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Abstract

In this work we study d-dimensional majorant properties. We prove that a set of frequencies in
74 satisfies the strict majorant property on L”([0, 1]¢) for all p> 0 if and only if the set is affinely
independent. We further construct three types of violations of the strict majorant property. Any set
of at least d +2 frequencies in Z¢ violates the strict majorant property on L7 ([0,1]¢) for an open
interval of p & 2N of length 2. Any infinite set of frequencies in Z¢ violates the strict majorant
property on L”([0,1]¢) for an infinite sequence of open intervals of p & 2N of length 2. Finally,
given any p >0 with p & 2N, we exhibit a set of d + 2 frequencies on the moment curve in R? that
violate the strict majorant property on L7 ([0, 1]9).
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1. Introduction

This paper introduces the systematic study of majorant properties on L”([0,1]¢) in arbitrary dimen-
sions d, motivated by a well-known circle of ideas that is nearly 100 years old. In 1935, Hardy and
Littlewood [14] wrote a brief paper on one-dimensional majorant inequalities of the form

“;ane(n‘x)ulﬂ([&l]) : “;Ane(ﬂ ‘x>||u’< @b

[0.1]),

where T' C Z is a finite set of frequencies. Here as usual, e(8) := ¢** for 6 € R. Given a set of
frequencies I' C Z and an exponent p, if this inequality holds for all choices of coefficients a,,,A,,
with |a,| <A, for each n €T, then we say the strict majorant property holds for I, p. For any finite
set I C Z, the strict majorant property holds for all p € 2N by a simple expansion of the integral, as
Hardy and Littlewood point out.

Does it also hold for all p & 2N? Hardy and Littlewood write: “This is untrue and, since it is
the falsity of (1.1) which first reveals the difficulties of our problem, we prove it at once...” for
p=3. The falsity was verified for all p > 1,p € 2N by Boas [8], where for the case 1 <p <2 he
referred to Zygmund [20, page 128, Vol. II]. Hardy and Littlewood suggested instead the study of
the majorant property, the property that there is some constant C,, such that (1.1) holds forall I' C Zif
the right-hand side is enlarged by C,,. Landmark work of Bachelis [2], Mockenhaupt and Schlag [19]
and Green and Ruzsa [12] dramatically confirmed that the majorant property is violated for every
p > 2,p & 2N. Majorant properties and possible violations of these properties continue to inspire
interest, also because of their close relationship to the local restriction conjecture for the sphere and
the Kakeya conjecture; see §1.2.

1.1. Main results

In this paper we study strict majorant properties in arbitrarily high dimensions. Let I' C Z¢ be a fixed
set of d-tuples of integers. We say that T satisfies the strict majorant property on L ([0,1]) if for all
choices of real coefficients (a,,),er» (A,)er With |a,| <A,

[l 2l

nerlr nel’ Lp([o’l]d)

For any set I C Z¢, this statement is true for all p € 2N (see §8). The main question is: when p & 2N,
for which I is it true?

Our first main result characterizes the sets I' C Z¢ for which the strict majorant property holds
for all p>0. We recall that a set T C Z¢ is affinely independent if for any ny €T, {n—n, € Z?: n €
[',n # ny} is linearly independent.

THEOREM 1.1 Fix an integer d > 1. A non-empty set T' C 7% satisfies the strict majorant property
on L7([0,1]9) for all p >0 if and only if T is affinely independent. Furthermore, whenever T is not
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affinely independent, then there exist an integer m > 0 and real coefficients (a,),er, Such that for
every p € (2m,2m+2),

<
Lr([0.1))

2. lanle(n-x)

nerlr

Z a,e(n-x)

nerl’

(1.3)

Lr([o.14)
In particular, this holds for every set T' C Z¢ of cardinality at least d+2.

If I ¢ 7% is an infinite set, we construct counterexamples to the strict majorant property for
arbitrarily large p lying in open intervals of length 2.

THEOREM 1.2 Fix an integer d > 1. IfT' C Z¢ is infinite, then for infinitely many positive integers m,
there exist real coefficients (a,)),er such that for every p € (2m,2m+2),

Z aﬂe(n : x)

nerlr

2. layle(n-x)

nel’

<
Lr([0.119)

Lr([o.114)

The length of these intervals of p is tight, since the strict majorant property holds for all p € 2N.

Third, we prove violations of the strict majorant property for a nice geometric example: the
moment curve. This relates to recent work of Bennett and Bez [3], who introduced the study
of the strict majorant property for frequencies on the parabola, motivated by connections to the
Schrodinger equation on the torus and discrete restriction, and also relations to [4]. They proved that
forT' C {(n,n*) :n € Z} C 72, forevery p>2, p & 2N, the strict majorant property fails. We general-
ize this to any dimension: for every p & 2N, we exhibit d + 1 integral points ry, ..., n; on the moment
curve in R? such that T' = {0, n,, ..., n,} fails the strict majorant property.

THEOREM 1.3 Fix an integer d > 1. Let y(t) = (1,£%,...,1%) parameterize the moment curve in R,
For any p >0 with p & 2N, there exists k € N and a, ...,a; € R such that

||1+2|ai|e<y<k+i>-x>{| )<\|1+Z:a,-e<y<k+i>-x>{| :

([0.1)4 Lr([0,1)9)

Nevertheless, we observe in §8 that a weaker majorant property does hold: for all choices of real
coefficients a,, A, with |a,| < A, for all n,

< (d!)”ZdH > Aely(n) -x)” (1.4)

Lr([o.14) n€zZ Lr([0.1]4)

| 2 aetrin)-»)
nez
for all 2 < p < 2d. This generalizes the observation in [3, Thm. 1.2].
1.2. Relation to open problems

The connection of (1-dimensional) majorant inequalities with the local restriction conjecture for the
sphere and the Kakeya conjecture arises via a quantitative study of how big a correction factor BP(F)
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is needed to make

(1.5)

” Z ane(nx)” <B,(T) H Z e(nx)|
ner ner

(o) (0.1])

hold for all choices of coefficients |a;| < 1. Mockenhaupt and Schlag [19, Thm. 3.2] and indepen-
dently Green and Ruzsa [12] proved that for every p > 2, p & 2N, for every sufficiently large N, there
exists a, > 0, and a choice of frequency set T’ C {1,2,...,N} that requires B,,(T') > N%. Yet if it can
be shown that B, (T') <, . N¢ for all ¢ >0 for a particular T C {1,2,....,N } relevant to the local restric-
tion conjecture, this will imply the local restriction conjecture and hence the Kakeya conjecture (see
[12],[18]). Indeed [19, Thm. 4.4] does show that random subsets of {1,2, ..., N} do have this property
with a high probability. It is naturally of interest to exhibit specific sets I' C {1,2,...,N} for which
B,(T') <, N° (or even smaller).

