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Abstract

In this work we study d-dimensional majorant properties. We prove that a set of frequencies in 
ℤd  satisfies the strict majorant property on Lp([0,1]d) for all p > 0 if and only if the set is affinely 
independent. We further construct three types of violations of the strict majorant property. Any set 
of at least d + 2 frequencies in ℤd  violates the strict majorant property on Lp([0,1]d) for an open 
interval of p ∉ 2ℕ of length 2. Any infinite set of frequencies in ℤd  violates the strict majorant 
property on Lp([0,1]d) for an infinite sequence of open intervals of p ∉ 2ℕ of length 2. Finally, 
given any p > 0 with p ∉ 2ℕ, we exhibit a set of d + 2 frequencies on the moment curve in ℝd  that 
violate the strict majorant property on Lp([0,1]d).
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1. Introduction

This paper introduces the systematic study of majorant properties on Lp([0,1]d) in arbitrary dimen-
sions d, motivated by a well-known circle of ideas that is nearly 100 years old. In 1935, Hardy and 
Littlewood [14] wrote a brief paper on one-dimensional majorant inequalities of the form 

‖
‖∑

n∈Γ
ane(n ⋅ x)‖‖

Lp([0,1])
≤ ‖
‖∑

n∈Γ
Ane(n ⋅ x)‖‖

Lp([0,1]),
(1.1)

where Γ ⊂ ℤ is a finite set of frequencies. Here as usual, e(θ) := e2πiθ for θ ∈ ℝ. Given a set of 
frequencies Γ ⊂ ℤ and an exponent p, if this inequality holds for all choices of coefficients an,An
with |an| ≤ An for each n ∈ Γ, then we say the strict majorant property holds for Γ,p. For any finite 
set Γ ⊂ ℤ, the strict majorant property holds for all p ∈ 2ℕ by a simple expansion of the integral, as 
Hardy and Littlewood point out.

Does it also hold for all p ∉ 2ℕ? Hardy and Littlewood write: ‘This is untrue and, since it is 
the falsity of (1.1) which first reveals the difficulties of our problem, we prove it at once…’ for 
p = 3. The falsity was verified for all p ≥ 1,p ∉ 2ℕ by Boas [8], where for the case 1 ≤ p < 2 he 
referred to Zygmund [20, page 128, Vol. II]. Hardy and Littlewood suggested instead the study of 
the majorant property, the property that there is some constant Cp such that (1.1) holds for all Γ ⊂ ℤ if 
the right-hand side is enlarged by Cp. Landmark work of Bachelis [2], Mockenhaupt and Schlag [19] 
and Green and Ruzsa [12] dramatically confirmed that the majorant property is violated for every 
p > 2,p ∉ 2ℕ. Majorant properties and possible violations of these properties continue to inspire 
interest, also because of their close relationship to the local restriction conjecture for the sphere and 
the Kakeya conjecture; see §1.2.

1.1. Main results

In this paper we study strict majorant properties in arbitrarily high dimensions. Let Γ ⊂ ℤd  be a fixed 
set of d-tuples of integers. We say that Γ satisfies the strict majorant property on Lp([0,1]d) if for all 
choices of real coefficients (an)n∈Γ, (An)n∈Γ with |an| ≤ An, 

‖
‖∑

n∈Γ
ane(n ⋅ x)‖‖

Lp([0,1]d)
≤ ‖
‖∑

n∈Γ
Ane(n ⋅ x)‖‖

Lp([0,1]d)
. (1.2)

For any set Γ ⊂ ℤd , this statement is true for all p ∈ 2ℕ (see §8). The main question is: when p ∉ 2ℕ, 
for which Γ is it true?

Our first main result characterizes the sets Γ ⊂ ℤd  for which the strict majorant property holds 
for all p > 0. We recall that a set Γ ⊂ ℤd  is affinely independent if for any n0 ∈ Γ, {n− n0 ∈ ℤd : n ∈
Γ,n ≠ n0} is linearly independent.

Theorem 1.1 Fix an integer d ≥ 1. A non-empty set Γ ⊂ ℤd  satisfies the strict majorant property 
on Lp([0,1]d) for all p > 0 if and only if Γ is affinely independent. Furthermore, whenever Γ is not 
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affinely independent, then there exist an integer m ≥ 0 and real coefficients (an)n∈Γ, such that for 
every p ∈ (2m,2m + 2), 

‖
‖‖
∑
n∈Γ

|an|e(n ⋅ x)
‖
‖‖

Lp([0,1]d)

<
‖
‖‖
∑
n∈Γ

ane(n ⋅ x)
‖
‖‖

Lp([0,1]d)

. (1.3)

In particular, this holds for every set Γ ⊂ ℤd  of cardinality at least d + 2.

If Γ ⊂ ℤd  is an infinite set, we construct counterexamples to the strict majorant property for 
arbitrarily large p lying in open intervals of length 2.

Theorem 1.2 Fix an integer d ≥ 1. If Γ ⊂ ℤd  is infinite, then for infinitely many positive integers m, 
there exist real coefficients (an)n∈Γ such that for every p ∈ (2m,2m + 2), 

‖
‖‖
∑
n∈Γ

|an|e(n ⋅ x)
‖
‖‖

Lp([0,1]d)

<
‖
‖‖
∑
n∈Γ

ane(n ⋅ x)
‖
‖‖

Lp([0,1]d)

.

The length of these intervals of p is tight, since the strict majorant property holds for all p ∈ 2ℕ.
Third, we prove violations of the strict majorant property for a nice geometric example: the 

moment curve. This relates to recent work of Bennett and Bez [3], who introduced the study 
of the strict majorant property for frequencies on the parabola, motivated by connections to the 
Schrödinger equation on the torus and discrete restriction, and also relations to [4]. They proved that 
for Γ ⊂ {(n,n2) : n ∈ ℤ} ⊂ ℤ2, for every p > 2, p ∉ 2ℕ, the strict majorant property fails. We general-
ize this to any dimension: for every p ∉ 2ℕ, we exhibit d + 1 integral points n0,… ,nd  on the moment 
curve in ℝd  such that Γ = {0,n0,… ,nd} fails the strict majorant property.

Theorem 1.3 Fix an integer d ≥ 1. Let γ(t) = (t, t2,… , td) parameterize the moment curve in ℝd . 
For any p > 0 with p ∉ 2ℕ, there exists k ∈ ℕ and a0,… ,ad ∈ ℝ such that 

‖
‖1 +

d

∑
i=0

|ai|e(γ(k + i) ⋅ x)‖‖
Lp([0,1]d)

< ‖
‖1 +

d

∑
i=0

aie(γ(k + i) ⋅ x)‖‖
Lp([0,1]d)

.

Nevertheless, we observe in §8 that a weaker majorant property does hold: for all choices of real 
coefficients an, An with |an| ≤ An for all n, 

‖
‖ ∑

n∈ℤ
ane(γ(n) ⋅ x)‖‖

Lp([0,1]d)
≤ (d!)1/2d‖

‖ ∑
n∈ℤ

Ane(γ(n) ⋅ x)‖‖
Lp([0,1]d)

(1.4)

for all 2 ≤ p ≤ 2d. This generalizes the observation in [3, Thm. 1.2].

1.2. Relation to open problems

The connection of (1-dimensional) majorant inequalities with the local restriction conjecture for the 
sphere and the Kakeya conjecture arises via a quantitative study of how big a correction factor Bp(Γ)
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is needed to make 

‖
‖∑

n∈Γ
ane(nx)‖‖

Lp([0,1])
≤ Bp(Γ)‖‖∑

n∈Γ
e(nx)‖‖

Lp([0,1])
(1.5)

hold for all choices of coefficients |ai| ≤ 1. Mockenhaupt and Schlag [19, Thm. 3.2] and indepen-
dently Green and Ruzsa [12] proved that for every p > 2, p ∉ 2ℕ, for every sufficiently large N, there 
exists αp > 0, and a choice of frequency set Γ ⊂ {1,2,… ,N} that requires Bp(Γ) ≫ Nαp . Yet if it can 
be shown that Bp(Γ) ≪p,ε N ε  for all ε > 0 for a particular Γ ⊂ {1,2,… ,N} relevant to the local restric-
tion conjecture, this will imply the local restriction conjecture and hence the Kakeya conjecture (see 
[12],[18]). Indeed [19, Thm. 4.4] does show that random subsets of {1,2,… ,N} do have this property 
with a high probability. It is naturally of interest to exhibit specific sets Γ ⊂ {1,2,… ,N} for which 
Bp(Γ) ≪p,ε N ε  (or even smaller).

