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Abstract
In this work, we consider classification of agents who can both game and improve. For example,
people wishing to get a loan may be able to take some actions that increase their perceived credit-
worthiness and others that also increase their true credit-worthiness. A decision-maker would like to
define a classification rule with few false-positives (does not give out many bad loans) while yielding
many true positives (giving out many good loans), which includes encouraging agents to improve to
become true positives if possible. We consider two models for this problem, a general discrete model
and a linear model, and prove algorithmic, learning, and hardness results for each.

For the general discrete model, we give an efficient algorithm for the problem of maximizing
the number of true positives subject to no false positives, and show how to extend this to a partial-
information learning setting. We also show hardness for the problem of maximizing the number of
true positives subject to a nonzero bound on the number of false positives, and that this hardness
holds even for a finite-point version of our linear model. We also show that maximizing the number
of true positives subject to no false positive is NP-hard in our full linear model. We additionally
provide an algorithm that determines whether there exists a linear classifier that classifies all agents
accurately and causes all improvable agents to become qualified, and give additional results for
low-dimensional data.
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1 Introduction

Consider a bank offering loans. Based on observable information about applicants, it must
decide which of them are loan-worthy and which are not. For example, it might compute
a credit score based on some (perhaps linear) function of observable features and then
compare the result to a cutoff value. So far, this looks like a standard binary classification
problem. However, there is an additional wrinkle: individuals have agency and may be able
to modify their observable features somewhat if it will help them get approved for a loan.
This wrinkle brings both challenges and opportunities. A challenge is that some of these
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3:2 On Classification of Strategic Agents Who Can Both Game and Improve

actions may involve “gaming” the system: performing activities that do not affect their true
loan-worthiness such as changing how they spend on different credit cards. An opportunity is
that other actions, such as taking a money-management course, may truly help them become
more loan-worthy, increasing the number of good loans the bank can give out. How can the
bank best set its loan criteria in such settings to maximize the number of loans given out
subject to not giving loans to unqualified applicants?

Or, consider a school that would like to prepare students for the workforce. There are
many different career paths a student might take, so the school would like to have multiple
different criteria for graduation (multiple tracks or majors) such that satisfying any one of
them will earn the student a diploma. Imagine there is a limited set of options the school
can choose from, and once the school chooses some subset of them as criteria, every student
selects the easiest of those criteria to fulfill (or none, if all are too hard) and then may or
may not become truly qualified for the workforce, depending perhaps on the extent to which
satisfying that criterion involved gaming versus true improvement. How can the school
best select criteria to maximize the number of students who become truly qualified for the
workforce while minimizing the number of diplomas given to unqualified students?

In this work we consider algorithmic and learning-theoretic formulations of such scenarios,
where a binary classification must be made in the presence of both gaming and improvement
actions with a goal of maximizing true-positive predictions while keeping false-positives to a
minimum. Specifically, we consider the following two formulations (given in more detail in
Section 2).

General Discrete Model: In this formulation, we are given a weighted, colored bipartite
graph with n nodes on the left representing agents, and m nodes on the right representing
distinct possible ways agents could be considered qualified for the prize at hand (the
loan, the diploma, etc.). For example, the nodes on the right could represent different
possible definitions of “credit-worthy” or could represent different bundles of activities
sufficient to receive a diploma. Each edge has both a weight representing the amount
of effort the agent would need to achieve the given qualification and a color blue or red
indicating whether the agent would indeed be truly qualified or not (respectively) if it
did so. The goal of the classifier is to select a subset Pfinal of points on the right such
that if each agent in the neighborhood of Pfinal takes its least-cost edge into Pfinal, then
a large number of blue edges and very few red edges are taken (many good loans and few
bad loans are given out); more specific objectives will be detailed in Section 3.
In the learning-theoretic version of this problem, the left-hand-side of the graph is replaced
with a probability distribution D over nodes (where a node is given by its neighborhood
and the weights and colors of its edges). We have sampling access to D and our goal is to
find a subset Pfinal of points on the right-hand-side with good performance under D. In
a partial-information version, when we sample a point from D we do not get to observe
its edges, only where the agent goes to and whether it was qualified. That is, learning
proceeds in rounds, where in each round we choose a subset P ′ of points on the right,
and then for a random draw x ∼ D we observe what point p ∈ P ′ (if any) was selected
and the color of the edge taken.

Linear Model: In this formulation, we assume agents are points x ∈ Rd (they have d real-
valued features) and there is a linear separator f∗ : a∗x ≥ b∗ with non-negative weights
that separates the truly qualified individuals from the unqualified ones. Agents have the
ability to increase their jth feature at cost c[j] (decreasing is free) and receive value 1 for
being classified as positive. However, only some features correspond to true improvement
and others involve just gaming. That is, if an agent begins at xinit and moves to a
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point xperc, their true qualification is not f∗(xperc) but rather f∗(xtrue), where xtrue

agrees with xinit in the gaming directions and with xperc in the improvement directions.
Movement costs and which features are improvement versus gaming are assumed to be
the same for all agents. The goal is to find a classifier that produces a large number of
true positives and few false positives. Note that using f∗ itself will be optimal if the
coordinate j maximizing a∗[j]/c[j] (having the most “bang per buck”) is an improvement
direction, so the interesting case is when this is a gaming direction. Also note that shifting
f∗ in this direction (adding a∗[j]/c[j] to b∗) will be a perfect classifier but may not be
optimal because it does not take advantage of the ability to encourage agents to improve.
We consider settings where (a) the mechanism designer must use a linear classifier, (b)
arbitrary classifiers are allowed, and (c) a polynomial-sized set P of “target points” is
given and the mechanism designer must select some subset Pfinal ⊆ P as its classifier –
this is a special case of our General Discrete Model.

In this work, we consider both models. We give an efficient algorithm for the general
discrete model for the problem of maximizing the number of blue edges taken subject to
no red edges taken (maximizing the number of good loans given out subject to no bad
loans) and show how to extend this to the partial-information learning setting. We also
show hardness for the problem of maximizing the number of blue edges subject to a nonzero
bound on the number of red edges, and show that this hardness holds even for the simplest
finite-point linear model. Furthermore, we show the problem of maximizing the number of
true positives subject to no false positives is NP-hard in the linear model when we are not
given a polynomial-sized set of target points. We additionally give algorithms for the linear
model. We provide an algorithm that determines whether there exists a linear classifier
which classifies all agents accurately and causes all improvable agents to become qualified.
In the special two-dimensional case, we design a linear classifier maximizing the number
of true positives minus false positives; and a general (not necessarily linear) classifier that
maximizes true positives subject to no false positives.

1.1 Related Work
There is an exciting and growing literature on decision-making in the presence of strategic
agents. Much of this work considers agents whose actions are only gaming and do not change
their true label (see [11, 7, 13, 16, 1, 6, 9, 5] among others) but researchers have also been
investigating mechanism design in the presence of agents who can both game and improve
[14, 12, 3, 18, 15, 10, 4, 17].

Kleinberg and Raghavan [14] consider a single agent with a variety of gaming and
improvement actions available, that are then converted into observable features through an
effort-conversion matrix. They then examine mechanisms for incentivizing desired action
vectors, showing among other things that any vector that can be incentivized by a monotone
mechanism can also be incentivized by a linear mechanism. Harris et al. [12] consider a
multi-round version of the Kleinberg and Raghavan [14] model in which true improvements
carry over to future rounds whereas gaming effort do not; they show that in this model,
the principal (the decision-maker) can incentivize the agent to produce a greater range of
desirable behaviors.