In this direction, for any set of frequencies I' C {1,2,...,N}, for all p > 2, (1.5) holds for all
coefficients |a;| < 1 with

B,(T) < (N/|T|)"P. (1.6)

This is noted in the first display equation of [19, §2, p. 1191] and follows from comparing a
consequence of the Hausdorff—Young inequality,

H’;ane(nx)HU,qm]) < H{an}”&/ < [TV = T,

to the lower bound

1/p
|3 et > ( / » m(e<nx)))pdx> > [IN=1.
nerl’ Lr([0,1]) |x|<1/N "n€r

In particular, if [T'| > N (for example an arithmetic progression), then B, (T') < 1. Thus, the remain-
ing interesting cases to investigate B,(I') have |I'| = O(N?) for some p<1. In such cases, many
immediate corollaries follow from existing results of an arithmetic flavor. For example, if I' = Py,
the set of prime numbers in the interval [1, N], one sees that B, (Py) < (logN )P for all p > 2. Or, if
Q is a fixed (positive definite) binary quadratic form with (fundamental) discriminant —D < 0, and
T denotes the integers in [1,N] represented by Q, then |T| >, N/+/logN (for all N sufficiently large
relative to D), so that B,(T') < (logN)"/P)_ (See Landau [16, Vol. 2 p. 643] for —D = —4, and more
generally Bernays [5].) Or, if T' denotes the integers in [1, N] that can be written as a sum of two
powerful numbers, then B,(T') < (logN )1%(1_2_1/3“’(1)) by [7]; see also [6]. (A number m is powerful
if for each p|m, p*|m.)

For a given set I, it is then interesting to beat (1.6). In the case that I'=P,, Green [11, Theo-
rem 1.5] improved on this, showing that B,(Py) < 1. See also earlier work of Bourgain [9]. More
recent work of Krause-Mirek—Trojan [15] exhibits a class of deterministic sets T’ C [1,N] with van-
ishing Banach density as N — oo, for which B,(T') <, 1. This concludes our brief remarks on the
well-known 1-dimensional setting.

In the d-dimensional setting we study here, how big a correction factor B, (T') is required to make
a weaker majorant property hold on L7 ([0, 1]%) for a particular set of frequencies I' C Z¢? For the
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moment curve, (1.4) shows that B, (T') <, 1 suffices for all 2 < p < 2d. For which sets ' C [1,N]
does B, (') < N¢ suffice? This would have interesting applications in recent work of Demeter and
Langowski [10] on restriction of exponential sums to hypersurfaces (see [10, Conj. 1.2, Conj. 1.3,
Lem. 2.1]).

1.3. Notation

We recall that for a positive real number p & 2N, the generalized binomial coefficient is defined by

1
p/2 pl2 1’ .
=1, —20), =1,2,3,....

In particular, (p ]/2) is positive for 0 <j < [p/2], negative for j = [p/2] + 1, and then alternates in

sign for subsequent values of j. Second, multinomial coefficients are defined for n € N and =
(Bo-Bis---Ba) € ZEy by

n n n!

B) "\ BoBriBa )~ BolBitBa

Ifn=0orB=(0,...,0), the multinomial coefficient is 1. For b = (b, ...,b,) and 8 € Z‘é’[)l, then b8 =
bR ... b5 and |B] = By + -+ + B,

If T denotes a (finite or infinite) set in Z¢ and n € Z¢ then T +n denotes the set {y +n:y € T} C
7¢. Similarly, if A € 7% is an integral m x d matrix, then AT denotes the set {Ay :y € T} C Z".
For n € 74, we will use i to denote the vector (1,n) € Z4*!.

2. Preliminaries

In this section we prove Proposition 2.1, which is key to proving Theorems 1.1 and 1.2. We first
collect certain facts we will need about lattices in Z¢ (see for example [1, Ch. 12] or [17, Ch. IIT §7]).
A lattice in Z¢ is a finitely generated, additive subgroup of Z¢, which we will view as a Z-submodule
of 7. Given a finitely generated Z-module M, a subset S of M is said to be linearly independent if
for every finite set S' C S and every choice of coefficients {r, },cy C Z, we have Zse o Tss # O unless
ry=0forevery s € S'. A subset S of M generates M if every element of M can be written as Zse o 7sS
for some finite set S’ C S and some choice of coefficients {r,},cq C Z. A basis of M is a linearly
independent subset of M that generates M. The module M is free if it is isomorphic to 7¢ for some
d'; in particular, M is free iff it admits a basis. Every basis of a free module has the same cardinality,
called the rank of the module.

Finally, every submodule of a free Z-module is free (because Z is a principal ideal domain), so in
particular every lattice in Z¢ is free and has a well-defined finite rank < d.

We will reduce Theorems 1.1 and 1.2 to cases when I' has full affine dimension (Theorem 3.1)
and I’ is affinely abundant (Theorem 3.2).
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2.1. Affine independence

For n € Z¢, recall that ji denotes the vector (1,n) € Z%!.

AsetS C 74 is affinely independent if S := {7i € Z¢*!: n € S} is alinearly independent set in Z¢*!;
equivalently, for any n, € S, {n—n, € Z¢: n € S,n # ny} is linearly independent. As an example, a
set of d + 1 vectors {ngy,n,,...,n;} C Z4 is affinely independent if and only if

det(ng, 71y, ..., iiy) = det(n, —ng, ... ,ny; —ny) # 0. 2.1)

(We see this by subtracting the first column from each of the other columns in the matrix on the
left-hand side and then expanding the determinant along the top row, which has only one non-zero
entry.)

The affine dimension of a non-empty set T' C Z¢ is the rank of the lattice generated by ' — n, for
any n, € I'. It coincides with the cardinality |S| — 1, for any maximal affinely independent subset S
of I'. In particular, I" is affinely independent, iff its cardinality is 1 more than its affine dimension.

PROPOSITION 2.1 Let ' C Z¢ be a non-empty set with affine dimension d'. Then there exist n. € T,
A€z of rank d', and a set T' C 7% of affine dimension d’ with the same cardinality as T such
that T = n. + AT".

Note that we allow I' to have infinite countable cardinality.

Proof. For any n. € T, the lattice in Z¢ generated by ' — . can be written as AZ? for some A €
74%d" of rank d’. The fact that A is injective shows that the affine dimension of the preimage of I' — n..
under A is the same as the affine dimension of I'. The set I is the preimage of I — n. under A; if T
is finite then |I'| = |T'|; if T is infinite then so is I"". g

2.2. Affine abundance

We say a set I' C Z¢ is affinely abundant, if there exists a d-tuple of points n,,...,n; € I such that
the set

{det (,n3,...,ny) : n €T}
is infinite. There is a simple equivalent characterization.

PROPOSITION 2.2 A set T C Z? is affinely abundant if and only if it is infinite and has affine
dimension d.