In this direction, for any set of frequencies Γ ⊂ {1,2,… ,N}, for all p ≥ 2, (1.5) holds for all 
coefficients |ai| ≤ 1 with 

Bp(Γ) ≪ (N/|Γ|)1/p. (1.6)

This is noted in the first display equation of [19, §2, p. 1191] and follows from comparing a 
consequence of the Hausdorff–Young inequality, 

‖
‖∑

n∈Γ
ane(nx)‖‖

Lp([0,1])
≤ ‖
‖{an}‖‖ℓp′

≤ |Γ|1/p′ = |Γ|1−1/p,

to the lower bound 

‖
‖∑

n∈Γ
e(nx)‖‖

Lp([0,1])
≥ (∫

|x|≪1/N
(∑

n∈Γ
ℜ(e(nx)))

p
dx)

1/p

≫p |Γ|N−1/p.

In particular, if |Γ| ≫ N  (for example an arithmetic progression), then Bp(Γ) ≪ 1. Thus, the remain-
ing interesting cases to investigate Bp(Γ) have |Γ| = O(Nρ) for some ρ< 1. In such cases, many 
immediate corollaries follow from existing results of an arithmetic flavor. For example, if Γ = ℙN , 
the set of prime numbers in the interval [1,N], one sees that Bp(ℙN) ≪ (logN)1/p for all p ≥ 2. Or, if 
Q is a fixed (positive definite) binary quadratic form with (fundamental) discriminant −D < 0, and 
Γ denotes the integers in [1,N] represented by Q, then |Γ| ≫D N/

√
logN  (for all N sufficiently large 

relative to D), so that Bp(Γ) ≪ (logN)1/(2p). (See Landau [16, Vol. 2 p. 643] for −D = −4, and more 
generally Bernays [5].) Or, if Γ denotes the integers in [1, N] that can be written as a sum of two 

powerful numbers, then Bp(Γ) ≪ (logN)
1
p (1−2−1/3+o(1)) by [7]; see also [6]. (A number m is powerful 

if for each p|m, p2|m.)
For a given set Γ, it is then interesting to beat (1.6). In the case that Γ = ℙN , Green [11, Theo-

rem 1.5] improved on this, showing that Bp(ℙN) ≪ 1. See also earlier work of Bourgain [9]. More 
recent work of Krause–Mirek–Trojan [15] exhibits a class of deterministic sets Γ ⊂ [1,N] with van-
ishing Banach density as N →∞, for which Bp(Γ) ≪p 1. This concludes our brief remarks on the 
well-known 1-dimensional setting.

In the d-dimensional setting we study here, how big a correction factor Bp(Γ) is required to make 
a weaker majorant property hold on Lp([0,1]d) for a particular set of frequencies Γ ⊂ ℤd? For the 
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moment curve, (1.4) shows that Bp(Γ) ≪d 1 suffices for all 2 ≤ p ≤ 2d. For which sets Γ ⊂ [1,N]d
does Bp(Γ) ≪ N ε  suffice? This would have interesting applications in recent work of Demeter and 
Langowski [10] on restriction of exponential sums to hypersurfaces (see [10, Conj. 1.2, Conj. 1.3, 
Lem. 2.1]).

1.3. Notation

We recall that for a positive real number p ∉ 2ℕ, the generalized binomial coefficient is defined by 

⎛⎜⎜
⎝

p/2
0

⎞⎟⎟
⎠

= 1, ⎛⎜⎜
⎝

p/2
j

⎞⎟⎟
⎠

=
1

2jj!

j−1

∏
ℓ=0

(p− 2ℓ), j = 1,2,3,… .

In particular, (p/2
j ) is positive for 0 ≤ j ≤ ⌈p/2⌉, negative for j = ⌈p/2⌉ + 1, and then alternates in 

sign for subsequent values of j. Second, multinomial coefficients are defined for n ∈ ℕ and β =
(β0,β1,… ,βd) ∈ ℤd+1

≥0  by 

⎛⎜⎜
⎝

n
β
⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

n
β0,β1,… ,βd

⎞⎟⎟
⎠

=
n!

β0!β1!⋯βd!
.

If n = 0 or β = (0,… ,0), the multinomial coefficient is 1. For b = (b0,… ,bd) and β ∈ ℤd+1
≥0 , then bβ =

bβ0
0 …bβd

d  and |β| = β0 +⋯+ βd .
If Γ denotes a (finite or infinite) set in ℤd  and n ∈ ℤd  then Γ+ n denotes the set {γ + n : γ ∈ Γ} ⊆

ℤd . Similarly, if A ∈ ℤm×d  is an integral m × d matrix, then AΓ denotes the set {Aγ : γ ∈ Γ} ⊆ ℤm.
For n ∈ ℤd , we will use ̃n to denote the vector (1,n) ∈ ℤd+1.

2. Preliminaries

In this section we prove Proposition 2.1, which is key to proving Theorems 1.1 and 1.2. We first 
collect certain facts we will need about lattices in ℤd  (see for example [1, Ch. 12] or [17, Ch. III §7]). 
A lattice in ℤd  is a finitely generated, additive subgroup of ℤd , which we will view as a ℤ-submodule 
of ℤd . Given a finitely generated ℤ-module M, a subset S of M is said to be linearly independent if 
for every finite set S′ ⊂ S and every choice of coefficients {rs}s∈S′ ⊂ ℤ, we have ∑

s∈S′
rss ≠ 0 unless 

rs = 0 for every s ∈ S′. A subset S of M generates M if every element of M can be written as ∑
s∈S′

rss
for some finite set S′ ⊂ S and some choice of coefficients {rs}s∈S′ ⊂ ℤ. A basis of M is a linearly 
independent subset of M that generates M. The module M is free if it is isomorphic to ℤd′  for some 
d′; in particular, M is free iff it admits a basis. Every basis of a free module has the same cardinality, 
called the rank of the module.

Finally, every submodule of a free ℤ-module is free (because ℤ is a principal ideal domain), so in 
particular every lattice in ℤd  is free and has a well-defined finite rank ≤ d.

We will reduce Theorems 1.1 and 1.2 to cases when Γ has full affine dimension (Theorem 3.1) 
and Γ is affinely abundant (Theorem 3.2).
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2.1. Affine independence

For n ∈ ℤd , recall that ̃n denotes the vector (1,n) ∈ ℤd+1.
A set S ⊂ ℤd  is affinely independent if ̃S := { ̃n ∈ ℤd+1 : n ∈ S} is a linearly independent set in ℤd+1; 

equivalently, for any n0 ∈ S, {n− n0 ∈ ℤd : n ∈ S,n ≠ n0} is linearly independent. As an example, a 
set of d + 1 vectors {n0,n1,… ,nd} ⊂ ℤd  is affinely independent if and only if 

det(ñ0, ñ1,… , ñd) = det(n1 − n0,… ,nd − n0) ≠ 0. (2.1)

(We see this by subtracting the first column from each of the other columns in the matrix on the 
left-hand side and then expanding the determinant along the top row, which has only one non-zero 
entry.)

The affine dimension of a non-empty set Γ ⊂ ℤd  is the rank of the lattice generated by Γ− n0 for 
any n0 ∈ Γ. It coincides with the cardinality |S| − 1, for any maximal affinely independent subset S
of Γ. In particular, Γ is affinely independent, iff its cardinality is 1 more than its affine dimension.

Proposition 2.1 Let Γ ⊂ ℤd  be a non-empty set with affine dimension d′. Then there exist n* ∈ Γ, 
A ∈ ℤd×d′  of rank d′, and a set Γ′ ⊂ ℤd′  of affine dimension d′ with the same cardinality as Γ such 
that Γ = n* + AΓ′.

Note that we allow Γ to have infinite countable cardinality.

Proof. For any n* ∈ Γ, the lattice in ℤd  generated by Γ− n* can be written as Aℤd′  for some A ∈
ℤd×d′  of rank d′. The fact that A is injective shows that the affine dimension of the preimage of Γ− n*
under A is the same as the affine dimension of Γ. The set Γ′ is the preimage of Γ− n* under A; if Γ
is finite then |Γ′| = |Γ|; if Γ is infinite then so is Γ′. 

