
Transfer Learning of Graph Neural Networks with

Ego-graph Information Maximization

Qi Zhu1∗, Carl Yang2∗, Yidan Xu3, Haonan Wang1, Chao Zhang4, Jiawei Han1

1University of Illinois Urbana-Champaign, 2Emory University,
3University of Washington, 4Georgia Institute of Technology

1{qiz3,haonan3,hanj}@illinois.edu, 2j.carlyang@emory.edu,
3yx2516@uw.edu, 4chaozhang@gatech.edu

Abstract

Graph neural networks (GNNs) have achieved superior performance in various
applications, but training dedicated GNNs can be costly for large-scale graphs.
Some recent work started to study the pre-training of GNNs. However, none of
them provide theoretical insights into the design of their frameworks, or clear re-
quirements and guarantees towards their transferability. In this work, we establish
a theoretically grounded and practically useful framework for the transfer learning
of GNNs. Firstly, we propose a novel view towards the essential graph information
and advocate the capturing of it as the goal of transferable GNN training, which
motivates the design of EGI (Ego-Graph Information maximization) to analytically
achieve this goal. Secondly, when node features are structure-relevant, we conduct
an analysis of EGI transferability regarding the difference between the local graph
Laplacians of the source and target graphs. We conduct controlled synthetic experi-
ments to directly justify our theoretical conclusions. Comprehensive experiments
on two real-world network datasets show consistent results in the analyzed setting
of direct-transfering, while those on large-scale knowledge graphs show promising
results in the more practical setting of transfering with fine-tuning.1

1 Introduction

Graph neural networks (GNNs) have been intensively studied recently [29, 26, 39, 68], due to their
established performance towards various real-world tasks [15, 69, 53], as well as close connections
to spectral graph theory [12, 9, 16]. While most GNN architectures are not very complicated, the
training of GNNs can still be costly regarding both memory and computation resources on real-world
large-scale graphs [10, 63]. Moreover, it is intriguing to transfer learned structural information across
different graphs and even domains in settings like few-shot learning [56, 44, 25]. Therefore, several
very recent studies have been conducted on the transferability of GNNs [21, 23, 22, 71, 31, 3, 47].
However, it is unclear in what situations the models will excel or fail especially when the pre-training
and fine-tuning tasks are different. To provide rigorous analysis and guarantee on the transferability
of GNNs, we focus on the setting of direct-transfering between the source and target graphs, under an
analogous setting of “domain adaptation” [7, 59, 71].

In this work, we establish a theoretically grounded framework for the transfer learning of GNNs,
and leverage it to design a practically transferable GNN model. Figure 1 gives an overview of our
framework. It is based on a novel view of a graph as samples from the joint distribution of its k-hop
ego-graph structures and node features, which allows us to define graph information and similarity,

∗These two authors contribute equally.
1Code and processed data are available at https://github.com/GentleZhu/EGI.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online.

a
rX

iv
:2

0
0
9
.0

5
2
0
4
v
2
  
[c

s.
L

G
] 

 2
6
 O

c
t 

2
0
2
1





be cumbersome [10, 63]. Moreover, as pre-training neural networks are proven to be successful in
other domains [13, 18], the idea is intriguing to transfer well-trained GNNs from relevant source
graphs to improve the modeling of target graphs or enable few-shot learning [59, 31, 3] when
labeled data are scarce. In light of this, pioneering works have studied both generative [22] and
discriminative [21, 23] GNN pre-training schemes. Though Graph Contrastive Coding [43] shares
the most similar view towards graph structures as us, it utilizes contrastive learning across all
graphs instead of focusing on the transfer learning between any specific pairs. On the other hand,
unsupervised domain adaptive GCNs [59] study the domain adaption problem only when the source
and target tasks are homogeneous.

Most previous pre-training and self-supervised GNNs lack a rigorous analysis towards their trans-
ferability and thus have unpredictable effectiveness. The only existing theoretical work on GNN
transferability studies the performance of GNNs across different permutations of a single original
graph [33, 34] and the tradeoff between discriminability and transferability of GNNs [47]. We,
instead, are the first to rigorously study the more practical setting of transferring GNNs across pairs
of different source and target graphs.

3 Transferable Graph Neural Networks

In this paper, we design a more transferable training objective for GNN (EGI) based on our novel
view of essential graph information (§3.1). We then analyze its transferability as the gap between its
abilities to model the source and target graphs, based on their local graph Laplacians (§3.2).

Based on the connection between GNN and spectral graph theory [29], we describe the output of a
GNN as a combination of its input node features X , fixed graph Laplacian L and learnable graph
filters Ψ. The goal of training a GNN is then to improve its utility by learning the graph filters that
are compatible with the other two components towards specific tasks.

In the graph transfer learning setting where downstream tasks are often unknown during pre-training,
we argue that the general utility of a GNN should be optimized and quantified w.r.t. its ability of
capturing the essential graph information in terms of the joint distribution of its topology structures
and node features, which motivates us to design a novel ego-graph information maximization model
(EGI) (§3.1). The general transferability of a GNN is then quantified by the gap between its abilities
to model the source and target graphs. Under reasonable requirements such as using structure-
respecting node features as the GNN input, we analyze this gap for EGI based on the structural
difference between two graphs w.r.t. their local graph Laplacians (§3.2).

3.1 Transferable GNN via Ego-graph Information Maximization

In this work, we focus on the direct-transfering setting where a GNN is pre-trained on a source graph
Ga in an unsupervised fashion and applied on a target graph Gb without fine-tuning.2 Consider a
graph G = {V,E}, where the set of nodes V are associated with certain features X and the set of
edges E form graph structures. Intuitively, the transfer learning will be successful only if both the
features and structures of Ga and Gb are similar in some ways, so that the graph filters of a GNN
learned on Ga are compatible with the features and structures of Gb.

Graph kernels [57, 8, 30, 38] are well-known for their capability of measuring similarity between pair
of graphs. Motivated by k-hop subgraph kernels [4], we introduce a novel view of a graph as samples
from the joint distribution of its k-hop ego-graph structures and node features. Since GNN essentially
encodes such k-hop ego graph samples, this view allows us to give concrete definitions towards
structural information of graphs in the transfer learning setting, which facilitates the measuring of
similarity (difference) among graphs. Yet, none of the existing GNN training objectives are capable of
recovering such distributional signals of ego graphs. To this end, we design Ego-Graph Information
maximization (EGI), which alternatively reconstructs the k-hop ego-graph of each center node via
mutual information maximization [20].

Definition 3.1 (K-hop ego-graph). We call a graph gi = {V (gi), E(gi)} a k-hop ego-graph centered
at node vi if it has a k-layer centroid expansion [4] such that the greatest distance between vi and

2In the experiments, we show our model to be generalizable to the more practical settings with task-specific
pre-training and fine-tuning, while the study of rigorous bound in such scenarios is left as future work.

3



any other nodes in the ego-graph is k, i.e. ∀vj ∈ V (gi), |d(vi, vj)| ≤ k, where d(vi, vj) is the graph
distance between vi and vj .

In this paper, we use directed k-hop ego-graph and its direction is decided by whether it is composed
of incoming or outgoing edges to the center node, i.e., gi and g̃i. The results apply trivially to
undirected graphs with gi = g̃i.

Definition 3.2 (Structural information). Let G be a topological space of sub-graphs, we view a
graph G as samples of k-hop ego-graphs {gi}

n
i=1 drawn i.i.d. from G with probability µ, i.e.,

gi
i.i.d.
∼ µ ∀i = 1, · · · , n. The structural information of G is then defined to be the set of k-hop

ego-graphs of {gi}
n
i=1 and their empirical distribution.

As shown in Figure 1, three graphs G0, G1 and G2 are characterized by a set of 1-hop ego-graphs
and their empirical distributions, which allows us to quantify the structural similarity among graphs
as shown in §3.2 (i.e., G0 is more similar to G1 than G2 under such characterization). In practice,
the nodes in a graph G are characterized not only by their k-hop ego-graph structures but also their
associated node features. Therefore, G should be regarded as samples {(gi, xi)} drawn from the joint
distribution P on the product space of G and a node feature space X .

Ego-graph (끫欐끫欔,끫欲끫欔)

Ego-graph (끫欐끫欔′,끫欲끫欔′)

Encoder끫武
끫欶끫欔

끫欶끫欔’

Discriminator Dcenter node 

embedding

edge message 

passing

hop 2

edge message 

passing

hop 1

✔

×

Edge-wise 

decision

✔

×

Figure 2: The overall EGI training framework.

