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Abstract

The stochastic K-armed bandit problem has been studied extensively due to its applications in
various domains ranging from online advertising to clinical trials. In practice however, the number
of arms can be very large resulting in large memory requirements for simultaneously processing
them. In this paper we consider a streaming setting where the arms are presented in a stream and
the algorithm uses limited memory to process these arms. Here, the goal is not only to minimize
regret, but also to do so in minimal memory. Previous algorithms for this problem operate in one of
the two settings: they either use Q(log log T') passes over the stream (Rathod, 2021; Chaudhuri and
Kalyanakrishnan, 2020; Liau et al., 2018), or just a single pass (Maiti et al., 2021).

In this paper we study the trade-off between memory and regret when B passes over the stream are
allowed, for any B > 1, and establish tight regret upper and lower bounds for any B-pass algorithm.
Our results uncover a surprising sharp transition phenomenon: O(1) memory is sufficient to achieve
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S} (T2 tamEr ) regret in B passes, and increasing the memory to any quantity that is o(K) has

almost no impact on further reducing this regret, unless we use {2(K) memory. Our main technical
contribution is our lower bound which requires the use of information-theoretic techniques as well as
ideas from round elimination to show that the residual problem remains challenging over subsequent
passes.

1. Introduction

The stochastic multi-armed bandit problem is a widely studied problem with applications in many
domains such as online advertising, recommendation systems, clinical trials, financial portfolio
design etc. In this problem, there are K arms; in trial ¢ € [T the algorithm pulls an arm a; and
receives a reward drawn from the reward distribution of a; with mean p,,. The goal of the algorithm
is to minimize the cumulative regret over T trials where the regret for trial ¢ is defined as the gap
between the largest mean reward max ¢ fto and fiq,.

In many practical applications such as online advertising and recommendation systems, the number
of arms can be very large and the learner might not be able to store all the arms in memory. In these
applications it can be more practical to process arms in a sequential manner with small memory that
is sub-linear in the number of arms. Motivated by a long line of work on streaming algorithms in
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theoretical computer science (Alon et al., 1999), we consider a setting where the arms are presented
in a (possibly adversarially chosen) stream and in each trial the algorithm decides whether to read
the next arm from the stream into memory. The algorithm can only store the indices and statistics of
M arms out of the K arms and can only play an arm if it is present in the memory. The goal in this
setting is to minimize the regret given a bounded amount of memory.

Previously, Rathod (2021); Chaudhuri and Kalyanakrishnan (2020); Liau et al. (2018) developed
algorithms for regret minimization in this limited-memory streaming bandits setting, but their al-
gorithms require a relatively large number of passes over the stream, with the former requiring
O(loglog T') passes, and the latter two requiring O(log T') passes. Moreover, it is not understood
whether the trade-off between memory and regret obtained by these algorithms is tight as a corre-
sponding multi-pass lower bound is not known. At the other extreme, Maiti et al. (2021) considered
a 1-pass streaming setting and showed that any algorithm using M words (for M < K') of memory
needs to incur Q(Tz/ 3IM 7/ 3) expected regret. Also, there is a simple 1-pass algorithm that uses
M = O(1) memory and achieves O(K/>T2/3) regret. These results of Maiti et al. (2021) imply
that the 1-pass setting exhibits a sharp trade-off between memory and regret as explained below.

The 1-pass regret as a function of memory M has a sharp transition: with M = O(1) one can
achieve O(T?/®) regret, and increasing M beyond O(1) has little impact on further reducing this
regret, unless we increase M to K in which case one can achieve O(\/T) regret.!

In this paper we study a streaming setting for multi-armed bandits where we are allowed B passes
over the stream, for any B > 1. We seek to provide upper and lower bounds on the expected regret
under a limited memory budget and B passes. We also seek to understand the trade-off between
memory and regret as a function of the number of passes B. Does increasing memory beyond O(1)
help in this B-pass setting or is there again a sharp transition in regret similar to the 1-pass setting?

Our main result is to prove a lower bound on the regret of any B-pass algorithm that uses limited
amount of memory. In particular, we show that any B-pass algorithm that uses o( K/ B?) words

1y 1
of memory necessarily incurs 2 (4_3 T2 28F 24) regret in expectation. Note that for B = 1 our

result implies a tighter lower bound of © (7%/%) as compared to the Q (7% /M7/?) bound in Maiti
et al. (2021), for any 1-pass algorithm that uses M < K /24 words of memory.

Our lower bound exploits the main tension in the streaming setting: the algorithm has limited
information about whether there are better arms further along in the stream, and hence, it is difficult
to decide whether to keep exploring the current arms in memory or to read more arms into memory
by throwing away some of the current arms from memory. We construct a distribution over hard
instances such that, if in the first pass the algorithm performs sufficient exploration over (potentially
‘bad’) arms then it already incurs a large regret in expectation. If it performs insufficient exploration
in the first pass then it will throw away many ‘good’ arms due to a limited memory budget and will
be unable to isolate the underlying instance at the end of the first pass. One of the main technical
difficulty is to show that the resulting residual distribution over instances is challenging in a way that
leads to large regret in the remaining B — 1 passes. We overcome this difficulty by using information-
theoretic techniques to show that insufficient exploration leads to low mutual information which

1. Note that when M = K one can simply read all the arms in memory at once and use any stochastic multi-armed
bandit algorithm such as the UCB algorithm to achieve a regret of O(vTK).
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further leads to large entropy in the residual distribution. We then inductively argue that any high
entropy distribution over instances will lead to large regret in the remaining B — 1 passes.

We complement our lower bound with a simple B-pass algorithm that uses O(1) memory and
~ 1 1
achieves an expected regret upper bound of O (T 2T K B). This implies that O(loglog T")

passes and O(1) memory are sufficient to achieve an almost optimal regret of O(v/KT), and matches
the recent O(loglog T') pass regret upper bound of Rathod (2021). When B = 1, we also recover
the O(T 28K ) upper bound of Maiti et al. (2021). In short, our algorithmic result interpolates the
hitherto unknown space between the 1-pass 5(T2/ 3\/K) regret and the (log log T')-pass 9) (VKT)
regret upper bounds as function of the number of passes B.

Our algorithm is based on two key operations: (i) estimating the reward of the best arm, (ii) identifying
sub-optimal arms based on this estimate. In each pass the algorithm sets a maximum budget for the
number of pulls allowed for each arm, and this budget keeps increasing over successive passes. The
algorithm reads an arm into memory and pulls this arm until it is identified as a sub-optimal arm or
the maximum budget is exceeded. The estimate of the maximum reward is then updated and the
next arm is read into memory. Since the budget keeps increasing over passes, the estimate for the
maximum reward becomes more refined, and sub-optimal arms are identified more easily.

Our lower and upper bound together imply the following (perhaps surprising) sharp threshold
phenomenon in our B-pass setting.

The B-pass regret as a function of memory M has a sharp transition: with M = O(1) one can
~ 1 1

achieve © (T2+2B+2*2> regret, and increasing M to any quantity that is o( K / B?) has almost no

impact on further reducing this regret.

Related Work. The stochastic multi-armed bandit problem has been extensively studied in many
fields including operations research, statistics and machine learning. We refer the reader to excellent
surveys in Bubeck et al. (2013); Slivkins (2019), and only mention work that is directly relevant to
our streaming setting. Liau et al. (2018) studied a limited memory setting for multi-armed bandits
and showed that one can achieve (almost) instance-wise optimal regret in O(log T") passes and O(1)
memory. Chaudhuri and Kalyanakrishnan (2020) studied a similar setting and showed that with
O(logT') passes and M memory one can achieve a regret upper bound of 5(K M + K]\Z/Q VT).
However, these works only considered a O(log T')-pass setting and did not study the trade-off
between memory and regret for any arbitrary number of passes 1 < B < logT'. A recent arXiv paper
(Rathod, 2021) achieves a regret upper bound of O(v/KT) in O(loglog T') passes. However, their
work does not address the question of the regret achievable (both upper and lower bounds) for any
arbitrary number of passes 1 < B < loglogT'. As discussed earlier, Maiti et al. (2021) considered a
1-pass streaming setting, but their results do not apply more generally to B > 1 passes, which is the
main focus of our paper. There is also some work on best arm identification with limited memory in
the streaming setting. Assadi and Wang (2020) show that one can identify the best arm with 1 pass
over the stream and O(1) memory using O(K/A?) sample complexity where A is the minimum
gap between the best arm and any other arm. Jin et al. (2021) further obtain instance-wise optimal
sample complexity for this problem using log 1/A passes and O(1) memory.

The stochastic multi-armed bandits problem has also been studied under the setting of limited
adaptivity (Gao et al., 2019; Perchet et al., 2015). Under this setting, an algorithm operates in
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rounds and in each round it plays arms according to a fixed distribution that can only depend on
the outcomes from the previous rounds. Even though the tradeoff between rounds and regret in
this setting is similar to the tradeoff between passes and regret given limited memory in our setting,
the key difference between the two settings is that this setting necessarily requires at least 1 bit of
information per arm for a total of 2(K') memory, but cannot be adaptive within a batch, whereas in
our setting, we can be fully adaptive within a pass but are given strictly less than K memory. Due to
this difference the challenges in these two settings are quite different, which reflects in the techniques
used in the respective lower bounds.

Very recently, independently of our work, Srinivas et al. (2022) studied the problem of online learning
with expert advice in a streaming setting and established a trade-off between regret and memory in
this setting. However, there are several fundamental differences between the multi-armed bandits
problem studied here and the experts problem studied in Srinivas et al. (2022)— (1) in the experts
problem one gets to see the loss of every expert at every trial, whereas in our problem one only gets
to see the reward of the arm that is played, (2) in Srinivas et al. (2022) the losses on experts are
generated adversarially whereas in our work the rewards of arms are generated stochastically, (3) in
Srinivas et al. (2022) the stream consists of the prediction of experts for each trial, whereas in our
work the stream consists of the arms. As a result, the two settings require very different techniques
for proving lower and upper bounds, and neither result has any implications on the other.

Organization. In Section 2 we discuss the problem setting and set up relevant notation. We discuss
our lower bound on regret in Section 3 which is the main result of our paper. We then provide an
upper bound on regret in Section 4, and finally conclude in Section 5.

2. Problem Setting

We study the stochastic multi-armed bandit problem, where the instance consists of a finite set /C
of (K = |K]) arms and a time horizon 7" of trials which is known ahead of time. When an arm
a € Kis played in a trial, an i.i.d. reward is drawn from its corresponding reward distribution defined
over [0, 1] with mean y, of which the algorithm has no prior knowledge.? The objective here is to
minimize the cumulative regret, which is defined as Ry := z;‘rzl(maxae;c la — Pa,) Where a; is
the arm played in trial ¢ € [T7].

We assume a limited memory setting where the arms K are presented to the algorithm as an arbitrarily
(possibly adversarially) ordered read-only stream, and the algorithm is restricted to store the identities
and the corresponding statistics of at most M < K arms simultaneously while being allowed at most
B > 1 passes over the stream. The input parameters 1', K, B and M are assumed to be stored for
free (O(1) space). Crucially, the algorithm can only play an arm if it is in its memory. Therefore, in
each trial ¢ € [T, the algorithm must decide to either play an arm currently present in its memory,
which generates a reward (potentially incurring regret) and consumes a trial, or read the next arm
from the stream into memory, which neither incurs regret nor consumes a trial. If the algorithm
chooses to do the latter and the memory is full, then it must first discard some arm to accommodate
the new arm, in which case both the statistics as well as the identity of the discarded arm are forgotten.

2. We assume that the support of the reward distributions is [0, 1] for ease of analysis; our algorithmic results can be
easily extended to sub-Gaussian distributions over arbitrary support.
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Furthermore, the discarded arm cannot be read back into memory (and hence played) until it is
encountered again in a future pass over the stream.

Remark 1 In the above multi-pass streaming setting, the set of arms in any pass of the stream
remains the same though their order may change arbitrarily between passes. One can also consider
a modified setting where the algorithm is allowed to permanently discard arms from the stream so
that they do not appear in future passes. For example, one might want to discard some arms if they
are identified to be strictly suboptimal, in which case there is no need to process them any further.
We note that both our lower bound and our algorithmic results also apply to this modified setting.

