Main Track

AAMAS 2022, May 9-13, 2022, Online

Ordinal Maximin Share Approximation for Chores

Hadi Hosseini
Pennsylvania State University
hadi@psu.edu

Andrew Searns
Johns Hopkins University Applied
Physics Laboratory

Erel Segal-Halevi
Ariel University
erelsgl@gmail.com

andrew.searns@jhuapl.edu

ABSTRACT

We study the problem of fairly allocating a set of m indivisible
chores (items with non-positive value) to n agents. We consider the
desirable fairness notion of 1-out-of-d maximin share (MMS)—the
minimum value that an agent can guarantee by partitioning items
into d bundles and receiving the least valued bundle—and focus on
ordinal approximation of MMS that aims at finding the largestd < n
for which 1-out-of-d MMS allocation exists. Our main contribution
is a polynomial-time algorithm for l-out-of—[z?"J MMS allocation,
and a proof of existence of 1—0ut—of—|_%"] MMS allocation of chores.
Furthermore, we show how to use recently-developed algorithms
for bin-packing to approximate the latter bound up to a logarithmic
factor in polynomial time.

KEYWORDS
Fair Division; Maximin Share Guarantee; Resource Allocation

ACM Reference Format:

Hadi Hosseini, Andrew Searns, and Erel Segal-Halevi. 2022. Ordinal Max-
imin Share Approximation for Chores. In Proc. of the 21st International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022),
Online, May 9-13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION

Fairness is one of the most fundamental requirements in many mul-
tiagent systems. Fair division, in particular, deals with allocation of
resources and alternatives in a fair manner by cutting across a vari-
ety of fields including computer science, economics, and artificial
intelligence. Traditionally, fair division has been concerned with the
allocation of goods that are positively valued by agents, leading to
a plethora of fairness notions, axiomatic results, and computational
studies (see [18] and [45] for detailed discussions). However, many
practical problems require the distribution of a set of negatively
valued items (aka chores). These problems range from assigning
household chores or distributing cumbersome tasks to those in-
volving collective ownership responsibility [48] in human-induced
factors such as climate change [52], nuclear waste management, or
controlling gas emissions [20]. The problem of allocating chores is
crucially different from allocating goods both from axiomatic and
computational perspectives. For instance, while goods are freely
disposable, chores must be completely allocated. These fundamen-
tal differences have motivated a large number of recent works in
fair division of divisible [15, 21] and indivisible chores [3, 5, 9, 29].

When dealing with indivisible items, a compelling fairness no-
tion is the Maximin Share (MMS) guarantee—proposed by Budish
[19]—which is a generalization of the cut-and-choose protocol to

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

597

indivisible items [17]. An agent’s 1-out-of-d maximin share value
is the value that it can guarantee by partitioning m items into d
bundles and receiving the least valued bundle. Unfortunately, the
1-out-of-n MMS allocations may neither exist for goods [28, 43] nor
for chores [9]. These non-existence results, along with computa-
tional intractability of computing such allocations, have motivated
multiplicative approximations of MMS wherein each agent receives
an « < 1 fraction of its 1-out-of-n MMS value when dealing with
goods [30-32], or > 1 approximation of its 1-out-of-n MMS value
when dealing with chores [9, 13, 39].

In this paper, we initiate the study of ordinal MMS approxima-
tions for allocating chores. The goal is finding an integer d < n for
which 1-out-of-d MMS exists and can be computed efficiently. Re-
cently, ordinal approximations of MMS for allocating ‘goods’ have
received particular attention as natural guarantees that provide a
simple conceptual framework for justifying approximate decisions
to participating agents: partition the items in a counterfactual world
where there are d > n agents available [10, 11, 27, 36, 51]. Since
these approximations rely on ordinal rankings of bundles, they are
generally robust against slight changes in agent’s valuation profiles
compared to their multiplicative counterparts (see [38] for an exam-
ple and a detailed discussion). Focusing on ordinal approximations,
we discuss key technical differences between allocating goods and
chores, and highlight practical computational contrasts between
ordinal and multiplicative approximations of MMS.

1.1 Contributions

We make the following theoretical and algorithmic contributions.

An algorithm for 1-out-of-[2?"J MMS. We show that heuris-
tic techniques for allocating goods do not carry over to chores
instances (Section 3), and develop other techniques to upper-bound
the number of large chores (Lemma 3.2). Using these techniques,
we develop a greedy algorithm that achieves 1-out-of- LZT"J MMS
approximation for chores (Theorem 4.1). The algorithm runs in
strongly-polynomial time: the number of operations required is
polynomial in the number of agents and chores.

Existence of l-out-of-L%J MMS. We show the existence of
1—0ut—0f—|_%"] MMS allocation of chores (Theorem 5.1). The main
technical challenge is dealing with large chores which requires
exact computation of MMS values, rendering our algorithmic ap-
proach intractable. While our technique gives the best known ordi-
nal approximation of MMS, it only provides a tight bound for small
instances (Example 5.1) but not necessarily for larger instances
(Proposition 5.1).