Alon et al. [3] consider a multi-agent extension of the Kleinberg and Raghavan [14] model,
where agents all begin at the same place (the origin) but each have their own effort-conversion
matrix. The goal of the designer is to choose an evaluation mechanism – mapping observable
features to payoffs – that encourages all agents to take admissible actions, assuming that
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agents will maximize payoff subject to budget constraints. They specifically consider the
case (1) that there is a single admissible action vector, and (2) that individual actions are
either improvement or gaming actions and no agent should take a gaming action. Among
other results they show that unlike in [14], nonlinear evaluation mechanisms can now be
more powerful than linear ones; they also analyze the complexity of a variety of associated
optimization problems. We can think of our setting to some extent in this language by
viewing any action that makes an agent truly qualified as “admissible” (and specifically the
blue edges in our general discrete model). However, two key distinctions are (1) in our setting
we can only give the loan/diploma or not – we do not have the flexibility to choose arbitrary
payoffs, and (2) we assume agents may begin at different starting locations (but have the
same costs for movement in our linear model).

Xiao et al. [18] define a problem they call the Multiple Agents Contract Problem which
is very similar to our General Discrete Model, except instead of binary (red/blue) colors,
the edges have different values to the principal, and instead of producing a classification,
the principal can assign an arbitrary payment profile to the right-hand-side nodes. They
prove that maximizing payoff to the principal is NP-hard, and give an algorithm for a case
of related agents in which there is a certain strict ordering among agents and costs.

Shavit et al. [17], building on Miller et al. [15], consider the goal of getting agents to
improve without loss of predictive accuracy. As in our setting, they assume agents begin a
different starting locations, and then modify their profiles from there, and they also consider
a learning formulation. However, their focus is on a regression model in which agents’ payoffs
are an inner product of their observable features with a decision vector; this means that
the incentives are basically the same no matter what the initial location of an agent is. In
contrast, in our binary classification setting, even in the linear model the effect of a proposed
classifier on an agent may depend greatly (and in a non-convex manner) on the initial location
of the agent. Bechavod et al. [4] also consider a linear regression learning setting: agents
arrive one at a time iid from a fixed distribution and then modify their state by changing a
single variable based on the current regression vector. As in our linear model, some directions
are improvement and some are gaming. They consider a limited feedback setting where
the learner sees only the dot-product of the agent’s true position with the true regression
function, plus noise, and the learner’s goal is to recover the true regression function.

Haghtalab et al. [10] consider a similar setting to ours in which there are improvement and
gaming actions, and the designer is limited to binary classification, where agents receive value
1 for being classified as positive. Among other results, they give approximation algorithms for
the goal of maximizing the total amount of true improvement that occurs when the allowed
mechanisms are linear separators and agents have ℓ2 movement costs. In contrast, our goal
is to maximize true positive classifications while minimizing false positives, and in the linear
case our movement cost assumptions are somewhat different.

Organization of the Paper

Section 2 introduces the general discrete model and linear model more formally. In Section 3,
we give an efficient algorithm for the problem of maximizing the number of true positives
subject to no false positives in the general discrete model, and provide hardness results for
the problem of maximizing the number of true positives subject to a nonzero bound on false
positives (in either the general discrete model or the linear model when arbitrary classifiers
are allowed) and hardness for the problem of maximizing the number of true positives subject
to no false positives in the linear model when arbitrary classifiers are allowed. In Section 4,
we consider a learning-theoretic version of the problem of maximizing true positives subject
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to no false positives, and provide efficient learning algorithms as well as upper and lower
bounds on the number of samples needed. In Section 5, we focus on the linear model and
provide algorithms specific to this setting. We provide an algorithm that determines whether
there exists a linear classifier which classifies all agents accurately and causes all improvable
agents to become qualified. In the special two-dimensional case, we design a general (not
necessarily linear) classifier that maximizes true positives subject to no false positives. In the
full version of this work, we show how to provide a linear classifier maximizing the number
of true positives minus false positives in the two-dimensional case.

2 Model

We study a binary classification problem. As the mechanism designer or classifier, we would
like to maximize the number of agents we correctly classify as positive (true positives), and
minimize the number of unqualified agents we misclassify as positive (false positives).

Agents are assumed to be utility maximizers and wish to be classified as positive. Each
agent i ∈ {1, . . . , n} has a set of actions it can perform, and it will choose the cheapest of
these that causes it to be classified as positive if that cost is less than its value on receiving a
positive classification. We use Q to denote the set of truly qualified agents. If an agent is
initially not qualified (not in Q), some of its actions may cause it to become truly qualified,
whereas others may not. However, the classifier cannot see which action was taken, only
the observable result of that action. Therefore, the challenge of the mechanism designer is
to determine which observable results to classify as positive to maximize correct positive
classifications while minimizing false positives.

2.1 General Discrete Model
In this model, we assume that as a mechanism designer we are given a polynomial-sized set
P of criteria we may select from (e.g., graduation criteria or criteria for being approved for a
loan), and are limited to choosing some subset Pfinal ⊆ P as the criteria we will use. We
then will classify as positive any agent that meets any one of these criteria, and as negative
any agent who does not. Specifically, we are given a weighted, colored bipartite graph with
the n agents on the left and the set P of criteria on the right. Edge (i, j) corresponds to
agent i taking an action to satisfy criteria j and is colored blue or red depending on whether
that action would make the agent truly qualified or not, respectively. Each edge also has a
weight representing its cost to that agent, and only actions whose costs are less than the
value to the agent of being classified as positive are shown. Given a set Pfinal ⊆ P chosen by
the mechanism designer, each agent in the neighborhood of Pfinal will choose its cheapest
edge into Pfinal as the action it will take, and will be classified as positive by the mechanism;
agents not in the neighborhood of Pfinal will be classified as negative.

We also consider a learning-theoretic version of this problem, where the left-hand-side
of the graph is replaced with a probability distribution D over nodes. We have sampling
access to D and our goal is to find a subset Pfinal of points on the right-hand-side with good
performance under D. In a partial-information (bandit-style) version, when we sample a
point from D we do not get to observe its edges, only where it goes to and whether it was
qualified. That is, learning proceeds in rounds, where in each round we choose a subset P ′ of
points on the right, and then for a random draw x ∼ D we observe what point p ∈ P ′ (if
any) was selected and the color of the edge taken.
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Figure 1 Points on the left are the agents, and those on the right are the set P of possible criteria;
wi is the cost of satisfying the criterion. A red edge means the agent taking that action would not
truly be qualified. A blue edge means that the agent taking that action would be qualified.

2.2 Linear Model
In the linear model, agents have d real-valued features. Each agent i begins at an initial
point xinit

i ∈ Rd, and there is assumed to be a linear threshold function f∗ : a∗x ≥ b∗ with
non-negative weights that separates the truly qualified individuals from the unqualified ones.
Agents have the ability to increase their jth feature at cost c[j] (decreasing is free) and
receive value 1 for being classified as positive. However, only some features correspond to true
improvement and others involve just gaming. That is, if an agent begins at xinit and moves
to a point xperc, their true qualification is not f∗(xperc) but rather f∗(xtrue), where xtrue

agrees with xinit in the gaming directions and with xperc in the improvement directions. On
the other hand, the classification rule can only be based only on xperc and not xtrue (or xinit).
Movement costs and which features are improvement versus gaming are assumed to be the
same for all agents. So, for any agent i, cost(xinit

i , xperc
i ) =

∑d
j=1 c[j] (xperc

i [j]− xinit
i [j])+,

where x+ = max{x, 0} and c[j] is the cost per unit of movement in the positive direction of
dimension j. An example is given in Figure 2.

