)

∥
∥fJ

∥
∥2
pk

⎤

⎦

pl/2⎡

⎣
∑

J ′∈P(I ′,δ)

∥
∥fJ ′

∥
∥2
pk

⎤

⎦

(pk−pl)/2

.

(3.1)

Remark 3.2. In the case l= 0, the bilinear decoupling constant B0,a,b(δ) clearly
does not depend on a, and in fact, by affine rescaling (2.3), we have

B0,a,b(δ) ∼Dk

(

δ1−b
)

.(3.2)

In order to avoid case distinction in (4.1) and thereafter, we do not require a in the
notation B0,a,b(δ) to be well defined.

Our choice of the left-hand side of (3.1) is partly motivated by the following
uncertainty principle.

LEMMA 3.3. (Uncertainty Principle) For p ∈ [1,∞) and J ⊂ [0,1], we have

∣
∣gJ

∣
∣p �p

∣
∣gJ

∣
∣p ∗φJ ,

for every gJ with supp ĝJ ⊆ CUJ .
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Proof. Let ψ be a Schwartz function adapted to U◦
J such that ψ̂ ≡ 1 on CUJ

and
´ |ψ| ≈ 1. Then gJ = gJ ∗ψ, so

∣
∣gJ

∣
∣p(x)≤

(ˆ
∣
∣gJ (x− z)

∣
∣p
∣
∣ψ(z)

∣
∣dz

)(ˆ
∣
∣ψ(z)

∣
∣dz

)p/p′

(3.3)

�
(∣
∣gJ

∣
∣p ∗ ∣∣ψ|)(x)� (∣

∣gJ
∣
∣p ∗φJ

)

(x). �

The first application of Lemma 3.3 is that the symmetric bilinear decoupling
constants (2.1) can be bounded (rather crudely) by the asymmetric ones (3.1).

LEMMA 3.4. For every l ∈ {0, . . . ,k− 1}, a,b ∈ [0,1] and δ ∈ (0,1/4), we
have

B(δ)� δ−apl/pkδ−b(pk−pl)/pkBl,a,b(δ).(3.4)

Proof. Let I,I ′ ∈ P(1/4) with dist(I,I ′)≥ 1/4. Let (fK)K∈P(I,δ)∪P(I ′,δ) be a

tuple of functions with supp f̂K ⊆ UK for all K. By Hölder’s inequality, we have

ˆ
Rk

∣
∣fI

∣
∣pk/2∣∣fI ′

∣
∣pk/2

≤
(ˆ

Rk

∣
∣fI

∣
∣pl

∣
∣fI ′

∣
∣pk−pl

)1/2(ˆ
Rk

∣
∣fI

∣
∣pk−pl

∣
∣fI ′

∣
∣pl

)1/2

.

(3.5)

By symmetry, it suffices to estimate the first bracket. Assume that l 
= 0; the case
l = 0 is similar, but easier, since the term with power pl disappears. We have

ˆ
Rk

∣
∣fI

∣
∣pl

∣
∣fI ′

∣
∣pk−pl

≤
ˆ
Rk

⎛

⎝
∑

J∈P(I,δa)

∣
∣fJ

∣
∣

⎞

⎠

pl
⎛

⎝
∑

J ′∈P(I ′,δb)

∣
∣fJ ′

∣
∣

⎞

⎠

pk−pl

≤ ∣
∣P(I,δa)

∣
∣pl−1∣∣P(I ′,δb)

∣
∣pk−pl−1 ∑

J∈P(I,δa)

∑

J ′∈P(I ′,δb)

ˆ
Rk

∣
∣fJ

∣
∣pl

∣
∣fJ ′

∣
∣pk−pl.

