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ABSTRACT

High-rate systems are defined as engineering systems that typically undergo acceler-
ations of amplitudes greater than 100 g over a duration of less than 100 ms. Examples
include adaptive airbag deployment systems, hypersonic vehicles, and active blast miti-
gation systems. The use of feedback mechanisms in these high-rate applications is often
critical in ensuring their continuous operations and safety. Of interest to this paper are
algorithms enabling high-rate structural health monitoring (HRSHM) to empower sub-
millisecond decision systems. HRSHM is a complex task, because high-rate systems are
uniquely characterized by 1) large uncertainties in the external loads; 2) high levels of
nonstationarities and heavy disturbances; and 3) unmodeled dynamics generated from
changes in system configurations that necessitate careful crafting of adaptive strategies.
Here, we study the implementation of two ensemble predictive models for implemen-
tation of HRSHM, intending to define fundamental mechanisms required in employing
neural networks when sub-millisecond performance is required. One is based on a long
short-term memory architecture, and the other is based on a single-layer wavelet neu-
ral network architecture. Numerical simulations are conducted using experimental data
generated by high-rate mechanisms. A comparison of performance shows that, while
the ensemble of wavelet neural networks is capable of faster predictions, the ensemble
of long short-term memory networks provides enhanced signal forecasting, highlighting
the important trade-off between computation speed and accuracy for HRSHM applica-
tions. It is also shown that the use of neuro-predictions as inputs to the model reference
adaptive system instead of pure measurements produces faster convergence to the state
estimate, yet at the cost of significantly higher computation time.
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INTRODUCTION

High-rate dynamic systems are defined as engineering systems experiencing accel-
erations of high amplitudes, typically higher than 100 g,,, over durations often less than
100 ms [1]. Examples of such systems include blast mitigation mechanisms, advanced
weaponry, and hypersonic vehicles. The field deployment and safe operation of high-rate
systems require feedback capabilities in the sub-millisecond range and high-rate state es-
timation capabilities termed high-rate structural health monitoring (HRSHM) [2]. How-
ever, the development of HRSHM algorithms is a complex task given the unique char-
acteristics of their dynamics that combine 1) large uncertainties in the external loads, 2)
high levels of non-stationarity and heavy disturbances, and 3) unmolded dynamics gen-
erated from changes in the system configurations [3]. The complexity of the high-rate
systems combined with their fast-changing working environments limits the application
of accurate real-time physical modeling techniques [4]. There have been recent research
efforts in developing data-based algorithms applicable to HRSHM. Some examples of
data-based algorithms used for HRSHM include an ensemble of long short-term memory
(LSTM) networks presented by Barzegar et al. [5] and wavelet neural network (WNN)
with adaptive input capabilities presented by Hong et al. [6].

LSTM networks have recently gained popularity for the modeling of complex dy-
namics. These networks store and utilize previous data through various memory blocks
and equations known as gates to help to preserve key patterns in the data and combat the
vanishing gradient problem [7, 8]. Because of their processing power, LSTMs perform
well on nonlinear systems and for real-time analysis. For example, Li ef al. [9] studied
real-time applications of LSTMs by predicting automotive crash risks in urban areas,
and Zhang et al. [10] used LSTMs to track and predict nonlinear seismic events. How-
ever, computation requirements of LSTMs typically requires a large amount of memory,
yielding slower computation time. Faster neural networks are those with fewer weights
and biases and simpler architectures. Of interest to this paper are single layer WNNSs,
known for their universal approximation capabilities [11], yielding rich capabilities in
learning non-stationary signals [12].

Independent of the neural approach, a critical challenge with data-based techniques is
that they do not provide any insights into the physical characteristics of the system. This
impedes their applicabilities to HRSHM that requires on-time physical state-estimation
to empower the decision system with actionable information. A solution is to integrate
physical knowledge into the data-based approach, also known as physics-informed ma-
chine learning, or to simply use pure physical representation, yet typically at the cost
of high computation time. The authors have previously proposed a Model Reference
Adaptive System (MRAS)-based algorithm for HRSHM [13]. While demonstrated on
a relatively simple dynamic system, the method was shown to be capable in the sub-
millisecond range.

In this paper, we extend work on the MRAS-based algorithm in an attempt to further
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improve the convergence time of the state estimator. This is done by combining findings
from previous work on an ensemble of LSTMs and WNNs to empower the MRAS al-
gorithm with predicted time series data acting as the input. This architecture allows for
predicted, instead of real-time, state-estimations resulting in quicker convergence times.
Two different strategies are studied and compared. One uses an ensemble of LSTMs,
the other uses an ensemble of WNNSs. In prior work [14], the authors showed that using
ensembles of short-sequence neural networks could dramatically accelerate computa-
tion time and enable multi-rate sampling to focus on unique features of the signal and
thus predict nonlinearities more accurately. Ensemble learning has been extensively dis-
cussed in a general context by others [15].