Notation. In the rest of this paper, we use upper case letters to refer to instance dependent constants,
such as the length of the time horizon 7', number of arms K, number of passes B, and the memory
size M. We use B, D, v and ¢ to refer to distributions, and £ to refer to events. We use other upper
case calligraphic letters to refer to sets, and other lower case English or Greek letters to refer to
miscellaneous constants. Lastly, we use log base 2, and In for natural logarithms.

We denote random variables in serif font, e.g., X. For a random variable X, supp(X) denotes the
support of X and dist(X) denotes its distribution. We denote the Shannon Entropy of a random
variable A by H(A) and the mutual information of two random variables A and B by I(A;B) =
H(A) —H(A | B) = H(B) — H(B | A). A summary of useful facts from information theory is given
in Appendix A.

3. A Regret Lower Bound for Limited Memory Multi-Pass Algorithms

Our main result, which is an information-theoretic lower bound on the cumulative regret that can be
achieved by any B-pass algorithm with limited memory, is presented in the following theorem.

Theorem 1 Given a time horizon T, a stream of K arms, and passes 1 < B < loglogT over this
stream, there exists a distribution over K -armed bandit instances such that any B-pass algorithm that

uses at most K - (8B(B + 1) log e)~! memory suffers Q (4_BT23/(23+1_1)) regret in expectation.

This lower bound paints a rather pessimistic picture for regret minimization in a limited memory
streaming setting. Given any constant number of passes, we need (K’) memory to achieve O(v/T)
regret that is already achievable by a single pass algorithm with memory K. Furthermore, for
any given memory M up to o(K/log?log T'), a superconstant (log log T') number of passes are
required to achieve this optimal regret. In Section 4, we will show another surprising result on the
threshold nature of memory: for a fixed number of passes B, the regret achieved by a constant
memory algorithm is asymptotically no different from that achieved by any o(K/B?) memory
algorithm. In other words, for any fixed number of passes B, the worst-case regret does not reduce
with increasing memory unless we allow a relatively large Q(/K/B?) memory.

To the best of our knowledge, this is the first regret lower bound for any B > 1 number of passes,
and also improves upon the Q(7%/3 /M7/*) lower bound of Maiti et al. (2021) for B = 1. We now
present the key elements of our lower bound construction.
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3.1. Overview of the Lower Bound

At a high level, our lower bound exploits the fact that any limited memory algorithm must operate
conservatively due to the presence of arms for which it has absolutely no information until they are
actually encountered in the stream. Since only a limited number of arms can be explored at any given
time, any limited memory algorithm faces the following dilemma. (1) Spend enough time playing
the arms it has in memory and gain some meaningful information about them, but then potentially
run the risk of acquiring large regret in the event there is some high value arm yet to be seen, or (2)
Try to quickly move ahead in the stream, discarding arms in memory after a few samples, but then
potentially risk throwing away good arms due to lack of sufficient information. Since the decision to
throw away arms is irrevocable, and the statistics and identities of the discarded arms are forgotten,
the algorithm would then have one fewer pass to rectify its mistake in the event that no obviously
high value arms are found ahead in the stream.

In the proof of our regret lower bound, without loss of generality, we will assume that the stream order
does not change between passes’. Furthermore, we will restrict our attention to only deterministic
algorithms, as a lower bound for deterministic algorithms on a suitable distribution over input
instances also implies an identical lower bound for randomized algorithms (Yao, 1977). Formally,
given any randomized algorithm with low expected regret, there exists a choice of random bits such
that this algorithm achieves low expected regret given this choice of bits. Therefore, by conditioning
on these random bits, we have a deterministic algorithm that achieves low expected regret.

Our lower bound is based on the general idea of ‘round elimination’ used for proving communication
complexity lower bounds where one inductively argues that the residual instance at the end of the
each round will remain ‘hard’ over subsequent rounds. Our B-pass lower bound constructs ‘hard’
instances over K arms by composing together B + 1 layers of ‘hard’ instances over subsets of arms.
We partition the stream of K arms into contiguous subsets of size K /(B + 1) and the j-th layer of
hard instances is defined over the j-th K/(B + 1)-sized subset. At a high level, we argue that after
performing j passes, an algorithm will either incur ‘large regret’ or will only be able to ‘peel-off” the
last j layers. In other words, if the algorithm has not incurred ‘high regret’ at the end of j passes,
then it still needs to solve a hard problem over at least B 4+ 1 — j layers with only B — j passes left.

Within each layer j € [B + 1], we generate a ‘hard’ instance by sampling a special arm i} froma
near-uniform distribution over the arms in that layer, whose mean reward is nearly-equally-likely to
be either low, namely pir = 1/2, or high, namely pir = 1/2 + A where A; is a parameter that we
will specify shortly. All other arms in this layer have mean reward 1/2. This potential ‘high’ reward
of 1/2 + A increases across layers, with A; being the smallest, and Ap_; being the largest. This
intuitively forces any algorithm to rush through all of the initial B layers, because the regret would
be massive if i3, | realizes to have a high reward, the odds of which are nearly half. However, in
doing so the algorithm will learn very little about the special arms in first B layers, and will have to
solve a hard problem over these layers in the remaining B — 1 rounds.

In order to formalize the above construction, we define a distribution over ‘hard’ instances for a
single layer that is parameterized by the set of arms A4 in the layer, the mean reward parameter A for

3. The regret guarantees of our algorithm (Section 4) hold even when the arm order changes adversarially between passes.
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the special arm in that layer, and a nearly-uniform joint distribution ) over A x {0, 1} for sampling
said special arm and its mean reward.

Distribution Dﬁ’d’: Given a set of arms A4, a joint distribution ¢» over support A x {0, 1}, and
parameter A < 1/4

* Sample (:*,y) ~ ¢ such that i* € Aand y € {0,1}. Foralli € A, let

- {§+yA, if i = 4*
Hi = .
otherwise

N[ —

* Return the arms .4 with Bernoulli reward distributions with means {1; }ic 4.

Note that the special arm ¢* in layer is also a best arm within the layer. We will now define what is
means for the distribution v of the special arm ¢* to be y-nearly uniform.

Definition 2 (y-nearly uniform ) Given a set of arms A, a joint distribution ) over support
A x{0,1}, and v > 0, we say that 1) is y-nearly uniform if the random variables (1,Y) ~ 1 are
such that H(1) > log A — v and H(Y|l) > log 2 — ~.

This following key lemma quantifies how little any algorithm would actually learn about the special
arm in a layer if this arm is y-nearly uniformly distributed and the algorithm rushes through this
layer, i.e. collects very few samples.

Lemma 3 Given a time-horizon T, a set of arms A of size A = | A
according to a distribution Dj’w where 1 is y-nearly uniform for some vy > 0. Let (1,Y) ~ 1 and
let ALG be any deterministic algorithm that adaptively pulls arms in A. Let o € [T be the randomly
chosen stopping time of the algorithm and S, = (ji, rt)7_, be execution history of ALG with j; being
the arm pulled and r; being its observed reward in trial t, respectively. For a given input parameter
B < 1, let M C A be any set of size S A chosen to be retained in memory by ALG after observing
the execution history S,. If E[o] < 6?% for some € > 0, then the event

, with mean rewards generated

€= (1 Mand (1| 87,1 ¢ M) > log((1 = )A) — 1o

occurs with probability at least 1 — log(1 4+ 3) — v — 3¢ over the samples seen by the algorithm.

A formal proof of this lemma is given in Appendix B, and its statement can be interpreted as follows
— given a set of instances where the special arm and its mean reward are sampled from a y-nearly
uniform distribution, then no algorithm can hope to trap this special arm in a small subset (its
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memory) after a period of insufficient exploration with any considerable probability. Moreover,
in the event that this arm is discarded, nothing meaningful is learned either as this special arm is
nearly-equally likely to be any of the discarded arms, and its mean reward is nearly-equally likely to
be either low or high. Thus, the entropy of the identity of the special arm as well as its mean reward
remains large in the posterior distribution over the discarded arms induced by the samples observed
by the algorithm. This observation will be important to show that in the event that the arm i ; with
the largest potential reward realizes to have a low value, the algorithm still faces a hard distribution
consisting of B layers while having depleted one of its passes. We will now “stitch” together these
(B + 1) layer-wise hard distributions into a hard distribution over all K arms.

b
Distribution D,{ijg}J =': Given a set of arms K of size K = |K|, an integer B € N, and a set of

(b+1) < (B + 1) joint distributions {; }3’2 where each 1); is supported over A; x {0, 1} with

{A; };’ﬂ being a contiguous and sequential partition of /C into sets of equal size K /(b + 1).
* For j € [b+ 1], define

_2B_0i71
T 2B+l

Aj=—

* For j € [b+ 1], sample mean reward parameters {i; }ic 4, according to Djj Vi,
* Define

‘W”ti_ AN Ao ) Apt1,¥p+1
Dy’ =Dy @ Dy? 2®"'®DA,,L +

* Return the arms & with the reward distribution of arm 7 € K being Bernoulli B(y;).

In the above distribution, one should think of B as an input parameter that corresponds to the number
of passes allowed to the algorithm at the start, and b as the remaining number of passes at some
intermediate step. We define our distribution for any b < B as we need to show that the residual
distribution over the instance remains ‘hard’ at every intermediate step in the algorithm. Hence, if
there are b passes remaining, the algorithm still faces a (b + 1)-layered ‘hard’ residual instance.

Armed with this hard distribution, we are now ready to prove the lower bound as follows. Let there

be b passes remaining at an intermediate step in the algorithm, and let the distribution of rewards

b+l
be according to D,{Cw];}] =! such that the special arm in each of the b + 1 layers is nearly uniformly

distributed. The algorithm is presented with each layer one by one in the stream. We divide the
execution of the algorithm into b + 1 epochs where the j-th epoch begins when the first arm in layer
7 is read into memory and ends right before the first arm from layer 5 + 1 is read into memory.

Let a = 28 /(2B+1 — 1), and let the available memory be 3K /(b + 1) for an appropriately chosen
B € (0, 1]. Since the number of arms in each layer is K /(b + 1), the algorithm needs to discard at
least (1 — [3) fraction of the arms from each layer. Now suppose for any of the first j € [b] epochs,
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the algorithm actually collects at least €2/ AJQ- (for some small €) samples in that epoch, then we
are already done as the algorithm will suffer Q(e2Ay 41/ AJQ) = Q(T?) regret if the reward of iy
realizes to its high value, the odds of which are nearly half. On the other hand, if the algorithm
does not explore enough in every epoch, then for sufficiently small /3, €, the bad event described in
Lemma 3 will occur for all of the initial b epochs with constant probability. As a result, the posterior
reward distributions over the (1 — /) fraction of arms discarded from every layer will provably
remain hard (as per our definition of a hard instance for a layer). Therefore, if the reward of i;_
realizes to its low value, the odds of which are nearly half, the algorithm now faces a hard distribution
with b layers over b — 1 passes, at which point we will appeal to induction to show that the regret of
this algorithm in this case must also be large. This idea is formalized in the following lemma.

Lemmad4 Let K,T,B,b € Ny be any set of parameters such that K < T, and 1 < b <
B < loglogT. Let {Aj}b-+1 be a contiguous partition of arms K such that for each j € [b+ 1],

7j=1
|Aj| = A = K/(b+ 1). Furthermore, let {1); };’S be any set of distributions such that each
1 is ~y-nearly uniform (see Definition 2) for 0 < ~ < 1/(32b). Given a stream of arms K with
{¥;}51]

mean rewards sampled according to Dy g ', the expected regret Rt of any b-pass deterministic

algorithm that uses at most M = K (8b(b + 1) log €) ~! words of memory is bounded as

B
E[Rr] > Q <4sz331—1> .

The proof of our main result in Theorem 1 now follows easily from the above lemma by setting
b = B. Note that even though the condition B < loglog 7" is not required in the proof of the above
lemma, our lower bound becomes vacuous once B > loglog T as it becomes smaller than /7.

Proof (Sketch) We will prove this lemma using induction on the number of passes b. Let us consider
a modified setting where the algorithm is allowed additional power: in every epoch, which begins
when the first arm of that epoch is read into memory and ends right before the first arm of the next
epoch is read into memory, the algorithm is allowed to store all arms of that epoch in memory.
However, the algorithm may retain in memory at most (w.l.0.g, we can assume exactly) a /3 fraction
of the arms from that epoch (in addition to the arms stored from previous epochs). This cannot hurt
the regret as we are only allowing more memory, which can always be ignored.