Ego-Graph Information Maximization. Given a set of ego-graphs {(gi, xi)}i drawn from an
empirical joint distribution (gi, xi) ∼ P. We aim to train an GNN encoder Ψ to maximize the
mutual informaion (MI (gi,Ψ(gi, xi))) between the defined structural information gi

3 (i.e. k-hop
ego-graph) and node embedding zi = Ψ(gi, xi). To maximize the MI, another discriminator
D(gi, zi) : E(gi)× zi → R

+ is introduced to compute the probability of an edge e belongs to the
given ego-graph gi. We use the Jensen-Shannon MI estimator [20] in the EGI objective,

LEGI = −MI(JSD) (G,Ψ) = 1
N

N
∑

i=1

[sp (D(gi, z
′
i)) + sp (−D(gi, zi))] , (1)

where sp(x) = log(1+ex) is the softplus function and (gi, z
′
i) is randomly drawn from the product of

marginal distributions, i.e. z′i = Ψ(gi′ , xi′), (gi′ , xi′) ∼ P, i′ 6= i. In general, we can also randomly
draw negative g′i in the topological space, while enumerating all possible graphs gi′ leads to high
computation cost.

In Eq. 1, the computation of D on E(gi) depends on the node orders. Following the common practice
in graph generation [70], we characterize the decision process of D with a fixed graph ordering, i.e.,
the BFS-ordering π over edges E(gi). D = f ◦ Φ is composed by another GNN encoder Φ and
scoring function f over an edge sequence Eπ : {e1, e2, ..., en}, which makes predictions on the
BFS-ordered edges.

3Later in section 3.2, we will discuss the equivalence between MI(gi, zi) and MI((gi, xi), zi) when node
feature is structure-respecting.

4



Recall our previous definition on the direction of k-hop ego-graph, the center node encoder Ψ receives
pairs of (gi, xi) while the neighbor node encoder Φ in discriminator D receives (g̃i, xi). Both
encoders are parameterized as GNNs,

Ψ(gi, xi) = GNNΨ(Ai, Xi),Φ(g̃i, xi) = GNNΦ(A
′
i, Xi),

where Ai, A
′
i is the adjacency matrix with self-loops of gi and g̃i, respectively. The self-loops are

added following the common design of GNNs, which allows the convolutional node embeddings to
always incorporate the influence of the center node. Ai = A′

i
ᵀ
. The output of Ψ, i.e., zi ∈ R

n, is

the center node embedding, while Φ outputs representation H ∈ R
|gi|×n for neighbor nodes in the

ego-graph.

Once node representation H is computed, we now describe the scoring function f . For each of
the node pair (p, q) ∈ Eπ, hp is the source node representation from Φ, xq is the destination node
features. The scoring function is,

f(hp, xq, zi) = σ
(

UT · τ
(

WT [hp||xq||zi]
))

, (2)

where σ and τ are Sigmoid and ReLU activation functions. Thus, the discriminator D is asked to
distinguish a positive ((p, q), zi) and negative pair ((p, q), z′i)) for each edge in gi.

D(gi, zi) =
∑

(p,q)∈Eπ

log f(hp, xq, zi), D(gi, z
′
i) =

Eπ

∑

(p,q)

log f(hp, xq, z
′
i). (3)

There are two types of edges (p, q) in our consideration of node orders, type-a - the edges across
different hops (from the center node), and type-b - the edges within the same hop (from the center
node). The aforementioned BFS-based node ordering guarantees that Eq. 3 is sensitive to the ordering
of type-a edges, and invariant to the ordering of type-b edges, which is consistent with the requirement
of our theoretical analysis on ∆D. Due to the fact that the output of a k-layer GNN only depends on
a k-hop ego-graph for both encoders Ψ and Φ, EGI can be trained in parallel by sampling batches of
gi’s. Besides, the training objective of EGI is transferable as long as (gi, xi) across source graph Ga

and Gb satisfies the conditions given in §3.2. More model details in Appendix §B and source code in
the Supplementary Materials.

Connection with existing work. To provide more insights into the EGI objective, we also present it
as a dual problem of ego-graph reconstruction. Recall our definition of ego-graph mutual information
MI(gi,Ψ(gi, xi)). It can be related to an ego-graph reconstruction loss R(gi|Ψ(gi, xi)) as

maxMI(gi,Ψ(gi, xi)) = H(gi)−H(gi|Ψ(gi, xi)) ≤ H(gi)−R(gi|Ψ(gi, xi)). (4)

When EGI is maximizing the mutual information, it simultaneously minimizes the upper error bound
of reconstructing an ego-graph gi. In this view, the key difference between EGI and VGAE [28] is
they assume each edge in a graph to be observed independently during the reconstruction. While in
EGI, edges in an ego-graph are observed jointly during the GNN decoding. Moreover, existing mutual
information based GNNs such as DGI [54] and GMI [41] explicitly measure the mutual information
between node features x and GNN output Ψ. In this way, they tend to capture node features instead
of graph structures, which we deem more essential in graph transfer learning as discussed in §3.2.

Use cases of EGI framework. In this paper, we focus on the classical domain adaption (direct-
transferring) setting [7], where no target domain labels are available and transferability is measured
by the performance discrepancy without fine-tuning. In this setting, the transferability of EGI is
theoretically guaranteed by Theorem 3.1. In §4.1, we validated this with the airport datasets. Beyond
direct-transferring, EGI is also useful in the more generalized and practical setting of transfer learning
with fine-tuning, which we introduced in §4.2 and validated with the YAGO datasets. In this setting,
the transferability of EGI is not rigorously studied yet, but is empirically shown promising.

Supportive observations. In the first three columns of our synthetic experimental results (Table 1),
in both cases of transfering GNNs between similar graphs (F-F) and dissimilar graphs (B-F), EGI

significantly outperforms all competitors when using node degree one-hot encoding as transferable
node features. In particular, the performance gains over the untrained GIN show the effectiveness of
training and transfering, and our gains are always larger than the two state-of-the-art unsupervised
GNNs. Such results clearly indicate advantageous structure preserving capability and transferability
of EGI.

5



3.2 Transferability analysis based on local graph Laplacians

We now study the transferability of a GNN (in particular, with the training objective of LEGI) between
the source graph Ga and target graph Gb based on their graph similarity. We firstly establish the
requirement towards node features, under which we then focus on analyzing the transferability of
EGI w.r.t. the structural information of Ga and Gb.

Recall our view of the GNN output as a combination of its input node features, fixed graph Laplacian
and learnable graph filters. The utility of a GNN is determined by the compatibility among the three.
In order to fulfill such compatibility, we require the node features to be structure-respecting:

Definition 3.3 (Structure-respecting node features). Let gi be an ordered ego-graph centered on

node vi with a set of node features {xi
p,q}

k,|Vp(gi)|
p=0,q=1 , where Vp(gi) is the set of nodes in p-th hop of gi.

Then we say the node features on gi are structure-respecting if xi
p,q = [f(gi)]p,q ∈ R

d for any node

vq ∈ Vp(gi), where f : G → R
d×|V (gi)| is a function. In the strict case, f should be injective.

In its essence, Def 3.3 requires the node features to be a function of the graph structures, which is
sensitive to changes in the graph structures, and in an ideal case, injective to the graph structures
(i.e., mapping different graphs to different features). In this way, when the learned graph filters of a
transfered GNN is compatible to the structure of G, they are also compatible to the node features of
G. As we will explain in Remark 2 of Theorem 3.1, this requirement is also essential for the analysis
of EGI transferability which eventually only depends on the structural difference between two graphs.

In practice, commonly used node features like node degrees, PageRank scores [40], spectral em-
beddings [11], and many pre-computed unsupervised network embeddings [42, 51, 14] are all
structure-respecting in nature. However, other commonly used node features like random vectors [68]
or uniform vectors [60] are not and thus non-transferable. When raw node attributes are available,
they are transferable as long as the concept of homophily [36] applies, which also implies Def 3.3,
but we do not have a rigorous analysis on it yet.

Supportive observations. In the fifth and sixth columns in Table 1, where we use same fixed
vectors as non-transferable node features to contrast with the first three columns, there is almost no
transferability (see δ(acc.)) for all compared methods when non-transferable features are used, as the
performance of trained GNNs are similar to or worse than their untrained baselines. More detailed
experiments on different transferable and non-transferable features can be found in Appendix §C.1.

With our view of graphs and requirement on node features both established, now we derive the
following theorem by characterizing the performance difference of EGI on two graphs based on Eq. 1.

Theorem 3.1 (GNN transferability). Let Ga = {(gi, xi)}
n
i=1 and Gb = {(gi′ , xi′)}

m
i′=1 be two

graphs, and assume node features are structure-relevant. Consider GCN Ψθ with k layers and a
1-hop polynomial filter φ. With reasonable assumptions on the local spectrum of Ga and Gb, the
empirical performance difference of Ψθ evaluated on LEGI satisfies

|LEGI(Ga)− LEGI(Gb)| ≤ O (∆D(Ga, Gb) + C) . (5)

On the RHS, C is only dependent on the graph encoders and node features, while ∆D(Ga, Gb)
measures the structural difference between the source and target graphs as follows,

∆D(Ga, Gb) = C̃
1

nm

n
∑

i=1

m
∑

i′=1

λmax(L̃gi − L̃gi′ ) (6)

where λmax(A) := λmax(A
TA)1/2, and L̃gi denotes the normalised graph Laplacian of g̃i by its

in-degree. C̃ is a constant dependant on λmax(L̃gi) and D.