2.2. Affine abundance

We say a set Γ ⊂ ℤd  is affinely abundant, if there exists a d-tuple of points n1,… ,nd ∈ Γ such that 
the set 

{det(ñ, ñ1,… , ñd) : n ∈ Γ}

is infinite. There is a simple equivalent characterization.

Proposition 2.2 A set Γ ⊂ ℤd  is affinely abundant if and only if it is infinite and has affine
dimension d.

Proof. It is clear that affinely abundant sets are infinite and have affine dimension d. Now suppose 
Γ ⊂ ℤd  is infinite and has affine dimension d. There exist m0,… ,md ∈ Γ so that det(m̃0,… , m̃d) ≠ 0. 
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By Cramer’s Rule: 

̃n =
d

∑
i=0

(−1)i det( ̃n, m̃0,… , ˆ̃mi,… , m̃d)
det(m̃0,… , m̃d)

m̃i ∀n ∈ Γ,

where ̂⋅ denotes omission. (By linearity, it suffices to verify this for ̃n = m̃j for some j = 0,… ,d
because all coefficients of m̃i vanish when j≠ i because of a repeated column. The coefficient of 
m̃j can be seen to equal 1 by permuting columns of the determinant in the numerator to ‘fill the 

hole.’) If for each i the set {det(ñ, m̃0,… , ˆ̃mi,… , m̃d) : n ∈ Γ} were finite, then every ̃n would nec-
essarily be one of finitely many distinct linear combinations of m̃0,… , m̃d , so there could be only 
finitely many values of n in Γ. 

3. A reduction to lower dimensions

The violation of the strict majorant property indicated in Theorem 1.1 can be reduced to the following 
result:

Theorem 3.1 (Full affine dimension case). Fix an integer d ≥ 1. If Γ ⊂ ℤd  has a proper subset 
whose affine dimension is d, then there exists an integer m ≥ 0, and real coefficients (an)n∈Γ, such 
that for every p ∈ (2m,2m + 2), 

‖
‖‖
∑
n∈Γ

|an|e(n ⋅ x)
‖
‖‖

Lp([0,1]d)

<
‖
‖‖
∑
n∈Γ

ane(n ⋅ x)
‖
‖‖

Lp([0,1]d)

.

Similarly, the proof of Theorem 1.2 can be reduced to the following:

Theorem 3.2 (Affinely abundant case). Fix an integer d ≥ 1. If Γ ⊂ ℤd  is affinely abundant, then 
for infinitely many positive integers m, there exist real coefficients (an)n∈Γ such that for every p ∈
(2m,2m + 2), 

‖
‖‖
∑
n∈Γ

|an|e(n ⋅ x)
‖
‖‖

Lp([0,1]d)

<
‖
‖‖
∑
n∈Γ

ane(n ⋅ x)
‖
‖‖

Lp([0,1]d)

.

The key to these reductions is the following lemma.

Lemma 3.3 If Γ ⊂ ℤd  and Γ = n* + AΓ′ for some n* ∈ ℤd , A ∈ ℤd×d′  of rank d′ ≤ d and a set Γ′ ⊂
ℤd′ , then 

‖
‖‖
∑
n∈Γ

bne(n ⋅ x)
‖
‖‖

Lp([0,1]d)

=
‖
‖
‖
∑

n′∈Γ′
cn′e(n′ ⋅ x′)

‖
‖
‖

Lp([0,1]d′)

where cn′ := bn*+An′ .

Assuming the lemma for the moment, we deduce Theorems 1.1 and 1.2.



8 P. T. GRESSMAN et al.

Proof of Theorem 1.1. Suppose Γ ⊂ ℤd  is not affinely independent. Then its cardinality is at least 
d′ + 2 where d′ is the affine dimension of Γ. By Proposition 2.1, we may find n* ∈ Γ, A ∈ ℤd×d′  of 
rank d′ and a set Γ′ ⊂ ℤd′  of affine dimension d′ and the same cardinality as Γ, such that Γ = n* + AΓ′. 
Since Γ′ has affine dimension d′ and cardinality at least d′ + 2, it contains a proper subset that still has 
affine dimension d′. Now apply the identity of Lemma 3.3 to both sides of the inequality (1.3) claimed 
in Theorem 1.1. After these transformations, the resulting inequality is true for all p ∈ (2m,2m + 2)
for an appropriate choice of integer m and coefficients an by Theorem 3.1, applied to Γ′ ⊂ ℤd′  and 
affine dimension d′. In particular, the strict majorant property fails for some p > 0.

Conversely, in Proposition 8.2, we show that if Γ ⊂ ℤd  is affinely independent, then the strict 
majorant property holds for all p > 0. This completes the characterization in Theorem 1.1. 

Proof of Theorem 1.2. In the setting of Theorem 1.2, Γ ⊂ ℤd  is infinite. Let d′ be the affine dimension 
of Γ. By Proposition 2.1, we may find n* ∈ Γ, A ∈ ℤd×d′  of rank d′, and an infinite set Γ′ ⊂ ℤd′  of 
affine dimension d′ such that Γ = n* + AΓ′. By Proposition 2.2, Γ′ is affinely abundant.

Since Γ = n* + AΓ′, we may apply Lemma 3.3 to both sides of the inequality claimed in The-
orem 1.2. After these transformations, the resulting inequality is true for an infinite sequence 
of integers m and appropriate coefficients an by Theorem 3.2, applied to the affinely abundant
Γ′ ⊂ ℤd′ . 

We now prove Lemma 3.3; and then turn to Theorems 3.1 and 3.2.

3.1. Proof of Lemma 3.3

Under the hypotheses of Lemma 3.3, for any coefficients bn define cn′ = bn*+An′ . Then for all x ∈
[0,1]d ,

|
|∑

n∈Γ
bne(n ⋅ x)|| = || ∑

n′∈Γ′
cn′e((n* + An′) ⋅ x)|| = || ∑

n′∈Γ′
cn′e(An′ ⋅ x)||.

We now complete A to a d × d matrix B with integer entries and non-zero determinant by appending 

d− d′ suitable columns of coordinate vectors. Then for each column vector n′ ∈ Γ′, An′ = B (n′

0
) ,

where 0 stands for a zero in each of the d′ + 1,d′ + 2,… ,d-th places in the column. Then 

∫
[0,1]d

|
|∑

n∈Γ
bne(n ⋅ x)||

p
dx = ∫

[0,1]d

|
| ∑

n′∈Γ′
cn′e((n′

0
) ⋅Btx)||

p
dx. (3.1)

Because Bt  is invertible and has integer entries and e(⋅) is 1-periodic, an integral over [0,1]d  is invari-
ant under a change of variables that eliminates the matrix; we record this as a lemma, whose proof 
we defer until the end of the section.

Lemma 3.4 Let B be a d × d matrix with integer entries and non-zero determinant. If F is a 1-periodic 
complex-valued function on ℝd , that is F(x + m) = F(x) for all m ∈ ℤd , then 

∫
[0,1]d

F(Bx)dx = ∫
[0,1]d

F(x)dx. (3.2)
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We apply the lemma in (3.1) to conclude that 

∫
[0,1]d

|
|∑

n∈Γ
bne(n ⋅ x)||

p
dx = ∫

[0,1]d

|
| ∑

n′∈Γ′
cn′e((n′

0
) ⋅ x)||

p
dx

= ∫
[0,1]d′

|
| ∑

n′∈Γ′
cn′e(n′ ⋅ x′)||

p
dx′,

where the last step follows by Fubini’s theorem. Lemma 3.3 is proved.

3.2. Proof of Lemma 3.4

Let us first suppose that in addition to being a matrix with integer entries and non-zero determinant, 
B = (bij) is upper triangular. Then (3.2) holds by a successive change of variables in the d coordinates 
of [0,1]d . Indeed, to evaluate 

∫
[0,1]d

F(b11x1 +⋯+ b1dxd ,… ,bddxd)dx, (3.3)

let y1 = b11x1 +⋯+ b1dxd ; as x1 varies over [0,1], y1 varies over an interval of length |b11| ∈ ℕ. By 
periodicity of F in the first variable, (3.3) becomes 

∫
[0,1]d

F(y1,b22x2 +⋯+ b2dxd ,… ,bddxd)dy1dx′,

in which x′ = (x2,… ,xd). Now by successively setting yj = bjjxj +⋯+ bjdxd  for j = 2,… ,d, this proves 
the claim.