We consider settings where (a) the mechanism designer must use a linear classifier (a
linear threshold function), (b) arbitrary classifiers are allowed, and (c) a polynomial-sized set
P of “target points” is given and the mechanism designer must select some subset Pfinal ⊆ P
as its classifier. Notice that this last case is a special case of the general discrete model
because given each initial state xinit

i , we can compute the costs to move to each p ∈ P and
whether doing so will make the agent truly qualified, to produce the desired weighted, colored
bipartite graph.

3 Algorithmic and Hardness Results

In this section we first provide an algorithm for the problem of maximizing the number of
true positives subject to no false positives in the general discrete model. Then, we provide
hardness results for the problem of maximizing the number of true positives subject to a
nonzero bound on false positives (in either the general discrete model or the linear model
when arbitrary classifiers are allowed) and hardness for the problem of maximizing the
number of true positives subject to no false positives in the linear model when arbitrary
classifiers are allowed. Later in Section 4 we extend our algorithmic results to the learning
model and in Section 5 we give algorithms for learning linear classifiers in the linear model.
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positive by the	mechanism

𝒙𝟐𝒕𝒓𝒖𝒆
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𝒙𝟑𝒊𝒏𝒊𝒕 𝒙𝟑𝒕𝒓𝒖𝒆

Figure 2 An example of the linear model (the horizontal axis is an improvement direction and the
vertical axis is a gaming direction) with a mechanism using a non-linear classifier. There are three
agents, two of whom are initially not qualified. All three become qualified and are correctly classified
as positive by the mechanism.

3.1 Maximize True Positives Subject to No False Positives
The main result of this section is an algorithm that given a weighted, colored bipartite graph
G with agents, X , on the left and potential criteria, P, on the right, finds Pfinal ⊆ P such
that using Pfinal as the criteria maximizes the number of agents taking a blue edge (true
positive) subject to no agent taking a red edge (false positive). We call the agents that
take a blue edge improving agents and the agents taking a red edge gaming agents. The
algorithm, although simple in structure, satisfies strong properties noted afterwards; and
serves as the building block of the learning algorithms in Section 4. Furthermore, as shown in
the following subsection, natural generalizations of the objective function make the problem
computationally hard. Therefore, the algorithm together with the hardness results tightly
characterize the settings for which there is an efficient algorithm, or the problem is NP-hard.

Overview of Algorithm 1. The algorithm takes in a weighted, colored bipartite graph
G = (X ∪ P, E) and outputs Pfinal, a subset of P that specifies the final criteria. Initially,
Pfinal is set to P. The algorithm proceeds in rounds. In each round, it visits all the nodes
(agents) in X to determine whether there is an agent who takes a red edge to its lowest cost
neighbor p ∈ Pfinal. If there is such a gaming agent, its corresponding criteria, p, is removed
from Pfinal. These rounds continue until there is no gaming agent and therefore no removal
of criteria in a single round, or the current set of criteria is empty.

▶ Proposition 1. Algorithm 1 has running time of O(|P|n).

Proof. Proof in Appendix A. ◀

▶ Theorem 2. Algorithm 1 finds the set of criteria, Pfinal, that maximizes the number of
true positives subject to no false positive.

Proof. Proof in Appendix A. ◀

Algorithm 1 satisfies the following strong properties.
(a) point-wise optimality: For any agent i, if there exists a solution in which i takes a blue

edge and no agent takes a red edge, then the algorithm finds such a solution.
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Algorithm 1 Maximize true positives subject to no false positives.

Input : A bipartite graph G = (X ∪ P, E) with edge weights we. Outgoing edges
assumed sorted by weight. Red edges ER ⊆ E. Blue edges EB ⊆ E.

Output :Pfinal

1 Pfinal ← P // Initialization of the set
2 while Pfinal ̸= ∅ do
3 flag = 0

/* Loop through all xi ∈ X */
4 for i = 1, 2, · · · do
5 Let e = (xi, p ∈ Pfinal) be the outgoing edge from xi with lowest weight
6 if e ∈ ER then
7 flag = 1 // at least one agent is gaming
8 Pfinal ← Pfinal \ {p}
9 if flag is 0 then

10 return Pfinal

11 return ∅ // When 0 false positive is not possible

(b) general for weighted setting: The algorithm works optimally in the more general setting
that each agent has a weight and the objective is to maximize the sum of weights of
improving agents subject to the constraint of no gaming agent. This is a direct implication
of property a.

(c) max-min fairness: Suppose the agents are from different populations and the objective
is to maximize the minimum number of agents improving from each population subject
to no gaming. By property a, the algorithm satisfies this max-min fairness notion.

(d) heterogeneous utilities: The algorithm works optimally in the more general setting that
agents have different values for being classified positive.

(e) minimizing the total cost of improvement: Since the algorithm only removes p ∈ P that
causes an agent to game, with Pfinal each agent incurs the minimal cost subject to no
agent gaming.

▶ Remark 3. The sets of criteria satisfying the no false positive constraint is not downward
closed. In other words, a subset of a set of criteria that satisfies the no false positives property
does not necessarily satisfy this property.

3.2 Hardness Results
In this part, we prove hardness results for maximizing the number of true positives when
the constraints in the previous subsection are relaxed. First, we show that if we relax the
no false positives constraint to a bounded number of false positives, the problem becomes
NP-hard; moreover, this holds even for the simpler linear model. Then, for the linear model,
we show if we are not given a finite set of potential criteria P, it is NP-hard to find criteria
that maximize true positives subject to no false positives.

▶ Theorem 4. Given the initial feature vectors of agents xinit
1 , xinit

2 , . . . , xinit
n ∈ Rd and a set

P of potential criteria, the problem of finding a subset Pfinal ⊆ P that maximizes the number
of true positives subject to at most k false positives is NP-hard.

Proof sketch. The proof is done by a reduction from the Max-k-Cover problem with n

elements where the goal is to choose k sets covering the most elements. For every element ei

in the Max-k-Cover, we consider agent i, and for every set Sj in the Max-k-Cover problem



S. Ahmadi, H. Beyhaghi, A. Blum, and K. Naggita 3:9

we consider agent n + j and a target point pj . The coordinates of the initial points and the
target points are set such that agent i corresponding to element ei can only move to target
point pj such that ei ∈ Sj and become a true positive; moreover, agent n + j corresponding
to set Sj can only move to target point pj and become a false positive. On the one hand,
since including each pj in the final set of criteria, Pfinal, causes exactly one agent to be a
false positive, Pfinal must contain at most k target points. On the other hand, to maximize
the number of true positives a set of k target points that the maximum number of agents
can reach to it must be selected. This is equivalent to the Max-k-Cover solution. A formal
proof is included in Appendix A. ◀

▶ Theorem 5. Suppose we are given a set of n agents where xinit
1 , xinit

2 , . . . , xinit
n denote

their initial feature vectors. Deciding whether there exists a set of target points Pfinal ⊆ Rd

for which all the agents become true positives is NP-hard.

Proof sketch. The proof is done by a reduction from the approximate version of the hitting
set problem where given a set of elements, E = {e1, . . . , en} and a family of sets of elements,
F = {S1, S2, . . . , Sm}, the goal is to find a minimum size set S∗ that intersects all Si.
We construct an n + 1-dimensional space, where the first n dimensions are improvement
dimensions and correspond to the n elements, and the last dimension is gaming. We consider
two sets of agents. For each Si, we consider a corresponding agent i; these are the usual
agents. We also consider agent m + 1, a special agent that does not correspond to any
particular set. The construction is such that each agent needs to move 2k units along the
improvement dimensions to become truly qualified. Further details of the construction can
be found in the full proof. The proof includes two directions. (1) If all the agents can become
true positives by reaching to a set of target points Pfinal ⊆ Rd, then we can construct a
hitting set of size at most 2k; and (2) if it is not possible, then there does not exist a hitting
set of size k.