Proof. The full proof is detailed in Appendix §A.

The analysis in Theorem 3.1 naturally instantiates our insight about the correspondence between
structural similarity and GNN transferability. It allows us to tell how well an EGI trained on Ga can
work on Gb by only checking the local graph Laplacians of Ga and Gb without actually training any
model. In particular, we define the EGI gap as ∆D in Eq. 6, as other term C is the same for different
methods using same GNN encoder. It can be computed to bound the transferability of EGI regarding
its loss difference on the source and target graphs.

6



Remark 1. Our view of a graph G as samples of k-hop ego-graphs is important, as it allows us to
obtain node-wise characterization of GNN similarly as in [55]. It also allows us to set the depth of
ego-graphs in the analysis to be the same as the number of GNN layers (k), since the GNN embedding
of each node mostly depends on its k-hop ego-graph instead of the whole graph.

Remark 2. For Eq. 1, Def 3.3 ensures the sampling of GNN embedding at a node always corresponds
to sampling an ego-graph from G, which reduces to uniformly sampling from G = {gi}

n
i=1 under

the setting of Theorem 3.1. Therefore, the requirement of Def 3.3 in the context of Theorem 3.1
guarantees the analysis to be only depending on the structural information of the graph.

Supportive observations. In Table 1, in the d̄ columns, we compute the average structural difference
between two Forest-fire graphs (∆D(F,F)) and between Barabasi and Forest-fire graphs (∆D(B,F)),
based on the RHS of Eq. 5. The results validate the topological difference between graphs generated
by different random-graph models, while also verifying our view of graph as k-hop ego-graph
samples and the way we propose based on it to characterize structural information of graphs. We
further highlight in the δ(acc) columns the accuracy difference between the GNNs transfered from
Forest-fire graphs and Barabasi graphs to Forest-fire graphs. Since Forest-fire graphs are more similar
to Forest-fire graphs than Barabasi graphs (as verified in the ∆D columns), we expect δ(acc.) to be
positive and large, indicating more positive transfer between the more similar graphs. Indeed, the
behaviors of EGI align well with the expectation, which indicates its well-understood transferability
and the utility of our theoretical analysis.

Use cases of Theorem 3.1. Our Theorem 3.1 naturally allows for two practical use cases among
many others: point-wise pre-judge and pair-wise pre-selection for EGI pre-training. Suppose we
have a target graph Gb which does not have sufficient training labels. In the first setting, we have a
single source graph Ga which might be useful for pre-training a GNN to be used on Gb. The EGI gap
∆D(Ga, Gb) in Eq. 6 can then be computed between Ga and Gb to pre-judge whether such transfer
learning would be successful before any actual GNN training (i.e., yes if ∆D(Ga, Gb) is empirically
much smaller than 1.0; no otherwise). In the second setting, we have two or more source graphs
{G1

a, G
2
a, . . .} which might be useful for pre-training the GNN. The EGI gap can then be computed

between every pair of Gi
a and Gb to pre-select the best source graph (i.e., select the one with the least

EGI gap).

In practice, the computation of eigenvalues on the small ego-graphs can be rather efficient [2], and
we do not need to enumerate all pairs of ego-graphs on two compared graphs especially if the graphs
are really large (e.g., with more than a thousand nodes). Instead, we can randomly sample pairs of
ego-graphs from the two graphs, update the average difference on-the-fly, and stop when it converges.
Suppose we need to sample M pairs of k-hop ego-graphs to compare two large graphs, and the
average size of ego-graphs are L, then the overall complexity of computing Eq. 5 is O(ML2), where
M is often less than 1K and L less than 50. In Appendix §C.4, we report the approximated ∆D’s
w.r.t. different sampling frequencies, and they are indeed pretty close to the actual value even with
smaller sample frequencies, showing the feasible efficiency of computing ∆D through sampling.

Limitations. EGI is designed to account for the structural difference captured by GNNs (i.e., k-
hop ego-graphs). The effectiveness of EGI could be limited if the tasks on target graphs depend
on different structural signals. For example, as Eq. 6 is computing the average pairwise distances
between the graph Laplacians of local ego-graphs, ∆D is possibly less effective in explicitly capturing
global graph properties such as numbers of connected components (CCs). In some specific tasks
(such as counting CCs or community detection) where such properties become the key factors, ∆D

may fail to predict the transferability of GNNs.

4 Real Data Experiments

Baselines. We compare the proposed model against existing self-supervised GNNs and pre-training
GNN algorithms. To exclude the impact of different GNN encoders Ψ on transferability, we always
use the same encoder architecture for all compared methods (i.e., GIN [60] for direct-transfering
experiments, GCN [29] for transfering with fine-tuning).

The self-supervised GNN baselines are GVAE [28], DGI [54] and two latest mutual information
estimation methods GMI [41] and MVC [17]. As for pre-training GNN algorithms, MaskGNN

7



Table 1: Synthetic experiments of identifying structural equivalent nodes. We randomly generate 40 graphs
with the Forest-fire model (F) [32] and 40 graphs with the Barabasi model (B) [1], The GNN model is GIN [60]
with random parameters (baseline with only the neighborhood aggregation function), VGAE[28], DGI [54], and
EGI with GIN encoder. We train VGAE, DGI and EGI on one graph from either set (F and B), and test them on
the rest of Forest-fire graphs (F). Transferable feature is node degree one-hot encoding and non-transferable
feature is uniform vectors. More details about the results and dataset can be found in Appendix §C.1

.

Method
transferable features non-transferable feature structural difference
F-F B-F δ(acc.) F-F B-F δ(acc.) ∆D(F,F) ∆D(B,F)

GIN (untrained) 0.572 0.572 / 0.358 0.358 /

0.752 0.883
VGAE (GIN) 0.498 0.432 +0.066 0.240 0.239 0.001
DGI (GIN) 0.578 0.591 -0.013 0.394 0.213 +0.181
EGI (GIN) 0.710 0.616 +0.094 0.376 0.346 +0.03

and ContextPredGNN are two node-level pre-training models proposed in [21] Besides, Structural
Pre-train [23] also conducts unsupervised node-level pre-training with structural features like node
degrees and clustering coefficients.

Experimental Settings. The main hyperparameter k is set 2 in EGI as a common practice. We use
Adam [27] as optimizer and learning rate is 0.01. We provide the experimental result with varying k in
the Appendix §C.4. All baselines are set with the default parameters. Our experiments were run on an
AWS g4dn.2xlarge machine with 1 Nvidia T4 GPU. By default, we use node degree one-hot encoding
as the transferable feature across all different graphs. As stated before, other transferable features
like spectral and other pre-computed node embeddings are also applicable. We focus on the setting
where the downstream tasks on target graphs are unspecified but assumed to be structure-relevant,
and thus pre-train the GNNs on source graphs in an unsupervised fashion.4 In terms of evaluation, we
design two realistic experimental settings: (1) Direct-transfering on the more structure-relevant task
of role identification without given node features to directly evaluate the utility and transferability
of EGI. (2) Few-shot learning on relation prediction with task-specific node features to evaluate the
generalization ability of EGI.

4.1 Direct-transfering on role identification

First, we use the role identification without node features in a direct-transfering setting as a reliable
proxy to evaluate transfer learning performance regarding different pre-training objectives. Role in a
network is defined as nodes with similar structural behaviors, such as clique members, hub and bridge
[19]. Across graphs in the same domain, we assume the definition of role to be consistent, and the
task of role identification is highly structure-relevant, which can directly reflect the transferability of
different methods and allows us to conduct the analysis according to Theorem 3.1. Upon convergence
of pre-training each model on the source graphs, we directly apply them to the target graphs and
further train a multi-layer perceptron (MLP) upon their outputs. The GNN parameters are frozen
during the MLP training. We refer to this strategy as direct-transfering since there is no fine-tuning
of the models after transfering to the target graphs.

We use two real-world network datasets with role-based node labels: (1) Airport [45] contains three
networks from different regions– Brazil, USA and Europe. Each node is an airport and each link
is the flight between airports. The airports are assigned with external labels based on their level of
popularity. (2) Gene [68] contains the gene interactions regarding 50 different cancers. Each gene
has a binary label indicating whether it is a transcription factor. More details about the results and
dataset can be found in Appendix C.2.

The experimental setup on the Airport dataset closely resembles that of our synthetic experiments
in Table 1, but with real data and more detailed comparisons. We train all models (except for
the untrained ones) on the Europe network, and test them on all three networks. The results are
presented in Table 2. We notice that the node degree features themselves (with MLP) show reasonable
performance in all three networks, which is not surprising since the popularity-based airport role
labels are highly relevant to node degrees. The untrained GIN encoder yields a significant margin
over just node features, as GNN encoder incorporates structural information to node representations.