Proof. 1t is clear that affinely abundant sets are infinite and have affine dimension d. Now suppose
' C 74 is infinite and has affine dimension d. There exist m, ...,m, € T so that det(ing, ... ,im,) # 0.
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By Cramer’s Rule:

~
= —~

d
. Z ) det(i, g, ... ,1;, ... , 111y

— VnerT,
det(myg, ..., ny) "

m;

i=0

where * denotes omission. (By linearity, it suffices to verify this for /i =m; for some j=0,...,d
because all coefficients of 71; vanish when j # i because of a repeated column The coefﬁcwnt of
n; can be seen to equal 1 by permuting columns of the determinant in the numerator to ‘fill the

hole.”) If for each i the set {det(,my, ... ,n%i, ....,my) : n € T'} were finite, then every 7 would nec-
essarily be one of finitely many distinct linear combinations of 1, ..., 7y, so there could be only
finitely many values of nin T'. (]

3. A reduction to lower dimensions

The violation of the strict majorant property indicated in Theorem 1.1 can be reduced to the following
result:

TueoreM 3.1 (Full affine dimension case). Fix an integer d > 1. If T C Z% has a proper subset
whose affine dimension is d, then there exists an integer m > 0, and real coefficients (a,,),er, such
that for every p € (2m,2m+2),

2. lanle(n-x)

nerl

< Zane(rpx)

nerlr

Lr([0.1)4) Lr([o.14)

Similarly, the proof of Theorem 1.2 can be reduced to the following:

THEOREM 3.2 (Affinely abundant case). Fix an integer d > 1. If T C Z% is affinely abundant, then
for infinitely many positive integers m, there exist real coefficients (a,),er such that for every p €
(2m,2m+2),

Z |al'l|e(n : x)

nerl

< Zane(n~x)

ner

Lr([o,11%) Lr([0,1))

The key to these reductions is the following lemma.

LEMMA 3.3 IfT C Z¢ and T = n. + AT for some n. € 7%, A € 7% of rank d’ <d and a set T’ C
79, then

Z b,e(n-x)

nerl’

Z cpe(n -x")

n'er’

Lr(0,1))
where ¢,y :=b

n«+An'*

Assuming the lemma for the moment, we deduce Theorems 1.1 and 1.2.
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Proof of Theorem 1.1. Suppose T' C Z¢ is not affinely independent. Then its cardinality is at least
d' +2 where d’ is the affine dimension of I'. By Proposition 2.1, we may find n. € T, A € z74%d" of
rank d’ and asetI” C Z¢' of affine dimension d’ and the same cardinality as T, such that T = n. + AT".
Since I'' has affine dimension d’ and cardinality at least d’ + 2, it contains a proper subset that still has
affine dimension d’. Now apply the identity of Lemma 3.3 to both sides of the inequality (1.3) claimed
in Theorem 1.1. After these transformations, the resulting inequality is true for all p € (2m,2m +2)
for an appropriate choice of integer m and coefficients a,, by Theorem 3.1, applied to I'' C 79" and
affine dimension d'. In particular, the strict majorant property fails for some p > 0.

Conversely, in Proposition 8.2, we show that if T' C Z¢ is affinely independent, then the strict
majorant property holds for all p > 0. This completes the characterization in Theorem 1.1. d

Proof of Theorem 1.2. In the setting of Theorem 1.2, T' C Z¢ is infinite. Let d’ be the affine dimension
of T. By Proposition 2.1, we may find n. €T, A € 2%’ of rank d’, and an infinite set I” € Z¢' of
affine dimension d’ such that ' = n, + AT". By Proposition 2.2, I is affinely abundant.

Since I'=n. +AI", we may apply Lemma 3.3 to both sides of the inequality claimed in The-
orem 1.2. After these transformations, the resulting inequality is true for an infinite sequence
of integers m and appropriate coefficients a, by Theorem 3.2, applied to the affinely abundant
rcz?. g

We now prove Lemma 3.3; and then turn to Theorems 3.1 and 3.2.

3.1. Proof of Lemma 3.3

Under the hypotheses of Lemma 3.3, for any coefficients b, define ¢, = b, _,4,s. Then for all x €
[0,1]4,

|ane(nx‘ )Zc/e ((n«+An") ( ‘Zc/eAn x)

ner n'er’ n'er’

We now complete A to a d x d matrix B with integer entries and non-zero determinant by appending

n!

d — d’ suitable columns of coordinate vectors. Then for each column vector n’ € I'', An’ =B K

where 0 stands for a zero in each of the d’' + 1,d’ + 2, ...,d-th places in the column. Then

-{) S byetn ) dr= [ |3 e ( ) B dx. G.1)

,1]4 ner [0,1]¢ n'er’

Because B' is invertible and has integer entries and e(-) is 1-periodic, an integral over [0, 1] is invari-
ant under a change of variables that eliminates the matrix; we record this as a lemma, whose proof
we defer until the end of the section.

LEMMA 3.4 Let B be a d x d matrix with integer entries and non-zero determinant. If F is a 1-periodic
complex-valued function on RY, that is F(x+m) = F(x) for all m € Z¢, then

/ F(Bx)dx = / F(x)dx. (3.2)
[0.1]4 0.1
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We apply the lemma in (3.1) to conclude that

/ |ane(n~x))pdx=/ ( Z cn/e(<’(l)l) -x)(pdx
(0,14 ne€r [0.1]¢ n'er’
=f ) Z cn/e(n’-x')‘pdx',
0.1

n'er’

where the last step follows by Fubini’s theorem. Lemma 3.3 is proved.

3.2. Proof of Lemma 3.4

Let us first suppose that in addition to being a matrix with integer entries and non-zero determinant,
B= (b,-j) is upper triangular. Then (3.2) holds by a successive change of variables in the d coordinates
of [0,1]¢. Indeed, to evaluate

/ F(byyx) + -+ +byx s bygx,)dx, (3.3)
[0,1)

let y, = by, x; + -+ byyx,; as x| varies over [0, 1], y, varies over an interval of length |b;,| € N. By
periodicity of F in the first variable, (3.3) becomes

f F(y1,bypxy + -+ byyXyy oo s bygxy)dy dx’,
(0,14

inwhichx’ = (x,, ...,x,). Now by successively setting yi=byx;+---+bjx, forj=2,....d, this proves
the claim.

In general, we must show that given any matrix A with integer entries and non-zero determinant,
there exists a matrix E € GL(d,Z), given by a product of elementary matrices (in particular, of
determinant +1), such that A = EB, where B is upper triangular (and has integer entries and non-zero
determinant). For then certainly f[o,u F(Ax)dx = f[o,u . F(Bx)dx, and we may apply the special case

proved above.