Base Case (b = 1). Let € be some small constant, and let o be the number of trials in the first epoch.
Case 1. [E[o] > ¢2/(6A%)], with the expectation taken over the observations made by the algorithm.

In this case, observe that the entropy of the random variable H(Y2) > H(Y3|lz) > log2 — 7.
Therefore, Y is distributed as a Bernoulli B(p) with parameter p such that [p— 3| < 1/51n(4)7/16 =
\/(51n4)/2/16, which follows from Lemma 7 (See Appendix A) and the fact that v < 1/32.
Therefore, we have that the mean reward of 75 will realize to its high value with constant probability,
which gives us that

E[R7] > Q(AT?A) > Q(TY).
Case 2. [E[o] < €2/(6A2)].

Let S, be the outcomes observed by the algorithm over the arms sampled in epoch 1. Then by
Lemma 3, we have that after observing the outcomes S,, with constant probability, the best arm 7]
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will be discarded by the algorithm (i.e. |; ¢ M where M is the set of arms from epoch 1 that are
retained in memory by the algorithm), and the entropy of the posterior distribution

Y+ €
1—(log(1+p8)+~v+e¢)

where c is a small constant. Furthermore, due to the fact that E(c) < €2/(6A2), a simple Markov’s
argument implies that the actual number of trials ¢ < 1/A?2 = o(T) in epoch 1 with probability
at least 1 — €2 /6, which is a large constant for a sufficiently small e. Therefore, there are at least
T —1/A1 =T — o(T) = Q(T) trials left in epoch 2. In this case, the algorithm will suffer a large
regret when the best arm 4] in epoch 1 has a large mean reward, i.e. Y realizes to have value 1, and
the best arm ¢5 in epoch 2 realizes to have a low reward, i.e. Y3 realizes to have value 0.

H(Y1[Sy, 1l ¢ M) > log2 —

>log2 —c,

Observe that in the posterior distribution of the rewards of arms in epoch 1, the entropy in the reward
of the best arm in the first epoch H(Y1|S,, I ¢ M) > H(Y1|S,, 11,11 ¢ M) > log 2— c. Therefore,
by Lemma 7, the posterior distribution of Y is Bernoulli with parameter p > 1/2 — /(5cIn4)/16,
which is a constant bounded away from 0. This implies that the best arm in the first epoch had realized
a high mean reward with constant probability. Similarly, we have that in the prior distribution of the
rewards of arms in epoch 2, the reward of the best arm in the second epoch H(Y2) > H(Y2ll2) >
log 2 — ~, and therefore, we have that the distribution of Yy is Bernoulli with parameter p such that
lp— 3| < /5In(4)7/16 = /(51n4)/2/16. Therefore, the best arm in the second epoch realizes
to have low reward with constant probability. This gives us that

E[Rr] > Q(T - o(T)A1) = Q(T°).

Therefore, the expected regret is 2(7'%) in both cases, which proves the base case.

Induction Step: Let us assume our claim holds for any number of passes up to b — 1, then we will
show it also holds for b passes. Suppose for the sake of contradiction that the claim is not true for b,

i.e. there exists a b-pass algorithm ALG with memory at most K (8b(b + 1) log e) ™! whose expected
. e Ui _

regret over instances drawn from the distribution D,{C ];}3_1 is o (T*47?).

The general outline will be to show that if the algorithm ends any epoch after performing sufficient
exploration, then it will incur a large regret in the case that arm 7, realizes to a large mean reward,
whereas if the algorithm ends all epochs with insufficient exploration, then the algorithm will not
just discard all special arms, but also the instance induced over the discarded arms will remain hard.
Supposing the algorithm achieves low expected regret over this instance in b — 1 passes, it would
contradict our induction hypothesis.

Let € = ¢./b? for some sufficiently small constant c.. For any epoch j € [b+ 1], let ¢; be the trial
when epoch j begins, let 7; := {t;,t; +1,--- ,t;41 — 1} be the trials that belong to epoch j, and
let o; = |7;| denote the number of trials in epoch j. Lastly, let S5, = Uizl{(it, ) hieT,. be the
sequence of observations defining the execution history of the algorithm until the end of epoch j
with 4; being the arm pulled and r; being the reward realized in trial ¢, respectively.

Case 1. [E(aj) > €2/ (GA?) for some j € [b]|, where the expectation is over the realization of re-
wards until epoch j.

In this case, observe that the entropy of the random variable H(Y 1) > H(Ypi1|lpr1) > log2 — 7.
Therefore, by Lemma 7, we have that Y3 1 is distributed as a Bernoulli with parameter p such that

10
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lp— 3| < /5In(4)y/16 < 1/4 — 1/6 — c/b>. The latter inequality follows from the fact that
v < 1/(32b) with ¢ being some small constant for b > 2. Therefore, we have that the mean reward
of 43, will realize to its high value with constant probability, which gives us that

E(Rr(ALG)) > Q(L;jApi1) = QEAT? - Apyr) = AT DY),
contradicting our assumption that ALG had an expected regret of 0o(4~°T?).
Case 2. [E(aj) < /(6A2) forall j € [b]} .

In this case, we will leverage Lemma 3 to show that ALG would not just discard the best arms from all
epochs, but also the conditional distributions (conditioned on the observations seen by the algorithm)
of the identities of the best arms |;, and their rewards Y;|l; would remain essentially uniform over
the arms discarded from memory in their corresponding epochs.

Consider any epoch j € [b]. Given the execution history S, , let M; C A; be the set of arms from
epoch j that were retained in memory, and let R; = A; \ M, be the set of |R ;| = R arms that were
rejected after epoch j. Then by Lemma 3, with high probability, the entropy of the posteriors

v+e
1—(log(1+8)+~v+e¢)

H(1|S5;,1j € Rj) = H(Ij|So;,1; & M;) = log R — 2 log R~ o

=)

where the final inequality follows by a sufficiently small choice of the constant c.. Similarly,

At this point, we further argue that this supposed low regret algorithm ALG cannot spend too
many trials on the first b epochs prior to processing the (b 4 1)** epoch with a large probability.
Since we have that (3 ;¢ 95) < X5 E(0) < X e Li = € 2 ey (6A7) ", by Markov’s
inequality, it must be that Pr(}_;cq 05 = 35 A;Q) < €2/6 < c2/(6b*). We define this event
Eo = (jep 95 < 2jep Aj_z) that the actual number of trials spent by the algorithm in the first b

epochs is small, and the above argument gives us that Pr(=&y) < c2/(6b*). Now for every j € [b],
let us define the event

1
32(b— 1)

1
and H(Y; | S5, 15,1 € R;) > log 2 — m> .

& = (Ij € Ry and H(l; | S,,,1; € R;) > log R —

Using Lemma 3, we have that Pr(=&;) < log (1 + ) + v + 3¢ < 1/(6b), which follows by a
sufficiently small choice of the constant c.. Let us also define the event &1 = { g, =1 /2},
where the mean reward of the best arm in epoch b + 1 realizes to a low value. Since we have that
H(Ypt1) > H(Ypt1|lp41) > log2 — ~, following an identical calculation as Case 1, we have that
Y41 is distributed as a Bernoulli B(p) with parameter p such that [p — 1/2| < 1/4 —1/6 — ¢/b3
where c is some absolute constant. Therefore, we have that Pr(=&41) < 1/2 + (1/4 — 1/6 — ¢/b%).

11
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Therefore, by a union bound over all these (b+2) events, we have Pr(£oNjepy11E5) > 1—Pr(=&) —
> jepin Pr(=€j) = 1—¢2/(6b%) — (1/2 4 (1/4 = 1/6 — ¢/b)) — b/(6b) > 1/4 by choosing a
sufficiently small ¢, < v/6bc. We define this to be event £ := (Eo Njecpp41) £5)-

Lastly, we argue that under event &£, the algorithm must necessarily spend o(7') trials in the last
epoch b + 1. This is because under event £, yj,; = 1/2, and furthermore, in the posterior
distribution of the reward of the best arm p; of the bt epoch in the rejected set Ry is at least
H(Y|So,, Iy & Mp) > H(Y4|Se,, b, I & Mp) > log2 —1/(32(b — 1)). Therefore, by Lemma 7,
the posterior distribution of Y}, is Bernoulli with parameter p > 1/2 — 1/8, which is the probability
with which the rejected best arm in the b** epoch actually had a large reward. Therefore, if the

algorithm spends Q(7) trials in the (b + 1) epoch, then the expected regret of the algorithm
E[Rr(ALG)] > Pr(€) E[Rr(ALG)|E] > QUT) - Ap = Q(T7),

contradicting our assumption about the expected regret achieved by the algorithm. Therefore,

under event £, we have that the total number of trials spent by the algorithm in the first pass is
J_1

2
> jept11 05 = o(T) + 2 e T = o(T'), implying the number of trials 7" leftover is
T — o(T'). Moreover, there are only b — 1 passes left.

Now we shall use our assumption about the expected regret achievable by our algorithm to show that
in order to achieve low expected regret overall, it must necessarily achieve low expected regret in
the remaining passes too. Let E[R7_(ALG)] denote the cumulative regret of the algorithm over the
remaining b — 1 passes. Therefore, we have

E[Rr(ALG)] > E[Ry (ALG) | €] - Pr(€) = i "E[Rr_(ALG) | £].

Therefore, E[Ry_(ALG) | €] < 4E[Ry(ALG)] = 0 (4-T%-47%) = o (T -4~=1)). We shall
use this fact to set up a contradiction to our induction hypothesis, which says that any (b — 1)-pass
algorithm with small memory must incur large regret. We begin by setting up the hard distribution.

In our new instance, we begin by discarding the arms .4, as under event &£, the mean reward of the
best arm (and hence all arms) in this epoch (b + 1) has realized to a low value. Our new instance
consists of all the rejected arms R ; for j € [b], the first b epochs. We refer to these set of arms as
K" = Ujep R, whose size is exactly |[K'| = K" =3,y (1 = B)K/(b+1) = (1 — B)bK/(b+1).

We claim that the posterior distributions over |;,Y; in R; for j € [b] give us a hard distribution over
arms K’ for any (b — 1) pass algorithm. For j € [b], let ¢; be the joint distribution dist((l;,Y;) | I; €

1o
R ;). Its easy to verify that D,{qu];] ~! is a hard distribution for any (b— 1) pass algorithm: the partitions

{R;} of K’ are all of equal size |KC’| /b, and for any j € [b], random variables (I i, Yj) ~ ¢j satisfy the
high entropy conditions H(l;) > log R —~_, and H(Y|l;) > log 2 —~_, where v_ < 1/(32(b—1))
(as indicated by event £). Furthermore, the memory budget M’ for a (b — 1) pass algorithm for this
instance is

K’ (1—3)bK 1 K

M = . = =M
8h(b—1)loge T +1 8h(b—1)loge 8b(b+ 1)loge ’

which is in fact larger than the memory used by ALG. We shall show that we can use ALG in the
subsequent b — 1 passes under event £ to construct a (b — 1)-pass algorithm ALG,_; that uses

12
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memory at most M’ that over a time horizon of length 7' — o(T'), achieves regret o(T® - 4~ (=) in
b

expectation over Dgf;j =!, contradicting our induction hypothesis.

Let ALG_ denote the algorithm ALG for the remaining b — 1 passes when event £ occurs, then
ALGyp- is constructed as follows: if ALG_ pulls an arm in Uy supp(¢;), ALGp—; pulls the corre-
sponding arm in K’ and returns the realized reward of the arm to ALG_; otherwise, ALGp_1 simply
samples from 5(1/2) and returns the result to ALG_. It is trivially true that E[Rr (ALGp_1)] <
E[Rr_(ALG_) | £]. This is because, given event £, any other arm than the arms in U, supp(¢;)
is distributed as B(1/2). Hence, ALGy_1 is a (b — 1)-pass algorithm with memory at most
K'(8b(b— 1) log e)~! that achieves regret o(T - 4~ (*=1)) over a time horizon T — o(T'), which is a
contradiction! This completes the proof of our lower bound.

In the following section, we present our algorithmic results for this problem. Specifically, we design
B

~ 2
an algorithm that achieves a regret of O <T 2BH-1\/ K B) in B passes given even just constant arm

memory. Furthermore, our algorithm is able to achieve this regret, not just in expectation, but also
with any polynomially high probability. This regret guarantee nearly matches the above lower bound,
proving our above lower bound is nearly tight.