4The downstream tasks are unspecified because we aim to study the general transferability of GNNs that is
not bounded to specific tasks. Nevertheless, we assume the tasks to be relevant to graph structures.

8



While training of the DGI can further improve the performance on the source graph, EGI shows the
best performance there with the structure-relevant node degree features, corroborating the claimed
effectiveness of EGI in capturing the essential graph information (i.e. recover the k-hop ego-graph
distributions) as we stress in §3.

When transfering the models to USA and Brazil networks, EGI further achieves the best performance
compared with all baselines when structure relevant features are used (64.55 and 73.15), which
reflects the most significant positive transfer. Interestingly, direct application of GVAE, DGI and
MVC that do not capture the input k-hop graph jointly, leads to rather limited and even negative
transferrability (through comparison against the untrained GIN encoders). The recently proposed
transfer learning frameworks for GNN like MaskGNN and Structural Pre-train are able to mitigate
negative transfer to some extent, but their performances are still inferior to EGI. We believe this is
because their models are prone to learn the graph-specific information that is less transferable across
different graphs. GMI is also known to capture the graph structure and node features, so it achieves
second best result comparing with EGI.

Similarly as in Table 1, we also compute the structural differences among three networks w.r.t. the
EGI gap in Eq. 6. The structural difference is 0.869 between the Europe and USA networks, and 0.851
between the Europe and Brazil datasets, which are pretty close. Consequently, the transferability of
EGI regarding its performance gain over the untrained GIN baseline is 4.8% on the USA network
and 4.4% on the Brazil network, which are also close. Such observations again align well with our
conclusion in Theorem 3.1 that the transferability of EGI is closely related to the structural differences
between source and target graphs.

Table 2: Results of role identification with direct-transfering on the Airport dataset. We report mean and standard
deviation over 100 runs. The scores marked with ∗∗ passed t-test with p < 0.01 over the second runners.

Method
Airport [45]

Europe USA Brazil

features 0.528±0.052 0.557±0.028 0.671±0.089
GIN (random-init) 0.558±0.050 0.616±0.030 0.700±0.082
GVAE (GIN) [28] 0.539±0.053 0.555±0.029 0.663±0.089
DGI (GIN) [54] 0.578±0.050 0.549±0.028 0.673±0.084
Mask-GIN [21] 0.564±0.053 0.608±0.027 0.667±0.073
ContextPred-GIN [21] 0.527±0.048 0.504±0.030 0.621±0.078
Structural Pre-train [23] 0.560±0.050 0.622±0.030 0.688±0.082
MVC [17] 0.532±0.050 0.597±0.030 0.661±0.093
GMI [41] 0.581±0.054 0.593±0.031 0.731±0.107
EGI (GIN) 0.592±0.046∗∗ 0.646±0.029 ∗∗ 0.732±0.078

On the Gene dataset, with more graphs available, we focus on EGI to further validate the utility of
Eq. 5 in Theorem 3.1, regarding the connection between the EGI gap (Eq. 6) and the performance
gap (micro-F1) of EGI on them. Due to severe label imbalance that removes the performance gaps,
we only use the seven brain cancer networks that have a more consistent balance of labels. As shown
in Figure 3, we train EGI on one graph and test it on the other graphs. The x-axis shows the EGI

gap, and y-axis shows the improvement on micro-F1 compared with an untrained GIN. The negative
correlation between two quantities is obvious. Specifically, when the structural difference is smaller
than 1, positive transfer is observed (upper left area) as the performance of transferred EGI is better
than untrained GIN, and when the structural difference becomes large (> 1), negative transfer is
observed. We also notice a similar graph pattern, i.e. single dense cluster, between source graph and
positive transferred target graph G2.

4.2 Few-shot learning on relation prediction

Here we evaluate EGI in the more generalized and practical setting of few-shot learning on the less
structure-relevant task of relation prediction, with task-specific node features and fine-tuning. The
source graph contains a cleaned full dump of 579K entities from YAGO [49], and we investigate 20-
shot relation prediction on a target graph with 24 relation types, which is a sub-graph of 115K entities
sampled from the same dump. In post-fine-tuning, the models are pre-trained with an unsupervised
loss on the source graph and fine-tuned with the task-specific loss on the target graph. In joint-fine-
tuning, the same pre-trained models are jointly optimized w.r.t. the unsupervised pre-training loss

9





References

[1] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews
of modern physics, 74(1):47, 2002.

[2] Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for approximate semidefinite
programming using the multiplicative weights update method. In FOCS, pages 339–348, 2005.

[3] Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. Learning to extrapolate knowledge:
Transductive few-shot out-of-graph link prediction. Advances in Neural Information Processing
Systems, 33, 2020.

[4] Lu Bai and Edwin R Hancock. Fast depth-based subgraph kernels for unattributed graphs.
Pattern Recognition, 50:233–245, 2016.

[5] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[6] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding
and clustering. In NIPS, pages 585–591, 2002.

[7] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. In NIPS, pages 137–144, 2007.

[8] Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and Bastian Rieck.
Graph kernels: State-of-the-art and future challenges. arXiv preprint arXiv:2011.03854, 2020.

[9] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In ICLR, 2014.

[10] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks
via importance sampling. In ICLR, 2018.

[11] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American
Mathematical Soc., 1997.

[12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In NIPS, pages 3844–3852, 2016.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In ACL, pages 4171–4186, 2019.

[14] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD,
pages 855–864, 2016.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, pages 1024–1034, 2017.

[16] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. ACHA, 30(2):129–150, 2011.

[17] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
on graphs. In International Conference on Machine Learning, pages 4116–4126. PMLR, 2020.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016.

[19] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman
Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. Rolx: structural role extraction & mining
in large graphs. In KDD, pages 1231–1239, 2012.

[20] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In ICLR, 2019.

[21] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In ICLR, 2019.

[22] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In KDD, pages 1857–1867, 2020.

[23] Ziniu Hu, Changjun Fan, Ting Chen, Kai-Wei Chang, and Yizhou Sun. Pre-training graph
neural networks for generic structural feature extraction. arXiv preprint arXiv:1905.13728,
2019.

11



[24] Suk-Geun Hwang. Cauchy’s interlace theorem for eigenvalues of hermitian matrices. The
American Mathematical Monthly, 111(2):157–159, 2004.

[25] Xuan Kan, Hejie Cui, and Carl Yang. Zero-shot scene graph relation prediction through
commonsense knowledge integration. In ECML-PKDD, 2021.

[26] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
In NIPS, pages 7090–7099, 2019.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[28] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[29] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[30] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5(1):1–42, 2020.

[31] Lin Lan, Pinghui Wang, Xuefeng Du, Kaikai Song, Jing Tao, and Xiaohong Guan. Node
classification on graphs with few-shot novel labels via meta transformed network embedding.
Advances in Neural Information Processing Systems, 33, 2020.

[32] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, pages 177–187, 2005.

[33] Ron Levie, Wei Huang, Lorenzo Bucci, Michael M Bronstein, and Gitta Kutyniok. Trans-
ferability of spectral graph convolutional neural networks. arXiv preprint arXiv:1907.12972,
2019.

[34] Ron Levie, Elvin Isufi, and Gitta Kutyniok. On the transferability of spectral graph filters. In
2019 13th International conference on Sampling Theory and Applications (SampTA), pages 1–5.
IEEE, 2019.

[35] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing
flows. In Advances in Neural Information Processing Systems, pages 13556–13566, 2019.

[36] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. Annual review of sociology, 27(1):415–444, 2001.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. arXiv preprint arXiv:1310.4546,
2013.

[38] Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey.
arXiv preprint arXiv:1904.12218, 2019.

[39] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In ICLR, 2020.

[40] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[41] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
Huang. Graph representation learning via graphical mutual information maximization. In WWW,
pages 259–270, 2020.

[42] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In KDD, pages 701–710, 2014.

[43] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In
KDD, pages 1150–1160, 2020.

[44] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR,
2017.

[45] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In KDD, pages 385–394, 2017.

12



[46] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

[47] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the trans-
ferability of graph neural networks. Advances in Neural Information Processing Systems, 33,
2020.

[48] Yu Shi, Qi Zhu, Fang Guo, Chao Zhang, and Jiawei Han. Easing embedding learning by
comprehensive transcription of heterogeneous information networks. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2190–2199, 2018.

[49] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowl-
edge. In WWW, pages 697–706, 2007.

[50] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
ICLR, 2019.

[51] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In WWW, pages 1067–1077, 2015.

[52] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[53] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[54] Petar Velickovic, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

[55] Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural
networks. In KDD, 2019.

[56] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In NIPS, pages 3630–3638, 2016.

[57] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

[58] Boris Weisfeiler and Andrei A Lehman. A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

[59] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In WWW, pages 1457–1467, 2020.

[60] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[61] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

[62] Carl Yang, Yichen Feng, Pan Li, Yu Shi, and Jiawei Han. Meta-graph based hin spectral
embedding: Methods, analyses, and insights. In ICDM, 2018.