In general, we must show that given any matrix A with integer entries and non-zero determinant, 
there exists a matrix E ∈ GL(d,ℤ), given by a product of elementary matrices (in particular, of 
determinant ±1), such that A = EB, where B is upper triangular (and has integer entries and non-zero 
determinant). For then certainly ∫[0,1]d F(Ax)dx = ∫[0,1]d F(Bx)dx, and we may apply the special case 
proved above.

This is essentially the claim that such a matrix A can be put in Hermite normal form by applying 
only elementary row operations corresponding to matrices in GL(d,ℤ), that is we can transform 
A to an upper triangular matrix B with integer entries and non-zero determinant in finitely many 
steps, using only row swaps and replacing a row by its sum with a multiple of another row. We 
describe this process. First we swap rows until the entry in the first column with the smallest absolute 
value is brought to the first row. Then we subtract off multiples of the first row from the remaining 
rows to reduce the absolute values of the first entries of the remaining rows as much as possible. 
Then we iterate this process (effectively, running the Euclidean algorithm on the entries of the first 
column). After finitely many steps, the top entry of the first column is the gcd of all the entries in 
the first column of the original matrix A, and the remaining entries are zero. We may now repeat 
on the (d− 1)× (d− 1) minor obtained from the above matrix by deleting its first row and first 
column. After finitely many iterations, we obtain an upper triangular matrix B with integer entries 
and non-zero determinant.
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4. Initial set-up to prove the main theorems

In the proofs of Theorems 3.1 and 3.2, fix an• = 1 for some n• ∈ Γ, choose suitable n0,… ,nd ∈ Γ
and set an = 0 for all n ∉ {n•,n0,… ,nd}. By using that |e(n• ⋅ x)| = 1 and renaming ni − n• as ni for 
i = 0,… ,d, without loss of generality we may assume n• = 0. Then it remains to show that 

‖
‖1 +

d

∑
i=0

|ani
|e(ni ⋅ x)‖‖

p

Lp([0,1]d)
< ‖
‖1 +

d

∑
i=0

ani
e(ni ⋅ x)‖‖

p

Lp([0,1]d)

for some suitable coefficients an0
,… ,and

. The an0
,… ,and

 will be chosen to be small; for this reason 
and to prepare ourselves for the subsequent proof of Theorem 1.3, it helps to understand the following 
Taylor expansion for 

‖
‖1 +

d

∑
i=0

bie(ni ⋅ x)‖‖
p

Lp([0,1]d)
(4.1)

around (b0,… ,bd) = (0,… ,0).
Fix any p > 0. The expression (4.1) equals 

∫
[0,1]d

(1 +
d

∑
i=0

bie(ni ⋅ x))
p/2

(1 +
d

∑
j=0

bje(−nj ⋅ x))
p/2

dx

= ∫
[0,1]d

∑
ℓ,m≥0

⎛⎜⎜
⎝

p/2
ℓ

⎞⎟⎟
⎠

⎛⎜⎜
⎝

p/2
m

⎞⎟⎟
⎠

(
d

∑
i=0

bie(ni ⋅ x))
ℓ
(

d

∑
j=0

bje(−nj ⋅ x))
m

dx

= ∑
β,γ∈ℤd+1

≥0

⎛⎜⎜
⎝

p/2
|β|

⎞⎟⎟
⎠

⎛⎜⎜
⎝

p/2
|γ|

⎞⎟⎟
⎠

⎛⎜⎜
⎝

|β|
β

⎞⎟⎟
⎠

⎛⎜⎜
⎝

|γ|
γ

⎞⎟⎟
⎠

bβ+γI(β− γ), (4.2)

in which bβ+γ = bβ0+γ0
0 ⋯bβd+γd

d , and according to our fixed n0,n1,… ,nd ∈ ℤd  we define I(u) for any 
u = (u0,… ,ud) ∈ ℝd+1 by 

I(u) := ∫
[0,1]d

e(
d

∑
i=0

uini ⋅ x)dx.

The above application of the expansion of the p/2 power and the interchange of the infinite sum over 
ℓ,m with the integral can be justified as long as |b| < 1 (because this guarantees uniform convergence, 
over [0,1]d , of the series under the integral on the second line of the display).

Our goal is to isolate a main term in the right-hand side of (4.2), plus a negligible remainder term. 
Then we aim to show that when we substitute in ani

 for bi in the main term, we get a strictly larger 
expression than when we substitute in |ani

|. We will do so by showing that the difference between the 
expression with ani

 minus the expression with |ani
| is controlled by a signed product of generalized 

binomial coefficients (see (4.12)). We will exploit the fact that the generalized binomial coefficients 
oscillate in sign in order to show that this difference can be forced to be positive in the settings of 
our theorems. This basic framework agrees with the argument used by Bennett and Bez in the case 
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of the parabola, but how we isolate the main term and how we show the difference can be forced to 
be positive is novel.

The integral I(β− γ) is equal to 1 if and only if β,γ satisfy 

d

∑
i=0

(βi − γi)ni = 0 ∈ ℤd , (4.3)

and is equal to 0 otherwise. We now characterize for which β,γ ∈ ℤd+1
≥0  the relation (4.3) holds. 

Certainly (4.3) holds if β = γ. In general, we will show via linear algebraic considerations that
I(β− γ) = 1 if and only if β− γ is an integer multiple of (c0,… ,cd), for a vector c ∈ ℤd+1 we now 
construct.

We recall that n0,… ,nd ∈ ℤd  (regarded as column vectors) are fixed. Consider that the linear 
functional 

(x0,… ,xd) ∈ ℚd+1 ↦ det
⎛⎜⎜⎜
⎝

x0 x1 … xd
| | |

n0 n1 … nd
| | |

⎞⎟⎟⎟
⎠

∈ ℚ, (4.4)

which for some fixed v = (v0,… ,vd) ∈ ℤd+1 can be expressed as (x0,… ,xd) ⋅ (v0,… ,vd) for all 
(x0,… ,xd) ∈ ℤd+1. First, note that v (regarded as a column vector) is in the null space of the 
d× (d + 1) matrix (n0,… ,nd). (Indeed, for each 1 ≤ i ≤ d, the i-th coordinate of (n0,… ,nd)v is the 
value of the linear functional with x taken to be identical to the i-th row of the matrix in (4.4), so that 
the determinant is certainly zero.) Second, note that 

(1,… ,1) ⋅ (v0,… ,vd) = det(ñ0, ñ1,… , ñd) = det(n1 − n0,… ,nd − n0). (4.5)

We now assume that the determinant above is non-zero and proceed under this assumption. Then in 
particular we see that v ≠ 0 ∈ ℤd+1 and that the 

d× (d + 1) matrix (n0,… ,nd) has rank d. (4.6)

Consequently the null space of (n0,… ,nd) is 1-dimensional, and hence the vector v constructed above 
spans the null space.

We have learned that I(u) = 1 for u ∈ ℝd+1 if and only if u is in the null space of the matrix 
(n0,… ,nd), which is if and only if u is a multiple of v. We are interested only in u ∈ ℤd  and thus it 
is efficient to find a primitive basis element for the null space, that is, with relatively prime entries. 
Thus we let D denote gcd(v0,… ,vd), and finally define 

c = (c0,… ,cd) := D−1(v0,… ,vd) ∈ ℤd+1 ⧵ 0. (4.7)

Always under the assumption that the determinant in (4.5) is non-zero, we conclude that for β,γ ∈
ℤd+1
≥0 , I(β− γ) = 1 if and only if β− γ is an integral multiple of c, say kc for k ∈ ℤ.
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The case k = 0 corresponds to β = γ. The contribution to the Taylor expansion (4.2) from the terms 
with β = γ is 

∑
β∈ℤd+1

≥0

⎛⎜⎜
⎝

p/2
|β|

⎞⎟⎟
⎠

2

⎛⎜⎜
⎝

|β|
β

⎞⎟⎟
⎠

2

(bβ)2.