This is essentially the claim that such a matrix A can be put in Hermite normal form by applying
only elementary row operations corresponding to matrices in GL(d,Z), that is we can transform
A to an upper triangular matrix B with integer entries and non-zero determinant in finitely many
steps, using only row swaps and replacing a row by its sum with a multiple of another row. We
describe this process. First we swap rows until the entry in the first column with the smallest absolute
value is brought to the first row. Then we subtract off multiples of the first row from the remaining
rows to reduce the absolute values of the first entries of the remaining rows as much as possible.
Then we iterate this process (effectively, running the Euclidean algorithm on the entries of the first
column). After finitely many steps, the top entry of the first column is the gcd of all the entries in
the first column of the original matrix A, and the remaining entries are zero. We may now repeat
on the (d—1) X (d—1) minor obtained from the above matrix by deleting its first row and first
column. After finitely many iterations, we obtain an upper triangular matrix B with integer entries
and non-zero determinant.
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4. Initial set-up to prove the main theorems

In the proofs of Theorems 3.1 and 3.2, fix a,, =1 for some n. € I, choose suitable n,...,n; €T
and set a, = 0 for all n & {ne,ny,...,n,; }. By using that |e(n. - x)| = 1 and renaming n; — n. as n; for
i=0,...,d, without loss of generality we may assume n. = 0. Then it remains to show that

d
”1+Z|ani|e(ni-xu <H1+Za e(n; x”
i=0 Lr([0,1]9)
for some suitable coefficients T . The Qpysoee Gy, will be chosen to be small; for this reason

and to prepare ourselves for the subsequent proof of Theorem 1.3, it helps to understand the following
Taylor expansion for

||1 +ibie(ni -x)”p 4.1)
i=0

Lr([o.1))

around (b, ...,b,) = (0,...,0).
Fix any p>0. The expression (4.1) equals

[ (e S
[0.1]4 =

d ;. d .
:'/[;)J]de%o péz p/z (Zben x) (Z(;bje(—”j'x)) dx

Z p/l2 pl2 18] V4l b5+71(,3—7/), (4.2)
prezdy A i d !

in which bF+ = bﬁ 0*to . bg‘”y", and according to our fixed ng,n,,...,n, € Z¢ we define I(u) for any

u=(uy,...,uy) € Rd” by
f )dx.
0.1 _o

The above application of the expansion of the p/2 power and the interchange of the infinite sum over
€, m with the integral can be justified as long as |b| < 1 (because this guarantees uniform convergence,
over [0, 1]%, of the series under the integral on the second line of the display).

Our goal is to isolate a main term in the right-hand side of (4.2), plus a negligible remainder term.
Then we aim to show that when we substitute in a, for b, in the main term, we get a strictly larger
expression than when we substitute in |a,, |. We w111 do SO by showing that the difference between the
expression with @, minus the expresswn with |a,, ‘| is controlled by a signed product of generalized
binomial coefﬁments (see (4.12)). We will exploit the fact that the generalized binomial coefficients
oscillate in sign in order to show that this difference can be forced to be positive in the settings of
our theorems. This basic framework agrees with the argument used by Bennett and Bez in the case
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of the parabola, but how we isolate the main term and how we show the difference can be forced to
be positive is novel.
The integral /(5 — y) is equal to 1 if and only if S,y satisfy

d
Bi—7;)n;=0€ 77, (4.3)
i=0
and is equal to O otherwise. We now characterize for which B,y € ZZt' the relation (4.3) holds.
Certainly (4.3) holds if 8=7. In general, we will show via linear algebraic considerations that
I(B—7v) =1if and only if f—y is an integer multiple of (cy,...,c,), for a vector ¢ € Z¢*! we now
construct.
We recall that ny, ...,n, € Z? (regarded as column vectors) are fixed. Consider that the linear
functional

.XO X1 e Xy

d+l I |
(Xgs -5 Xg) € QT > det e o €Q, 4.4)

which for some fixed v=(vy,...,v;) € Z™! can be expressed as (x,,...,x;) - (vg,-..,v,) for all
(X5 -eesXy) € Z%'. First, note that v (regarded as a column vector) is in the null space of the
d % (d+1) matrix (ny,...,ny). (Indeed, for each 1 <i < d, the i-th coordinate of (n,...,n,)v is the
value of the linear functional with x taken to be identical to the i-th row of the matrix in (4.4), so that
the determinant is certainly zero.) Second, note that

(1., 1) - (vgs --v s vy) =det(ig, iy, ..., iy) = det(n, — ng, ..., ny — ng). (4.5)

We now assume that the determinant above is non-zero and proceed under this assumption. Then in
particular we see that v # 0 € Z%*! and that the

d % (d +1) matrix (n,...,n,) has rank d. (4.6)

Consequently the null space of (n, ..., n,) is 1-dimensional, and hence the vector v constructed above
spans the null space.

We have learned that I(u) =1 for u € R%! if and only if u is in the null space of the matrix
(ng, ... ny), which is if and only if u is a multiple of v. We are interested only in u € 79 and thus it
is efficient to find a primitive basis element for the null space, that is, with relatively prime entries.
Thus we let D denote ged(vy, ..., v, ), and finally define

c=(Cgyeescy) =D (Vs enn,vy) € ZTN 0. 4.7

Always under the assumption that the determinant in (4.5) is non-zero, we conclude that for 8,y €
745, 1(B—y) =1 if and only if 8 —y is an integral multiple of c, say kc for k € Z.
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The case k =0 corresponds to 8 = y. The contribution to the Taylor expansion (4.2) from the terms
with f=yis

2 2

p/2 18l 52
2o e ) )

Because each entry is squared in this contribution, if we substitute in the coefficients a; or |a;| for
b;, the expression is identical, leading to an identical contribution to the L7 ([0,1]¢) norms we are
studying.

Thus to understand when the majorant property is violated, we aim to isolate the contribution of
lowest-order terms in the expansion (4.2) with 8 # y; that is, the contribution from {3,y such that
B —y = kc for some integer k # 0, such that 8 +y has smallest total degree. For any k with |k| > 1, if
B — vy = ke, the triangle inequality shows that for each 0 < i < d,

le:| < 1klle;| = ke;| = 1B; = vil < 1Bl +1vil =B + 7

since f3,7; > 0. We deduce that as a polynomial, x(l)c")lxlf‘l ---xLC" lis a divisor of x8* for every B,y

such that 8 —y = kc for some integer k # 0. In particular, the lowest-order terms with § # y must
come from S,y such that B+ = (|col,|c;]s---»|cy|). Observe that since ¢ # 0 € Z%*!, in order to
simultaneously satisfy for some integer k # O the three conditions that

B+y =(lcolsleqls -5 leql)s B—vy=k(cys--sCq)s Biv: 20,

it must be the case that k = £1. Then for example, if k=1, we must have that §; = ¢; and y; = 0 for
those i such that ¢; > 0, and 8, =0 and y; = —c; for those i such that ¢; < 0, and finally §; =y, =0 if
¢; = 0. An analogous conclusion is obtained if k = —1.

At this point, it is helpful to define the notation

c=c,—c_, 4.8)

where c,,c_ € Z4*! are defined by

: ifc; >0 0 ifc. >0
<aw={” e md(ax={ L=

0 ifc; <0 —c; ifc; <0’

Then (|cyl,|c |, .-+ lcyl) = c_ +c,. Note that ¢,c, and c_ are used as multi-indices, so that in what
follows, |c| denotes the order |c| = |cy|+ -+ +|c |, and similarly for the other two. (At this point we
note that at the level of generality of the present discussion, it could be that one of ¢, or c_ is the
zero vector, but it cannot be that both are the zero vectors.)
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We apply this in (4.2), distinguishing between the cases § = ¥ and those where 8 # y and isolating
the lowest-order terms characterized above:

/
e g, 0= 2 15 ()

pl2 )\ (P2 ) [ le=| | [ lesl

|c | |C I . . bc_+c++0<|bc_+c+|).
- + - +

Here we have now made the assumption that each coefficient b, has |b;| < 1, so that the higher-order
terms, which we noted above are divisible by b°-*“+ (as a polynomial), are indeed o(|b-*“+|).