[63] Carl Yang, Aditya Pal, Andrew Zhai, Nikil Pancha, Jiawei Han, Chuck Rosenberg, and Jure
Leskovec. Multisage: Empowering graphsage with contextualized multi-embedding on web-
scale multipartite networks. In KDD, 2020.

[64] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network
representation learning: A unified framework with survey and benchmark. In TKDE, 2020.

[65] Carl Yang, Chao Zhang, Xuewen Chen, Jieping Ye, and Jiawei Han. Did you enjoy the ride?
understanding passenger experience via heterogeneous network embedding. In ICDE, 2018.

[66] Carl Yang, Jieyu Zhang, and Jiawei Han. Co-embedding network nodes and hierarchical labels
with taxonomy based generative adversarial nets. In ICDM, 2020.

[67] Carl Yang, Jieyu Zhang, Haonan Wang, Sha Li, Myungwan Kim, Matt Walker, Yiou Xiao, and
Jiawei Han. Relation learning on social networks with multi-modal graph edge variational
autoencoders. In WSDM, 2020.

[68] Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation
through graph variational generative adversarial nets. In NIPS, pages 1338–1349, 2019.

13



[69] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In NIPS, 2018.

[70] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN:
Generating realistic graphs with deep auto-regressive models. In Proceedings of the 35th
International Conference on Machine Learning, pages 5708–5717. PMLR, 2018.

[71] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming
the limitations of localized graph training data. In NeurIPS, 2021.

14



A Theory Details

From the LEGI objective, we have assumed gi
i.i.d.
∼ µ, xi

i.i.d.
∼ ν, and (gi, xi)

i.i.d.
∼ p, for (gi, xi) ∈ G×X .

Then for a sample {(gi, xi)}i, we have access to the empirical distributions of the three. In the
procedure of evaluating the objective, we sample uniformly.

Note that, in Eq. 2 of the main paper, we used a d dimensional hidden state hp to denote an edge’s
source node representation and xq as destination node features from the structure of the ego-graph
and the associated source node feature with GNN. In our proof, we denote vp,q as the q-th node in the
p-th layer of the ego-graph and let hp,q = hp and xp,q = xq . For simplicity, in i-th layer, we denote

f(xi) = hi
p,q‖x

i
p,q , where [·‖·] is the concatenation operation.

Finally, as we are considering GNN with k layers, its computation only depends on the k-hop ego-
graphs of G, which is an important consideration when unfolding the embedding of GNN at a centre
node with Lamma A.1.

Lemma A.1. For any A ∈ R
m×n, where m ≥ n, and A is a submatrix of B ∈ R

m′×n, where
m < m′, we have

‖A‖2 ≤ ‖B‖2.

Proof. Note that, AAT is a principle matrix of BBT , i.e., AAT is obtained by removing the same
set of rows and columns from BBT . Then, by Eigenvalue Interlacing Theorem [24] and the fact that
ATA and AAT have the same set of non-zero singular values, the matrix operator norm satisfies

‖A‖2 =
√

λmax(ATA) =
√

λmax(AAT ) ≤
√

λmax(BBT ) = ‖B‖2.

A.1 Center-node view of GCN

Recall that Vp(gi) denotes the set of nodes in the pth hop of k-hop ego-graph gi, and xi
p,q denotes

the feature for qth node in pth hop of gi, for any p = 0, . . . , k; q = 1, . . . , |Vp(gi)|. Similarly, V (gi)
denotes the entire set of nodes in gi. In each ego-graph sample {gi, xi}, the layer-wise propagation
rules for the center node embedding in encoder Ψ and discriminator D can be written into the form
of GCN as followed

Z(l) = ReLU(D− 1
2 (I +A)D− 1

2Z(l−1)θ(l))

where A is adjacency matrix of G. I adds the self-loop and Dii =
∑

j Aij is the degree matrix.

We focus on the center node’s embedding obtained from a k-layer GCN with 1-hop polynomial filter
φ(L) = Id−L. Inspired by the characterization of GCN from a node-wise view in [55], we similarly
denote the embedding of node xi ∀i = 1, · · · , n in the final layer of the GCN as

z
(k)
i = zi = Ψθ(xi) = σ(

∑

j∈N (xi)

eijz
(k−1)
j

T
θ(k)) ∈ R

d,

where eij = [φ(L)]ij ∈ R the weighted link between node i and j; and θ(k) ∈ R
d×d is the weight

for the kth layer sharing across nodes. Then θ = {θ(`)}k`=1. We may denote z
(`)
i ∈ R

d similarly for

` = 1, · · · , k − 1, and z0i = xi ∈ R
d as the node feature of center node xi. With the assumption of

GCN in the statement, it is clear that only the k-hop ego-graph gi centered at xi is needed to compute

z
(k)
i for any i = 1, · · · , n instead of the whole of G. Precisely, p-hop of subgraph corresponds to the
` = (k − p)th layer in the model.

With such observation in mind, let us denote the matrix of node embeddings of gi at the `th layer

as [z
(`)
i ] ∈ R

|V (gi)|×d for ` = 1, · · · , k; and let [z
(0)
i ] ≡ [xi] ∈ (Rd)|V (gi)| denote the matrix of

node features in the k-hop ego-graph gi. In addition, denote [z
(`)
i ]p as the principle submatrix, which

includes embeddings for nodes in the 0 to pth hop of gi, 0 ≤ p ≤ k.

We denote Lgi as the out-degree normalised graph Laplacian of gi. Here, the out-degree is defined

with respect to the direction from leaves to centre node in gi. Similarly, denote L̃gi as the in-degree
normalised graph Laplacian of gi, where the direction is from centre to leaves.

WLOG, we write the `th layer embedding in matrix notation of the following form

[z
(`)
i ]k−`+1 = σ([φ(Lgi)]k−`+1[z

(`−1)
i ]k−`+1θ

(`)),

15



where the GCN only updates the embedding of nodes in the 0 to (k − `)th hop. We also implicitly
assume the embedding of nodes in (k − `+ 1) to kth hop are unchanged through the update, due to

the directed nature of gi. Hence, we obtain zi ≡ [z
(k)
i ]0 from the following

[z
(k)
i ]1 = σ([φ(Lgi)]1[z

(k−1)
i ]1θ

(k)).

Similarly, we are able to write down the form of discriminator using matrix representation for GCN.
The edge information at `th time point for nodes in V (gi) can be described as follows

[h
(`)
i ] = ReLU(φ(L̃gi)[h

(`−1)
i ]θ̃(`)),

A.2 Proof for Theorem 4.1

We restate Theorem 4.1 from the main paper as below.

Theorem A.2. Let Ga = {(gi, xi)}
n
i=1 and Gb = {(gi′ , xi′)}

m
i′=1 be two graphs and node features

are structure-respecting with xi = f(Lgi), xi′ = f(Lgi′ ) for some function f : R|V (gi)|×|V (gi)| →

R
d. Consider GCN Ψθ with k layers and a 1-hop polynomial filter φ,the empirical performance

difference of Ψθ with LEGI satisfies

|LEGI(Ga)− LEGI(Gb)| ≤ O

(

1

nm

n
∑

i=1

m
∑

i′=1

[M + Cλmax(Lgi − Lgi′ ) + C̃λmax(L̃gi − L̃gi′ ))]

)

,

(7)

where M is dependant on Ψ, D, node features, and the largest eigenvalue of Lgi and L̃gi . C is a

constant dependant on the encoder, while C̃ is a constant dependant on the decoder. With a slight
abuse of notation, we denote λmax(A) := λmax(A

TA)1/2. Note that, in the main paper, we have

C := M + Cλmax(Lgi − Lgi′ ), and ∆D(Ga, Gb) := C̃λmax(L̃gi − L̃gi′ ).

Proof. Now,

|LEGI(G)− LEGI(G
′)|

=

∣

∣

∣

∣

∣

∣

1

n2

n
∑

i,j=1

(D(gi, zj))−
1

n

n
∑

i=1

(−(−D(gi, zi))− (
1

m2

m
∑

i′,j′=1

(D(gi′ , zj′))−
1

m

m
∑

i′=1

(−(−D(gi′ , zi′))))

∣

∣

∣

∣

∣

∣

≤
1

n2m2

n
∑

i,j=1

m
∑

i′,j′=1

|D(gi, zj)−D(gi′ , zj′)|+
1

nm

n
∑

i=1

m
∑

i′=1

|D(gi, zi)−D(gi′ , zi′)|

=
1

n2m2

n
∑

i,j=1

m
∑

i′,j′=1

A+
1

nm

n
∑

i=1

m
∑

i′=1

B.