Because each entry is squared in this contribution, if we substitute in the coefficients ai or |ai| for 
bi, the expression is identical, leading to an identical contribution to the Lp([0,1]d) norms we are 
studying.

Thus to understand when the majorant property is violated, we aim to isolate the contribution of 
lowest-order terms in the expansion (4.2) with β ≠ γ; that is, the contribution from β,γ such that 
β− γ = kc for some integer k≠ 0, such that β + γ has smallest total degree. For any k with |k| ≥ 1, if 
β− γ = kc, the triangle inequality shows that for each 0 ≤ i ≤ d, 

|ci| ≤ |k||ci| = |kci| = |βi − γi| ≤ |βi|+ |γi| = βi + γi,

since βi,γi ≥ 0. We deduce that as a polynomial, x|c0|
0 x|c1|

1 ⋯x|cd |
d  is a divisor of xβ+γ  for every β,γ

such that β− γ = kc for some integer k≠ 0. In particular, the lowest-order terms with β ≠ γ must 
come from β,γ such that β + γ = (|c0|, |c1|,… , |cd |). Observe that since c ≠ 0 ∈ ℤd+1, in order to 
simultaneously satisfy for some integer k≠ 0 the three conditions that 

β + γ = (|c0|, |c1|,… , |cd |), β− γ = k(c0,… ,cd), βi,γi ≥ 0,

it must be the case that k = ±1. Then for example, if k = 1, we must have that βi = ci and γi = 0 for 
those i such that ci > 0, and βi = 0 and γi = −ci for those i such that ci < 0, and finally βi = γi = 0 if 
ci = 0. An analogous conclusion is obtained if k = −1.

At this point, it is helpful to define the notation 

c = c+ − c−, (4.8)

where c+,c− ∈ ℤd+1 are defined by 

(c+)i := {ci if ci ≥ 0

0 if ci < 0
and (c−)i := {0 if ci ≥ 0

−ci if ci < 0
.

Then (|c0|, |c1|,… , |cd |) = c− + c+. Note that c,c+ and c− are used as multi-indices, so that in what 
follows, |c| denotes the order |c| = |c0|+⋯+ |cd |, and similarly for the other two. (At this point we 
note that at the level of generality of the present discussion, it could be that one of c+ or c− is the 
zero vector, but it cannot be that both are the zero vectors.)
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We apply this in (4.2), distinguishing between the cases β = γ and those where β ≠ γ and isolating 
the lowest-order terms characterized above: 

‖
‖1 +

d

∑
i=0

bie(ni ⋅ x)‖‖
p

Lp([0,1]d)
= ∑

β∈ℤd+1
≥0

[⎛⎜⎜
⎝

p/2
|β|

⎞⎟⎟
⎠

⎛⎜⎜
⎝

|β|
β

⎞⎟⎟
⎠

bβ]
2

+ 2⎛⎜⎜
⎝

p/2
|c−|

⎞⎟⎟
⎠

⎛⎜⎜
⎝

p/2
|c+|

⎞⎟⎟
⎠

⎛⎜⎜
⎝

|c−|
c−

⎞⎟⎟
⎠

⎛⎜⎜
⎝

|c+|
c+

⎞⎟⎟
⎠

bc−+c+ + o(|bc−+c+ |).

Here we have now made the assumption that each coefficient bi has |bi| < 1, so that the higher-order 
terms, which we noted above are divisible by bc−+c+  (as a polynomial), are indeed o(|bc−+c+ |).

We now apply this with two choices for the coefficients bi: first, real coefficients ani
, and second, 

the absolute values |ani
|, and then we take the difference. We summarize the discussion thus far as a 

proposition.

Proposition 4.1 Suppose that n0,… ,nd ∈ ℤd  (regarded as column vectors) have the property that 

det(ñ0, ñ1,… , ñd) ≠ 0. (4.9)

Then there exists c ∈ ℤd+1 ⧵ {0} with gcd(c0,… ,cd) = 1 with corresponding notation c = c+ − c− with 
c−,c+ ∈ ℤd+1

≥0  as in (4.8) such that for any p ∉ 2ℕ and any real coefficients a = (an0
,… ,and

) ∈ ℝd+1

with |a| < 1, 

‖
‖1 +

d

∑
i=0

ani
e(ni ⋅ x)‖‖

p

Lp([0,1]d)
−‖‖1 +

d

∑
i=0

|ani
|e(ni ⋅ x)‖‖

p

Lp([0,1]d)
(4.10)

= −2⎛⎜⎜
⎝

p/2
|c−|

⎞⎟⎟
⎠

⎛⎜⎜
⎝

p/2
|c+|

⎞⎟⎟
⎠

⎛⎜⎜
⎝

|c−|
c−

⎞⎟⎟
⎠

⎛⎜⎜
⎝

|c+|
c+

⎞⎟⎟
⎠

(|ac−+c+ | − ac−+c+) + o(|ac−+c+ |).

Now, in order to prove a set {0,n0,… ,nd} ⊂ ℤd  violates the majorant property, we verify that the 
main term on the right-hand side of (4.10) is positive and then take the coefficients ai sufficiently 
small so that the o(|ac−+c+ |) remainder term is dominated by the main term. The multinomial coef-

ficients (|c−|c−
),(|c+|

c+
) are positive integers. Moreover, we claim that for c as constructed above, we 

can (for example) choose a small a ∈ ℝd+1 such that 

|ac−+c+ | − ac−+c+ = 2|ac−+c+ | > 0. (4.11)

This is because since c ≠ 0 ∈ ℤd+1 and gcd(c0,… ,cd) = 1, at least one ci is odd. Thus we simply 
choose a so that ani

< 0 for one index such that ci is odd and then choose ani
> 0 for all other indices. 

Then to show that the main term on the right-hand side is positive, it suffices to show that for the 
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vector c obtained from the set {n0,… ,nd} and the p ∉ 2ℕ of interest, 

−⎛⎜⎜
⎝

p/2
|c−|

⎞⎟⎟
⎠

⎛⎜⎜
⎝

p/2
|c+|

⎞⎟⎟
⎠
> 0, (4.12)

or equivalently, 

{( p
2 − |c+|)( p

2 − |c+| − 1)⋯( p
2 − (|c−| − 1)) < 0 if |c+| ≤ |c−|

( p
2 − |c−|)( p

2 − |c−| − 1)⋯( p
2 − (|c+| − 1)) < 0 if |c+| > |c−|.

(4.13)

To prove this, we aim to verify one of the following sufficient conditions:

(i) (for Theorems 3.1 and 3.2) one of the two numbers p/2− (|c−| − 1) and p/2− (|c+| − 1) is 
positive and the other is between 0 and −1 (so exactly one of the terms in the product in (4.13) 
is negative) and

(ii) (for Theorem 1.3) |c−| and |c+| are both bigger than p/2, and they have opposite parities (so that 
(4.13) is a product of an odd number of negative numbers).

5. Theorem 3.1: the affinely independent case

For Theorem 3.1, the hypotheses allow us to choose n• ∈ Γ and an affinely independent sub-
set {n0,… ,nd} ⊂ Γ ⧵ {n•} with d + 1 elements, so that (4.9) holds. We need only show that 
{n•,n0,… ,nd} violates the strict majorant property on Lp([0,1]d) for some values of p. Set an• = 1. 
We will choose small real numbers an0

,… ,and
 and some integer m ≥ 0 so that 

‖
‖e(n• ⋅ x) +

d

∑
i=0

ani
e(ni ⋅ x)‖‖

Lp([0,1]d)
> ‖
‖e(n• ⋅ x) +

d

∑
i=0

|ani
|e(ni ⋅ x)‖‖

Lp([0,1]d)

for all p ∈ (2m,2m + 2). Since |e(n• ⋅ x)| = 1, by considering the translate ni − n• in place of ni for 
every i = 0,… ,d, without loss of generality we may assume n• = 0 so that e(n• ⋅ x) = 1. We then 
appeal to Proposition 4.1 with the n0,n1,… ,nd ∈ ℤd ⧵ 0 chosen in this way.