We now apply this with two choices for the coefficients b;: first, real coefficients a,., and second,
the absolute values |a, |, and then we take the difference. We summarize the discussion thus far as a
proposition.

PROPOSITION 4.1 Suppose that n, ... ,n; € Z¢ (regarded as column vectors) have the property that
det(ng, 11y, ..., iiy) # 0. 4.9)

Then there exists ¢ € 74!\ {0} with ged(c,, ..., c,) = 1 with corresponding notation ¢ = ¢, — c_ with
c_,c, € Z‘Q')l as in (4.8) such that for any p & 2N and any real coefficients a = (ano, ,and) € R
with |a| < 1,

Hl+ganie(ni.x H — ”l+2|a le(n; - x ”U) o) (4.10)

Now, in order to prove a set {0, 7y, ...,n;} C Z¢ violates the majorant property, we verify that the
main term on the right-hand side of (4.10) is positive and then take the coefficients a; sufficiently
small so that the o(|a®-*“+|) remainder term is dominated by the main term. The multinomial coef-

ficients (li—|> s <|z+|) are positive integers. Moreover, we claim that for ¢ as constructed above, we
+

can (for example) choose a small a € R#! such that
|a®=F¢+| — a®~*% = 2|a’-"+| > 0. 4.11)

This is because since ¢ # 0 € Z¢*! and ged(c, ...,c,) = 1, at least one ¢; is odd. Thus we simply
choose a so that a,, < 0 for one index such that c; is odd and then choose a,, > 0 for all other indices.
Then to show that the main term on the right- hand side is positive, it sufﬁces to show that for the
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vector ¢ obtained from the set {n,...,n;} and the p & 2N of interest,

P2 P12 (4.12)
le—| )\ eyl

or equivalently,

(4.13)

(B=lc.l) (5 =les=1) (5 =(le_| = 1)) <0 if |e,| <[c_]
(5 =le_l) (B=lel=1) (5 =(le,]=1)) <0 if [e,] > [e_].

To prove this, we aim to verify one of the following sufficient conditions:

(i) (for Theorems 3.1 and 3.2) one of the two numbers p/2 — (|c_|—1) and p/2—(|c,|—1) is
positive and the other is between 0 and —1 (so exactly one of the terms in the product in (4.13)
is negative) and

(ii) (for Theorem 1.3) |c_| and |c, | are both bigger than p/2, and they have opposite parities (so that
(4.13) is a product of an odd number of negative numbers).

5. Theorem 3.1: the affinely independent case

For Theorem 3.1, the hypotheses allow us to choose ne €' and an affinely independent sub-
set {ng,....n;} CT\{n.} with d+1 elements, so that (4.9) holds. We need only show that
{ne,ng,...,n,} violates the strict majorant property on L” ([0, 1]¢) for some values of p. Set a,, = 1.
We will choose small real numbers a,,, ..., a,  and some integer m > 0 so that

”e(n. - X) +éanie(ni x)” > “e(n. - X) +§ |a, le(n; - x) H

L ([0.1]4) Lr([o.14)

for all p € (2m,2m+2). Since |e(ne - x)| = 1, by considering the translate n; — ne in place of n, for
every i =0,...,d, without loss of generality we may assume ne =0 so that e(ne - x) = 1. We then
appeal to Proposition 4.1 with the ny,n,, ...,n,; € Z¢\ 0 chosen in this way.

For such ny,n,, ...,n,, we construct ¢ € Z4*! with ged(cy, ...,c,;) = 1 as in (4.7) above, and focus
attention on a = (ano, sy ) € R*! such that (4.11) holds (which, again, is possible since at least
one entry in c is odd). In this case (4.5) shows that

co++c;=D7V(1,...,1) - (vy,...,v,) = D~ det(rg, iy, ... ,1y) #O.

It follows that |c, | # |c_|, for otherwise ¢y + -+ + ¢, = 0. Thus |c,| and |c_| are distinct non-negative
integers.
To proceed further we claim that

max{|c_|,|c,|} > 2. (5.1

Suppose on the contrary that this is not true, so that {|c_|,|c,|} = {0, 1}. Then there exists precisely
one index i, with a non-zero entry ¢; =1, and all other coordinates of ¢ are zero. Recall the con-

struction of ¢ = D~'v where v is in the null space of the d X (d + 1) matrix M = (ny,ny,...,ny); in
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particular, this means v is orthogonal to all the rows N,,...,N,; of M. Consequently, if ¢ has pre-
cisely one non-zero entry ¢; = *1, this implies that all the rows Ny,...,N; € R4*! are orthogonal to

the i,-th coordinate vector in R4+l In particular, each N, has a zero in its i,-th coordinate, and the
ip-th column vector in M, namely n; , is the zero vector. This contradicts our initial hypotheses on
g, Ny, ... 1. As a result, we may conclude that max{|c_|,|c,|} > 2, as claimed.

Now we define

m, :=max{|c_|,|c,|} and m_ :=min{|c_|,|c,|};
hence m, > 2 and m, > m_. Choose any p such that

m_§m+—1<§+l<m+, (5.2)

or equivalently 2m, —4 < p <2m,_ —2; note p>0 since m,_ > 2. Then

in which the last factor is negative but all other factors are positive. On the other hand, ’5’ +1>m_,
so that

This verifies the crucial property (4.12). Finally, we choose a so that (4.11) holds and |a| is sufficiently
small that the error o(|a®-*%+|) in Proposition 4.1 can be dominated by the main term on the right-hand
side. This shows

)

Lr([0.1]9)

d
Hl +§anie(ni -x)‘}u(

d

> Hl + ) |a,le(n; -x
0,1]4) lz:(;l n,l ( i )
and concludes the proof of Theorem 3.1.

Note that within this argument, once the set of affinely independent vectors is fixed, the vector ¢
is fixed, so that m,,m_ are bounded. Consequently there is an upper bound on the p for which we
can verify the crucial property (4.12), and hence an upper bound on the p for which this method can
show the strict majorant property can be violated.

If we instead consider an affinely abundant set of integers, we have the freedom to choose infinitely
many elements # in the set we consider, each of which yields a corresponding pair m(f),m(_”), and
such that the corresponding m+") form a strictly increasing sequence; this allows us to construct
violations of the strict majorant property for open intervals of arbitrarily large p. Similarly, in the
proof of Theorem 1.3, we can take p arbitrarily large by shifting our focus to a set of points that are
sufficiently ‘high’ on the moment curve.
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6. Theorem 3.2: The affinely abundant case

Recall from §2.2 that a set of points I' C Z¢ is called affinely abundant when there exists a d-tuple
of points n,...,n,; € I such that the set

{det(#i,ny,...,7y) : n €T} (6.1)

is infinite. Since the values in this set are integers, the values must then become arbitrarily large in
absolute value.