By Lemma 3.3 and Definition 3.1, we have

ˆ
Rk

∣
∣fJ

∣
∣pl

∣
∣fJ ′

∣
∣pk−pl

�
ˆ
Rk

(∣
∣fJ

∣
∣pl ∗φJ

)(∣
∣fJ ′

∣
∣pk−pl ∗φJ ′

)

≤ Bl,a,b(δ)
pk
[

�2
K∈P(J,δ)

∥
∥fK

∥
∥
pk

]pl
[

�2
K ′∈P(J ′,δ)

∥
∥fK ′

∥
∥
pk

]pk−pl
.
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Inserting this into the previous display, and using �2 ↪→ �pl, �pk−pl , we obtain
ˆ
Rk

∣
∣fI

∣
∣pl

∣
∣fI ′

∣
∣pk−pl � δ−a(pl−1)δ−b(pk−pl−1)Bl,a,b(δ)

pk

·
[

�2
K∈P(I,δ)

∥
∥fK

∥
∥
pk

]pl
[

�2
K ′∈P(I ′,δ)

∥
∥fK ′

∥
∥
pk

]pk−pl
.

Together with a similar estimate for the second factor in (3.5), we obtain the desired
estimate. �

3.2. Transversality. Let V (l)(ξ) denote the lth order tangent space to the
moment curve Γ at the point ξ, that is,

V (l)(ξ) := lin
(

∂1Γ(ξ), . . . ,∂lΓ(ξ)
)

.

The main geometric observation that makes our inductive argument work is that the
spaces V (l)(ξ1) and V (k−l)(ξ2) are transverse for any l ∈ {1, . . . ,k−1}, as long as
ξ1 
= ξ2. This transversality is made quantitative in the following result. It follows
from the generalized Vandermonde determinant formula in [11, Equation (14)]; we
include a proof for completeness.

LEMMA 3.5. For any integers 0 ≤ l ≤ k and any ξ1, ξ2 ∈ R, we have

∣
∣∂1Γ

(

ξ1
)∧ ·· ·∧∂lΓ(ξ1

)∧∂1Γ
(

ξ2
)∧ ·· ·∧∂k−lΓ

(

ξ2
)∣
∣�k,l

∣
∣ξ1 − ξ2

∣
∣l(k−l)

.(3.6)

Proof. We Taylor expand Γ(ξ2) around ξ1: for 1 ≤ i≤ k− l,

∂iΓ
(

ξ2
)

=

k∑

j=i

1
(j− i)!∂

jΓ
(

ξ1
)(

ξ2 − ξ1
)j−i

.

We plug this back to the left-hand side of (3.6), and obtain an k− l fold sum. If
∂jiΓ is chosen for the ith summand, then (j1, . . . , jk−l) has to be a permutation
of (l+ 1, . . . ,k) in order for the term to be non-zero, in which case the power of
ξ2 − ξ1 is

k−l∑

i=1

(

ji− i
)

=
(

(l+1)+ . . .+k
)− (

1+ . . .+(k− l))= l(k− l).

Thus the left-hand side of (3.6) is equal to

ck,l
∣
∣∂1Γ

(

ξ1
)∧ ·· ·∧∂kΓ(ξ1

)∣
∣
∣
∣ξ2 − ξ1

∣
∣l(k−l)

for some constant ck,l ≥ 0. Setting ξ1 = 0 and ξ2 = 1 shows that ck,l > 0; indeed
then the left-hand side of (3.6) is

(k
l

)

(
∏l

i=1 i!)(
∏k−l

j=1 j!), as can be seen by column
operations and the classical Vandermonde determinant formula. See also [8, 9] for
similar calculations. �
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3.3. Decoupling for curves with torsion. It is an observation going back to
[15, Proposition 2.1] that decoupling inequalities for model manifolds self-improve
to similar decoupling inequalities for similarly curved manifolds. We need the fol-
lowing version of Theorem 1.2 for more general curves with torsion, which is
proved by the argument given in [1, Section 7].

Suppose l ∈ N and γ : [0,1]→ R̂
l is a curve such that

∥
∥γ‖Cl+1 � 1 and

∣
∣∂1γ(ξ)∧ ·· ·∧∂lγ(ξ)∣∣ � 1.(3.7)

For dyadic intervals J , let UJ,γ be the parallelepiped of dimensions |J |1×·· ·×|J |l
whose center is γ(cJ ) and sides are parallel to ∂1γ(cJ ), . . . ,∂

lγ(cJ ), and let U◦
J,γ

be polar to UJ,γ.