For such n0,n1,… ,nd , we construct c ∈ ℤd+1 with gcd(c0,… ,cd) = 1 as in (4.7) above, and focus 
attention on a = (an0

,… ,and
) ∈ ℝd+1 such that (4.11) holds (which, again, is possible since at least 

one entry in c is odd). In this case (4.5) shows that 

c0 +⋯+ cd = D−1(1,… ,1) ⋅ (v0,… ,vd) = D−1 det(ñ0, ñ1,… , ñd) ≠ 0.

It follows that |c+| ≠ |c−|, for otherwise c0 +⋯+ cd = 0. Thus |c+| and |c−| are distinct non-negative 
integers.

To proceed further we claim that 

max{|c−|, |c+|} ≥ 2. (5.1)

Suppose on the contrary that this is not true, so that {|c−|, |c+|} = {0,1}. Then there exists precisely 
one index i0 with a non-zero entry ci0

= ±1, and all other coordinates of c are zero. Recall the con-
struction of c = D−1v where v is in the null space of the d× (d + 1) matrix M = (n0,n1,… ,nd); in 
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particular, this means v is orthogonal to all the rows N1,… ,Nd  of M. Consequently, if c has pre-
cisely one non-zero entry ci0

= ±1, this implies that all the rows N1,… ,Nd ∈ ℝd+1 are orthogonal to 
the i0-th coordinate vector in ℝd+1. In particular, each N i has a zero in its i0-th coordinate, and the 
i0-th column vector in M, namely ni0

, is the zero vector. This contradicts our initial hypotheses on 
n0,n1,… ,nd . As a result, we may conclude that max{|c−|, |c+|} ≥ 2, as claimed.

Now we define 

m+ := max{|c−|, |c+|} and m− := min{|c−|, |c+|};

hence m+ ≥ 2 and m+ > m−. Choose any p such that 

m− ≤ m+ − 1 <
p
2

+ 1 < m+, (5.2)

or equivalently 2m+ − 4 < p < 2m+ − 2; note p > 0 since m+ ≥ 2. Then 

⎛⎜⎜
⎝

p/2
m+

⎞⎟⎟
⎠

=
1

m+!
p
2

(p
2
− 1)⋯(p

2
− (m+ − 1)) < 0,

in which the last factor is negative but all other factors are positive. On the other hand, p
2 + 1 > m−, 

so that 

⎛⎜⎜
⎝

p/2
m−

⎞⎟⎟
⎠

=
1

m−!
p
2

(p
2
− 1)⋯(p

2
− (m− − 1)) > 0.

This verifies the crucial property (4.12). Finally, we choose a so that (4.11) holds and |a| is sufficiently 
small that the error o(|ac−+c+ |) in Proposition 4.1 can be dominated by the main term on the right-hand 
side. This shows 

‖
‖1 +

d

∑
i=0

ani
e(ni ⋅ x)‖‖

Lp([0,1]d)
> ‖
‖1 +

d

∑
i=0

|ani
|e(ni ⋅ x)‖‖

Lp([0,1]d)
,

and concludes the proof of Theorem 3.1.
Note that within this argument, once the set of affinely independent vectors is fixed, the vector c

is fixed, so that m+,m− are bounded. Consequently there is an upper bound on the p for which we 
can verify the crucial property (4.12), and hence an upper bound on the p for which this method can 
show the strict majorant property can be violated.

If we instead consider an affinely abundant set of integers, we have the freedom to choose infinitely 
many elements n in the set we consider, each of which yields a corresponding pair m(n)

+ ,m(n)
− , and 

such that the corresponding m(n)
+  form a strictly increasing sequence; this allows us to construct 

violations of the strict majorant property for open intervals of arbitrarily large p. Similarly, in the 
proof of Theorem 1.3, we can take p arbitrarily large by shifting our focus to a set of points that are 
sufficiently ‘high’ on the moment curve.
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6. Theorem 3.2: The affinely abundant case

Recall from §2.2 that a set of points Γ ⊂ ℤd  is called affinely abundant when there exists a d-tuple 
of points n1,… ,nd ∈ Γ such that the set 

{det(ñ, ñ1,… , ñd) : n ∈ Γ} (6.1)

is infinite. Since the values in this set are integers, the values must then become arbitrarily large in 
absolute value.

Suppose that a set Γ ⊂ ℤd  is affinely abundant and denote a distinguished d-tuple in Γ with the 
above property by {n1,… ,nd}. Fix some n• ∈ Γ ⧵ {n1,… ,nd}. We will show that for infinitely many 
integers m ≥ 0, we can choose n0 ∈ Γ ⧵ {n•,n1,… ,nd}, such that {n•,n0,n1,… ,nd} violates the strict 
majorant property on Lp([0,1]d) for all p ∈ (2m,2m + 2). As in the previous section, without loss of 
generality we may consider from now on ni − n• in place of ni, and n• = 0. We will let an• = 1. Upon 
choosing n0 ∈ Γ ⧵ {0,n1,… ,nd}, we will choose small real numbers an0

,… ,and
 and an appropriate 

integer m ≥ 0 depending on n0, such that 

‖
‖1 +

d

∑
i=0

ani
e(ni ⋅ x)‖‖

Lp([0,1]d)
> ‖
‖1 +

d

∑
i=0

|ani
|e(ni ⋅ x)‖‖

Lp([0,1]d)

for all p ∈ (2m,2m + 2). The key is to choose n0 so that we can apply the analysis of §4 and finally 
to observe that the corresponding m can be made arbitrarily large, by varying the choice of n0 ∈ Γ.

We will not yet specify which n0 we choose to distinguish, but suppose momentarily that such 
a choice has been made and fix the set {n0,n1,… ,nd} of d + 1 (non-zero) elements in Γ ⊂ ℤd . With 
this set, we follow the construction in §4 and define v = v(n0) = (v0,… ,vd) ∈ ℤd+1 so that 

(1,… ,1) ⋅ (v0,… ,vd) = det(ñ0, ñ1,… , ñd) (6.2)

as in (4.5). Since Γ is affinely abundant, there are infinitely many choices of n0 ∈ Γ ⧵ {0} such that 
this determinant is non-zero, giving v(n0) ≠ 0 ∈ ℤd+1, and we assume that n0 has this property. More-
over, since the set (6.1) is infinite, we can choose a sequence of n0 so that the construction of v(n0)

yields a sequence of values for |(1,… ,1) ⋅ v(n0)| that grows arbitrarily large.
Now note that within v(n0), by (4.4) the coordinate v0 can be computed as the minor of the matrix 

in (6.2) that omits the first row and the first column; this minor is independent of n0. In particular, 
the coordinate v0 stays fixed independent of n0, and thus the gcd of the coordinates of v(n0), namely 

D(n0) = gcd(v0,v1,… ,vd),

stays bounded uniformly in n0 ∈ Γ ⧵ {0}. We now define the corresponding vector c = c(n0) =
(c0,… ,cd) as in (4.7) by 

c(n0) = (D(n0))−1v(n0) ∈ ℤd+1 ⧵ {0}

and the vector c(n0)
+  recording the non-negative coordinates and the vector c(n0)

−  recording the negative 
coordinates as in (4.8). Since 

c0 +⋯+ cd = (D(n0))−1(v0 +⋯+ vd) ≠ 0
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we again learn that |c(n0)
+ | and |c(n0)

− | are distinct non-negative integers. Moreover, since |(1,… ,1) ⋅
v(n0)| can be made arbitrarily large by choosing n0 from the affinely abundant set Γ ⧵ {0}, while D(n0)

is bounded uniformly for all n0 ∈ Γ ⧵ {0}, then |c(n0)| can be made arbitrarily large. Consequently, if 
for each n0 ∈ Γ ⧵ {0} we define 

m(n0)
+ := max{|c(n0)

+ |, |c(n0)
− |} and m(n0)

− := min{|c(n0)
+ |, |c(n0)

− |},

then the set of positive integers {m(n0)
+ : n0 ∈ Γ ⧵ {0}} is infinite. In particular, there is an ordered infi-

nite sequence of choices of n0 ∈ Γ ⧵ {0} for which the corresponding sequence of pairs (m(n0)
+ ,m(n0)

− )
has the properties that each m(n0)

+ ≥ 2 and each pair has m(n0)
+ > m(n0)

− , and moreover the sequence of 
integers m(n0)

+  is strictly increasing.
Now for each choice of n0, we apply Proposition 4.1 to the d + 1 vectors {n0,n1,… ,nd}. We 

choose the coefficients an to be zero for all n ∈ Γ ⧵ {0,n0,n1,… ,nd}. After such a choice, we can 
conclude that 