Efficient approximation algorithm. We develop a practical
algorithm for approximating the l—out—of—L%J MMS bound for
chores. More specifically, our algorithm guarantees 1-out-of-d MMS

Main Track

ford = H%"J — O(logn) | (Theorem 6.1) and runs in time polyno-
mial in the binary representation of the input.

1.2 Related Work

MMS for allocating goods. The notion of maximin-share origi-
nated in the economics literature. Budish [19] showed a mechanism
that guarantees 1-out-of-(n+1) MMS to all agents by adding a small
number of excess goods. Whether or not 1-out-of-(n + 1) MMS can
be guaranteed without adding excess goods remains an open prob-
lem to date.

In the standard fair division settings, in which adding goods is
impossible, the first non-trivial ordinal approximation was 1-out-of-
(2n — 2) MMS [1]. Hosseini and Searns [36] studied the connection
between guaranteeing 1-out-of-n MMS for 2/3 of the agents and
the ordinal approximations for all agents. The implication of their
results is the existence of 1-out-of-(|3n/2|) MMS allocations and a
polynomial-time algorithm for n < 6. Recently, a new algorithmic
method has been proposed that achieves this bound for any number
of agents [37]. The ordinal approximations have been extended to
£-out-of-d MMS to guarantee that each agent receives at least as
much as its worst £ bundles, where the goods were partitioned into d
bundles [10, 50]. The maximin share and its ordinal approximations
have also been applied to some variants of the cake-cutting problem
[14, 26, 27].

The multiplicative approximation of MMS originated in the com-
puter science literature [47]. These algorithms guarantee that each
agent receives at least an « fraction of its maximin share thresh-
old [2, 30, 32, 43]. For goods, the best known existence result is
a > 3/4+1/(12n), and the best known polynomial-time algorithm
guarantees & > 3/4 [31]. The MMS bound was improved for special
cases with only three agents [2], and the best known approximation
isa > 8/9 [33].

There are also MMS approximation algorithms for settings with
constraints, such as when the goods are allocated on a cycle and
each agent must get a connected bundle [53]. McGlaughlin and Garg
[44] showed an algorithm for approximating the maximum Nash
welfare (the product of agents’ utilities), which attains a fraction
1/(2n) of the MMS. Recently, Nguyen et al. [46] gave a Polynomial
Time Approximation Scheme (PTAS) for a notion defined as optimal-
MMS, that is, the largest value, «, for which each agent receives
the value of a - MMS;. Since the number of possible partitions is
finite, an optimal-MMS allocation always exists, and it is an MMS
allocation if @ > 1. However, an optimal-MMS allocation may
provide an arbitrarily bad ordinal MMS guarantee [36, 49].

MMS for allocating chores. Aziz et al. [9] initiated the study of
MMS fairness for allocating indivisible chores. They proved that—
similar to allocating goods—a 1-out-of-n MMS allocation may not
always exist, and computing the MMS value for a single agent
remains NP-hard.

In the maximin share allocation of chores, the multiplicative
approximation factor is larger than 1 (each agent might get a larger
set of chores than its MMS value). The multiplicative factors in
the literature have been improved from 2 [9] to 4/3 [13] to 11/9
[39]. The best known polynomial-time algorithm guarantees a 5/4
factor [39]. Aigner-Horev and Segal-Halevi [1] prove the existence
of a 1-out-of-| 2n/3] MMS allocation for chores, but their algorithm

598

AAMAS 2022, May 9-13, 2022, Online

requires an exact computation of the MMS values, so it does not
run in polynomial time. Note that multiplicative and ordinal ap-
proximations do not imply one another—each of them might be
better in some instances as we illustrate in the next example.

Example 1.1. Consider an instance with n =
identical chores of value —1. Then:

e If there are m = 2 chores, then the 1-out-of-| 2n/3| MMS is
—1, which is better than 11/9 of the 1-out-of-n MMS.

e If there are m = 3 chores, then the 1-out-of-| 2n/3] MMS is
—2, which is worse than 11/9 of the 1-out-of-n MMS.

3 agents and m

In the full version of the paper [38], we generalize this example
to any number of agents. Additionally, we study the relationships
between the ordinal maximin share and other common fairness
notions such as approximate-proportionality or approximate-envy-
freeness. The bottom line is that all these notions are independent:
none of them implies a meaningful approximation of the other.

The notion of maximin share fairness has been extended to asym-
metric agents, i.e. agents with different entitlements over chores
[4, 5]. Recently, a variation of MMS has also been studied in con-
junction with strategyproofness that only elicits ordinal preferences
as opposed to cardinal valuations [6, 7]. In parallel, there are works
studying other fairness notions for chores, or for combinations of
goods and chores. Examples are approximate proportionality [8],
approximate envy-freeness [3], approximate equitability [29], and
leximin [22]. In the context of mixed items, however, no multiplica-
tive approximation of MMS is guaranteed to exist [42]. In [38], we
show that similarly no ordinal MMS approximation is guaranteed
to exist for mixed items.