BACKGROUND

This section provides an overview of the algorithmic architecture of the state esti-
mator. First, the studied LSTMs and WNNs are used in an ensemble configuration, as
illustrated in Figure 1. The ensemble consists of n neural cells, based on either a single
layer LSTM cell [5], or a single layer WNN with Morlet activation function [6,16]. Each
cell receives a unique input vector from the measured acceleration in the form of a delay
vector.
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Figure 1. Ensemble architecture.

where 7 and d are selected based on Takens’ embedding theorem [17]. Each neural cell
outputs a feature vector h. After, each feature vector is assigned a weight using the at-
tention layer. These weights are adapted in real-time to match the assembled features
to those of the dataset [18]. Then, the dense layer produces the acceleration predic-
tion ikﬂ where £ is the current discrete time step, and ¢ is the number of steps ahead.
This ensemble architecture is presented in more detail in [5]. The neuro-prediction is
back-propagated and weights adaptable based on a mean-squared error loss function and
learning rate of . Here, the prediction is used as an input to the MRAS algorithm.

The MRAS algorithm is used to convert acceleration predictions into physical state
predictions, for example, predictions of stiffness and damping. Its architecture is illus-
trated in Figure 2 [13]. The adaptive system (z) is an observer with the user-defined gain
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Figure 2. MRAS architecture.

matrix L. and is used to adapt the state estimation to obtain an estimated state vector
= [& 2]T that matches the reference model (z). The input is taken as unknown param-
eters @ = [0 0,] and the basis function, &(z), with §(z) = 87 0(z) being the estimated
input and g(z) = 07 0(z) the true input. The reference model is a simplified physical rep-
resentation of the system Az, where A is the state space matrix, representing the known
dynamics of the simplified reference model and bg(z), where b is the input matrix. The
reference model state vector, z (i.e. true velocity and true displacement), was obtained
through numerical integration of 2 ; using the Newmark-Beta method with a recursive
least squares (RLS) estimator to reduce drift in the displacement signal [19].

The simplified reference model assists the adaptive model in fine-tuning the unknown
parameters, @ = [ f,] to obtain the true values. The unknown parameters 0 are tuned
via sliding que theory based on the state estimation error, Z = z — z, and tracking error,
e; = g(z;) —070(z;). A particularity of the algorithm is that it uses concurrent learning
to cope with the lack or persistence in the excitation, with J being the size of the history
stack and j denotes the position within the history stack. Hyperparameters, I', v, and
P are the learning rate matrix, learning rate, and user-defined positive-definite matrix,
respectively. The algorithm is presented in more detail in [13].

METHODOLOGY

DROPBEAR Experimental Testbed

The vibration dataset obtained form the Dynamic Reproduction of Projectiles in Bal-
listic Environments for Advanced Research (DROPBEAR), shown in Figure 3, was used
for validation [20]. DROPBEAR is a cantilever beam with repeatable and controllable
changes in the dynamics mimicking sudden structural changes that occur in high-rate
systems. This is done through a 1) sudden change of boundary condition produced using
a moving cart, or 2) sudden change in mass produced using an electromagnet-activated
mass drop, or 3) modal hammer impacts at the free end of the cantilever. Data analyzed
in this paper focuses uniquely on changing boundary condition using static cart posi-
tions with the cart located 50, 100, 150, and 200 mm from the clamp. A modal hammer
impact is used to excite the beam during the experiments. Measurements were filtered
using a band pass filter of 5 Hz and 100 Hz cutoff frequencies.
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Figure 3. (a) DROPBEAR experimental testbed; and (b) schematic the testbed with key
components [13].

Neural Architectures

Using the known physics of the system, four cells (n = 4) were selected to construct
the ensemble, with each cell representing a different static cart position. Each WNN and
LSTM cell, both with a single hidden layer, were trained offline to model the dynam-
ics of a single degree-of-freedom system with an oscillating frequency equal to that of
DROPBEAR under each considered static cart position, i.e. 17.8, 21, 25, and 31 Hz. The
WNN had adaptive nodal weights, centers, and bandwidths, with the learning rates for
the nodal centers and bandwidths kept constant at 1e-4 and le-1. The rest of the offline
hyperparameters are listed in Table I

TABLE I. OFFLINE HYPERPARAMETERS.