4. Limited Memory Multi-Pass Algorithms for Streaming Bandits

In this section, we present our worst-case and instance-dependent regret upper bounds for limited
memory multi-pass streaming bandits. The following theorem characterizes our algorithmic results.

Theorem 5 (B-Pass Upper Bound) Given a time horizon T, a stream of K arms, and number of
passes 1 < B < loglogT, there exists a B-pass algorithm that uses O(1) words of memory, and
with probability 1 — 1/poly(T"), achieves cumulative regret

2B
Rpr <O <T23+11 VEB logT) .

Furthermore, supposing the arms IC had mean rewards {u;‘ }iek, then given number of passes
1 < B < logT, there exists a B-pass algorithm that uses O(1) words of memory, and with
probability 1 — 1/poly(T), achieves a cumulative regret

TY B+ 1og T + Blog ((A;)2T/ log T)
RT S O Z A* )
J

JjES

where S C K is the set of strictly sub-optimal arms in IC, and for any sub-optimal arm j € S,
A;‘- = maxyex) K — [ is the regret due to playing arm j.

Note that no assumptions are made about the stream order, and that these regret guarantees hold even
when the order of arms is allowed to change (potentially adversarially) across rounds.

13
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In the constant pass regime, the worst-case regret achievable matches our lower bound up to just a
V'K log T factor, implying our results are essentially tight for this regime. Our result further implies
one can achieve a worst-case regret of O(y/KT logT - loglogT) in just log log T' passes over the
stream, which matches the optimal regret achievable by even an unbounded memory algorithm
up to a v/logT'loglog T factor. With regards to instance-dependent regret, the picture is slightly
different where we need log 1" passes (though still sublinear) over the stream to achieve regret
00> S(Aj)*1 log? T'), which matches the instance-optimal regret achievable by an unbounded
memory algorithm up to a log T factor.

Moreover, observe that our upper bound has no dependence on the available memory; the afore-
mentioned regret guarantees can be achieved with even just constant memory. This effectively
demonstrates a sharp threshold in the regret-memory tradeoff. In order to achieve near-optimal
regret, one necessarily needs either linear memory, or a superconstant number of passes. Moreover,
for any fixed number of passes B, there is no asymptotic difference between having O(1) memory vs
allowing a much larger O(K/B?) memory for minimizing regret. In the interest of space, we defer
the algorithm description and its analysis to the Appendix, and can be found in section D.

5. Discussion and Conclusion

We studied the stochastic K -armed bandits problem in a limited memory, multi-pass streaming
setting, where we study the interplay between the available memory M, the number of passes B, and
the regret Ry over a time horizon 7. We showed that any B-pass algorithm with memory o( K/ B?)

1, 1
must necessarily incur {2 <4_B T2+2B+272) regret in expectation. Moreover, we showed that it

is possible to achieve 6(T A VKB ) regret with any polynomially large probability given
B passes and just O(1) memory. These results uncover a surprising phenomenon: increasing the
memory beyond O(1) memory to any quantity that is o( K/ B?) has almost no effect on reducing the
expected worst-case regret.

Our work highlights some interesting directions for future work. First, while our results are essentially
tight for constant-pass algorithms, there is a gap of 1/27 between our upper and lower bound on the
regret when B is a superconstant. Second, it might also be worth exploring the regret landscape in
the memory range of (K /B?) to K — 1, for superconstant B. Finally, what is the best instance-
dependent regret one can achieve in this limited-memory multi-pass streaming setting? Our work
establishes an instance-dependent regret upper bound of O((TY/(B+1) 4 B) Y ics 1/AY), but leaves
open the question of a matching lower bound.
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Appendix A. Information-Theoretic Preliminaries

In this section, we record some basic facts about entropy and mutual information that are used in
in this paper. The proofs can be found in Cover and Thomas (2006), Chapter 2. We also prove
two crucial lemmas in this section, the first which highlights the difficulty of narrowing down the
realization of a high entropy random variable to a small set of possibilities, and the second which
bounds the parameter of a high entropy Bernoulli random variable.

Fact1 Let A, B, and C be three (possibly correlated) random variables.

1. 0 <H(A) <logl|A

, and H(A) = log |A| iff A is uniformly distributed over its support.
2. I(A;B | C) > 0. The equality holds iff A and B are independent conditioned on C.

3. Conditioning can only drop the entropy: H(A | B,C) < H(A | B). The equality holds iff
ALCI|B

4. Chain rule of mutual information: 1(A,B;C) =I(A;C) +1(B;C | A).

For two distributions ¢ and 1 over the same probability space, the Kullback-Leibler divergence

between ¢ and ¢ is defined as D(¢ || ¢) := Eavg {log gzgﬁﬂ. For our proofs, we need the

following relation between mutual information and KL-divergence.

Fact 2 For random variables A, B, C,

I(A;B = E D(dist(A | C = ist(A | B = = .
(A:BIQ) = E - [DlisA]C=c)|ldisA|B=bC=c)

The following fact can be proven by bounding the KL-divergence by x?-distance (see, e.g., Gibbs
and Su (2002), Theorem 5).

Fact 3 For any two parameters 0 < p,q < 1,

(p—q)?
D(B(p) || B(a) <~
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The following lemma outlines the difficulty in narrowing down the realization of a high-entropy
random variable to a small number of possibilities.

Lemma 6 Let A be a random variable supported over a set of size A with entropy H(A) > log A—~
for some ~y > 0. Then for any set S of size |S| = BA for any B < 1, we have

Pr(Ae S) <log(1+p3)+~.

Proof Suppose for the sake of contradiction, there exists a set S of size |S| = SA for some 3 < 1
such that Pr(A € S) = 3>, gPr(A = i) = 4/ > log(1 + ) + 7. Let p; = Pr(A = 4). Then we
have that:

1
H(A) =) pilog o

€A
1 1
=Sl + s
icS pi ¢S pi
/ Di 1 / Di 1
=7 Slog—+(1-9)) ———~log—
per R s =) T
(@) pi 1 Di 1
gvflog<z,->+<1—wog(z )
per G s =) pi
BA (1-8)A
! !
=vlog— 4+ (1 —7)log —+
v T ) 1=+

/
1—
=1ogA—7’—'/log;5+(1—7’)10g1_5,,

F(")

where equation (a) follows by the Jensen’s inequality, as the two summations are expectations over
the concave log function over the set S and the set supp(A) \ S, respectively. One can verify that the
function f(+') is concave, and is maximized at v’ = 23/(1 4 () achieving a value of log(1 + ).
Therefore, we have that —' + f(7') < —+'+max. f(7') < —v by choice of 7/ > log(1+ )+,
giving us

H(A) < log A — 7,

contradicting our initial assumption about the entropy of A. |

Lastly, following lemma bounds the parameter of a high entropy Bernoulli random variable.

Lemma 7 Given a Bernoulli random variable Y ~ B(p) with entropy H(Y) > 1 — v for any
v < 1/4, then we have that
5yIn4

16

b

.y
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Proof Suppose for the sake of contradiction, there exists a parameter p := 1/2 4+ A such that
A >/ 571114 ,and for Y ~ B(p), the entropy H(Y) > 1 — +. Then we have

H(Y) < (4p(1 —p))"/™*
= (4(1/2 = A)(1/2+ A))H/
( 4A2)1/ln4
<ex (4A2/ln4)
< exp(—57/4)
<1—7,

where the final inequality follows by the fact that v < 1/4, and thus 2572 /32 < /4. This contradicts
the assumption that H(Y) > 1 — . [

Appendix B. Proof of Lemma 3

In this section, we shall prove Lemma 3, which is restated here for convenience.

Lemma 3 Let T be the time horizon. Given any set of arms A of size |A| = A, let D} Y be the MAB
distribution over instances defined in 3.1. Let (1,Y) ~ 1), where | represents the random variable for
the index of arm i* € A, and Y represents the random variable that controls the mean reward p; of
the best arm. Furthermore, let these be high-entropy random variables such that H(l) > log A — v
and H(Y|l) > log2 — ~ for some parameter v > 0. Let ALG be any deterministic multi-armed
bandit algorithm that adaptively pulls arms in A. Let o € [T'] be the randomly chosen stopping time
of the algorithm and S, = (ji,r+)]_, be history of execution of ALG with j; being the arm pulled
and T, being its observed reward in trial t, respectively. For a given input parameter 5 < 1, let
M C A be any set of size BA chosen to be retained in memory by ALG after observing the execution

history S,. If E[o] < 6A22 for some € > 0, then the event
= (1¢ Mand H(1| S,,1 ¢ M) > log((1 — £)A) - Tte
- 1—-log(l+p8)—v—c¢
v+e
H(Y | S, 1,1 > log2 — ,
and FI(Y | S ¢ M) 2 log 1—log(l+pB)— —e)

occurs with probability at least 1 — log(1 + ) — v — 3¢ over the realizations of the arms sampled
by the algorithm.

Proof Let L = Js be the random variable for arm j; pulled in trial s, and Rg be the random

6A2 ’
variable for the reward 75 observed in trial s, for s € [o]. For ease of calculation, we will expand the
execution history beyond its stopping time ¢ and let J, = 0 and Ry = % forse{o+1,---,T}

Finally for any trial ¢ € [T, let S; := {(Js, Rs)} e[ be the sequence of random variable defining
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the execution history of the algorithm up until trial ¢, and let S; be the realization of this sequence up
until trial ¢.

We will begin by showing that in the event of insufficient exploration (i.e. when the algorithm stops
quickly), little is learned about the identity of the best arm. In other words, the mutual information
between the random variables | and St is small. Using the chain rule for mutual information, we
have

T
I(13S7) = T(15J4]Si—1) + (15 Re|Sy—1, Jr)

t=1
T

= Z 0+ I(1; R¢|S¢—1, J¢) (J; is deterministic given S;_1)
t=1
T

=3 Y D Pe(Sia =81, =) I RSe 1 = S, e = ). (1)
t=1 jeAS; 1

Using Fact 2, we have

I(15Re|St—1 = Sp—1,de = j) = (,*E) [D(dist(R¢ | S¢—1 = Sg—1,J¢ = 7) || dist(R | | =4%,S¢-1 = Sp—1,J¢ = 7))]

1Y)~

We will now prove that the average KL-divergence between the reward distributions for a single pull
of an arm under different realizations of instances sampled from our hard distribution Dj’w is small.
Therefore, a single pull of any arm can only provide limited information about the random variables
of interest, and therefore, the total information that can be gathered from a small number of pulls is
also small.

Claim 1 For any arms i*,j € A, trial t € [T, and any realization S;_1 of the execution history up
until trial t, we have that
D(dist(Rt | St,1 = Stfl,.]t = j) || diSt(Rt | | = ’L'*,St,1 = Stfl,Jt = j)) < 6A2 .

Proof Letp = PI‘(| = ] | Stfl = Stfl,.]t = ]), and letq = PI‘(Y =1 ’ | = j, Stfl = St717-]t =
J)-
In the case where i* = j, it is easy to observe that dist(R; | S;—1 = S;—1,Jr = ) = B(% + pgA).
Moreover, we also have that dist(R; | | = i*,S;—1 = S;—1,J; = j) = B(5 + ¢A). We then have that

. . . - ) 1 1
D(dist(Ry | St—1 = Si—1,Jde = j) || dist(Ry | | =i*,S4—1 = Si—1,J1 = 7)) =D <B <2 +qu> || B (2 + qA))

(3 +pgA — 1 —qA)?

T (3+ad)(1-35-qd)
¢*(1 — p)?A?
— %—qQAQ

201 _ \2A2
16620 - pPA?
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where the first inequality above follows from Fact 3, and the final inequality follows due to A < 1/4.

In the case where i* # j, we have that dist(R; | Sy—1 = S¢—1,Jr = j) = B(% + pgA). However,

dist(Ry | 1 =4*,S4-1 = S;—1,J1 = j) = B(3). Using the same argument as above

. . . . , 1 1

]D)(dlSt(Rt | St—l == St—l’-]t = ]) || dlSt(Rt | |l =1 ,St_l == St_l,.]t == j)) =D (B <2 —f—qu) || B <2)>
_ G+paA—3)
T (0-9)
< 4N?.

Using Eq. (1) and Claim 1 we have that

T
I(:S7) < D 0D D Pr(Si1 =81, )i = j) - 6A7

t=1jeAS; 1

Z Pr(J ) - 6A2

1jeA

MH IIMH

Pr(J; #0) - 6A?