We make the following assumptions in the proof,

1. Assume the size of the neighborhood for each node is bounded by 0 < r < ∞, then
the maximum number of node for p-th layer subgraph is bounded by rp. WLOG, let
1 ≤ |Vp(gi)| ≤ |Vp(gi′)| ≤ rp;

2. Assume hi
p,q‖x

i
p,q = 0 if |Vp(gi)| < q, i.e. assume non-informative edge information and

node features for non-existed nodes in the smaller neighborhood with no links;

From Assumption 2, we add isolated nodes to the smaller neighborhood Vp(gi) such that the
neighborhood size at each hop match. It can be found in our code to compute EGI gap as pad_nbhd.
For the following proof, we WLOG assume |Vp(gi)| = |Vp(gi′)| ∀p.

First we consider B. Recall that, Vp(gi) is the set of nodes in layer p of gi,

D(gi, zi) =
k
∑

p=1

|Vp(gi)|
∑

q=1

log(σsig

(

UT τ
(

WT [f(xi)‖zi]
))

),

16



where σsig(t) =
1

1+e−t is the sigmoid function, τ is some γτ -Lipschitz activation function and [·‖·]
denotes the concatenation of two vectors. Then we obtain

UT τ
(

WT [f(xi)‖zi]
)

= UT τ
(

WT
1 f(xi) +WT

2 zi
)

.

Since log(σsig(t)) = − log(1 + e−t), which is 1-Lipschitz, it gives

B ≤

k
∑

p

|

|Vp(gi′ )|
∑

q

σs(U
T τ
(

WT
1 f(xi) +WT

2 zi
)

)− σs(U
T τ
(

WT
1 f(xi′) +WT

2 zi′
)

)|

≤ γτ‖U‖2

k
∑

p=1

|Vp(gi′ )|
∑

q=1

(‖WT
1 f(xi)−WT

1 f(xi′)‖2 + ‖W
T
2 zi −WT

2 zi′‖2)

≤ γτ‖U‖2sw





k
∑

p=1

|Vp(gi′ )|
∑

q=1

[

‖hi
p,q − hi′

p,q‖2 + ‖x
i
p,q − xi′

p,q‖2

]

+
k
∑

p=1

|Vp(gi′ )|
∑

q=1

‖zi − zi′‖2





≤ C1





k
∑

p=1

|Vp(gi′ )|
∑

q=1

[

‖hi
p,q − hi′

p,q‖2 + ‖x
i
p,q − xi′

p,q‖2

]

/

k
∑

p=1

rp + ‖zi − zi′‖2





= C1 (I1 + I2)
(8)

We provide the derivation for the unfolding of `th layer GCN with the centre-node view in Lemma
A.3. This will be used in the derivation of I1 and I2.

Lemma A.3. For any ` = 1, · · · , k, we have an upper bound for the hidden representation difference
between gi and g′i,

‖[z
(`)
i ]k−` − [z

(`)
i′ ]k−`‖2 ≤ (γσcθ)

`‖φ(Lgi)‖
`
2‖[xi]− [xi′ ]‖2

+
(γσcθ)

`‖φ(Lgi)‖
`
2 + 1

γσcθ‖φ(Lgi)‖2 − 1
γσcθcz‖φ(Lgi)− φ(Lgi′ )‖2.

(9)

Specifically, for ` = k, we obtain the expansion for center node embedding ‖[z
(k)
i ]0 − [z

(k)
i′ ]0‖ ≡

‖zi − zi′‖.

Proof. By Lemma A.1, for any ` = 1, · · · , k, the following holds

‖[z
(`)
i ]k−` − [z

(`)
i′ ]k−`‖2 ≤ ‖[z

(`)
i ]k−`+1 − [z

(`)
i′ ]k−`+1‖2.

Assume max` ‖[z
(`)
i ]‖2 ≤ cz <∞ ∀i, and max` ‖θ

(`)‖2 ≤ cθ <∞, where cθ = ∨`sθ(`) the largest
singular value.

Then, for ` = 1, · · · , k − 1, we have

‖[z
(`)
i′ ]k−` − [z

(`)
i′ ]k−`‖2

≤‖[σ([φ(Lgi)]k−`+1[z
(`−1)
i ]k−`+1θ

(`))− σ([φ(Lgi′ )]k−`+1[z
(`−1)
i′ ]k−`+1θ

(`))]k−`)‖2

≤γσ‖[φ(Lgi)]k−`+1[z
(`−1)
i ]k−`+1 − [φ(Lgi′ )]k−`+1[z

(`−1)
i′ ]k−`+1‖2‖θ

(k)‖2

≤γσcθ‖[φ(Lgi)]k−`+1‖2‖[z
(`−1)
i ]k−`+1 − [z

(`−1)
i′ ]k−`+1‖2 + γσcθ‖[z

(`−1)
i′ ]k−`+1‖2‖[φ(Lgi)]k−`+1 − [φ(Lgi′ )]k−`+1‖2

≤γσcθ‖φ(Lgi)‖2‖[z
(`−1)
i ]k−`+1 − [z

(`−1)
i′ ]k−`+1‖2 + γσcθcz‖φ(Lgi)− φ(Lgi′ )‖2.

(10)
since [φ(Lgi)]k−`+1 is the principle submatrix of φ(Lgi). Then we equivalently write the above
equation as E` ≤ bE`−1 + a, which gives

E` ≤ b`E1 +
b` + 1

b− 1
a.

17



With [xi] = [z
(0)
i ]k, we see the following is only dependant on the structure of gi and gi′ ,

‖[z
(`)
i′ ]k−` − [z

(`)
i′ ]k−`‖2 ≤ (γσcθ)

`‖φ(Lgi)‖
`
2‖[xi]− [xi′ ]‖2

+
(γσcθ)

`‖φ(Lgi)‖
`
2 + 1

γσcθ‖φ(Lgi)‖2 − 1
γσcθcz‖φ(Lgi)− φ(Lgi′ )‖2.

Since the the graph Laplacians are normalised, we have ‖φ(Lgi)‖2 ≤ cL <∞ ∀i. In addition, let

‖xi
p,q − xi′

p,q‖2 ≤ sup
i

sup
p,q
‖xi

p,q − xi′

p,q‖2 = sup
i
‖f(Lgi)− f(Lgi′ )‖2 := δx.

Hence, ‖[xi] − [xi′ ]‖2 ≤ δx(
∑k

p=1 r
p)1/2 := cx. From Lemma A.3, it is clear that we obtain the

following at the final layer

I2 = ‖zi − zi′‖2 ≤ (γσcθcL)
kcx +

(γσcθcL)
k + 1

γσcθcL − 1
γσcθcz‖φ(Lgi)− φ(Lgi′ )‖2

≤ C(Mcx + ‖Lgi − Lgi′ ‖2)

= C(Mcx + λmax(Lgi − Lgi′ )
1/2).

(11)

since φ is a linear function for L. Indeed, this can be generalised to polynomial function φ of higher
powers.

Now, consider the following term that is related with discriminator D,

I1 =
k
∑

p=1

|Vp(gi′ )|
∑

q=1

[

‖hi
p,q − hi′

p,q‖2 + ‖x
i
p,q − xi′

p,q‖2

]

/
k
∑

p=1

rp

Firstly, we denote L̃p,q as the in-degree graph Laplacian derived with the subgraph gq of gi centred at
q ∈ Vp(gi). Different from the encoder, we utilize every node’s hidden embedding in the computation.
Specifically, gq is obtained by retrieving links in gi that connects to the qth node in the pth layer. This

is a principle submatrix of the in-degree graph Laplacian L̃gi of gi.

Just as defined in §A.1, we denote [h
(p)
q ]` as the pth layer GCN embedding for nodes in hop 0 to hop

` ∈ [0, p] of gq. Note that in this case, [h
(p)
q ]0 = h

(p)
q , which is one row of [h

(p)
i ], corresponding to

the q-th node in the neighborhood. So we may write the first term in I1 as

k
∑

p=1

|Vp(gi′ )|
∑

q=1

‖h(p)
q − h

(p)
q′ ‖

where h
(p)
q′ := hi′

p,q for short. In this way, we regard each node q ∈ Vp(gi) as the centre node, which

allows us to unfold the convolution similarly as expanding the I2 term. Now, for any q ∈ Vk(gi), i.e.
when p = k, we apply Lemma A.3 similarly as for ‖zi − zi′‖2. Then,

‖h(k)
q − h

(k)
q′ ‖ ≤ (γσcθ̃cL̃)

kcx +
(γσcθ̃cL̃)

k + 1

γσcθ̃cL̃ − 1
γσcθ̃ch‖φ(L̃k,q)− φ(L̃k,q′)‖2

≤ C̃k(M̃kcx + ‖φ(L̃gi)− φ(L̃gi′ )‖2)

where L̃p,q is the principle submatrix of L̃gi and Lemma A.1 can be applied iin the last inequality. In

addition, C̃k and M̃k are taken to be the maximum over any q ∈ Vk(gi). In general, for q ∈ Vp(gi),
0 < p < k, we have

‖h(p)
q − h

(p)
q′ ‖2 ≤ C̃p(M̃pcx + ‖φ(L̃gi)− φ(L̃gi′ )‖2)