We briefly cover the key ideas in each direction. To show the first direction, suppose all
the agents can become true positives when presented with target points Pfinal ⊆ Rd. Consider
the target point that each agent selects. Using our construction, we show the special agent
does not afford to reach to the target points of the usual agents. Also, for each usual agent i,
there exists element ej in their corresponding set such that the target point of the special
agent has value more than 1 in coordinate j. In order for the special agent to afford to reach
to its target point, the number of improvement coordinates with value at least 1 must be at
most 2k. The elements corresponding to these coordinates constitute a hitting set of size at
most 2k. To prove the reverse direction we argue: if there exists a hitting set S∗ of size k,
there is a set of target points that encourages all the agents to become true positives. To do
so, we construct a set of target points Pfinal = {p1, . . . , pm+1}, using the elements in the
hitting set, that when the size of the hitting set is k makes every agent become true positive.
A formal proof is included in Appendix A. ◀

The following is a direct corollary of Theorem 5.

▶ Corollary 6. Given the initial feature vectors of agents, xinit
1 , xinit

2 , . . . , xinit
n ∈ Rd, finding

a set of target points Pfinal ⊆ Rd that maximizes the number of true positives subject to no
false positives is NP-hard.

4 Learning Results

In this section we consider a learning-theoretic version of our problem, where the left-hand-
side of the graph is replaced with a probability distribution D over nodes. We have sampling
access to D and our goal is to find a subset Pfinal of points on the right-hand-side with good
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performance under D. We provide two different algorithmic results and upper bounds on
the number of samples for producing a good solution, depending on the information each
sample reveals. The first upper bound works for the case where by sampling an agent, its
neighborhood (neighboring edges, their colors and weights) is revealed. The second upper
bound works in a partial-information (bandit-style) setting, where when we sample a point
from D we do not get to observe its edges, only where it goes to and whether it was qualified.
Finally, we provide a lower bound on the necessary number of samples for any algorithm.
The lower bound holds even for the simpler linear model.

The following definition is crucial in this section.

▶ Definition 7 (OPT, performance, and error). Let OPT be the maximum probability mass
of true positives achievable subject to zero false positives. We denote the probability mass of
true positives of an algorithm as its performance and the probability mass of false positives as
its error. A hypothesis is desired if it has comparable performance to OPT and small error.

4.1 Sufficient Number of Samples in the Full Information Setting
The main result of this section is that a number of samples linear in |P| and 1/ε is sufficient
for Algorithm 1 to learn a desired hypothesis with high probability. Specifically, suppose
the learner has access to a weighted, colored bipartite graph G = (X ∪ P, E), where X are
sampled from D, and P is the set of the potential criteria. The learner runs Algorithm 1
with the graph as the input and uses the algorithm output, Pfinal ⊆ P, as its hypothesis,
i.e., after the training phase it classifies any agent with an edge to Pfinal as positive and any
other agent as negative. We show that a linear number of samples is sufficient so that with
high probability, the probability mass of true positives classified by Pfinal is close to OPT
and the probability mass of false positives is small.

▶ Theorem 8. Consider Pfinal as the outcome of Algorithm 1 on G = (X ∪ P, E), where X
contains samples from D. For any 0 < ε, δ ≤ 1, if |X | ≥ ε−1(ln(2)|P|+ ln(1/δ)) then with
probability at least 1− δ the set Pfinal achieves performance at least OPT− ε (i.e., at least
OPT− ε probability mass of true positives) subject to at most ε error (ε probability mass of
false positives).

4.2 Sufficient Number of Samples in the Partial Information Setting
In this section we consider a partial information (bandit-style) setting. Similar to before,
the learner has access to a sample set X drawn from D and a set of potential criteria P.
However, observing a sample in X does not reveal its edges, and the learner can only observe
the criterion that the sample selects and whether it becomes truly qualified. The main result
of this section is an algorithm, Algorithm 2, for this setting and a guarantee on the number
of samples sufficient for it to achieve performance at least OPT− ε and error at most ε with
high probability.

Overview of Algorithm 2. In each iteration, a set of examples of size ε−1 ln(|P|/δ) is
sampled. After agents select points in P (if any), we observe the points selected and whether
they became truly qualified (in a real-world application, one can think of performing a test
to check if each agent is truly qualified). If some agent does not become truly qualified
(fails the test), the algorithm deletes the point they have selected. If a set Pfinal, survives
for ε−1 ln(|P|/δ) subsequent examples, the algorithm terminates and returns Pfinal as the
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Algorithm 2 Learning a high performance low error Pfinal in partial-information setting.

Input :P
Output :Pfinal

1 Pfinal ← P;
2 while Pfinal ̸= ∅ do
3 Sample X ∼ D of size 1

ε ln |P|
δ ;

4 if ∃x ∈ X such that x takes a red edge to p ∈ Pfinal then
5 Pfinal ← Pfinal \ {p};
6 continue;

/* if no one from X takes a red edge: */
7 return Pfinal;
8 return ∅;

the final set of criteria of the algorithm. Since the number of false positives (agents taking
red edges) is bounded by |P|, the algorithm will terminate after at most ε−1|P| ln(|P|/δ)
samples.

The following theorem proves that with a high probability, Algorithm 2 outputs Pfinal

with a high performance and a low error.

▶ Theorem 9. For any 0 < ε, δ ≤ 1, Algorithm 2 by using at most ε−1|P| ln(|P|/δ) total
samples outputs a set of criteria Pfinal that with probability at least 1−δ achieves performance
at least OPT− ε (i.e., at least OPT− ε probability mass of true positives) subject to at most
ε error (ε probability mass of false positives).

4.3 Necessary Number of Samples
The main result of this section is a lower bound on the necessary number of samples for
learning a desired hypothesis. The lower bound provided holds even for the simpler linear
model. To restate the setup, suppose the learner has access to a set of initial positions of
agents X and a set of potential criteria (also called target points in the linear model) P
where X are sampled from distribution D. We lower-bound the required number of samples
for any learning algorithm that with probability at least 1/2 achieves high performance and
low error.

▶ Theorem 10. Any algorithm for PAC learning a set Pfinal that with probability at least
1/2 achieves performance at least (3/4) ·OPT (i.e., at least (3/4) ·OPT probability mass
of true positives) subject to at most ε error (ε probability mass of false positives) must use
Ω(|P|/ε) examples in the worst case.

5 Algorithmic Results Specific to the Linear Model

The algorithmic results provided so far work in both the general discrete and the linear
discrete models. In this section we focus on the linear model and provide algorithmic results
for various problems. These algorithms do not follow the greedy structure of the previous
algorithms, and use novel technical ideas. First, we consider the problem of designing
linear classifiers. Section 5.1 provides introductory observations and definitions about linear
classifiers. Section 5.2 presents the main result of this section which determines whether
there exists a linear classifier that classifies all agents accurately and causes all improvable
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agents to become qualified. Then, we shift focus to general (not necessarily linear) classifiers
in a two-dimensional space and in Section 5.3 provide an algorithm for maximizing true
positives subject to no false positives. In the full version of this work, we provide results for
finding a linear classifier that maximizes the number of true positives minus false positives in
the two-dimensional case.

5.1 Properties of Linear Classifiers
Before diving into discussion of the algorithmic results, we provide observations about linear
classifiers to set the context. We also provide optimal classifiers in special cases.

For the following discussion, consider linear classifier f∗ : a∗x ≥ b∗ that separates the
truly qualified agents from unqualified agents.

▶ Observation 11. With linear classifier f : ax ≥ b, any utility maximizing agent that
achieves non-negative utility by changing their features moves in dimension arg maxj a[j]/c[j].