“
I
—

[0] - 6A2
C6AZ = €2,

IA
hﬁ

This implies that that the conditional entropy of | given S is at least

H(1| Sp) = H(1) = I(1;Sr) = H(I) —

We shall use an analogous argument to bound the mutual information between Y and St conditioned
on |. Using the chain rule for mutual information, we have

T
I0Y S [1) =D I(Y536/Se—1, 1) + I(Y s RelSe—1, Jp, 1)

~
Il
i

0+ I(Y;R¢|S¢—1, s, 1) (J¢ is deterministic given S;_1)
t

=33 D D Pre(Si =81, di =4, =) - I(Y ;R[S = Spo, dp = 4,1 = 4)

t=1i1€cAjeEAS—1
()

1

I
S TM)=

We now calculate an upper bound on I(Y ; R;|S;—1 = Si—1,J: = j,| = 7). Using Fact 2, we have
H(Y; Rt|St—1 =81, =j,1= Z)
= @Iz[jzfl [D(dist(Ry | Si—1 = Se—1,de = 4,1 =0) || dist(Ry | Y = 4,5¢—1 = Si—1, e = 4,1 =1, Y = y))]
y~p|l=1
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We now have an analogous claim, bounding the KL-divergence between the reward profiles of a
single pull of an arm.

Claim 2 Foranyarmsi,j € A y € {0,1}, trial t € [T, and any realization S;_ of the execution
history up until trial t, we have that

D(dist(Rt | St—l = St—I,Jt = j,' = Z) H diSt(Rt | Y = y,St_l = St—la-]t = j,' = Z,Y = y)) < 6A2 .

Proof We begin with the simple case, when i £ j. In this case, it is easy to observe that for any
realization of Y, both the reward distributions will be 5(1/2), due to which the KL Divergence will
be 0. In the case that i = j,letq =Pr(Y =1 | Si—1 = Si—1, e = J, 1 = 0).

We will first prove this bound in the case that y = 1. It easy to observe that dist(R; | Si—1 =
Si—1,dt = j,1 = i) = B(1/2 + gqA). Moreover, we also have that dist(R; | S;—1 = S;—1,J: =
J,1=14,Y =y) =B(1/2 + A). We then have that

D(dist(Rt | S 1 =81, =7,1= Z) H diSt(Rt ‘ Y=1,5_1=8_1,r=41=4iY= y))
=D(B(1/2+4qA) || B(1/2+ A))
- (3 +qA—1-A)?
EECREAVCENAY

1 —q)2A2
S(1 Q)N
I
N2 A2
S16(1 3q)A <6A2,

where the first inequality above follows from Fact 3, and the final inequality follows due to A < 1/4.

In the case that y = 0, we again have dist(R; | S¢—1 = Si—1,J¢r = 4,1 = 1) = B(1/2 + ¢A).
However, dist(R; | Si—1 = Si—1,J: = 4,1 = 4,Y = y) = B(1/2). Using the same argument as
above

D(dist(Ry | Sty = Si—1,Je = j, 1 =) || dist(Ry | Y = 1,501 = Se1, Je = 4,1 =4, Y = 1))
=D(B(1/2+qA) || B(1/2))
(3 +9A - 5)°
G EE))
< 4A? .
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Using Eq. (2) and Claim 2 we have that

I(Y 5 Sz[l) SZZZZPr (St-1=81-1,di = j,1 = i) - 6A

1ieAjeAS 1

Z Pr(J ) - 6A2

1jeA

!

I
Mﬂ HMH i

Pr(J; #0) - 64
1
[0] - 6A2

C6A% = 2.

-+
I

IA
hﬁ

As before, we use this upper bound on the mutual information between Y and St given | to lower
bound the conditional entropy of Y given St and | as

H(Y | Sr.1) = H(Y | 1) — (Y Sq | 1) > EI(Y [ 1) -

These bounds demonstrate that in expectation, the entropies of the posterior distributions of | and Y|l
given the samples drawn by the algorithm will remain large if the algorithm does not draw sufficiently
many samples. We shall further show that this must necessarily be the case, not just in expectation,
but also with high probability.

Consider any realization St for S7. We say that the realized outcome profile St is e-uninformative
iff both, H(I | Sz = Sr) > H(l) — ¢, and H(Y | I,S7 = Sr) > H(Y | |) — e. Roughly speaking,
whenever the outcome profile St is e-uninformative, the algorithm is quite “uncertain” about both,
the identity of ¢*, as well as its reward p;~ (controlled through the variable y) and hence needs to
estimate both among a large pool of possibilities in a later pass. To show that a realized outcome
profile S will be e-uninformative with high probability, let C; := H(l) — H(I | Sz). By Markov’s
inequality, we have that

Es, [H(l) — H(l | Sz = S7)]
Cr/e
(H() —H( | Sr))

Cr/e
(by the choice of Cr = H(I) — H(I | St))

5 (H(I) —H(l| S7 = Sr) > Cr/e) <

Following an identical calculation with Cy := H(Y | 1) — H(Y | I, Sy), we have

Pr(H(Y | ) ~H(Y |I,Sr =Sr) 2 Cy/e) < e
T
Since both, Cr, Cy < €2, we have with probability at least 1 — 2¢ over realizations St of St,
Cr
H(l)—H(| | ST:ST) < — <€ = H(l ’ ST:ST) ZlogA—’y—e, (3)
€
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as well as
C
HY | 1) —H(Y [ 1,Sr =87) < —X <e = H(Y |1,Sp =87) >log2—y—€. (4)
€
Henceforth, we shall use Sy; to refer to an e-uninformative realization of S.

Now fix any e-uninformative realization S,i. Let M C A be the set of arms of size |M| = A
chosen to be retained by the algorithm given its execution history Sy;. and let R = A\ M denote
the remaining set of rejected arms. Using Lemma 6 we can argue that

Pr(l e M |Sp = Sy) <log(1+ B)+y1+e = Pr(l € R | Sy = Sy) > 1-log (1 + B)—7yr—¢.

)
We will finally prove that in the event that the sequence of rewards observed by the algorithm was
uninformative, and the algorithm actually did end up discarding the best arm from its memory, then
the entropy of the identity of the best arm remains large amongst the arms the algorithm chose to
reject at its stopping time.

Claim 3 For any e-uninformative realization Sy, we have

H(l | Sy = Sui, | ¢ M) > log((1 — B)A) — Yy +e€

1-log(l+8)—v—c¢€’

Proof Suppose, for the sake of contradiction, that the above inequality is not true. Let X be an
indicator random variable which is 1 when | ¢ M, and 0 otherwise. Furthermore, let p = Pr(X =
1St = Su) = Pr(l ¢ M | St = Sui). Then we have that
H(l | Sp = Sui) < H(l, X | S = Sui)
b
Y H(X | S = Su) +H(I | X,S1 = Su)

1 1
p<H Sp = SuX = 1) +log - ) +(-p) (H(I | stsui,x:o>+1og1_p)

() vy +e 1 1
<p<log (1-p _1—log(1+6)—'y—e+10gp>+(1_p)<10g(6A)+10g1—
p(y +¢) 1-8 B

=log A — 1 1—-p)l

°8 1—10g(1+0z)—’y—6+p0g D * p)ogl
@ p(y+€) (1-8) B
< _ P —p) .=
< log4 1—log(1+a)—7—6+10g <p D +(1-p) 1—P>
<logA— v —c¢,

where (a) follows due to the fact that the joint entropy in (I, X) is at least the entropy in I, (b) follows
due to the chain rule for entropy, (c) follows by our assumption (for the sake of contradiction), (d)
follows by Jensen’s inequality, and the final inequality follows from bounding p through Equation 5.
This contradicts the bound achieved in Equation 3. |

We further argue a similar claim about the uncertainty in estimating the reward of the best arm in the
event that the sequence of rewards observed by the algorithm is uninformative, and the algorithm did
end up discarding the best arm from its memory.
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Claim 4 For any e-uninformative realization Sy, we have that

v+ €

HOY LS =S g M) 2 log2 = 30—

Proof Suppose, for the sake of contradiction, that the above inequality is not true. Let X be a random
variable that takes value 1 when | ¢ M, and 0 otherwise, and let p = Pr(X = 1 | Sy = Sy) =
Pr(l ¢ M | Sp = Syi). We have that

H(Y | 1,57 = Sui) < H(Y,X | 1,S7 = Su)
= H(Y | 1,S = S, X) + H(X | I, S7 = Sui)

“DHY 1,57 = Sui, X)

:pH(Y | I,Sp =84, X = 1) + (1 —p)H(Y | I,Spr =84, X = 0)
where (a) follows by observing that upon conditioning on the identity of the best arm I, as well as
the observed outcome profile S, the value of the random variable X (i.e. whether the best arm was

retained or discarded) is fixed, since the algorithm is deterministic. Therefore, H(X | I, Sp = Syi) =
0. We now have

H(Y | [,St :Sui) SpH(Y | I,Sp =84, X = 1)+ (1 —p)H(Y | I,Sp = Sui,X:O)
Y +e€

log 2 — 1—p)log2

<log2—v—e,

where the final inequality follows from bounding p through Equation 5, which contradicts the bound
achieved in Equation 4. |

We finally show that this outcome is not a rare event, but rather quite likely
Pr(l ¢ M) > 1—Pr(Sy is informative) —Pr(l € M | St is uninformative) > 1—log(1+3)—y—3e.

Appendix C. Proof of Lemma 4

In this section, we present the complete proof of Lemma 4 (restated here for convenience), which in
turn implies Theorem 1.

Lemmad4 Let K,T,B,b € Ny be any set of parameters such that T > K, and loglogT > B >
b > 1. Given these parameters, let IC be a set of |K| = K arms, and let { A; };’g be a partition of
KC such that for each j € [b+ 1], |Aj| = A = K/(b+ 1). Furthermore, let {1);}?=1 be any set of
Jjoint distributions, where for each j € [b+ 1|, distribution 1; supported over A; x {0, 1} satisfies

J=1
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the condition that the random variables |;,Y j ~ 1); drawn from the distribution have large entropy.
Specifically, their entropy is such that H(l;) > log A — v, and H(Y; | ;) > log2 — ~ for some
0 < < (32b)~L. Consider an instance over arms K with mean rewards {1;}icxc drawn according

vt , . I .
fo DI{C ]JB}J =1, then over a time horizon of length T, the regret R1(ALG) of any deterministic algorithm

ALG that uses at most M = K (8b(b + 1) log e)~! memory and at most b passes over the arms K
input to the algorithm as a stream is such that

2B
E[Rr(ALG)] > Q <T23+114_b>

Proof As described in our proof sketch, we will prove this lemma using induction on the number of
passes b, and consider a modified setting where the algorithm is allowed additional power: in every
epoch, which begins when the first arm of that epoch is read into memory and ends right before the
first arm of the next epoch is read into memory, the algorithm is allowed to store all arms of that
epoch in memory. However, the algorithm may retain in memory at most a /3 fraction of the arms
from that epoch in addition to the arms stored from previous epochs (w.l.o.g, we can assume the
algorithm retains exactly a 3 fraction of the arms as it can always choose to ignore the extra arms).
This cannot hurt the regret as we are only allowing more memory, which can always be ignored.
Formally, any algorithm that uses at most 3K /(B -+ 1) memory (where 3 = (8bloge)~!) in the
original setting can be used in this modified setting as it is allowed to use strictly more memory
for each epoch in the modified setting. Also, note that the algorithm incurs the same regret in both
settings. Hence, an optimal algorithm in this modified setting cannot incur more regret than an
optimal algorithm in the original setting. Let v = 25 /(2841 — 1),

Base Case (b = 1): Let e = 1/288, L = ¢2/(6A2), and o be the (random) length (number of trials)
of the first epoch.

Case 1. [E[o] > L], with the expectation taken over the observations made by the algorithm.

In this case, we claim that the algorithm will suffer an expected regret 2(LAs). To see this, observe
that H(Y2) > H(Y2|l2) > log2 — ~, which follows from Fact 1. Therefore, by Lemma 7, we
have that the random variable Y3 is distributed as a Bernoulli 5(p) with parameter p such that
lp— 3| < \/5In(4)y/16 = /(51n4)/2/16, which follows from the fact that v < 1/32. Therefore
we have that the best arm 75 will realize to have a large reward ji;; =1 /2 + Ag with probability at

least 1/2 — /(51n4)/2/16, giving us that the expected regret of the algorithm

E[Rr(ALG)] > (; - (5m4)/2> LA

16
(1 (5In4)/2\ & Ay
S\ 2 16 6 A?