‖
‖∑

n∈Γ
ane(n ⋅ x)‖‖

Lp([0,1]d)
−‖‖∑

n∈Γ
|an|e(n ⋅ x)‖‖

Lp([0,1]d)

is equal to 

−2⎛⎜⎜
⎝

p/2
|c(n0)
− |

⎞⎟⎟
⎠

⎛⎜⎜
⎝

p/2
|c(n0)

+ |
⎞⎟⎟
⎠

⎛⎜⎜
⎝

|c(n0)
− |

c(n0)
−

⎞⎟⎟
⎠

⎛⎜⎜
⎝

|c(n0)
+ |

c(n0)
+

⎞⎟⎟
⎠

(|ac
(n0)
− +c

(n0)
+ | − ac

(n0)
− +c

(n0)
+ )

+ o(|ac
(n0)
− +c

(n0)
+ |)

(where we wrote a := (an0
,… ,and

)). We again focus on choosing coefficients a ∈ ℝd+1 such that the 
factor in the first term that depends on the coefficients a is positive (which, as mentioned earlier in 
(4.11), is possible since the gcd of the coordinates of c(n0) is 1, so at least one entry in c(n0) is odd). 
Thus, the strict majorant property is violated for any p such that 

−⎛⎜⎜
⎝

p/2
|c(n0)
− |

⎞⎟⎟
⎠

⎛⎜⎜
⎝

p/2
|c(n0)

+ |
⎞⎟⎟
⎠
> 0.

We apply the argument developed in (5.2): for each n0, any p with 

m(n0)
+ − 1 <

p
2

+ 1 < m(n0)
+ (6.3)

has the property that the strict majorant property fails in Lp([0,1]d), since 

⎛⎜⎜
⎝

p/2
m(n0)

+

⎞⎟⎟
⎠
< 0 yet ⎛⎜⎜

⎝

p/2
m(n0)
−

⎞⎟⎟
⎠
> 0.

Since we have obtained an infinite sequence of n0 for which the corresponding values m(n0)
+  are 

arbitrarily large, this completes the proof of Theorem 3.2.
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7. Theorem 1.3: the moment curve

For Theorem 1.3, we let γ(t) = (t, t2,… , td) parameterize the moment curve in ℝd . We will take 
any p > 0 and then choose k depending on p so that the set Γ = {0,γ(k),γ(k + 1),… ,γ(k + d)} ⊂ ℤd

violates the strict majorant property on Lp([0,1]d). We will again apply the analysis of §4, but since 
this time we will apply the criterion (ii) to prove (4.12), we must do more explicit computations, 
which use the structure of the moment curve.

For the moment we suppose an integer k ≥ 1 has been fixed. For each 0 ≤ i ≤ d define ni = γ(k +
i) ∈ ℤd , regarded as a column vector. Accordingly, define the vector v = (v0,v1,… ,vd) ∈ ℤd+1 as 
before in (4.4) and (4.5).

Lemma 7.1 Fix an integer k ≥ 1. Let v = (v0,v1,… ,vd) ∈ ℤd+1 be defined as above. If we define 

c =
1

d!(d− 1)!…1!
v,

then c ∈ ℤd+1 and 

c0 +⋯+ cd = 1, (7.1)

so |c| = |c0|+⋯+ |cd | is odd. Also, |ci| ≥ kd/(d!)2 for every 0 ≤ i ≤ d.

Assuming this lemma, we prove Theorem 1.3. We claim that for any p > 0, p ∉ 2ℕ, there exists 
a choice of k such that for v as defined above and hence for c = c+ − c− (with c+,c− defined as in 
(4.8)) the crucial relation (4.12) holds. Since |c| = |c+|+ |c−| is odd, then |c−| and |c+| have opposite 
parity. Thus in order to confirm that (4.12) holds, it only remains to show that given any such p
we can take k sufficiently large so that the vector c constructed above leads to |c−|, |c+| > p/2. This 
follows immediately from the last statement in Lemma 7.1. This verifies (4.12) for the set of points 
{n0,n1,… ,nd} = {γ(k),γ(k + 1),… ,γ(k + d)}. Finally, we choose a so that (4.11) holds and |a| is 
sufficiently small that the error o(|ac−+c+ |) in Proposition 4.1 can be dominated by the main term on 
the right-hand side. (There is a positive measure set of such a.) This proves Theorem 1.3.

7.1. Proof of Lemma 7.1

We will first show that 

v0 + v1 +⋯+ vd = d!(d− 1)!⋯1!. (7.2)

Then we will compute each coordinate vi and show that 

(d!(d− 1)!⋯1!)|vi for each 0 ≤ i ≤ d. (7.3)

Consequently c is an integer vector as claimed, and from (7.2) we immediately see that (7.1) holds. 
By Bezout’s identity, (7.1) implies that gcd(c0,… ,cd) = 1 so we can incidentally conclude that 
gcd(v0,… ,vd) = d!(d− 1)!⋯1!. Thus with this definition of v and c we can apply all the analy-
sis of §4. Moreover, by (7.1), |c| = |c0|+ |c1|+⋯+ |cd | must be odd, since for each i, ci and |ci| have 



ON THE STRICT MAJORANT PROPERTY IN ARBITRARY DIMENSIONS 19

the same parity. We will prove the last claim of the lemma by examining the expression we prove for 
each ci.

We now prove (7.2). Recall the expression for (1,1,… ,1) ⋅ (v0,v1,… ,vd) in (4.5). By the standard 
Vandermonde determinant identity, we claim that v0 + v1 +⋯+ vd  must equal 

det
⎛⎜⎜⎜
⎝

1 1 … 1
k k + 1 … k + d
⋮ ⋮
kd (k + 1)d … (k + d)d

⎞⎟⎟⎟
⎠

= d!(d− 1)!⋯1!. (7.4)

Indeed, by the Vandermonde identity the (d + 1)× (d + 1) determinant is 

∏
0≤j′<j≤d

((k + j)− (k− j′)) =
d

∏
j=1

(
j−1

∏
j′=0

(j− j′)) =
d

∏
j=1

j!

as claimed.
Now we derive an expression for each coordinate vi individually, using the definition for v given 

in (4.4), so that vi is obtained from the minor of the (d + 1)× (d + 1) matrix (ñ0, ñ1,… , ñd) that omits 
the top row and the i-th column, numbering the columns from 0 to d. For each 0 ≤ i ≤ d, we see that 
(−1)ivi is precisely 

det( γ(k) ⋯ γ(k + i− 1) γ(k + i + 1) … γ(k + d) )
= k⋯(k + i− 1)(k + i + 1)…(k + d)Di,

where 

Di = det
⎛⎜⎜⎜
⎝

1 … 1 1 ⋯ 1
k … k + i− 1 k + i + 1 ⋯ k + d
⋮

kd−1 … (k + i− 1)d−1 (k + i + 1)d−1 ⋯ (k + d)d−1

⎞⎟⎟⎟
⎠

.

(When i = 0, the product before D0 is (k + 1)⋯(k + d) and the first column in D0 is (1,k + 1,… ,(k +
1)d−1), and so on.) First fix some 1 ≤ i ≤ d. Applying the Vandermonde identity again, 

Di = ∏
1≤j′<j≤d

(wj −wj′),

where wj := k + j− 1 if j ≤ i and wj := k + j if j ≥ i + 1. Now for 1 ≤ j ≤ d, 

∏
1≤j′<j

(wj −wj′) = {
(j− 1)! if 1 ≤ j ≤ i,

j!
j−i if i < j ≤ d.

Multiply over all 1 ≤ j ≤ d and simplify, obtaining 

vi = (−1)i⎛⎜⎜
⎝

k + i− 1
i

⎞⎟⎟
⎠

⎛⎜⎜
⎝

k + d
d− i

⎞⎟⎟
⎠

d!(d− 1)!⋯1!.
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Consequently, d!(d− 1)!…1! divides vi and ci is given explicitly as 

ci = (−1)i k⋯(k + i− 1)
i!

(k + i + 1)⋯(k + d)
(d− i)!