Suppose that a set ' C Z¢ is affinely abundant and denote a distinguished d-tuple in T with the
above property by {n,,...,n,; }. Fix some ne € I'\ {n,, ...,n, }. We will show that for infinitely many
integers m > 0, we can choose ny € I'\ {ne,n,,...,n, }, such that {ne,ny,n,, ...,n,; } violates the strict
majorant property on L7 ([0, 1]%) for all p € (2m,2m+2). As in the previous section, without loss of
generality we may consider from now on n; — n. in place of n;, and ne = 0. We will let a,, = 1. Upon
choosing ny € T'\ {0,n,...,n,}, we will choose small real numbers Ay, @y, and an appropriate
integer m > 0 depending on n,,, such that

| +Zd;,< ) > | +§|ani|e<n[ |

L([0,1)4 Lr([0.1]9)

for all p € (2m,2m+2). The key is to choose n, so that we can apply the analysis of §4 and finally
to observe that the corresponding m can be made arbitrarily large, by varying the choice of n, € I.

We will not yet specify which n, we choose to distinguish, but suppose momentarily that such
a choice has been made and fix the set {ny,n,,...,n,;} of d + 1 (non-zero) elements in T' C Z¢. With
this set, we follow the construction in §4 and define v = v") = (v, ..., v,) € Z4*! 50 that

(1, 1)+ (Vs e avy) = det (g iy .. o)) (6.2)

as in (4.5). Since T’ is affinely abundant, there are infinitely many choices of n, € "\ {0} such that
this determinant is non-zero, giving v"0) # 0 € Z**!, and we assume that ng has this property. More-
over, since the set (6.1) is infinite, we can choose a sequence of ny, so that the construction of (o)
yields a sequence of values for |(1,...,1) - v{"0)| that grows arbitrarily large.

Now note that within v("0), by (4.4) the coordinate v, can be computed as the minor of the matrix
in (6.2) that omits the first row and the first column; this minor is independent of r,. In particular,
the coordinate v, stays fixed independent of n,, and thus the ged of the coordinates of v"0), namely

Do) = ged(vy, Vs -eesVy),

stays bounded uniformly in n, € T'\ {0}. We now define the corresponding vector ¢ =c("0) =
(cgs-++5Cy) asin (4.7) by

cno) = (D("o))—lv(no) e 79+ \{0}

and the vector cEr'm recording the non-negative coordinates and the vector c"0) recording the negative

coordinates as in (4.8). Since

co+-+cy= (D)) vy 4+v,) #0
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we again learn that |c§,"°>| and |c"0)| are distinct non-negative integers. Moreover, since |(1,...,1) -
v{"0) | can be made arbitrarily large by choosing n, from the affinely abundant set "\ {0}, while D)
is bounded uniformly for all n, € T'\ {0}, then |c(™0)| can be made arbitrarily large. Consequently, if
for each ny € I' \ {0} we define

") = max{|c£,"°) l,|c"0)|} and m™) = min{|c(+n") |, [co)]},
then the set of positive integers {mi"(’) :ny € '\ {0}} isinfinite. In particular, there is an ordered infi-

nite sequence of choices of n, € I' \ {0} for which the corresponding sequence of pairs (mE:lO),m(_"()))
(no) (no)

has the properties that each m,"’ > 2 and each pair has m," > m), and moreover the sequence of
integers m(+"°) is strictly increasing.
Now for each choice of n,, we apply Proposition 4.1 to the d + 1 vectors {ny,n,,...,n;} . We

choose the coefficients a,, to be zero for all n € '\ {0,n,n,,...,n,;}. After such a choice, we can
conclude that

| Zanetr-l,, . ~[ Zentetn- o]

Lr([0.1)4)
is equal to
(ng) (no) ,
o | o | Rl | R (SRR
) el ) el J L el
+ 0(|ac(—n°)+ci"°) |)
(where we wrote a := (a,,, ..., a,,)). We again focus on choosing coefficients a € R%*! such that the

factor in the first term that depends on the coefficients a is positive (which, as mentioned earlier in
(4.11), is possible since the ged of the coordinates of ¢(™) is 1, so at least one entry in ¢(™) is odd).
Thus, the strict majorant property is violated for any p such that

pl2 p/2
) )y | >0
le=""1 )\ lex™]

We apply the argument developed in (5.2): for each n,, any p with

,ﬂm—1<§+1<mﬁ> (6.3)

has the property that the strict majorant property fails in L7 ([0, 1]¢), since

pl2 pl2
(ny) | <O yet (n0)
m; m-

> 0.

Since we have obtained an infinite sequence of n, for which the corresponding values mEr"w are

arbitrarily large, this completes the proof of Theorem 3.2.
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7. Theorem 1.3: the moment curve

For Theorem 1.3, we let y(t) = (t,£%,...,1%) parameterize the moment curve in R?Y. We will take
any p>0 and then choose k depending on p so that the set I'= {0,y (k),y(k+1),...,y(k+d)} c ¢
violates the strict majorant property on L”([0,1]¢). We will again apply the analysis of §4, but since
this time we will apply the criterion (ii) to prove (4.12), we must do more explicit computations,
which use the structure of the moment curve.

For the moment we suppose an integer k > 1 has been fixed. For each 0 < i < d define n; =y (k +
i) € 79, regarded as a column vector. Accordingly, define the vector v = (vy,vy,...,v,) € Z%! as
before in (4.4) and (4.5).

LEMMA 7.1 Fix an integer k > 1. Let v= (v, vy, ...,V;) € 7! pe defined as above. If we define

1
c=——V,

did-1t... 1
then ¢ € 74" and

cottey=1, (7.1)
50 || =|co| + -+ +|c | is odd. Also, |c;| > k¥/(d!)? for every 0 < i < d.

Assuming this lemma, we prove Theorem 1.3. We claim that for any p >0, p & 2N, there exists
a choice of k such that for v as defined above and hence for ¢ =c, —c_ (with c,,c_ defined as in
(4.8)) the crucial relation (4.12) holds. Since |c| = |c, |+ |c_]| is odd, then |c_]| and |c, | have opposite
parity. Thus in order to confirm that (4.12) holds, it only remains to show that given any such p
we can take k sufficiently large so that the vector ¢ constructed above leads to |c_|,|c,| > p/2. This
follows immediately from the last statement in Lemma 7.1. This verifies (4.12) for the set of points
{ngsny,....,n } ={y(k),y(k+1),...,y(k+d)}. Finally, we choose a so that (4.11) holds and |a| is
sufficiently small that the error o(|a®-"%+|) in Proposition 4.1 can be dominated by the main term on
the right-hand side. (There is a positive measure set of such a.) This proves Theorem 1.3.

7.1. Proof of Lemma 7.1

We will first show that
Vo+ v+ vy =di(d—1)!-- 11 (7.2)
Then we will compute each coordinate v; and show that

(d!(d—=1)1 1)y,

L

foreach0 <i<d. (7.3)

Consequently c is an integer vector as claimed, and from (7.2) we immediately see that (7.1) holds.
By Bezout’s identity, (7.1) implies that ged(cy,...,c;) =1 so we can incidentally conclude that
gcd(vg, ...,v,) =d!(d—1)!---1!. Thus with this definition of v and ¢ we can apply all the analy-
sis of §4. Moreover, by (7.1), |c| = |co| +|c;| + -+ +|c,| must be odd, since for each i, ¢; and |c;| have
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the same parity. We will prove the last claim of the lemma by examining the expression we prove for
each c;.