Take a common upper bound for C̃p, M̃p over 0 < p ≤ k, we obtain

k
∑

p=1

|Vp(gi′ )|
∑

q=1

‖h(p)
q − h

(p)
q′ ‖/

k
∑

p=1

rp ≤ C̃(M̃cx + ‖L̃gi − L̃gi′ ‖2)

= C̃(M̃cx + λmax(L̃gi − L̃gi′ )
1/2)

18



In addition, for the other half of I1, we have

k
∑

p=1

|Vp(gi′ )|
∑

q=1

‖xi
p,q − xi′

p,q‖2/

k
∑

p=1

rp ≤ sup
i

sup
p,q
‖xi

p,q − xi′

p,q‖2 = δx = cx/(

k
∑

p=1

rp)1/2

We can write B in terms of weights C and C̃, which is dependant on the activation function σ, k and
supi λmax(Lgi). Hence,

B ≤ (CM + C̃M̃ + 1/(

k
∑

p=1

rp))cx + Cλmax(Lgi − Lgi′ ) + C̃λmax(L̃gi − L̃gi′ )

= M ′cx + Cλmax(Lgi − Lgi′ ) + C̃λmax(L̃gi − L̃gi′ )

Note that the derived I1 for B is the same for A, since the node features, edge information and
embedded features are bounded by separate terms in Eq. 8. The only difference is given by I2, where
a different set of graph Laplacians Lgj , Lgj′ and node features (xj) are used. Therefore,

A ≤M ′cx + Cλmax(Lgj − Lgj′ ) + C̃λmax(L̃gi − L̃gi′ )

Hence the result.

Note that, our view of structural information is closely related to graph kernels [4] and graph
perturbation [55]. Specifically, our Definition on k-hop ego-graph is motivated by the concept of
k-layer expansion sub-graph in [4]. However, [4] used the Jensen-Shannon divergence between
pairwise representations of sub-graphs to define a depth-based sub-graph kernel, while we depict G
as samples of its ego-graphs. In this sense, our view is related to the setup in [55], which derived a
uniform algorithmic stability bound of a 1-layer GNN under 1-hop structure perturbation of G.

In the setting of domain adaptation, [7] draws a connection between the difference in the distributions
of source and target domains and the model transferability, and learns a transferable model by
minimizing such distribution differences. This coincides with our approach of connecting the
structure difference of two graphs in terms of k-hop subgraph distributions and the transferability of
GNNs in the above theory.

B Model Details

Following the same notations used in the main paper, EGI consists of a GNN encoder Ψ and a GNN
discriminator D. In general, the GNN encoder Ψ and discriminator D can be any existing GNN
models. For each ego-graph and its node features {gi, xi}, the GNN encoder returns node embedding
zi for the center node vi. As mentioned in Eq. 2 in the main paper, the GNN discriminator D makes
edge-level predictions as follows,

D(eṽv|h
q̃
p,q, x

i
p,q, zi) = σ

(

UT · τ
(

WT [hq̃
p,q||x

i
p,q||zi]

))

, (12)

where eṽv ∈ E(gi) and hq̃
p,q ∈ R

d (simplified as hp in the main paper, same for xi
p,q = xq) is the

representation for edge eṽv between node vp−1,q̃ in hop p − 1 and vp,q in hop p. The prediction

relies on the combination of center node embedding zi, destination node feature xi
p,q and source node

representation hq̃
p,q . And now we describe how we calculate the source node representation in D.

To obtain the source node representation representations h, the GNN in discriminator D operates
on a reversed ego-graph g̃i while encoder Ψ performs forward propagation on gi. The discrimina-
tor GNN starts from the center node vi and compute the hidden representation mp−1,q̃ for node

vp−1,q at each hop. We denote the source node at p − 1 hop as q̃ ∈ Q̃p,q, Q̃p,q = {q̃ : vp−1,q̃ ∈
Vp−1(gi), e(p−1,q̃)(p,q) ∈ E(gi)}. Although hp,q is calculated as node embedding, in reversed ego

graph g̃i, node only has one incoming edge. Thus, we can also interpret hq̃
p,q as the edge embedding

as it combines source node’s hidden representation mp−1,q̃ and destination node features xp,q as
follows,

hq̃
p,q = ReLU

(

WT
p

(

mp−1,q̃ + xi
p,q

))

, mp−1,q̃ =
1

|Q̃p−1,q̃|

∑

q′∈Q̃p−1q̃

hq′

p−1,q̃ (13)

19



Algorithm 1: Pseudo code for training EGI

1 The GNN encoder Ψ and the GNN discriminator D, k-hop ego graph and features {gi, xi};
2 /* EGI-training starts */
3 while LEGI not converges do
4 Sample M ego-graphs {(g1, x1), ..., (gM , xM )} from empirical distribution P without

replacement, and obtained their positive and negative node embeddings zi, z
′
i through Ψ

zi = Ψ(gi, xi), z
′
i = Ψ(g′i, x

′
i),

/* Initialize positive and negative expectation in Eq. 1 in the main paper*/
5 Epos = 0, Eneg = 0
6 for p = 1 to k do
7 /* Compute JSD on edges at each hop*/
8 for e(p−1,q̃)(p,q) ∈ E(gi) do

9 generate source node embedding hq̃
p,q in Eq. 13 ;

10 Epos = Epos + σ
(

UT · τ
(

WT [hq̃
p,q||x

i
p,q||zi]

))

11 Eneg = Eneg + σ
(

UT · τ
(

WT [hq̃
p,q||x

i
p,q||z

′
i]
))

12 end

13 end
14 /* Compute batch loss*/
15 LEGI = Eneg − Epos

16 /* Update Ψ, D */

17 θΨ
+
←− −∇ΨLEGI, θD

+
←− −∇DLEGI

18 end

When p = 1, every edge origins from the center node vi and m0,q′ is the center node feature xvi .
Note that we the elaborated aggregation rule is equivalent as layer-wise propagation rules (different
in-degree matrix for each hp,q) of EGI earlier in §A.1.

In every batch, we sample a set of ego-graphs and their node features {gi, xi}. During the forward
pass of encoder Ψ, it aggregates from neighbor nodes to the center node vi. Then, the discriminator
calculates the edge embedding in Eq. 13 from center node vi to its neighbors and make edge-level
predictions– fake or true. Besides training framework Figure 2 in the main paper, the algorithm EGI

is depicted in Algorithm 1.

We implement our method and all of the baselines using the same encoders Ψ: 2-layer GIN [60] for
synthetic and role identification experiments, 2-layer GraphSAGE [15] for the relation prediction
experiments. We set hidden dimension as 32 for both synthetic and role identification experiments,
For relation prediction fine-tuning task, we set hidden dimension as 256. We train EGI in a mini-batch
fashion since all the information for encoder and discriminators are within the k-hop ego-graph gi
and its features xi. Further, we conduct neighborhood sampling and set maximum neighbors as 10
to speed up the parrallel training. The space and time complexity of EGI is O(BNK), where B is
the batch size, N is the number of the neighbors and k is the number of hops of ego-graphs. Notice
that both the encoder Ψ and discriminator D propagate message on the k-hop ego-graphs, so the
extra computation cost of D compared with a common GNN module is a constant multiplier over the
original one. The scalability of EGI on million scale YAGO network is reported in section C.3.

B.1 Transfer Learning Settings

The goal of transfer learning is to train a model on a dataset or task, and use it on another. In our graph
learning setting, we focus on training the model on one graph and using it on another. In particular,
we focus our study on the setting of unsupervised-transfering, where the model learned on the source
graph is directly applied on the target graph without fine-tuning. We study this setting because it
allows us to directly measure the transferability of GNNs, which is not affected by the fine-tuning
process on the target graph. In other words, the fine-tuning process introduces significant uncertainty
to the analysis, because there is no guarantee on how much the fine-tuned GNN is different from the
pre-trained one. Depending on specific tasks and labels distributions on the two graphs, the fine-tuned

20





features is limited, the advantage of EGI in learning and transfering the graph structural information
is obvious. In Table 5, we also show the performance of different transferable and non-transferable
features discussed after Definition 4.3 in the main paper, i.e. node embedding [42] and random feature
vectors. The observation is similar with Table 1 in the main paper: the transferable feature can reflect
the performance gap between similar and dissimilar graphs while non-transferable features can not.

In both Table 4 and 8 here as well as Table 1 in the main paper, we report the structural difference
among graphs in the two sets (d̄) calculated w.r.t. the term ∆D(Ga, Gb) on the RHS of Theorem 4.1
in the main paper. This indicates that the Forest fire graphs are structurally similar to the other Forest
fire graphs, while less similar to the Barabasi graphs, as can be verified from Figure 4a and 4b. Our
bound in Theorem 4.1 then tells us that the GNNs (in particular, EGI) should be more transferable in
the F-F case than B-F. This is verified in Table 4 and 5 when using the transferable node features of
degree encoding with limited dimension (d=3) as well as DeepWalk embedding, as EGI pre-trained
on Forest fire graphs performs significantly better on Forest fire graphs than on Barabasi graphs (with
+0.094 and +0.057 differences, respectively).