2B+1_o 2B o
=0 <T23+11 . T2B+11) =0 (TO‘)

Case 2. [E[o] < L]
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Let S, be the outcomes observed by the algorithm over the arms sampled in epoch 1. Then by
Lemma 3, we have that after observing the outcomes S, the best arm ¢] will be discarded by the
algorithm (i.e. I; ¢ M where M is the set of arms from epoch 1 that are retained in memory by the
algorithm), and the entropy of the posterior distribution

v te
H(Y 87|7| M>10 2 —
(Y1[Ss, 11,11 ¢ M) > log 1—(log(1+p8)+~v+e¢)
=log2 — T
1— (log (1+ s1§ge) +’Y+6)
>log2 — 17+6
1- (S?Egee v+ 6)
10
=log2 — —
R YD

with probability at least 1 — (log (1 + ) — v — 3¢) > %. Furthermore, since we have that E(0) <
L = ¢2/(6A2), by Markov’s inequality, the actual number of trials o spent in epoch 1 will be at
most 1/A? = o(T) with probability at least 1 — €2/6 > 1 — 1075, There are least T — 1/A? =
T — o(T) = Q(T) trials left in epoch 2 with a very high constant probability. In this case, the
algorithm will suffer large regret when the best arm 7] in epoch 1 realizes to have a large reward
Pir = 1/2 4+ Ay, i.e. Y; realizes to have value 1, and the best arm 73 in epoch 2 realizes to have a
low reward of p1;5 = 1/2,i.e. Y2 realizes to have value 0.

Observe that in the posterior distribution of the rewards of arms in epoch 1, the entropy in the reward
of the best arm in the first epoch H(Y;|Sy, 11 ¢ M) > H(Y1|Ss, 11,11 ¢ M) > log2 — 10/242,
and therefore, by Lemma 7, the posterior distribution of Y; is Bernoulli with parameter p >
1/2 —+/(5-In4-10)/(242 - 16) = 1/2 — 5v/In4/44 (a constant bounded away from 0) which is
the probability with which the best arm in the first epoch actually had a large reward. Similarly,
we have that in the prior distribution of the rewards of arms in epoch 2, the reward of the best arm
in the second epoch H(Y2) > H(Y2l|l2) > log2 — ~, and therefore, we have that the distribution
of Yo is Bernoulli with parameter p < 1/2 + /(5-1n4)/(32-16) = 1/2 + /(51n4)/2/16.
Therefore, the best arm in the second epoch realizes to have low reward with probability at least
1/2 — /(5In4)/2/16 (a constant bounded away from 0). Therefore, we have that the expected
regret of the algorithm in this case

E[Rr(ALG)] > % . (; - 5\2?4) - (; - W) (1= 107%) - (T — o(T)) - Ay

2B 3

>0 (- om) T ) —or

Therefore, the expected regret is (7'“), which proves the base case.

Induction Step: Assuming the lemma is true for any number of passes up to b — 1, will show that it
also holds for b passes. Suppose for the sake of contradiction that the claim is not true for b, i.e. there

exists a b-pass algorithm ALG with memory at most K (8b(b + 1) loge) ! whose expected regret

b+l
over rewards drawn from the distribution D,{ng}Fl is o (Ta4_b).
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The general outline will again be to show that if the algorithm ends any epoch after performing
sufficient exploration, then it will incur large regret in the case that arm 45 ; realizes to a large mean
reward, contradicting the assumption that ALG has small regret. On the other hand, if the algorithm
ends all epochs with insufficient exploration, then the algorithm will not just discard all best arms,
but also the instance induced over the discarded arms will remain hard. Supposing the algorithm
achieves low expected regret over this instance in b — 1 passes, it would contradict our induction
hypothesis.

Consider any epoch j € [b]. Let vy = 1/(32b), € = 274/(9b), and L; := 62/(6AJ2). For any
epoch j € [b+ 1], let ¢; be the trial when epoch j begins, let 7; := {t;,¢t; +1,--- ,t;41 — 1} be
the trials that belong to epoch j, and let o; = |7;| denote the number of trials in epoch j. Lastly,
letS,, = Uf:l{(it, ) }teT. be the sequence of observations defining the execution history of the
algorithm until the end of epoch j with 4; being the arm pulled and r; being the reward realized in
trial ¢, respectively.

Case 1. [E(aj) > €2/ (6A?) for some j € [b]|, where the expectation is over realizations of the
rewards until epoch j.

In this case, observe that the expected regret of the algorithm is (L, - Ay 1) in the event where
the best arm in the final epoch (that has not been seen yet) realizes to have a large reward, i.e.
pip,, = % + Api1. By definition of the input instance and Fact 1, we have that H(Yy11) >
H(Yp41/lp+1) > log 2 — . Therefore, by Lemma 7, we have that Y is distributed as a Bernoulli
B(p) with parameter p such that [p — 1/2| < /(5vIn4)/16. Since v < 1/(32b), and b > 2, we
have \/5vIn4/16 < /(10b-11n4)/32 < 1/4 — 1/6 — 1/(20063) for b > 2. Therefore, we have
that pi;; = 1/2 4 Ay with probability at least 1/2 — (1/4 —1/6 — 1/(2006%)).

Therefore, the expected regret in the event that E[o;] > L, for some j € [b]

2BH1_oJ _2B_9b 2B 120 _oJ
E[R7(ALG)] > Q(LjApi1) =2 <T 2BFT 1 . 2BHT .62> =0 <T 2B+T_1 .62> = Q(To‘b_4),

which contradicts the assumption that the expected regret of the algorithm is o (Ta4_b).
Case 2. [E(aj) < &/(6A2) forall j € [b]}

In this case, we will leverage Lemma 3 to show that the algorithm will not be able to collect sufficient
information about 7 and it will suffer large regret in the remaining number of passes. Using Lemma 3
we will show that the conditional distribution for |; after epoch j will have high entropy. Let 7; C [T']
be the trials that belong to epoch j. Let Sy, = {(it,7¢) }te7; be the execution history of epoch j
with 7; being the arm pulled and r; being the reward realized in trial ¢, respectively. Given S,
let M; C A; be the set of |[M;| = BA = K/(8b(b + 1) log e) arms retained by the algorithm in
memory, and let R; = A; \ M, be the set of |[R;| = (1 — §)A = R arms that were rejected after
epoch j. Lety_ = 1/(32(b—1)) = by;+ /(b — 1). We first observe that by Lemma 3, the entropy of
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the posterior

Tte
{180, 1 € Ry) = Hlly1So;,lj  My) 2log R = 3= m ooy
>log R — vte
1-— (log (1 + 78b1})ge) +’y+6>
14 g) v+
> log It + lg)ge 9b) 27+
1_(8bloge+’y++w)
14+ 2
I (2 )

1 1 T N+
1— (55 + 3% + 1aa52)

T

We claim that x < b/(b — 1), which would imply that the entropy of the posterior H(1;]S,,,1; €
E;) > log|Ej| — y—. We have

2
(1+g)
1 1 1
1_(%""@"" 1441;2)
1+ 2
S 1612
9/\32b
288b -+ 64

©288bh — 47
b
b—1’

where the final inequality follows by observing ggggf% — b_Ll = % < 0. The proof of

the fact that H(Y;|S,;,1;,1; € R;) > log2 — ~_ follows by the exact same calculation.

At this point, we further argue that this supposed low regret algorithm ALG cannot spend too many
trials on the first b epochs prior to processing the (b + 1) epoch with a large probability. Since
we have that E(3_ ;i 05) < Xojep Ly = €2 2 el (GA?)_I, by Markov’s inequality, it must be
) _
that Pr(3_° ey 05 = Djep B57) < €2/6 < (10b)~%. We define the event & := (> jep o5 <
> el Aj_2) where the actual number of trials spent by the algorithm in the first b epochs is small,
and the above calculation gives us that Pr(=&y) < (10b)~*. Now for every j € [b], let us define the
event

&= (l e Rjand H(l; | S5;,1; € Rj) > log R —~v_ and H(Y; | Sy, 15,15 € Rj) >log2 —~_) .

Using Lemma 3, we have that

Pr(=€&;) <1 1
r(—=&;) < og< +8bloge>+7+3€

loge 6y
< v+ =
8bloge 9b

1 1 1 1

=3 3% 06 6
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where the final inequality follows by observing b > 2.

Let us also define the event &1 := { pig,, =1 /2}. By definition of the input instance and Fact 1,
we have that H(Yp41) > H(Yps1|lp+1) > log2 — . Therefore, by Lemma 7, we have that Y11
is distributed as a Bernoulli B(p) with parameter p such that [p — 1/2| < /(5v1In4)/16. Since
v < 1/(32b), and b > 2, we have 1/57In4/16 < v/5In4/32 < 1/4—1/6 —1/(2006%). Therefore,
we have that Pr(—=&41) < 1/2+ (1/4 — 1/6 — 1/(200b%)). Therefore, by a union bound over all
these (b + 2) events, we have

1 b 1 1 1 1 1
Pr(goﬁje[bﬂ}gj)zl———<+——>z4

Lastly, we argue that under event &£, the algorithm must necessarily spend o(T’) trials in the last epoch
b+ 1. This is because under event &, 11y =1 /2, and furthermore, in the posterior distribution
of the reward of the best arm y;+ of the bt" epoch in the rejected set Ry is at least H(Y3|S,,, Iy ¢
My) > H(Yp|Ss,, 1p, 1y & Mp) > log2 — v—, where - < 1/(32(b — 1)). Therefore, by Lemma 7,
the posterior distribution of Y} is Bernoulli with parameter p > 1/2 — /(5 -In4-7_)/16 =
1/2—+/(51In4)/2/16 > 1/2 —1/8, which is the probability with which the rejected best arm in the
bt epoch actually had a large reward. Therefore, if the algorithm spends (T') trials in the (b + 1)
epoch, then the expected regret of the algorithm

1
E[Rr(ALG)] > Pr(€) E[Rr(ALG)IE] = 1 - % - O(T) - A,
2B _ob—1
=0 <T . T_23+11>
2B b1
(%55 Zagre

contradicting our assumption about the expected regret achieved by the algorithm. Therefore, under

event £, we have that the total number of trials spent by the algorithm in the first pass is necessarily
271

> jept1] 05 =o(T) + > e A? =0o(T) + > e T = o(T). Therefore, the number
of trials 7. left is necessarily 7_ = T' — o(T"), and only b — 1 passes left.

ool w

Now we shall use our assumption about the expected regret achievable by our algorithm to prove that
in order to achieve low expected regret overall, it must necessarily achieve low expected regret in
the remaining passes too. Let E[R7_(ALG)] denote the cumulative regret of the algorithm over the
remaining b — 1 passes. Therefore, we have

E[Rr(ALG)] > E[Rr (ALG) | €] - Pr(€) — i "E[Rs (ALG) | £].

Therefore, E[Ry_(ALG) | €] < 4E[Ry(ALG)] =0 (4-T% - 47%) = o (T - 4=(=1)). We shall use
this fact to set up a contradiction to our induction hypothesis, which at a high level says that any
(b — 1)-pass algorithm with small memory must incur large regret. We begin by setting up the hard
distribution.

In our new instance, we begin by discarding the arms A1 as under event £, the reward of the
best arm (and hence all arms) in this epoch (b + 1) has realized to a low value. Our new instance
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consists of all the rejected arms R ; for j € [b], the first b epochs. We refer to these set of arms as
K" = Ujep) R, whose size is exactly |K'| = K =3y (1 — B)K/(b+1) = (1 — B)bK/(b+1).