Cart Frequency LSTM WNN
Cell Position (mm) (Hz) T (steps) d Learningrate Learning rate (weights)
1 50 17.8 332 2 0.015 0.9
2 100 21 275 3 0.015 0.2
3 150 25 220 4 0.015 0.9
4 200 31 183 2 0.02 0.5
RESULTS

For this preliminary investigation, damping () is assumed available. Figures 4(a)
and (b) plot the typical acceleration signals of DROPBEAR, taken with the cart posi-
tioned at 150 mm away from the clamp and under free vibration after being struck by
the modal hammer. These plots compare the response estimated by the LSTMs (Figure
4(a)) and WNNs (Figure 4(b)) for a 300 step-ahead (0.12 ms) prediction. The DROP-
BEAR datasets are taken at a sampling frequency of 25,600 samples per second. A
moving average filter was applied with a size of 0.1% of the sampling frequency to
reduce the prediction noise. The MRAS inputs are these filtered prediction, and is con-
structed with the following hyperparameters: I' = [.003 0], v = 1, L = [1,000 50],
and J = 20. Results show that the ensembles quickly catch up to the true values as the
initial acceleration damps. For both the LSTMs and WNNSs, the neural networks con-
verge to the true values after damping the initial conditions. Figures 4(c) and (d) plot the



stiffness estimated by the MRAS algorithm using predictions from LSTM and WNN,
respectively. Both neural networks yield fast convergence, where convergence is taken
when the oscillations remain within 10% of the average value.
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Figure 4. Time series responses of DROPBEAR comparing acceleration state estimation for the
LSTMs (a) and WNNSs (b), along with the corresponding estimated stiffnesses by MRAS using
the predicted output from the LSTMs (c) and WNNss (d).

Table II summarizes results from all cart positions, listing three performance met-
rics: the average computation time per time step, the MRAS convergence time for the
stiffness, and the root mean squared error (RMSE) on the acceleration prediction. The
computation time is measured as the amount of time in milliseconds to perform signal
prediction and state estimation of a single input vector. Performance is assessed for
both the LSTMs and WNNSs, and also for the MRAS using pure measurements instead
of neuro-predictions (labeled “MRAS”). Results show the LSTMs are more accurate
(RMSE) than the WNNSs at forecasting the dataset, but require computation time approx-
imately 50% longer. Following that, the LSTMs yield faster convergence speed than the
WNN under every case except for the 100 mm cart position, likely attributed to increased
accuracy of the ensemble of LSTM’s predictions. Also, a cross-comparison between the
neuro-predictors and the pure MRAS reveals that the use of a neuro-prediction as an in-
put to the MRAS (“LSTM” or “WNN”) produces faster convergence to the state estimate
under all cart positions, yet yielding significantly higher computation time.

TABLE II. PERFORMANCE RESULTS

50 mm 100 mm 150 mm 200 mm
LSTMs WNNs MRAS | LSTMs WNNs MRAS | LSTMs WNNs MRAS | LSTMs WNNs MRAS
Runtime/step (ms) 6.40 3.67 0.92 5.94 3.60 0.92 6.35 3.60 0.92 6.53 3.62 0.93
k convergence (ms) 169 193 207 200 198 211 99 108 117 112 127 130
RMSE (m/s?) 7.87 7.89 N/A 9.15 14.52 N/A 7.67 16.9 N/A 7.26 10.7 N/A




CONCLUDING REMARKS

This paper evaluated the use of neuro-predictors to accelerate the convergence of
an adaptive physical model known as the Model Reference Adaptive System (MRAS)
to estimate the stiffness of a dynamic system, with applications to HRSHM. The study
compared the performance of ensembles of long short term memory (LSTMs) neural net-
works and wavelet neural networks (WNNs) in predicting an acceleration signal. Those
predictions were used as step-ahead predictions in the MRAS model. Validation was
conducted on experimental data collected from the Dynamic Reproduction of Projectiles
in Ballistic Environments for Advanced Research (DROPBEAR) testbed. The ensemble
was constructed using four cells, each associated with a different DROPBEAR dynam-
ics corresponding to the four cart positions under study. Offline training was conducted
using simplified single-degree-of-freedom systems of fundamental frequency consistent
with that of DROPBEAR under each cart position. Results show that adding predicted
values from the ensemble networks to the MRAS produced quicker convergence to the
estimated state under all cart positions, but adding substantial computation time. Com-
paring the neuro-predictors, the LSTMs yielded faster convergence and prediction ac-
curacy compared to the WNNSs, yet the WNNs yielded faster computation speed. This
result demonstrates a key trade-off in high-rate structural health monitoring (HRSHM)
between computation time and accuracy.

Future work is to include improved algorithmic capabilities for pure acceleration
feedback and dynamic changes in states. The physics-informed machine learning algo-
rithm’s capabilities will be challenged to augment offline learning techniques, and online
learning capabilities will be improved to perform multi-step ahead state estimation of
more complex systems.
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