We now prove (7.2). Recall the expression for (1,1,...,1) - (vy, vy, ..., v,) in (4.5). By the standard
Vandermonde determinant identity, we claim that vy + v, + --- + v, must equal

1 1 1
det k k+1 de —dl(d— 1)1 1L, (7.4)
Koo(k+1)4 . (k+d)?

Indeed, by the Vandermonde identity the (d+ 1) X (d + 1) determinant is

d /i1 d

[T (wen=w=) =TT (IT6-») -1
0’ <j<d =1 \J'=0 J=1

as claimed.

Now we derive an expression for each coordinate v; individually, using the definition for v given
in (4.4), so that v, is obtained from the minor of the (d + 1) X (d + 1) matrix (71,7, ..., /7;) that omits
the top row and the i-th column, numbering the columns from 0 to d. For each 0 < i < d, we see that
(—1)'v, is precisely

det( y(k) - ylk+i—=1) yk+i+1) .. ylk+d))
=k--(k+i—=1)(k+i+1)...(k+d)D
where
| 1 1 = 1
D = det k+i—1 k+i+1 k+d
kd'_1 o (kri= 1% (kit 1) e (Rt d)d!

(When i =0, the product before Dy, is (k+ 1) --- (k+d) and the first column in Dy is (1,k+1,..., (k+
1)4=1), and so on.) First fix some 1 < i < d. Applying the Vandermonde identity again,

D= T (w-wp),

J J
1<j'<j<d

where w; :=k+j—1ifj<iandw;:=k+jifj > i+ 1. Now for I <j <d,

TT (=) = =11 if1<j<i,
i vin ifi<j<d.

1)/ <j j=i

Multiply over all 1 <j < d and simplify, obtaining

k+i—1 k+d

= (=1) d\(d—1)!-11.
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Consequently, d!(d —1)!... 1! divides v; and c; is given explicitly as

ke (k+i—1) (k+i+1)---(k+d)

6= (=D d—it

L

which implies the desired lower bound on |c;|.
For i=0, the computation is similar. To compute D, we define w; := k +; for all j > 1, and then
foreach 1 <j <d,

H (wj—wy)=( -1

1<)’ <j

So arguing as before, we see

k;d d\(d—1)!--11, o= k+d =M

Vo= d dl

This completes the proof of (7.3) and hence the lemma is proved.

8. Cases when majorant properties hold

8.1. Strict majorant property holds when p € 2N

Here we simply observe that the strict majorant property holds in great generality when p € 2N. (See
Bennett and Bez [3] for the case ¢(n) = (n,n?).)

LEMMA 8.1 For every ¢ : N¥ — 74 and every positive integer s,

sup | ae(d(n)- ) <| X Ae@im)-a . 8.1)
lan| <A, " nel1 Nk o) e L2([0.1]4)
Proof. Expanding out, we have
2s *
Z a,e(¢p(n)-a)| da= Z a, ---a,a, - a,, (8.2)
[0,1]4 " ne[1.N]* (x.y)

where Z:x ) refers to summation only over those pairs (x,y) € ([I,N]*)* x ([1,N]¥)* of integral
tuples that satisfy

P(x)) + -+ (xg) =p(yy) + - +B(yy)- (8.3)

Since |a,| < A,,, the non-negative number (8.2) is bounded above by

n’

2s
da. 0

2 A hihy A= || 3 Ae(g(n)-a)
() [0,1)4 n€(1,N]k
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8.2. Strict majorant property holds for affinely independent sets

PROPOSITION 8.2 Let T'C Z% be non-empty and affinely independent. Then T satisfies the strict
majorant property for every p > Q.

Proof. Without loss of generality we may assume that I' has affine dimension d (since otherwise we
could complete I to an affine dimension d set). Then the cardinality of I is d + 1, and by translation
invariance of the proposed inequality (1.2) with respect to I, we may assume I'={0,n,,...,n,}
where n,,...,n; € 7% are linearly independent. Thus one can form an invertible d x d matrix A with
integer entries so that n; = Ae; for every 1 <j < d; here ¢; is the j-th coordinate vector in Z¢. Thus
we may apply Lemma 3.4 and assume that ' = {0, ¢, ..., e, }. It suffices to show that whenever p >0,

ap,ay,...,a; € Cand Ay, A4, ..., A; € R with |aj| <A, for all j, we have

/ |ag+ae(x;) + - +age(x,)|Pdx Sf |Ag+A e(x;)+ - +Aze(x,)Pdx.
(0,1} [0,1]

Let
I(ay,...,a,) = f lag+aye(x;) + -+ +aye(x,)|Pdx.
(0,1}

It is easy to see that ] is a symmetric in ay, ..., a,: if af,...,a) is a permutation of ay, ...,a,, then
I(ay,...,a;) =1(ay, ... ,a}). (For instance, if d =2, then I (ay,a,,a,) = f[o,1]2 lage(—x,) +a; + ae(x, —
x))|Pdx =1(a,,aqy,a,).) Furthermore, I(ay, ...,a;) =1(|ag|, ..., |a,|) for every ay, ...,a,; € C, by peri-
odicity of the integrand defining 1. (For example, if aye(a,) € R, we first multiply the integrand by
le(ay)|” and then set x; = x; +a; for a; € [0,1] such that a,e(ty+a;) € R, and so on.) Thus we
can think of I(ay, ...,a,) as a function defined on [0, 00)?*!. Taking both the above properties into
account, it suffices to show that this function is non-decreasing in a,; € [0,00) once ay, ..., a,_, are
fixed. This follows from applying the lemma below with a = a, +a,e(x; ) + -+ +a,_e(x,;_1), b=ay
and B=A,. U

LemMA 8.3 Suppose p>0,a € Cand 0 < b < B. Then

1 1
f|a+be(l)|”dt§f |a+ Be(t)|Pdt.
0 0

Proof. The assertion is clear when a=0, and if a # 0 we can factor out |a|’ from both sides, so
without loss of generality we may assume a=1. Then we need to show that the function G(r) =
j;)' |1+ re(t)|Pdt is a non-decreasing function of r € [0, 00) for all p>0. We compute that

1
G'(r) =pf (1472 +2rcos(27t) )2~ (r + cos(27t)) dt.
0

For r > 1 it is evident that G'(r) > 0. For r € (0, 1), G(r) is represented by its Taylor series at r=0
as in (4.2), which has only non-negative coefficients. Invoking continuity of G at r =1 finishes the
proof that G is non-decreasing. U
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8.3. A (weaker) majorant property holds for the moment curve

Let y(t) = (t,£%,...,t%) parameterize the moment curve in R¢, for d > 2. Following the argument
of [3, Thm. 1.2] for d =2, we prove (1.4). The key step is to show that for any sequence of real
coefficients b = {b, }, for any integer 1 <r <d,

<l (8.4)
e, Sclblle@

1Bllez) < | 2 baer(n) -x)
nez
In fact we can take ¢, = (r!)l/zr. Once (8.4) is known, applying it for the choices r=d and r=1,
along with two applications of Holder’s inequality, and the assumption on |a, | < A, shows that for
any 2 <p<2d,

| 32 aetrm) - > ayely(n)-x)

<|
n€z Lr([0.1]9) nez L24([0,1])

<cqllall ez

< caldlez) < ca] 2 Arelrm ) <ed St -]
ne ne

L2([0.1]9) Lr([o.1))

To prove (8.4), fix an integer 1 < r < d and expand the 2 r-th power of the central expression. It
is equal to

sk —_ [

(ny,e.m,)EZ"
(my,....m,)€EZ"

in which the restricted summation is over tuples of n;,m; € Z that satisfy the Vinogradov system of
d simultaneous equations in 2r variables,

n’i+---+n’}=m’i+---+m’}, 1<j<d.