Next, we claim that the posterior distributions over |;,Y; in R; for j € [b] to give us a hard
distribution over arms K’ for the (b — 1) pass algorithm. For j € [b], let ¢; be the joint distribution

dist((1;,Y;) | 1; € R;), and let D,{gf] = . Its easy to verify that D{¢] = satisfies the requirements

for a hard d1str1but10n fora(b—1) pass algorithm, as the partitions {72 } of K’ are all of equal size
|K'| /b, and for random variables (1;,Y;) ~ ¢; for any j € [b] satisfy the high entropy condition
H(l;) > log|R;| — v—, and H(Y/|l;) > log2 — v, where y_ < (32(b — 1))~! (as indicated by
event &). Furthermore, the memory budget for a (b — 1) pass algorithm for this instance is

K’ (1-B)bK 1 (1-3)bK 1 K

8b(b—1)loge  b+1 8b(b—1)loge> b+1  8b(b—1)loge 8b(b+1)loge’

which is in fact larger than the memory used by ALG. We shall show that we can use the behavior of
ALG in the subsequent b — 1 passes under event £ to construct a (b — 1)-pass algorithm with low
memory that achieves o(7T - 4*(5’*1)) expected regret on the above hard instance, which contradicts
our induction hypothesis.

Let ALG_ denote the algorithm ALG for the remaining b — 1 passes when event £ occurs. Under the
assumption that the regret R (ALG) is small, we will construct a (b — 1)-pass algorithm ALG,_

with small memory that achieves small regret over time horizon 7 = T — o(T) on the instance

{¢ }J '. ALGy_1 is constructed as follows: if ALG_ pulls an arm in Ujeln) supp(¢;), ALGp—1 also

pulls the corresponding arm in K’ and returns the realized reward of the arm to ALG_; otherwise,
ALGy,_1 simply pulls an arm with distribution 5(1/2) and returns the result to ALG_.

It is trivially true that E[Ry_ (ALGy—1)] < E[Rr_(ALG-) | £]. This is because, given event £, any
other arm than the arm in U, supp(¢;) is distributed as 3(1/2). Hence, ALGy,_1 is a (b — 1)-pass

algorithm with memory at most K’ (8b(b — 1) loge)~! that achieves regret o(T* - 4~(*=1) over a
time horizon T — o(T'), which is a contradiction! This completes the proof of our lower bound.

Appendix D. Algorithm and Proof of Theorem 5

In this section, we describe and formally present our algorithm, and analyze its regret guarantees
which prove Theorem 5.

D.1. Algorithm Description

Our proposed algorithm builds upon the classical Sequential-Elimination algorithm, where one
maintains an “active set” of arms which are played in a round-robin manner until sufficient evidence
is gathered indicating the sub-optimality of some arm, at which point it is permanently discarded
from the active set.
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In our limited memory setting, it is not possible to have all arms in the active set as the number of
statistics we can save at any given time is bounded by M. Therefore, our active set is of size roughly
equal to our memory, and we play the least played arm i,;;, € M in our active set until we gather
sufficient evidence to discard a sub-optimal arm, after which the next arm from the stream is read
into our active set. This requires storing 2 statistics per arm ¢ € M in memory — the cumulative
reward observed r;, as well as the number of times the arm was played n;. For ease of exposition,
we shall assume that both of these can be stored in a single word of memory.

In addition to these arms in our active set, we reserve an additional word of memory to store the arm
i (and its statistics /) we have estimated to be the best. This arm 7 serves two important purposes.
Firstly, it is exploited until the end of the time horizon after we have exhausted our budget on the
number of passes. Secondly, its stored statistic ¢ which is a lower bound on its estimated mean
reward, is used to quickly identify and discard sub-optimal arms from memory. This is necessary
in this limited memory streaming setting as unlike the full memory setting, it is not possible to
permanently discard bad arms. Even after establishing the sub-optimality of bad arms, their identity
is forgotten when they are discarded from memory, and will be repeatedly encountered in subsequent
passes at which point it eliminating them without incurring too much regret becomes crucial.

However, as established in our lower bound construction, the limited memory setting has an inherent
risk associated: there can be some high value arm somewhere ahead in the stream that has not been
read into memory yet, due to which overplaying the arms currently in memory can lead to large regret.
As aresult, we need to maintain a careful balance between playing arms in memory and exploring
further into the stream. To address this problem, we borrow an idea from the limited-adaptivity
framework for multi-armed bandits (Perchet et al., 2015; Gao et al., 2019), where we additionally
impose a cap on the maximum number of times any arm can be played in a single pass, effectively
limiting the length of exploration to (roughly) N? in any single pass b € [B]. If all arms in the active
set have been played equal to the cap for that pass without any arm being discarded, then an arbitrary

arm is ejected to make room for the next arm in the stream. This cap grows across passes, and in
2Bl -1/2%) b
pass bisroughly 7 2BF1-1  if the objective is to minimize worst-case regret (w = 1), and 7' 5+1

if the objective is to minimize instance-dependent regret (w = 0). Intuitively, one can think of this
as approximating the mean rewards of arms with an increasingly finer precision across passes. If a
crude estimate of the reward suffices to discard a suboptimal arm, then it does so. Otherwise, this
specific choice of the cap ensures that this arm has not been explored enough to incur significant
regret. The following is a formal description of this algorithm.

It is clear that Algorithm 1 uses memory at most M, and performs B passes over the stream given any
input parameters M, B. Furthermore, observe that while we allow for larger memory, our algorithm
just needs M = 2 words of memory. We shall now analyze the regret guarantees of Algorithm 1,
which are restated here for convenience.

Theorem 5 Given a time horizon T, a stream of K arms, memory 2 < M < K, and number of
passes 1 < B < loglog T, Algorithm 1 set for worst-case regret minimization (w = 1) achieves
cumulative regret

2}3
Rr <O <T23+1—1 /KB logT> ,

31



AGARWAL KHANNA PATIL

Algorithm 1 Memory Bounded Successive Elimination
Input. Memory M ; number of passes B; time horizon T';

. 1, if minimizing worst-case regret
variable w = T
0, if minimizing instance-dependent regret
Let arms in memory M <+ (), N0 < 1.
Set aside a single word of memory: set (estimated) best arm ¢ <— (), lower confidence bound ¢ «+— 0

forpassb=1,...,B do
Set the maximum number of pulls across all arms in pass b,

2B
Nb T2P+T-1y/Nb=1  if w = 1 (minimize worst-case regret)
TE+1 N1, if w = 0 (minimize instance-dependent regret)

For all arms 7 € M, set ni? < 0, and rﬁ? ~0
while pass is not finished do
while M| < M — 1do
M+ MU {i}, where i is the next arm in the stream that is not already in memory.
Set number of pulls nf < 0, cumulative reward rf 0
end while
Let ipin < argmin; , ni’ be the least played arm in memory (ties broken arbitrarily)
if (n? > N’/(KB)andw = 1) or (n? > N’and w = 0) then
Discard an arbitrary arm ¢ € M from memory; M < M\ {i}
else
Play arm ¢.,;,, once, and observe reward r
Update rﬁ’mm — T?min + 7, and n?mm — nfmin +1
end if
Update £ < max;ec g 72 /nb—1/(5log T)/nl; and i < argmax;e g 12 /nl—1/(5log T') /n?

if there exists an arm j € M such that r;’/né’ +,/(5log T)/n? < { then

Discard arm j from memory; M + M\ {j}
end if
end while
end for
Play the estimated best arm ¢ until the end of the time horizon

with probability 1 — 2/T using at most B passes and at most M words of memory. Furthermore,
supposing the arms K had mean rewards {u; }jekc, then given number of passes 1 < B < logT,
Algorithm 1 set for instance-dependent regret minimization (w = 0) achieves cumulative regret

TV D log T + Blog ((A7)*T/ logT)
Rr <O Z A* ’
J

JjES

with probability 1 —2 /T using at most B passes and at most M words of memory, where S C K is the
set of strictly sub-optimal arms in K, and for any sub-optimal arm j € S, A% := max ey p; — [
is the regret due to playing arm j.
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D.2. Analysis of Algorithm 1 for Worst-Case Regret (w = 1)

As mentioned earlier, our algorithm cleverly balances playing the arms currently in memory, thereby
gathering valuable information about them, and quickly exploring ahead into the stream to find
potential high value arms by setting a cap (=~ N”) on the maximum number of times any arm 7 can
be played in any pass b. This cap is raised across passes in a systematic way, with the choice of
growth rate guaranteeing that the total regret incurred due to playing suboptimal arms will be small.

At a high level, our proof shows that if across all passes b € [B], the observed mean rewards r;? / n?

for all arms j € K are not too far from their true mean rewards 1.7, then the estimated best arm iat
the end of any pass b is a good proxy for the true best arm ¢* for that pass. Specifically, the mean
reward of 4 closer to the mean reward of i* than the precision (=~ /1/N?) with which we estimate
the means in that pass. This can be used to eliminate any bad arms that are distinguishable from the
best arm in pass b (based on the precision set for that pass), but only starting the following pass b+ 1.
Due the delayed nature of this information, i.e. the estimated best arm becomes “good enough” for
elimination purposes in a pass b only after the true best arm, (or a good proxy for it) are encountered
in the stream in that pass b. Therefore, suboptimal arms that transitioned from being indistinguishable
in pass b — 1 to distinguishable in pass b, and appeared early on in the stream can potentially be
overplayed because the estimated best arm has not been updated yet. This would incur more regret
than is desirable, but only up to a multiplicative T72°/@% =1 factor (matching our B-pass lower
bound) due to our choice (N?) of the cap on the number of times an arm can be played in any pass.
This gives our final guarantee on the upper bound on the regret of our algorithm.

We shall now formally prove this bound on the worst-case regret achieved by our algorithm. We
begin with the following simple lemma, which bounds the deviation in the observed mean rewards of
any arm from its true mean reward. Specifically, this lemma says that whenever an arm is stored in
memory, its true mean reward will lie within a confidence ball of radius O(/log T'/n) if it has been
played n times since being read into memory. Furthermore, this property would hold for all arms
across all rounds with a polynomially large probability.

Lemma 8 Let K be the set of arms in the stream, where arm i € K has mean reward pi;, and let B
be the total number of passes. Whenever arm an i € K is present in memory in pass b € [B] of the
stream, we define the event

Eip =

b

r

* 1
My = =5 <

n;

where rf represents the observed cumulative reward of arm i in the b™" pass, ni? represents the
number of times arm i was played in the b'" pass, and ¢ > 5 is any constant. Then we have that the
event & := Nicx pe[B)Eib 0ccurs with probability at least 1 — 2/T4,

Proof Consider any fixed arm ¢ € K. We shall assume that the rewards for this arm are sampled
from the corresponding reward distribution, and written on a tape (of length at most 7). Whenever
the algorithm chooses to play this arm ¢ in some round, it simply reads the realized reward from
the next cell on the tape. By definition, as long as an arm is in memory, the algorithm maintains a
running average of the observed rewards of that arm, resetting the running average every time it starts
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a new pass or loads the arm into memory, treating the last cell on the tape as a new starting point for
counting rewards for this arm. For a fixed starting point on the tape after which it started keeping
count of the rewards for the arm, the probability that |} — 7;/n;| > +/clog T'/n; for a fixed value
of n; is at most 2/7°° by Hoeffding’s inequality. Therefore, the probability that this event occurs for
some starting point on the tape and some value of n;, by a union bound, is at most 2/7°~2. Observe
that this event is exactly —&; ;, for some fixed pass b, as the running average is reset (either when the
arm was in memory at the start of the pass, or was first loaded into memory at some point during that
pass) at most once during that pass. Therefore, for any fixed arm ¢ € K, the probability that event
—&; p occurs for some pass b € [B], by a union bound over the passes, is at most 2B /7~ 2. Finally,
taking a union bound over all arms, the probability that event =&; ;, occurs for some pass arm ¢ € I,
and some pass b € [B] is at most 2K B/T°2. This gives us our claimed bound, since K, B < T. B

For simplicity, we assume ¢ = 5 in Algorithm 1 and in the subsequent proof, which gives us that
the above defined “good event” of interest occurs with probability at least 1 — 2/7". Henceforth, we
shall assume that this event occurs, following which our regret guarantees hold with probability 1.

Proof [of Theorem 5 (worst-case upper bound)] Let £ := Njcx pe[p)€i b be the good event of interest
defined in Lemma 8. Then we shall prove that conditioned on event &£, the cumulative regret Ry of
Algorithm 1 set for worst-case regret minimization (w = 1) is

2B
Rr <O <T2B+1—1 v KB logT> ,

with probability 1. Prior to formally proving this, observe that this also automatically implies a
B

2
E[Rr] <O <T 2BH1-1, /K Blog T> result for the expected regret of our algorithm as

ElRr] = Pr(E) E[Rr | €] + (1 = Pr(€)) B[Ry | —€]

1
> E(RTIS) + 7poly(T) -T

1
<l|1-—
- ( poly(T)
QB
<0 <T2B+1—1 /KB logT>

Let pf .« := max;ex o be the largest expected reward of any arm in the stream, and let S := {j €
Kt 11} < piax ) be the set of all suboptimal arms, with A; := pi7, ., — p7 being the regret due to
playing any suboptimal arm j € S. Furthermore, let i* € IC \ S be any arbitrary optimal arm, which
we shall henceforth refer to as the best arm.