LEMMA 3.6. Suppose that Theorem 1.2 is known with k replaced by l. Let
γ : [0,1] → R̂

l be a curve satisfying (3.7). Then for any ε,C > 0, any δ ∈ (0,1),
and any tuple of functions (fJ)J∈P(δ) with supp f̂J ⊆CUJ,γ for all J , the following
inequality holds:

∥
∥
∥
∥
∥
∥

∑

J∈P(δ)

fJ

∥
∥
∥
∥
∥
∥
Lpl (Rl)

�ε,C δ
−ε

⎛

⎝
∑

J∈P(δ)

∥
∥fJ

∥
∥2
Lpl (Rl)

⎞

⎠

1/2

.(3.8)

Proof. Let (fJ)J∈P(δ) be a tuple of functions with supp f̂J ⊆ CUJ,γ for all J .
It suffices to show that, for every κ > δl/(l+1) and I ∈ P(κ), we have

∥
∥fI

∥
∥
Lpl (Rl)

�ε κ
−ε�2

I ′∈P(I,κ(l+1)/l)

∥
∥fI ′

∥
∥
Lpl (Rl)

(3.9)

where we abbreviated fI ′ :=
∑

J∈P(I ′,δ) fJ for I ′ ∈ P(I,κ(l+1)/l) and similarly for
fI .

Indeed, if (3.9) is known, then we can use a trivial decoupling inequality to
reduce to the case that fJ 
= 0 only if J ⊆ I for some I ∈ P(δ(l/(l+1))A) for a
large integer A, and then apply (3.9) A times. This will give (3.8) with power, say,
(l/(l+1))A(l+1)+ lε in place of ε. Since A is arbitrary, this concludes the proof.

To see that (3.9) holds, observe that, on the interval I , we have

γ(ξ) = γ
(

cI
)

+∂1γ
(

cI
) · (ξ− cI

)

+ · · ·+ ∂lγ
(

cI
)

l!
· (ξ− cI

)l

︸ ︷︷ ︸

+O
(

κl+1).

By (3.7), the marked part of the above expression is, up to a uniformly non-singular
affine transformation, a moment curve of degree l. For every I ′ ∈ P(I,κ(l+1)/l),
we have supp f̂I ′ ⊆ CUI ′,γ , and the parallelepiped UI ′,γ is contained in a similar
parallelepiped associated to this moment curve, since the shortest side of UI ′,γ is
(κ(l+1)/l)l � O(κl+1). Hence, the claim (3.9) follows from a rescaled version of
Theorem 1.2; see (2.3) and its proof. �
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COROLLARY 3.7. In the situation of Lemma 3.6, for every ball B ⊂ R
l of

radius δ−l, we have

 
B

∣
∣
∣
∣
∣
∣

∑

J∈P(δ)

fJ

∣
∣
∣
∣
∣
∣

pl

�ε,C δ
−ε
(

�2
J∈P(δ)

∥
∥fJ

∥
∥
Lpl (φB)

)pl
,

where
ffl
B := |B|−1

´
B denotes the average integral and

φB(x) := |B|−1(1+ δl dist(x,B)
)−10k

is an L1 normalized bump function adapted to B.

Proof. Apply Lemma 3.6 to functions fJψB , where ψB is a Schwartz function
such that |ψB | ∼ 1 on B and supp ψ̂B ⊆B(0,δl). �

3.4. Using the lower degree inductive hypothesis. The following two key
lemmas should be compared to Lemma 7.1 of [18], which plays a similarly key
role in nested efficient congruencing. The results below improve upon those in [6]
by incorporating sharp canonical scale decoupling inequalities of all degrees l < k,
whereas in [6] small ball decoupling, which is not yet known for higher degrees,
was used in the case l = 2.

LEMMA 3.8. (Lower degree decoupling) Let l ∈ {1, . . . ,k− 1} and assume
that Theorem 1.2 is known with k replaced by l. Let δ ∈ (0,1) and (fK)K∈P(δ) be a

tuple of functions so that supp f̂K ⊂UK for everyK. If 0≤ a≤ (k− l+1)b/l, then,
for any pair of frequency intervals I ∈P(δa), I ′ ∈ P(δb) with dist(I,I ′)≥ 1/4, we
have ˆ

Rk

(∣
∣fI

∣
∣pl ∗φI

)(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)

�ε δ
−bε

⎛

⎝
∑

J∈P(I,δ(k−l+1)b/l)

(ˆ
Rk

(∣
∣fJ

∣
∣pl ∗φJ

)(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)
)2/pl

⎞

⎠

pl/2

.