▶ Definition 12 (movement dimension). The movement dimension of linear classifier f :
ax ≥ b is the utility maximizing dimension arg maxj a[j]/c[j] discussed in Observation 11.
If there are multiple such dimensions the ties are broken in favor of improvement dimensions
and then lexicographically.

▶ Definition 13 (encourage improvement/gaming). A classifier encourages improvement if its
movement dimension is an improvement dimension. It encourages gaming otherwise.

▶ Definition 14 (dim-j improving). A linear classifier is dim-j improving if it encourages
improvement and its movement dimension is along dimension j.

The following definition captures the set of agents that potentially can improve to become
truly qualified.

▶ Definition 15 (improvement margin, improvable agents). The improvement margin includes
all the agents that can afford (do not have to incur a cost of more than 1) to move in an
improvement dimension and become truly qualified. Formally, any initially unqualified agent
i, i.e., a∗xinit

i < b∗, that has distance ≤ 1/c[j] along an improvement dimension j to f∗ is
in the improvement margin.

▶ Lemma 16. If f∗ : a∗x ≥ b∗ encourages improvement, the optimal classifier is f∗ – among
all linear or nonlinear classifiers.

Proof. f∗ classifies initially qualified agents and unqualified unimprovable agents accurately.
Also, all the agents in the improvement margin improve, become qualified, and are accurately
classified as positive. ◀

▶ Lemma 17. Let j be the movement dimension of classifier f∗. The classifier g : a∗x ≥
b∗ + a∗[j]/c[j] classifies all the initially qualified agents as positive and the rest as negative.

Proof. Initially unqualified agents, a∗xinit
i < b∗, can move at most 1/c[j] in dimension j

which is not enough to reach to g. Therefore, these agents are classified as negative by g.
On the other hand, initially qualified agents, a∗xinit

i ≥ b∗, afford to reach to g and receive
nonnegative utility. Therefore, they will be classified as positive. ◀

▶ Corollary 18. If all the dimensions are gaming dimensions, g : a∗x ≥ b∗ + a∗[j]/c[j] is
the optimal classifier, where j is the movement dimension of f∗.
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Proof. If all dimensions are gaming dimensions, there are no improvable agents. Therefore,
all agents are either initially qualified or unimprovable and unqualified. By Lemma 17, g

classifies all such agents accurately. ◀

By Lemma 17, g : a∗x ≥ b∗ +a∗[j]/c[j] may be a “reasonable” solution because it classifies
all the initially qualified as positive and does not result in any false positive classifications.
However, it misses out on any new true positives resulting from encouraging agents to become
qualified. From this point on, we aim to study other classifiers (not necessarily parallel to
f∗) with the hope of encouraging other agents to become qualified.

5.2 Linear Classifier for Improvable Agents
In this subsection, we study a problem that takes as input three disjoint subsets of the agents,
Syes, Sno, and S imp, and outputs a linear classifier (if one exists) that satisfies the following
properties.

i) Classifies agent i such that xinit
i ∈ Syes as positive.

ii) Classifies agent i such that xinit
i ∈ Sno as negative.

iii) Encourages agent i such that xinit
i ∈ S imp to improve and become truly qualified, i.e.,

xtrue
i ∈ Q, and classifies i as positive.

The main result of the section is solving this problem in polynomial time. When Syes is
the set of initially qualified agents, Sno is the set of unqualified and unimprovable, and S imp

is the set of improvable agents, this problem determines whether there exists a linear classifier
that classifies Syes and Sno accurately and makes all the improvable agents qualified.

To solve this problem, we divide it into subproblems as following: Does there exist a
linear classifier with movement direction in dimension j that satisfies properties i, ii, and iii?
If the answer is “yes” for some dimension j, then the answer to the main problem is “yes”. If
the answer is “no” for all 1 ≤ j ≤ d, no linear classifier satisfying the three properties exists.

Note that if S imp is nonempty, in order to satisfy property iii, dimension j must be an
improvement dimension. Therefore, we study the following problem.

▶ Problem 1. Does there exist a dim-j improving classifier (a linear classifier encouraging
improvement in dimension j) that satisfies properties i, ii, and iii?

We propose a linear program that solves Problem 1. The following definition and observations
illustrate the conditions under which a dim-j improving classifier satisfies each property for
agent i.

▶ Definition 19. For a fixed improvement dimension j and classifiers f∗ : a∗x ≥ b∗ and
f : ax ≥ b, the points xi,f∗ , xi,f , xi,max are defined as follows (depicted in Figure 3.):

xi,f∗ is the projection of xinit
i on the separating hyperplane of classifier f∗ along dimension

j.
xi,f is the projection of xinit

i on the separating hyperplane of classifier f along dimension
j.
xi,max is the shifted xinit

i along dimension j by 1/c[j].
More formally, for all coordinates k ̸= j, we have xi,f∗ [k] = xi,f [k] = xi,max[k] = xinit

i [k].
Also, since a∗xi,f∗ = b∗, we have xi,f∗ [j] =

(
b∗ −

∑
k ̸=j a∗[k]xinit

i [k]
)

/a∗[j]. Similarly,

since axi,f = b, we have xi,f [j] =
(

b−
∑

k ̸=j a∗[k]xinit
i [k]

)
/a[j]. Finally, xi,max[j] =

xinit
i [j] + 1/c[j].
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▶ Observation 20. A dim-j improving classifier f : ax ≥ b classifies agent i as positive
(property i) if axi,max ≥ b. It classifies agent i as negative (property ii) if axi,max < b.

▶ Observation 21. Using a dim-j improving classifier f , agent i becomes qualified and is
classified as positive (property iii) if and only if xi,f∗ [j] ≤ xi,f [j] ≤ xi,max[j]. See Figure 3.

𝒇∗
𝒇

𝒙𝒊,𝒇𝒙𝒊,𝒇∗ 𝒙𝒊,𝒎𝒂𝒙𝒙𝒊𝒊𝒏𝒊𝒕

Figure 3 Depicting xinit
i , xi,f∗ , xi,f , xi,max in Definition 19 and Observation 21. The horizontal

axis shows dimension j in the definition.

▶ Proposition 22. The following LP captures Problem 1, where the variables are a and b.
a[k]
c[k] ≤

a[j]
c[j] ∀k ̸= j (1)

b ≤ axi,max ∀xinit
i ∈ Syes (2)

axi,max < b ∀xinit
i ∈ Sno (3)

xi,f∗ [j] ≤ xi,f [j] ∀xinit
i ∈ Simp (4)

xi,f [j] ≤ xi,max[j] ∀xinit
i ∈ Simp (5)

Constraint 1 asserts that the movement direction of the classifier is along dimension j.
Constraint 2 asserts property i. Constraint 3 asserts property ii. Finally, constraints 4 and 5
assert property iii.

▶ Theorem 23. Given the sets Syes, Sno, and Simp, there is a polynomial-time algorithm
that outputs a linear classifier (if one exists) that satisfies Properties i, ii,iii, or declares
non-existence of such a classifier.

Proof. If S imp ̸= ∅, run LP 1-5 for all improvement dimensions j. If S imp = ∅, run the LP
for 1 ≤ j ≤ n. By Proposition 22, if there exist feasible solution a and b for one of these LPs,
f : ax ≥ b is a classifier satisfying properties i, ii, and iii. ◀

▶ Corollary 24. There is a polynomial-time algorithm that determines whether there exists
a linear classifier that classifies the initially qualified as positive, unqualified unimprovable
agents as negative, encourages the agents in the improvement margin to improve to become
qualified, and classifies them as positive. If such a classifier exists, it maximizes true positives
subject to no false positives.