For any pass b € [B] and any arm j € KC, let mg be the maximum number of times arm j was played
in pass b. Furthermore, let R?- = mg’- A be the regret incurred by the algorithm by playing arm j in
the b*" pass, and subsequently, let R? = 3 jes R?- be the total regret incurred in the b*” pass. Finally,

let R; be the regret incurred by playing the estimated best arm i at the end of the B*" pass until the
end of the time horizon. Therefore, we have that

B 2B B
Ry = ZR”+R;:ZR}+ZZR§+R;§$+ZZR§+R;,

be[B] JjeS b=2 jeS b=2 jeS
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where the final inequality follows by observing that the maximum number of times any arm is played

in the first pass is at most T2BJrl 1/(KB).

We shall now present the key implication of event £, which basically guarantees that the best arm
1* will necessarily be played the maximum allowable number of times in every pass, i.e. ¢* cannot
be prematurely discarded from memory after it has been read in the stream. This gives us certain
desirable guarantees about the true mean reward of the estimated best arm saved in 7, as well as the
maximum number of times m? any suboptimal arm j € S can be played in any pass b > 2, which
will be crucial in bounding the cumulative regret of the algorithm.

Claim 5 Given that event £ occurs, arm i* will necessarily be played N®/(K B) times in every
pass b € [B]. Consequently, for any pass b > 2, we have

0> s 2\/(5KBlogT)/Nb*17

at all times in pass b.

Proof This follows by observing that 7 can never exceed Iax at any point during the execution of
the algorithm. This is because for any arm j € IC, event £ guarantees that its observed mean reward

b/pb — % b : b /b b
ri/n; < p;i+4/(5logT)/nin every pass b € [B], which guarantees r/n; — |/ (5log T')/n; <

1 < fiiay- Furthermore, for the best arm %, we have that b /b > wkha — 1/ (5log T)/nb. in

every pass b € [B], which guarantees 2. /nl. + 1/ (5log T')/nb > .. Therefore, the only way
the best arm can be discarded from memory in any pass is if the memory was full with all arms in
memory having been played N° /(K B) times without being eliminated.

To see why this implies a lower bound on the value of lin any pass b > 2, observe that the best arm
1* was played mb*1 = N*~1/(K B) times in the previous pass, implying that the observed mean

reward of the best arm * at the end of pass b — 1 was 21 /mP~t >y — /(5K Blog T) /N1
Therefore, the value of / at the end of pass b — 1 is at least fi5,,, — 21/(5KBlog T)/N%1, with the
claim following from the fact that £ is a strictly increasing value. |

We are now ready to bound the cumulative regret R? due to playing any suboptimal arm j € S in

any pass b > 2. Let m? be the final time arm j was played in round b. Since suboptimal arm j was
played that one last time, it must be the case that

b/ (mb — 1)+ /(510g ) /(m? — 1) >/, ©)

where ¢ was the value of the largest lower confidence bound at that moment. Furthermore, by
definition of event £ and Claim 5, it must be that

rl/(m} )<u]+\/5logT)/(m - 1), andE>,umax—2\/(5KBlogT)/Nb_1. (7)

Substituting these bounds into Equation 6, we get

Aj<2\/(31ogT)/(m! — 1) +2\/ (5K Blog T)/N>-1,
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and therefore, the cumulative regret due to playing arm j € S in pass b > 2 is at most

b __ bA .

< 2ml\[(5l0gT)/(m} — 1) + 2mb/ (5K Blog T) /N1

<2 6ml]’-10gT—|—2mg\/(5KBlogT)/Nb*1,

Therefore, the total regret in pass b > 2 is given by

R* =) "E(RE)

JjeS

5KBlog T
<27 [f6mlog T+ Y 2mhy [ =5

JES ]GS

/5K BlogT
< 22{:1/6nﬁlog1ﬂ+- DJbQF

jeES

SKlog T
<2Z,/6mblogT+2TzB+1u/ Og

JjES

where the penultimate inequality follows due to the fact that in any pass b € [B], >_;cs mg’ <

|S|N®/(K B) < N°/B, and the final inequality follows due to the fact that N = T2B/(2B+1 Dy/Nb-1,
Therefore, the cumulative regret in the first B passes is

ZRb<QZz¢W+ZmBH \/@

b=2 jeS
B
< 4\/6logTZ S \/mb+ 217 5K Blog T

b=2 jES

Due to the nature of the total number of pulls N in any pass b € [B], we have 25:2 >jes mg <
2N B /B. Applying Jensen’s inequality to the concave function f(x) = \/z, we have

IS!BZZ\r \SIBZZ NIB

b=2 jE€S b=2 jeS

giving us

EB:Z \/mh < \J2IS|INE < VZENE.

b=2 j€S

1t — L. .
Now observe that N? = T 2BF1-1 giving us our final bound on the cumulative regret of the
algorithm in the first B passes as

B »B
Y R <0 <T2B“—1 VKB 1ogT> .

b=2
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We shall finally bound the cumulative regret R; due to playing the estimated best arm i until the end

of the time horizon. Since this estimated best arm ¢ was responsible for setting the final value of / at
the end of the B*" pass, it must be the case that pE >4 > pnay — 2y/(5KBlogT)/NB, with the
final inequality following due to Claim 5, which guarantees that

A; < 2y/(5K Blog T)/N®.

Furthermore, arm ¢ can be played at most 7" times after pass B until the end of the time horizon,
giving us that the regret due to playing arm j

2B
R; <TA; < 2T\/(5KB logT)/NB = T2F%1-1,/5KBlogT,

-1 1y 1
where the final inequality follows by observing N2 = 7' , and therefore, \/% — 72T
2B

T2B+1-1, Combining these bounds on R!, 25:2 R?, and R;, we get our claimed bound on the cu-
mulative regret achieved by our algorithm. This concludes the proof of Theorem 5 for worst-case
regret.

We shall now analyze the regret of Algorithm 1 when it is set to minimizing instance-dependent
regret (w = 0).

D.3. Analysis of Algorithm 1 for Instance-Dependent Regret (w = 0)

The analysis of the instance-dependent regret of Algorithm 1 is conceptually identical to the previous
analysis. It is based on this same intuition that the estimated best arm is a good enough proxy to
eliminate distinguishable bad arms from memory, but there is this delay in information due to the
best arm (or a proxy for the best arm) can be encountered very late in the stream in some pass,
causing some bad arms that just transitioned from being indistinguishable in the previous pass to
being distinguishable in the current pass, to be potentially overplayed but only up to a multiplicative
TV/(B+1) factor. The additional additional B factor comes from the fact that the identities and
statistics of discarded arms is forgotten, due to which the suboptimality of even distinguishable arms
has to be repeatedly established in every subsequent pass. Even though the suboptimality of any
distinguishable arm can be established in a future pass while incurring the optimal regret in that
pass, this process has to be repeated in every pass until B. We now formally prove the claimed
instance-dependent regret guarantee.

Proof [of Theorem 5 (instance-dependent upper bound)] Let £ := N;cxc ve[B)Ei b be the good event
of interest defined in Lemma 8. We shall prove that conditioned on event £, the cumulative regret of
Algorithm 1 set for instance-dependent regret minimization (w = 0) is

TV D 1o T + Blog ((A7)*T/ logT)
Rr <O Z A* ’
J

JjES
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with probability 1. We note that since event £ occurs with a polynomially large probability as proved
in Lemma 8, this also implies the same bound on the expected regret of the aforementioned algorithm.

Let pf .« := max;ex i be the largest expected reward of any arm in the stream, and let S := {j €
K+ p} < pinax} be the set of all suboptimal arms, with Aj := py,,, — 41 being the regret due to
playing a suboptimal arm j € S. Furthermore, let i* € K \ S be any arbitrary optimal arm, which
we shall henceforth refer to as the best arm.

For any pass b € [B] and any arm j € KC, let mg be the maximum number of times arm j was played
in pass b. Furthermore, let Rg’- = m? A be the regret incurred by the algorithm by playing arm j in
the b pass, and subsequently, let R; =) be(B] R?- be the total regret due to playing a suboptimal

arm j € S. Finally, let I?; be the regret incurred by playing the estimated best arm i at the end of the
B™ pass until the end of the time horizon. Therefore, we have that

Rp=) Rj+R;=> > RI+R;.

jeS JES be[B]

As before, we shall use a crucial implication of event £ to bound the instance-dependent regret of our
algorithm. The following claim is the analog of Claim 5 in this setting, with a minor difference due to
the fact that an arm is played a maximum of N times in epoch b when minimizing instance-dependent
regret (w = 0) as compared to N?/(K B) when minimizing worst-case regret (w = 1).

Claim 6 Given that event £ occurs, arm i* will necessarily be played N®/(K B) times in every
pass b € [B]. Consequently, for any pass b > 2, we have

(>

max

— 2,/ (5log T)/Nb-1,

at all times in pass b.

The proof of this claim follows identically to that of Claim 5. For any suboptimal arm j € S, we define
the distinguishing pass b; to be the smallest value of b € [B] such that A7 > 4y/(5log T)/TY/(B+1),
Intuitively, this represents the pass in which the precision to which we estimate the gap parameters
exceeds the value of A;-‘, due to which it becomes possible to efficiently infer the sub-optimality of

arm j. We now claim that in any pass b > b;, arm j will be played m? < 80log T/(A;?)2 times in
that pass. To see this, observe that in any pass b > b; we have that

‘

\Y

rax — 21/ (5log T) /Nb—1

Nmax

> fimax — 21/ (5log T) / NV
> ,u;knax - A;/Q

= (Hmax T 13)/2.
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Now in pass any pass b > b;, event & further guarantees that after any ng’» pulls of arm j, we will have

rb/nf +/(5logT)/nk < ¥ +24/(51og T)/n}

(a)
< uj+A%/2

= (Hmax + 15)/2,
where equation (a) follows by supposing arm j was actually played 80 log 7'/ (A;f)2 times in that
pass. This would guarantee that arm j will be discarded from memory after 80 log 7'/ (A;)2 pulls.

Therefore, we have that the number of times arm j is played in pass b € [B] is bounded as m?- < NP
for b < bj and m? < 80logT/ (A;f)2 for b > bj, giving us the total regret due to playing arm j as

Rj=> R

be[B]
-3 iy
be([B]
80log T
b * *
<D NATH D TR A
bﬁbj b>bj J
bj
80log T
* b/(B+1) o oVs 4
SAjbz;T +(B—b;—1) A

<Aj

(Tl/(BJrl)(Tbj/(B+l) _ 1) 8010gT
J

TUBTD _ 1 >+<B_bj_1)A;f

AKX 1 b;/(B+1) ) SOlogT
Aj<<1+T1/(B+1)_1><TJ ~1) )+ (B=b—1) A

Observe that b; is the smallest value of b € [B] such that A% > 41/(51og T) /T (B+1), implying
A < 4\/(5 log T) /T —D/(B+1) oiving us

(B 80 B (B+1) 80logT
bj/( 1) < 1/( 1)1 . ] .
1 ( ;)21 ogT, and b; > oaT 08 ( ;)2

Therefore, substituting these values into the above equation, and using the fact that (B + 1) < log T,
we get
T/(B+1) log T + Blog ((A;.)?T/ log T)

;<
R; <O A ,

and therefore,

TV B+ 10g T + Blog ((A;)QT/ log T)

Y Ri<o(> X
J

jeES JjES
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To bound R;, observe that for arm i, it must have been the case that A;‘ < 44/(51logT)/NB due

to Claim 6. Therefore, the regret due to playing any arm ¢ until the end of the time horizon can be
bounded by

T T'/(BH) 10g T

B
where the final inequality follows from the fact that N® = T'B+7. Combining these two bounds
gives us our claimed upper bound on the cumulative regret as

TV B+ 10g T + Blog ((A;)QT/ log T)
RT S O Z A*
J

JjES
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