(3.10)

The above lemma motivates our carefully chosen definition of asymmetric bi-
linear decoupling constants. It immediately implies the following result.

LEMMA 3.9. Let l ∈ {1, . . . ,k−1} and assume that Theorem 1.2 is known with
k replaced by l. Then, for any 0 ≤ a≤ k−l+1

l b, ε > 0, and δ ∈ (0,1), we have

Bl,a,b(δ) �ε δ
−bεBl, k−l+1

l b,b(δ).

Proof of Lemma 3.8. Denote b′ := (k − l+ 1)b/l. Fix ξ′ ∈ I ′ and let Ĥ :=
R̂
k/V k−l(ξ′) be the quotient space. Let P : R̂k → Ĥ be the projection onto Ĥ .
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For every ξ ∈ I , it follows from Lemma 3.5 that

∣
∣
∣∂1(P ◦Γ)(ξ)∧ ·· ·∧∂l(P ◦Γ)(ξ)

∣
∣
∣� 1.

Moreover, P (UJ) ⊆ CUJ,P ◦Γ. Let H be the orthogonal complement of V k−l(ξ′)
in R

k, so that Ĥ is its Pontryagin dual. Since the Fourier support of the restriction
fJ |H+z to almost every translated copy of H is contained in the projection of the
Fourier support of fJ onto Ĥ , we will be able to apply Corollary 3.7 on almost
every translate H+ z.

To be more precise, by Fubini’s theorem, we write

ˆ
Rk

(∣
∣fI

∣
∣pl ∗φI

)(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)

=

ˆ
z∈Rk

 
BH (z,δ−b′l)

(∣
∣fI

∣
∣pl ∗φI

)(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)

,
(3.11)

where BH(z,δ−b′l) is the l-dimensional ball with radius δ−b′l centered at z inside
the affine subspace H + z. Since BH(0,δ−b′l) = BH(0,δ−(k−l+1)b) ⊆ CU◦

I ′ , we
have

sup
x∈BH (z,δ−b′l)

(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)

(x)�
(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)

(z).

Applying this estimate in (3.11), we are led to bound

 
BH (z,δ−b′l)

(∣
∣fI

∣
∣pl ∗φI

)

=
∣
∣fI

∣
∣pl ∗φI ∗H

1BH (0,δ−b′l)
∣
∣BH(0,δ−b′l)

∣
∣
(z)

=

ˆ
z′
φI(z− z′)

 
BH (z′,δ−b′l)

∣
∣fI

∣
∣pl

where ∗H denotes convolution along H . By Corollary 3.7 with δb
′

in place of δ
applied to the curve γ = P ◦Γ, the above is further bounded by

�ε δ
−bε

ˆ
z′
φI(z− z′)

(

�2
J∈P(I,δb′ )

∥
∥fJ

∥
∥
Lpl (φ

BH (z′,δ−b′l))

)pl
.

Hence, the plth root of (3.11) can be bounded by

(3.11)1/pl �ε δ
−bε

(ˆ
z,z′∈Rk

(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)

(z)

×φI(z− z′)
(

�2
J∈P(I,δb′ )

∥
∥fJ

∥
∥
Lpl (z′+H,φ

BH (z′,δ−b′l))

)pl
)1/pl
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≤ δ−bε�2
J∈P(I,δb′ )

(ˆ
z,z′∈Rk

(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)

(z)

×φI(z− z′)
∥
∥fJ

∥
∥pl
Lpl (φ

BH (z′,δ−b′l))

)1/pl

,

where we used Minkowski’s inequality in the form Lpl�2 ≤ �2Lpl . The double
integral inside the brackets can be written as

ˆ
Rk

(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)(

φI ∗
∣
∣fJ

∣
∣pl ∗H φBH (0,δ−b′l)

)

=

ˆ
Rk

(∣
∣fI ′

∣
∣pk−pl ∗φI ′ ∗H φBH (0,δ−b′l)

)(∣
∣fJ

∣
∣pl ∗φI

)