▶ Remark 25. Theorem 5 asserts that given the initial feature vectors of agents,
xinit

1 , xinit
2 , . . . , xinit

n ∈ Rd, deciding whether there exists a classifier for which all the agents
become true positives is NP-hard. However, when limiting to linear classifiers this problem
is no longer NP-Hard. Using Theorem 23, by setting Syes to the set of initially qualified
agents, and S imp to the rest of the agents, this problem is solvable in polynomial time.
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5.3 Optimal General Classifier in Two-Dimensional Space
In this subsection, we consider the problem of maximizing true positives subject to no false
positives in a 2-dimensional space, where the horizontal dimension is improvement, and the
vertical dimension is gaming. We provide an algorithm in the linear model that given a set
of agents, returns a set of target points Pfinal ⊂ R2 that maximizes true positives subject to
no false positives. Note that unlike Algorithm 1, our algorithm in this subsection does not
take a finite set of target points P as input. For simplicity, by scaling we may assume wlog
that c = c[1] = c[2].

Overview of Algorithm 3. First, all the points xinit
i for 1 ≤ i ≤ m are sorted along the

gaming dimension in a descending order, such that xinit
n has the smallest value in the gaming

dimension. Our goal is to find designated points, x′
i, for each xinit

i . Starting with xinit
n , for

each point xinit
i , move xinit

i along the improvement dimension until it crosses the line a∗x = b∗

at xi,min (See Figure 4). Let x′
i, the designated point of xinit

i , be initially x′
i = xi,min. If

given the current set of designated points for agents n, n− 1, . . . , i, another point xinit
j for

j > i maximizes utility by moving to x′
i and becomes false positive, push x′

i upward along
the gaming dimension, until xinit

j no longer picks x′
i. When pushing x′

i along the gaming
dimension, let xi,max denote the furthest point that xinit

i can afford to reach to it. If the
final point x′

i is such that xinit
i cannot afford to move to it, i.e. x′

i[2] > xi,max[2], discard
x′

i. Otherwise, x′
i is added to Pfinal.

Note that we assume that if a point xinit
j can improve to x′

j and game to x′
i with the

same cost, it would pick the improvement option.

6∗

"",4"#

"7,4"#

"",456

Gaming	(↑) Improvement	(→)

""8

"""#"$

"7"#"$

Figure 4 In Algorithm 3, x′
i is pushed along the gaming dimension so xinit

j no longer moves to it.

▶ Theorem 26. Given initial feature vectors of agents, xinit
1 , xinit

2 , . . . , xinit
n ∈ R2, Algorithm 3

maximizes the number of true positives subject to no false positives.

Proof. Proof is deferred to Appendix B. ◀

▶ Remark 27. By Corollary 6, this problem is NP-hard when X ⊂ Rd for general (not
constant) d.
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Algorithm 3 Maximizing the number of true positives in 2-dimensions.

Input :X , f∗ : a∗x ≥ b∗

Output :Pfinal

1 Sort xi ∈ X in a descending order of xi[2];
2 for i = n, · · · , 1 do

/* Let xi,min be the projection of xi on a∗x = b∗ along the
improvement dimension */

3 xi,min =
(

b∗−a∗[2]xi[2]
a∗[1] , xi[2]

)
;

4 if xi,min[1]− xi[1] > 1/c then
/* xi cannot become true positive. */

5 continue;
6 x′

i ← xi,min;
7 for j = n, · · · , i + 1 do
8 if cost(xj , x′

j) > cost(xj , x′
i) then

9 x′
i ← (x′

i[1], x′
i[2] + cost(xj , x′

j)− cost(xj , x′
i));

10 if x′
i[2] > xi,max[2] then

/* xi cannot become true positive without another point becoming
false positive. */

11 x′
i = (x′

i[1],∞);
12 Pfinal ← Pfinal ∪ x′

i;
13 return Pfinal;
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A Missing Proofs of Section 3

Proof of Proposition 1. The size of X is n, and within the for loop each computation takes
O(1) time since the edges for each xi are already sorted. When the flag is set to 1, at least
one point in P is removed, and when the flag is 0 at the end of the inner loop, the algorithm
returns. Therefore, the outer loop is run at most |P| times while the inner loop is run n

times; resulting in a running time of O(|P|n). ◀

Proof of Theorem 2. Let A be the improving agents (agents taking blue edges) associated
with the set of criteria Pfinal. We show that having any other set Q ⊆ P as the criteria,
either causes an agent to take a red edge, or no more than |A| agents to take blue edges.
To do so, consider partitioning Q into two subsets QF and QF̄ , where QF ⊆ Pfinal and
QF̄ ⊆ P \ Pfinal.

First, we show that if QF̄ ≠ ∅, an agent takes a red edge. To prove this claim, suppose
by contradiction that QF̄ is nonempty and consider the first time the algorithm deletes
an element p ∈ QF̄ . At this stage, the set of criteria in the algorithm P ′ is a superset of
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QF̄ ∪ Pfinal. By definition, p is the lowest-weight neighbor of a gaming agent, a, in P ′. This
implies that p is also the lowest-weight neighbor of a in Q ⊆ QF̄ ∪ Pfinal ⊆ P ′, and a is a
gaming agent given the criteria set Q. This implies the claim.

Secondly, we show that among the sets of criteria with no gaming agent, Pfinal has the
highest number of improving agents. The previous claim implies that any set of criteria with
no gaming agent is a subset of Pfinal. Now, we need to show that among Q ⊆ Pfinal, Pfinal

has the largest set of improving agents. This is trivial, since by considering a subset we may
only lose on agents in A that do not have a neighbor in Q or their lowest-weight edge is red.
Therefore, any Q ⊆ Pfinal has at most |A| improving agents. ◀

Proof of Theorem 4. We show the following problem is NP-hard.

▶ Problem 2. Suppose we are given a set of n agents where xinit
1 , xinit

2 , . . . , xinit
n denote their

initial feature vectors, and a set P of potential criteria also called target points in the linear
model. Find a subset Pfinal ⊆ P that maximizes the number of true positives subject to at
most k false positives.

We prove the NP-hardness by reducing the Max-k-Cover problem with equal-sized sets of
size 3 to this problem. In the Max-k-Cover problem, we are given a set E of elements ei, and
sets Sj ⊆ E , and the goal is to select at most k sets out of Sj that maximize the number of
elements they cover.

First, we show how to construct an instance of Problem 2 from an instance of the Max-k-
Cover problem. To do so, we determine the number of dimensions, initial positions of the
agents, the target points, and the movement costs. Let n be the number of elements of the
Max-k-Cover instance, we construct an n + 1-dimensional space where the first n dimensions
are improvement and the last dimension is gaming. Consider elements e1, e2, . . . , en in the
Max-k-Cover instance. For every element, we consider an agent; and for every set, we consider
an agent and a target point. For ei, the corresponding agent is at initial point xinit

i , an
n + 1-dimensional vector whose ith and n + 1st coordinates are 1 and the other coordinates
are 0. For every set Sj , we consider a target point pj and an agent with initial point xinit

n+j .
In pj , the coordinates corresponding to the elements in Sj and the n + 1st coordinate are set
to 1 and the rest of the coordinates are 0. In xinit

n+j , the coordinates corresponding to the
elements in Sj are set to 1, the n + 1st coordinate is set to −1, and the rest of the coordinates
are 0. Finally, let the movement cost in any dimension be 1/2. Note that this construction
fits into the framework of a linear model and f∗ :

∑n+1
j=1 x[j] ≥ 4 is the linear threshold

function for the truly qualified agents. All the target points pj satisfy the threshold and all
the agents are initially unqualified and do not meet the threshold.