If r < d, the only integral solutions to this are diagonal, that is, the tuple (n,,...,n,) is a permutation
of (my,...,m,) (see for example [13, Lemma 2.1]). Thus upon letting N (n,, ..., n, ) denote the number
of tuples (m,,...,m,) that are permutations of (n,,...,n,),

2r

| 2 baetrin-x) = X Nlueeon)lb, Pelb,

nez L2r([0’l]d> (ny

This is bounded above by r!||b|3 (z) and below by 1515 (2)» Verifying (8.4).

Acknowledgement

We thank American Institute of Mathematics (AIM) for funding our SQuaRE workshop. P.G.
was partially supported by National Science Foundation (NSF) Division of Mathematical Sciences
(DMS)-1764 143; S.G. by NSF DMS-1 800 274; L.B.P. by NSF CAREER DMS-1 652 173, a Sloan
Research Fellowship, and an American Mathematical Society (AMS) Joan and Joseph Birman
Fellowship; and P.-L.Y. by a Future Fellowship FT200100399 from the Australian Research Council.



ON THE STRICT MAJORANT PROPERTY IN ARBITRARY DIMENSIONS 23

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

M. Artin, Algebra. Prentice Hall, Inc., Englewood Cliffs, NJ, 1991.

G. F. Bachelis, On the upper and lower majorant properties in L? (G), Quart. J. Math. Oxford
Ser. (2) 24 no. 1 (1973), 119-128. 10.1093/qmath/24.1.119.

J. Bennett and N. Bez, A majorant problem for the periodic Schrodinger group, In: Harmonic
analysis and nonlinear partial differential equations, RIMS Kokyiiroku Bessatsu, B33, (RIMS),
Kyoto, (2012), 1-10.

J. Bennett, N. Bez and A. Carbery, Heat-flow monotonicity related to the Hausdorff—Young
inequality, Bull. Lond. Math. Soc. 41 no. 6 (2009), 971-979. 10.1112/blms/bdp073.

P. Bernays, Uber die Darstellung von positiven, Ganzen Zahlen Durch die Primitiven binAaren
Quadratischen Formen Einer Nichtquadratischen Diskriminante. Dissertation, Gottingen,
1912.

V. Blomer and A. Granville, Estimates for representation numbers of quadratic forms, Duke
Math. J. 135 no. 2 (2006), 261-302. 10.1215/S0012-7094-06-13522-6.

V. Blomer, Binary quadratic forms with large discriminants and sums of two squareful numbers.
11, J. London Math. Soc. (2) 71 no. 1 (2005), 69-84. 10.1112/S0024610704006040.

R.P. Boas Jr., Majorant problems for trigonometric series, J. Analyse Math. 10 no. 1 (1962/63),
253-271. 10.1007/BF02790309.

J. Bourgain, On A(p)-subsets of squares, Israel J. Math. 67 no. 3 (1989), 291-311.
10.1007/BF02764948.

C. Demeter and B. Langowski, Restriction of exponential sums to hypersurfaces, preprint,
arXiv:2104.11367v2, 2021.

B. Green, Roth’s theorem in the primes, Ann. of Math. (2) 161 no. 3 (2005), 1609-1636.
10.4007/annals.2005.161.1609.

B. Green and I.Z. Ruzsa, On the Hardy-Littlewood majorant problem, Math. Proc. Cambridge
Philos. Soc. 137 no. 3 (2004), 511-517.

PT. Gressman, S. Guo, L.B. Pierce, J. Roos and P.-L. Yung, Reversing a philosophy: from
counting to square functions and decoupling, J. Geom. Analysis 31 no. 7 (2021), 7075-7095.
10.1007/s12220-020-00593-x.

G.H. Hardy and J.E. Littlewood, Notes on the theory of series XIX: a problem concerning majo-
rants of Fourier series, Quart. J. Math. 6 no. 1 (1935), 304-315. 10.1093/qmath/0s-6.1.304.
B. Krause, M. Mirek and B. Trojan, On the Hardy—Littlewood majorant problem for arithmetic
sets, J. Funct. Anal. 271 no. 1 (2016), 164—-181. 10.1016/j.jfa.2016.04.008.

E. Landau, Handbuch der Lehre der Primzahlverteilung. Teubner, Leipzig, 1909.

S. Lang, Graduate Texts in Mathematics. 3rd edn, Vol. 211, Algebra, Springer-Verlag, New
York, 2002.

G. Mockenhaupt, Habilitationsschrift. Bounds in Lebesgue spaces of oscillatory integral
operators, UniversitAt-Gesamthochschule—Siegen, Siegen, 1996.

G. Mockenhaupt and W. Schlag, On the Hardy-Littlewood majorant problem for random sets,
J. Funct. Anal. 256 no. 4 (2009), 1189-1237. 10.1016/].jfa.2008.06.005.

A. Zygmund, Trigonometric series. 2nd ed, Vols. I and II, Cambridge University Press, New
York, 1959.


https://doi.org/10.1093/qmath/24.1.119
https://doi.org/10.1112/blms/bdp073
https://doi.org/10.1215/S0012-7094-06-13522-6
https://doi.org/10.1112/S0024610704006040
https://doi.org/10.1007/BF02790309
https://doi.org/10.1007/BF02764948
https://doi.org/10.4007/annals.2005.161.1609
https://doi.org/10.1007/s12220-020-00593-x
https://doi.org/10.1093/qmath/os-6.1.304
https://doi.org/10.1016/j.jfa.2016.04.008
https://doi.org/10.1016/j.jfa.2008.06.005

	On the strict majorant property in arbitrary dimensions
	1. Introduction
	1.1. Main results
	1.2. Relation to open problems
	1.3. Notation

	2. Preliminaries
	2.1. Affine independence
	2.2. Affine abundance

	3. A reduction to lower dimensions
	3.1. Proof of Lemma 3.3
	3.2. Proof of Lemma 3.4

	4. Initial set-up to prove the main theorems
	5. Theorem 3.1: the affinely independent case
	6. Theorem 3.2: The affinely abundant case
	7. Theorem 1.3: the moment curve
	7.1. Proof of Lemma 7.1

	8. Cases when majorant properties hold
	8.1. Strict majorant property holds when p ε2N
	8.2. Strict majorant property holds for affinely independent sets
	8.3. A (weaker) majorant property holds for the moment curve

	Acknowledgement
	References