�
ˆ
Rk

(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)(∣
∣fJ

∣
∣pl ∗φI

)

,

where we used again that BH(0,δ−b′l)⊆ CU◦
I ′,γ . This is in turn

�
ˆ
Rk

(∣
∣fJ

∣
∣pl ∗φJ

)(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)

,

because
∣
∣fJ

∣
∣pl ∗φI �

∣
∣fJ

∣
∣pl ∗φJ ∗φI by Lemma 3.3, which is �

∣
∣fJ

∣
∣pl ∗φJ since

U◦
I ⊆ CU◦

J . �

4. Bootstrap and Iteration. In this section, we will prove Theorem 1.2,
using Lemma 3.9.

LEMMA 4.1. (Hölder) For l ∈ {1, . . . ,k−1}, if a,b∈ (0,1) and δ ∈ (0,1), then

Bl,a,b(δ) ≤ Bk−l,b,a(δ)
1

k−l+1Bl−1,a,b(δ)
k−l

k−l+1 .(4.1)

Proof. For 1 ≤ l < k, the points (pl,pk−pl), (pk−pk−l,pk−l) and (pl−1,pk−
pl−1) are collinear, since their coordinates sum to pk. Hence, there exists θl ∈ R

such that

(pl,pk−pl) = θl(pk−pk−l,pk−l)+ (1− θl)(pl−1,pk−pl−1).(4.2)

Substituting pl = l(l+1) yields θl = 1/(k− l+1). Let fI , fI ′ be as in Definition 3.1
for Bl,a,b(δ). By Hölder’s inequality, we obtain

LHS(3.1) ≤
ˆ
Rk

(∣
∣fI

∣
∣pk−pk−l ∗φI

)θl
(∣
∣fI

∣
∣pl−1 ∗φI

)1−θl

× (∣
∣fI ′

∣
∣pk−l ∗φI ′

)θl
(∣
∣fI ′

∣
∣pk−pl−1 ∗φI ′

)1−θl
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≤
(ˆ

Rk

(∣
∣fI

∣
∣pk−pk−l ∗φI

)(∣
∣fI ′

∣
∣pk−l ∗φI ′

)
)θl

×
(ˆ

Rk

(∣
∣fI

∣
∣pl−1 ∗φI

)(∣
∣fI ′

∣
∣pk−pl−1 ∗φI ′

)
)1−θl

.

The claim (4.1) then follows from the definitions of Bk−l,b,a(δ) and Bl−1,a,b(δ). �

LEMMA 4.2. Let l∈ {1, . . . ,k−1} and assume that Theorem 1.2 is known with

k replaced by l. Let ε > 0. Then, for every b ∈ [0,1] such that b≤ l(k−l)
(l+1)(k−l+1) and,

if l 
= 1, in addition b≤ l−1
k−l+2 , we have

Bl, k−l+1
l b,b(δ)�ε δ

−bεBk−l, l+1
l

k−l+1
k−l b, k−l+1

l b(δ)
1

k−l+1Bl−1, k−l+2
l−1 b,b(δ)

k−l
k−l+1 .

Proof. Just apply Lemma 4.1:

Bl, k−l+1
l b,b(δ)≤ Bk−l,b, k−l+1

l b(δ)
1

k−l+1Bl−1, k−l+1
l b,b(δ)

k−l
k−l+1

and then estimate the two factors on the right-hand side using Lemma 3.9. In the
first factor, we can apply Lemma 3.9 because

b≤ l+1
k− l

k− l+1
l

b.

If 2 ≤ l ≤ k−1, then we can apply Lemma 3.9 in the second factor because

k− l+1
l

b≤ k− l+2
l−1

b.

If l= 1, the we do not have to do anything in the second factor, since B0,a,b(δ) does
not depend on a. �

Proof of Theorem 1.2. By induction on k. The case k = 1 is a direct conse-
quence of Plancherel’s theorem. Fix k ≥ 2 and assume that Theorem 1.2 is already
known with k replaced by l for any l ∈ {1, . . . ,k−1}.

Let η be the infimum of all ε for which the decoupling inequality (1.2) holds.
For l ∈ {0, . . . ,k−1} and 0 < b� 1, let Al(b) be the infimum of all exponents A
such that we have

Bl, k−l+1
l b,b(δ)� δ−A.