Next, we discuss what target point each agent selects and whether they become truly
qualified (true positive) or not (false positive). Because the cost per unit of movement equals
1/2, each agent can only afford to reach to target points with distance at most 2. Agents xinit

i

for i ∈ {1, . . . , n} can only afford to reach a target point whose ith coordinate is 1 since they
are at distance 2. They are at distance 3 to any other target points. Since all dimensions
1, . . . , n are improving dimensions these agents become truly qualified when they reach such
target points. Agents xinit

i for i > n can only afford to reach pi since they have distance 2.
They have distance more than 2 to any other target points. Agents xinit

i for i > n can only
reach to pi. To do so, these agents move in a gaming dimension and do not become truly
qualified.

Finally, we show how the solutions of these two problems coincide. Consider the problem
of maximizing the true positives subject to including at most k false positives. Including
each pj in the final set of target points, Pfinal, causes exactly one agent, xinit

j , to be a false
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positive. Therefore, having at most k false positive is equivalent to including at most k

target points. Maximizing the true positives subject to at most k target points is exactly
equivalent to selecting at most k sets that maximize the elements they cover. This completes
the reduction. ◀

Proof of Theorem 5. We show the following problem is NP-hard.

▶ Problem 3. Suppose we are given a set of n agents where xinit
1 , xinit

2 , . . . , xinit
n denote their

initial feature vectors. Does there exist a set of target points Pfinal ⊆ Rd for which all the
agents become truly qualified?

We prove the NP-hardness by a reduction from the approximate version of the hitting set
with equal-sized sets problem. As an instance of the hitting set problem we are given, (F , E)
where F = {S1, · · · , Sm} is a collection of the subsets of E = {e1, e2, · · · , en}, and each set
Si has a size of 0 < s < n, and our goal is to find a minimum size set S∗ ⊆ E that intersects
every set in F . In order to show NP-hardness, we construct an instance of Problem 3 and
prove: (1) If all the agents can become true positives by reaching to a set of target points
Pfinal ⊆ Rd that the mechanism designer selects, then there exists a hitting set of size at
most 2k. (2) If there exists a hitting set of size k then the mechanism designer can select a
set of target points that encourages all the agents to become true positives. Since hitting set
and set cover problems are equivalent and approximating set cover within a constant factor
is NP-hard [8], this implies that Problem 3 is NP-hard.

First, we show how to construct an instance of Problem 3 from an instance of the Hitting
Set problem. To do so, we determine the number of dimensions, initial positions of the
agents, the movement costs, and a linear threshold function for the truly qualified. Let n

be the number of elements of the Hitting Set instance, we construct an n + 1-dimensional
space where the first n dimensions are improvement and the last dimension is gaming.
Consider sets S1, S2, . . . , Sm in the Hitting Set instance. For every set Si, we consider agent
i at initial point xinit

i . In xinit
i , the jth coordinates such that ej ∈ Si is set to 1. The

rest of the first n coordinates are set to 2k and the last coordinate is 0. Also consider an
extra agent m + 1 at initial point xinit

m+1 where all the first n coordinates are 0 and the last
coordinate is 2k(n− s) + s. Note that for all the agents

∑n+1
j=1 xinit

i [j] = 2k(n− s) + s. Let
the movement cost in all the dimensions 1 ≤ j ≤ n be 1

2k and in dimension n + 1 be c such
that 1

2k(n−s)+s+1 < c < 1
2k(n−s)+s . Let f∗ :

∑n+1
j=1 x[j] ≥ 2k(n− s) + s + 2k. Therefore, all

the agents are initially unqualified and at ℓ1 distance of 2k from f∗.
Now we prove the first direction, i.e., if all the agents can become true positives by

reaching to a set of target points Pfinal ⊆ Rd that the mechanism designer selects, then there
exists a hitting set of size at most 2k. For all 1 ≤ i ≤ m + 1, let pi ∈ Pfinal denote the target
point that xinit

i moves to and becomes true positive.
It consists of the following arguments: (i) For all 1 ≤ i ≤ m + 1, agent i receives utility 0

by reaching to pi. (ii) For all 1 ≤ i ≤ m, agent m + 1 does not afford to reach to pi. (iii) If
pm+1[j] ≤ 1 for all ej ∈ Si, agent i moves to pm+1 and becomes a false positive. Therefore
if all agents improve, for each 1 ≤ i ≤ m, there exists ej ∈ Si such that pm+1[j] > 1. (iv) In
order for agent m + 1 to afford to reach to target point pm+1, the number of coordinates
1 ≤ j ≤ m with value at least 1 must be at most 2k. (v) These elements constitute a hitting
set of size at most 2k.

First, we prove argument (i). Each agent 1 ≤ i ≤ m + 1, is at ℓ1 distance of 2k to f∗. To
become qualified it needs to move 2k in the improvement dimensions. Since moving for a
distance of 2k along the improvement dimensions costs a value of (2k)× ( 1

2k ) = 1, agent i

makes a utility of 0.
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Now, we move to argument (ii). Following up on the previous claim, to reach pi, agent
1 ≤ i ≤ m spends all of their movement budget in the improvement dimensions and cannot
move a positive amount in the gaming dimension n + 1. Therefore, pi[n + 1] = 0 and∑n

j=1 pi[j] = 2k(n− s) + s + 2k. In order for agent m + 1 to reach such a target point, it
needs to move a total of 2k(n− s) + s + 2k > 2k in the improvement dimensions, which costs
more than 1 and it cannot afford.

Next, we prove argument (iii). Since xinit
m+1 has an ℓ1 distance of 2k from f∗ and

costs exactly a value of 1 to reach there, it can only afford to move along the improvement
dimensions. Therefore, pm+1[n+1] ≤ 2k(n−s)+s. Additionally, for 1 ≤ j ≤ n, pm+1[j] ≤ 2k;
otherwise, agent m + 1 cannot afford to reach to pm+1. Suppose pm+1[j] ≤ 1 for all ej ∈ Si.
Using this assumption, for agent i to reach pm+1 it only needs to pay cost of movement
in dimension n + 1, moving 2k(n− s) + s units and paying c per unit of movement. Since
(2k(n− s) + s)× c < 1, agent i makes a strictly positive utility. Therefore agent i prefers
pm+1 over any other target point that makes it true positive which by argument (i) achieves
utility 0.

Argument (iv) is straight-forward. To achieve non-negative utility each agent can afford
to move at most 2k units along the improvement dimensions. Therefore, for the target point
pm+1, the number of coordinates 1 ≤ j ≤ n with value at least 1 must be at most 2k.

Argument (v) is a direct implication of the two previous arguments. By argument (iii),
for each 1 ≤ i ≤ m there is an element ej ∈ Si such that pm+1[j] > 1. By argument (iv), the
number of coordinates j ≤ n such that pm+1[j] > 1 is at most 2k since otherwise agent m + 1
cannot afford to reach to pm+1. Therefore, elements ej such that pm+1[j] > 1 constitute a
hitting set of size at most 2k.

Now, we prove the reverse direction: if there exists a hitting set S∗ of size k, the mechanism
designer can select a set of target points that encourages all the agents to become true
positives. To do so, we construct a set of target points Pfinal = {p1, . . . , pm+1} that makes
every agent to become true positive. For each agent i, 1 ≤ i ≤ m, put a target point pi

whose first coordinate is 2k more than xinit
i . For agent m + 1, put a target point pm+1 whose

coordinates j where ej ∈ S∗ are set to 2 and the remaining agree with xinit
m+1. Each target

point xinit
i is set such that

∑n+1
j=1 xinit

i [j] = 2k(n− s) + s + 2k. In order to show that every
agent is able to improve, we argue that: (i) For all 1 ≤ i ≤ m, agent i can afford to move to
pi. Additionally, if agent i moves to any of the target points pj where 1 ≤ j ≤ m, it becomes
true positive. (ii) For all 1 ≤ i ≤ m, agent i cannot reach to pm+1. (iii) Agent m + 1 moves
to pm+1 and becomes true positive.