,

which implies the desired lower bound on |ci|.
For i = 0, the computation is similar. To compute D0 we define wj := k + j for all j ≥ 1, and then 

for each 1 ≤ j ≤ d, 

∏
1≤j′<j

(wj −wj′) = (j− 1)!.

So arguing as before, we see 

v0 = ⎛⎜⎜
⎝

k + d
d

⎞⎟⎟
⎠

d!(d− 1)!⋯1!, c0 = ⎛⎜⎜
⎝

k + d
d

⎞⎟⎟
⎠

=
(k + 1)⋯(k + d)

d!
.

This completes the proof of (7.3) and hence the lemma is proved.

8. Cases when majorant properties hold

8.1. Strict majorant property holds when p ∈ 2ℕ

Here we simply observe that the strict majorant property holds in great generality when p ∈ 2ℕ. (See 
Bennett and Bez [3] for the case ϕ(n) = (n,n2).)

Lemma 8.1 For every ϕ : ℕk →ℤd  and every positive integer s, 

sup
|an|≤An

‖
‖ ∑

n∈[1,N]k
ane(ϕ(n) ⋅α)‖‖

L2s([0,1]d)
≤ ‖
‖ ∑

n∈[1,N]k
Ane(ϕ(n) ⋅α)‖‖

L2s([0,1]d)
. (8.1)

Proof. Expanding out, we have 

∫
[0,1]d

|
| ∑

n∈[1,N]k
ane(ϕ(n) ⋅α)||

2s
dα = ∑

*

(x,y)
ax1

⋯axs
ay1

⋯ays
, (8.2)

where ∑*

(x,y) refers to summation only over those pairs (x,y) ∈ ([1,N]k)s × ([1,N]k)s of integral 

tuples that satisfy 

ϕ(x1) +⋯+ϕ(xs) = ϕ(y1) +⋯+ϕ(ys). (8.3)

Since |an| ≤ An, the non-negative number (8.2) is bounded above by 

∑
*

(x,y)
Ax1

⋯Axs
Ay1

⋯Ays
= ∫

[0,1]d

|
| ∑

n∈[1,N]k
Ane(ϕ(n) ⋅α)||

2s
dα.
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8.2. Strict majorant property holds for affinely independent sets

Proposition 8.2 Let Γ ⊂ ℤd  be non-empty and affinely independent. Then Γ satisfies the strict 
majorant property for every p > 0.

Proof. Without loss of generality we may assume that Γ has affine dimension d (since otherwise we 
could complete Γ to an affine dimension d set). Then the cardinality of Γ is d + 1, and by translation 
invariance of the proposed inequality (1.2) with respect to Γ, we may assume Γ = {0,n1,… ,nd}
where n1,… ,nd ∈ ℤd  are linearly independent. Thus one can form an invertible d × d matrix A with 
integer entries so that nj = Aej for every 1 ≤ j ≤ d; here ej is the j-th coordinate vector in ℤd . Thus 
we may apply Lemma 3.4 and assume that Γ = {0,e1,… ,ed}. It suffices to show that whenever p > 0, 
a0,a1,… ,ad ∈ ℂ and A0,A1,… ,Ad ∈ ℝ with |aj| ≤ Aj for all j, we have 

∫
[0,1]d

|a0 + a1e(x1) +⋯+ ade(xd)|pdx ≤∫
[0,1]d

|A0 + A1e(x1) +⋯+ Ade(xd)|pdx.

Let 

I(a0,… ,ad) := ∫
[0,1]d

|a0 + a1e(x1) +⋯+ ade(xd)|pdx.

It is easy to see that I is a symmetric in a0,… ,ad : if a′0,… ,a′d  is a permutation of a0,… ,ad , then 
I(a0,… ,ad) = I(a′0,… ,a′d). (For instance, if d = 2, then I(a0,a1,a2) = ∫[0,1]2 |a0e(−x1) + a1 + a2e(x2 −
x1)|pdx = I(a1,a0,a2).) Furthermore, I(a0,… ,ad) = I(|a0|,… , |ad |) for every a0,… ,ad ∈ ℂ, by peri-
odicity of the integrand defining I. (For example, if a0e(α0) ∈ ℝ, we first multiply the integrand by 
|e(α0)|p and then set x1 ↦ x1 +α1 for α1 ∈ [0,1] such that a1e(α0 +α1) ∈ ℝ, and so on.) Thus we 
can think of I(a0,… ,ad) as a function defined on [0,∞)d+1. Taking both the above properties into 
account, it suffices to show that this function is non-decreasing in ad ∈ [0,∞) once a0,… ,ad−1 are 
fixed. This follows from applying the lemma below with a = a0 + a1e(x1) +⋯+ ad−1e(xd−1), b = ad
and B = Ad . 

Lemma 8.3 Suppose p > 0, a ∈ ℂ and 0 ≤ b ≤ B. Then 

∫
1

0

|a + be(t)|pdt ≤∫
1

0

|a + Be(t)|pdt.

Proof. The assertion is clear when a = 0, and if a ≠ 0 we can factor out |a|p from both sides, so 
without loss of generality we may assume a = 1. Then we need to show that the function G(r) =
∫1

0
|1 + re(t)|pdt is a non-decreasing function of r ∈ [0,∞) for all p > 0. We compute that 

G′(r) = p∫
1

0

(1 + r2 + 2r cos(2πt))p/2−1(r + cos(2πt))dt.

For r ≥ 1 it is evident that G′(r) ≥ 0. For r ∈ (0,1), G(r) is represented by its Taylor series at r = 0 
as in (4.2), which has only non-negative coefficients. Invoking continuity of G at r = 1 finishes the 
proof that G is non-decreasing. 
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8.3. A (weaker) majorant property holds for the moment curve

Let γ(t) = (t, t2,… , td) parameterize the moment curve in ℝd , for d ≥ 2. Following the argument 
of [3, Thm. 1.2] for d = 2, we prove (1.4). The key step is to show that for any sequence of real 
coefficients b = {bn}, for any integer 1 ≤ r ≤ d,

‖b‖ℓ2(ℤ) ≤
‖
‖ ∑

n∈ℤ
bne(γ(n) ⋅ x)‖‖

L2r([0,1]d)
≤ cr‖b‖ℓ2(ℤ). (8.4)

In fact we can take cr = (r!)1/2r . Once (8.4) is known, applying it for the choices r = d and r = 1,
along with two applications of Hölder’s inequality, and the assumption on |an| ≤ An shows that for 
any 2 ≤ p ≤ 2d,

‖
‖ ∑

n∈ℤ
ane(γ(n) ⋅ x)‖‖

Lp([0,1]d)
≤ ‖
‖ ∑

n∈ℤ
ane(γ(n) ⋅ x)‖‖

L2d([0,1]d)
≤ cd‖a‖ℓ2(ℤ)

≤ cd‖A‖ℓ2(ℤ) ≤ cd
‖
‖ ∑

n∈ℤ
Ane(γ(n) ⋅ x)‖‖

L2([0,1]d)
≤ cd

‖
‖ ∑

n∈ℤ
Ane(γ(n) ⋅ x)‖‖

Lp([0,1]d)
.

To prove (8.4), fix an integer 1 ≤ r ≤ d and expand the 2 r-th power of the central expression. It 
is equal to 

∑
*

(n1,…,nr)∈ℤr

(m1,…,mr)∈ℤr

bn1
⋯bnr

bm1
⋯bmr

,

in which the restricted summation is over tuples of ni,mi ∈ ℤ that satisfy the Vinogradov system of 
d simultaneous equations in 2r variables, 

nj
1 +⋯+ nj

r = mj
1 +⋯+ mj

r , 1 ≤ j ≤ d.

If r ≤ d, the only integral solutions to this are diagonal, that is, the tuple (n1,… ,nr) is a permutation 
of (m1,… ,mr) (see for example [13, Lemma 2.1]). Thus upon letting N(n1,… ,nr) denote the number 
of tuples (m1,… ,mr) that are permutations of (n1,… ,nr), 

‖
‖ ∑

n∈ℤ
bne(γ(n) ⋅ x)‖‖

2r

L2r([0,1]d)
= ∑

(n1,…,nr)∈ℤr

N(n1,… ,nr)|bn1
|2⋯|bnr

|2.

This is bounded above by r!‖b‖2r
ℓ2(ℤ) and below by ‖b‖2r

ℓ2(ℤ), verifying (8.4).
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