By (3.2), we have

A0(b) = η(1− b).(4.3)
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The main recursive estimate for the exponents Al(b) is given by Lemma 4.2, which
implies that, for every l ∈ {1, . . . ,k−1} and sufficiently small b, we have

Al(b)≤ 1
k− l+1

Ak−l(
k− l+1

l
b)+

k− l
k− l+1

Al−1(b).(4.4)

We extract the information on the asymptotic behaviour of bilinear decoupling
exponents Al(b) from the functional inequality (4.4) by introducing the quantities

Al := liminf
b→0

η−Al(b)

b
∈R∪{±∞}.

By (4.3), we have A0 = η. Moreover, from (4.4), it follows that

Al ≥ 1
l
Ak−l+

k− l
k− l+1

Al−1, 1 ≤ l ≤ k−1.(4.5)

In order to solve this linear system of inequalities for η = A0, we need to know
that the quantities Al are finite, so that we can perform algebraic operations. The
finiteness of these quantities is a manifestation of the equivalence between linear
and bilinear decoupling inequalities.

By Hölder’s inequality, similarly as in (3.3), for any l ∈ {1, . . . ,k− 1}, I ∈
P(δ

k−l+1
l b), and I ′ ∈ P(δb), if supp f̂I ⊂ CUI and supp f̂I ′ ⊂ CUI ′ , we have

ˆ
Rk

(∣
∣fI

∣
∣pl ∗φI

)(∣
∣fI ′

∣
∣pk−pl ∗φI ′

)

≤
(ˆ

Rk

(∣
∣fI

∣
∣pl ∗φI

)pk
pl

) pl
pk
(ˆ

Rk

(∣
∣fI ′

∣
∣pk−pl ∗φI ′

) pk
pk−pl

) pk−pl
pk

�
(ˆ

Rk

∣
∣fI

∣
∣pk ∗φI

) pl
pk
(ˆ

Rk

∣
∣fI ′

∣
∣pk ∗φI ′

) pk−pl
pk

�
∥
∥fI

∥
∥pl
pk

∥
∥fI ′

∥
∥pk−pl
pk

.

It follows that, for l ∈ {1, . . . ,k−1}, we have

Bl, k−l+1
l b,b(δ)�Dk(δ

1− k−l+1
l b)pl/pkDk(δ

1−b)(pk−pl)/pk .

Hence,

Al(b)≤ η

(

1− k− l+1
l

b

)
pl
pk

+η(1− b)pk−pl
pk

= η−ηb
(
k− l+1

l

pl
pk

+
pk−pl
pk

)

.

(4.6)
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Using Lemma 2.2 and Lemma 3.4, we see that for every l ∈ {1, . . . ,k− 1} and
every b ∈ [0,1] with b≤ l

k−l+1, we have

η ≤Cb+Al(b).(4.7)

The estimates (4.6) and (4.7) imply η � Al ≤ C for l ∈ {1, . . . ,k− 1}, and in
particular that Al are finite numbers.

Summing the inequalities (4.5) over l = 1, . . . ,k − 1, we observe that
A1, . . . ,Ak−1 cancel out, and we are left with

0 ≥ k−1
k

A0 =
k−1
k

η.

This shows that the decoupling exponent is η = 0. �

Remark 4.3. The fact that all Al with 1 ≤ l ≤ k− 1 cancel out when we sum
the inequalities (4.5) can be more abstractly stated by saying that (1, . . . ,1) is a left
eigenvector of the (k−1)× (k−1) coefficient matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 0 1
k−2
k−1

0 0 . . . 0
1
2

0

0
k−3
k−2

0 . . .
1
3

0 0

. . . . .
.

. .
. . . .

0
1

k−2
0 . . .

2
3

0 0

1
k−1

0 0 . . . 0
1
2

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the entry at the position (l, l′) is the coefficient of Al′ on the right-hand side
of the lth inequality in (4.5). We refer to [10] and [9, Section 3.6] for a discussion
of the role of such (Perron–Frobenius) eigenvectors in iterative procedures that are
used to prove decoupling inequalities.
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