First, we prove argument (i): Agent i is at a distance of 2k from pi. It can afford to
reach to pi by paying a cost of (2k)× ( 1

2k ) = 1 and become true positive. In addition, if it
moves to any of the other target points pj where 1 ≤ j ≤ m, since it has only moved along
the improvement dimensions, it would become true positive.

Next, we prove argument (ii): We know that for each Si, there exists an element
ej ∈ Si such that pm+1[j] = 2. As a result, the ℓ1 distance of xinit

i and pm+1 is at least
(2k(n− s) + s + 1)× c > 1. Therefore, for each 1 ≤ i ≤ m, xinit

i cannot afford to reach to
pm+1.

Finally, we prove argument (iii): First, we argue that agent m + 1 cannot afford to reach
to any of the target points pi where 1 ≤ i ≤ m. For each target point pi where 1 ≤ i ≤ m,
pi[n + 1] = 0 and

∑n
j=1 pi[j] = 2k(n− s) + s + 2k. In order for agent m + 1 to reach such a

target point, it needs to move a total of 2k(n− s) + s + 2k > 2k units in the improvement
dimensions, which costs more than 1 and it cannot afford. In addition, agent m + 1 can
afford to move to pm+1, and by reaching there it becomes true positive.
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As a result of the above arguments, given a hitting set of size k, the mechanism designer
can select a set of target points that encourages all the agents to become true positives.

Combining the above two directions, shows that the problem of selecting a set of target
points for which all the agents become truly qualified is NP-hard. ◀

B Proof of Theorem 26

In order to prove Theorem 26, we need to first show that the following observation and
lemma hold.

▶ Observation 28. Line a∗x = b∗ has a negative slope, i.e., each feature is defined so that
larger is better. Therefore, after the points in X are sorted, if an agent xinit

j where j < i

reaches to any point x′
i ∈ [xi,min, xi,max], then xinit

j becomes true positive. On the other
hand, for j > i, if xinit

j moves to any point x′
i ∈ [xi,min, xi,max], then xj becomes false

positive.

▶ Lemma 29. Consider a point p such that p[1] ≥ xi,min[1], and another point q ∈
[xi,min, xi,max]. Suppose cost(xinit

i , p) = cost(xinit
i , q). Then, for any j > i, it is the case

that cost(xinit
j , p) ≤ cost(xinit

j , q).

Proof. Initially, if p[2] < xinit
i [2], p is replaced with (p[1], xinit

i [2]). By doing so, cost(xinit
j , p)

would not decrease. Hence, without loss of generality, we can assume p[2] ≥ xinit
i [2].

First, we show that cost(xinit
j , p) ≤ cost(xinit

j , xi,min) + cost(xi,min, p), where the inequal-
ity holds when xi,min[1] < xinit

j [1] ≤ p[1].
cost(xinit

j , xi,min) + cost(xi,min, p)

= max

{
xi,min[1] − xinit

j [1], 0
}

+
(

xi,min[2] − xinit
j [2]

)
+

(
p[1] − xi,min[1]

)
+

(
p[2] − xi,min[2]

)
= max

{
xi,min[1] − xinit

j [1], 0
}

+
(

p[1] − xi,min[1]
)

+
(

p[2] − xinit
j [2]

)
If xinit

j [1] ≤ xi,min[1], the last equation above gets equal to
(

p[1]−xinit
j [1]

)
+

(
p[2]−xinit

j [2]
)

=
cost(xinit

j , p). Otherwise, xinit
j [1] > xi,min[1] and the last equation above gets equal to(

p[1]− xi,min[1]
)

+
(

p[2]− xinit
j [2]

)
>

(
p[1]− xinit

j [1]
)

+
(

p[2]− xinit
j [2]

)
= cost(xinit

j , p).
In any case, cost(xinit

j , p) ≤ cost(xinit
j , xi,min) + cost(xi,min, p).

Next we argue that cost(xi,min, p) = cost(xi,min, q). First, since p[1] ≥ xi,min[1]
and p[2] ≥ xi,min[2], then cost(xi, p) = cost(xi, xi,min) + cost(xi,min, p). Similarly,
cost(xi, q) = cost(xi, xi,min) + cost(xi,min, q). Since cost(xi, p) = cost(xi, q), it is the
case that cost(xi,min, p) = cost(xi,min, q).

Therefore,

cost(xinit
j , p) ≤ cost(xinit

j , xi,min) + cost(xi,min, p)
≤ cost(xinit

j , xi,min) + cost(xi,min, q)

= max
{

xi,min[1]− xinit
j [1], 0

}
+ max

{
xi,min[2]− xinit

j [2], 0
}

+

max
{

q[1]− xi,min[1], 0
}

+ max
{

q[2]− xi,min[2], 0
}

= max
{

xi,min[1]− xinit
j [1], 0

}
+

(
xi,min[2]− xinit

j [2]
)

+
(

q[2]− xi,min[2]
)

= max
{

xi,min[1]− xinit
j [1], 0

}
+

(
q[2]− xinit

j [2]
)

= max
{

q[1]− xinit
j [1], 0

}
+

(
q[2]− xinit

j [2]
)

= cost(xinit
j , q) ◀
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Proof of Theorem 26. Suppose not. Let xOPT
1 , . . . , xOPT

n be an optimal solution that agrees
with x′

1, . . . , x′
n on as large a suffix as possible, and let i be the largest index such that

xOPT
i ̸= x′

i (so xOPT
j = x′

j for all j > i).
First, note that i ̸= n. This is because x′

n = xn,min, which is the cheapest point that
agent n can reach to become a true positive; moreover, any other point moving to x′

n is a
true improvement. So, replacing xOPT

n with x′
n only helps.

Next, we claim that even if i < n, replacing xOPT
i with x′

i can only improve the optimal
solution. First, if cost(xinit

i , xOPT
i ) ≥ cost(xinit

i , x′
i) then replacing xOPT

i with x′
i only helps

by the same argument as above and the fact that x′
i was chosen so that no agent j > i

manipulates to it; here we are using the fact that the suffixes of the two solutions agree. On
the other hand, suppose that cost(xinit

i , xOPT
i ) < cost(xinit

i , x′
i) and cost(xinit

i , xOPT
i ) ≤ 1/c.

Since xinit
i cannot become a false positive by moving to xOPT

i , this means that xOPT
i [1] ≥

xi,min[1]. There exists a point q ∈ [xi,min, xi,max] such that cost(xinit
i , xOPT

i ) = cost(xinit
i , q),

which implies that cost(xinit
i , q) < cost(xinit

i , x′
i). The reason that q was not selected as

x′
i is that there exists an agent xinit

j where xinit
j moves to q and becomes false positive.

By Observation 28, j > i. Hence, cost(xinit
j , q) < cost(xinit

j , x′
j) and cost(xinit

j , q) ≤ 1/c.
By Lemma 29, cost(xinit

j , xOPT
i ) ≤ cost(xinit

j , q), so cost(xinit
j , xOPT

i ) < cost(xinit
j , x′

j) and
cost(xinit

j , xOPT
i ) ≤ 1/c. Hence, xinit

j is closer to xOPT
i compared to x′

j = xOPT
j and so agent

j would become a false positive under OPT, which contradicts the definition of OPT. So,
this second case cannot occur.

Therefore, Algorithm 3 maximizes the number of true positives subject to having no false
positives. ◀
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