Table 4: Synthetic experiments of identifying structural-equivalent nodes with different degree encoding
dimensions.

Method
#dim degree encoding d = 3 # dim degree encoding d = 10 structural difference
F-F B-F δ(acc.) F-F B-F δ(acc.) ∆D(F,F) ∆D(B,F)

GCN (untrained) 0.478 0.478 / 0.940 0.940 /

0.752 0.883
GIN (untrained) 0.572 0.572 / 0.940 0.940 /
VGAE (GIN) 0.498 0.432 +0.066 0.939 0.937 0.002
DGI (GIN) 0.578 0.591 -0.013 0.939 0.941 -0.002
EGI (GIN) 0.710 0.616 +0.094 0.942 0.942 0

Table 5: Synthetic experiments of identifying structural-equivalent nodes with different transferable and non-
transferable features.

Method
DeepWalk embedding random vectors structural difference
F-F B-F δ(acc.) F-F B-F δ(acc.) ∆D(F,F) ∆D(B,F)

GCN (untrained) 0.658 0.658 / 0.246 0.246 /

0.752 0.883
GIN (untrained) 0.663 0.663 / 0.520 0.520 /
GVAE (GIN) 0.713 0.659 +0.054 0.266 0.264 0.002
DGI (GIN) 0.640 0.613 +0.027 0.512 0.576 -0.064
EGI (GIN) 0.772 0.715 +0.057 0.507 0.485 +0.022

C.2 Real-world Role Identification Experiments

Data. We report the number of nodes, edges and classes for both airport and gene dataset. The
numbers for the Gene dataset are the aggregations of the total 52 gene networks in the dataset. For the
three airport networks, Figure 5 shows the power-law degree distribution on log-log scale. The class
labels are between 0 to 3 reflecting the level of the airport activities [45]. For the Gene dataset, we
matched the gene names in the TCGA dataset [68] to the list of transcription factors on wikipedia5.
75% of the genes are marked as 1 (transcription factors) and some gene graphs have extremely
imbalanced class distributions. So we conduct experiments on the relatively balanced gene graphs
of brain cancers (Figure 2 in the main paper). Both datasets do not have organic node attributes.
The role-based node labels are highly relevant to their local graph structures, but are not trivially
computable such as from node degrees.

Results. As we can observe from Figure 5, the three airport graphs have quite different sizes and
structures (e.g., regarding edge density and connectivity pattern). Thus, the absolute classification
accuracy in both Table 2 in the main paper and Table 7 here varies across different graphs. However,
as we mention in the main paper, the structural difference we compute based on Eq. 5 in Theorem
3.1 is close among the Europe-USA and Europe-Brazil graph pairs (0.869 and 0.851), which leads
to close transferability of EGI from Europe to USA and Brazil. This indicates the effectiveness of

5https://en.wikipedia.org/wiki/Transcription_factor

22





Table 8: Role identification that identifies structurally similar nodes on real-world networks. The performance
reported are the average and standard deviation for 10 runs. Our classification accuracy on three datasets all
passed the t-test (p<0.01) with the second best result in the table.

Method
Airport [45]

Europe USA Brazil

node degree 52.81% ± 5.81% 55.67% ± 3.63% 67.11% ± 7.58%
GCN (random-init) 52.96% ± 4.51% 56.18% ± 3.82% 55.93% ± 1.38%
GIN (random-init) 55.75% ± 5.84% 62.77% ± 2.35% 69.26% ± 9.08%
GVAE (GIN) 53.90% ± 4.65% 58.99% ± 2.44% 55.56% ± 6.83%
DGI (GIN) 57.75% ± 4.47% 62.44% ± 4.46% 68.15% ± 6.24%
Mask-GIN 56.37% ± 5.07% 63.78% ± 2.79% 61.85% ± 10.74%
ContextPred-GIN 52.69% ± 6.12% 56.22% ± 4.05% 58.52% ± 10.18%
Structural Pre-train 56.00% ± 4.58% 62.29% ± 3.51% 71.48% ± 9.38 %
MVC 53.16% ± 4.07% 62.81 % ± 3.12% 67.78 % ± 4.79%
GMI 58.12 % ± 5.28% 63.36 % ± 2.92% 73.70% ± 4.21%
EGI (GIN) 59.15% ± 4.44% 65.88% ± 3.65% 74.07% ± 5.49%

Table 9: dataset statistics and running time of EGI

Dataset # Nodes # Edges # Relations # Train/Test Training time per epoch

YAGO-Source 579,721 2,191,464 / / 338 seconds
YAGO-Target 115,186 409,952 24 480/409,472 134 seconds

graph we use is a subgraph uniformed sampled from the same YAGO dump (we sample the nodes
and then include all edges among the sampled nodes). The similar ratio between number of nodes
and edges can be observed in Table 9. On the target graph, we also have the access to 24 different
relations [48] such as isAdvisedBy, isMarriedTo and so on. Such relation labels are still relevant
to the graph structures, but the relevance is lower compared with the structural role labels. We use
the 256-dim degree encoding as node features for pre-training on the source graph, then we use
the 128-dim positional embedding generated by LINE [51] for fine-tuning on the target graph, to
explicitly make the features differ across source and target graphs.

Results. In Section B.1, we introduced two different types of fine-tuning, i.e., post-fine-tuning and
joint-fine-tuning. For both types of fine-tuning, we add one feature encoder E before feeding it
into the GNNs for two purposes. First, the target graph fine-tuning feature usually has different
dimensions with the pre-training features, such as the node degree encoding we use. Second, the
semantics and distributions of fine-tuning features can be different from pre-training features. The
feature encoder aims to bridge the gap between feature difference in practice. The supervised loss
used in this experiment is the same as in DistMult [61]. In particular, the bilinear score function is
calculated as s(h, r, t) = zThMrzt, where Mr is a diagonal matrix for each relation r, zh and zt the
the embedding of GNN encoder Ψ for head and tail entities. The experiments were run on GTX1080
with 12G memories. We report the average training time per epoch of our algorithm in pre-training
and fine-tuning stage in Table 9 as well. The pre-training and fine-tuning takes about 40 epochs and 10
epochs to converge, respectively. In Table 9, we also present the per-epoch training time of EGI. EGI

takes about 338 seconds per epoch for optimizing the ego-graph information maximization objective
on YAGO-source. As we can see, fine-tuning also takes significant time compared to pre-training,
which strengthens our arguments about avoiding or reducing fine-tuning through structural analysis.
We implement all baselines within the same pipeline, and the running times are all in same scale.

C.4 Parameter study

In this section, we provide additional parameter analysis towards proposed EGI model - choices of k,
and efficiency study on EGI gap ∆D - sampling frequencies.

Performance of different size of ego-graphs. In our Theorem 3.1 and EGI algorithm (Eq. 1),
number of hops k determines the size of ego-graphs. In principle, k may affect the transferability of
EGI in two ways: (1) larger k may make the EGI model (both center node encoder Ψ and neighbor

24



Table 10: Comparison of EGI with different k. Accuracy and EGI gap ∆D are reported.

Europe (source) USA (target) Brazil (target)
acc. acc. ∆D acc. ∆D

EGI (k=1) 58.25 60.08 0.385 60.74 0.335
EGI (k=2) 59.15 64.55 0.869 73.15 0.851
EGI (k=3) 57.63 64.12 0.912 72.22 0.909

node encoder Φ) more expressive (better precision) and the EGI gap ∆D more accurate (better
predictiveness); (2) However, the GNN encoders may suffer from the over-smoothing problem and
the computations may suffer from more noises. Therefore, it is hard to determine the influence
of k without empirical analysis. As we can observe in , when k = 1 or k = 3, the classification
accuracy of the source graph is worse than k = 2, likely because the GNN encoder is either less
powerful or over-smoothed. As a result, k = 2 obtains the best transferability to both the USA and
Brazil networks. When k = 3, ∆D likely accounts for too subtle/noisy ego-graph differences and
may become less effective in predicting the transferability. Therefore, we choose k = 2 to conduct
experiments in main paper.

Precision of ∆D under different sampling frequencies. In Table 11, we present the estimated ∆D

versus sampling frequency for 10 runs on airport dataset. A theoretical study on its convergence
could be an interesting future direction. As we can observe, large sample frequency leads to more
accurate and robust estimation of ∆D. Between Europe and USA, although 100 pairs of ego-graphs
are only equivalent as 2.1% of the total pair-wise enumerations, the estimated ∆D is pretty close.

Table 11: EGI gap ∆D on airport dataset with different sampling frequencies.

Sampling frequency ∆D(Europe, USA) ∆D(Europe, Brazil)

100 pairs 0.872±0.039 0.854±0.042
1000 pairs 0.859±0.012 0.848±0.007
All pairs 0.869 ±0.000 0.851 ±0.000

25