2 PRELIMINARIES

Problem instance. An instance of a fair division problem is de-
noted by I = (N, M, V) where N = {1,...,n}is a set of agents, M =
{c1,...,cm} is a set of m indivisible chores, and V = (vy,...,0p)
is a valuation profile of agents. Agent i’s preferences over chores
is specified by a valuation function v; : 2M — R. We assume that
the valuation functions are additive; that is, for any agent i € N,
for each subset S € M, v;(S) = X ces vi({c}) where v;(0) = 0. We
assume items are chores for all agents, i.e., for each i € N, for every
¢ € M we have v;({c}) < 0. For a single chore ¢ € M, we write
v;(c) instead of v; ({c}). Without loss of generality, we assume that
m > n since otherwise we can add dummy chores that are valued 0
by all agents.

Allocation. An allocation A = (Ay,...,Ay) is an n-partition of
the set of chores, M, where a bundle of chores A;, possibly empty,
is allocated to each agent i € N. An allocation must be complete:
UjeNAi = M.

Maximin share. Let d < n be an integer and I1;(M) denote
the set of d-partitions of M. For each agent i € N, the 1-out-of-d
Maximin Share of i on M, denoted MMS? (M), is defined as

d .
MMS%¢ (M) = max min v;(Aj),
‘ (A, Aq)€llg(M) jeld] 7
where [d] = {1,..., d}. Intuitively, this is the maximum value that

can be guaranteed if agent i partitions the items into d bundles and

Main Track

chooses the least valued bundle. When it is clear from the context,
we write MMS;." or 1-out-of-d MMS to refer to MMS?(M).

Given an instance, we say that a 1-out-of-d MMS exists if there
exists an allocation A = (Ay,...,An) € II5(M) such that for every
agent i € N, v;(A;) > MMS?(M). Note that MMS?(M) < #
and it is a weakly-increasing function of d: a larger d value means
that there are more agents to share the burden, so each agent poten-

tially has fewer chores to do. Clearly, MMSid = (dM)

when chores
v (M)

can be partitioned into d bundles of equal value. Moreover, —

is agent i’s proportional share.

Ordered instance. An instance I is ordered when all agents
agree on the linear ordering of the items, irrespective of their
valuations. Formally, I is an ordered instance if there exists an
ordering (c1,c¢g,...,cm) such that for all agents i € N we have
[vi(c1)| = lvi(c2)| = ... = |vi(cm)|. Throughout this paper, we
often refer to this as an ordering from the largest chores (least pre-
ferred) to the smallest chores (most preferred).

In the context of allocating goods, Bouveret and Lemaitre [16]
introduced ordered instances as the ‘most challenging’ instances in
achieving MMS, and showed that given an unordered instance, it is
always possible to generate a corresponding ordered instance in
polynomial time.! More importantly, if an ordered instance admits
an MMS allocation, the original instance also admits an MMS alloca-
tion which can be computed in polynomial time (see Example 2.1).

Lemma 2.1 (Barman and Krishna Murthy [13]). LetI’ = (N, M,V’)
be an ordered instance constructed from the original instance
I = (N,M,V). Given allocation A’ on I’, a corresponding allo-
cation A on I can be computed in polynomial time such that for all
i € N,vi(A;) 2 0](A)).

The above results hold for any MMS approximation without loss
of generality, and have been adopted extensively in simplifying
the MMS approximations of chores [39]. Therefore, throughout the
paper we only focus on ordered instances.

Example 2.1 (Ordering an instance). Consider the following un-
ordered instance with four chores and two agents:

‘ c1 Cc2 Cc3 Cq ‘ MMS:‘ ‘ i (As)
a3 (5 - (D] -8 -6
a|(2) -8 9 | -2 -6

An ordered instance is obtained by sorting the values in descend-
ing order of absolute values. It has two possible allocations marked
by a circle and * that satisfy MMS:

| ¢ ¢ ¢ ¢ | MMST
a | 6" @ 1] =
a & 4 (2| 12

The marked MMS allocations in the ordered instance corresponds to
a picking-sequence that results in an MMS allocation in the original
instance. A picking sequence lets agents select items from the ‘best
chores’ (most preferred) to the ‘worst chores’ (least preferred).
For instance, applying a picking sequence 2, 1, 1, 2 (obtained from
the circled allocation in the second table) to the original instance
results in allocation A (marked by circles in the first table) that
guarantees MMS. Specifically, when applied to the original instance,

!Bouveret and Lemaitre [16] called these same-order preferences.

599

AAMAS 2022, May 9-13, 2022, Online

agent 2 picks first, and takes its highest valued chore ¢, which
corresponds to c;. Agent 1 then picks its best chore c4, which is
available. The next pick also belongs to agent 1. But his second-best
chore is c1, which is already allocated to agent 2. Thus, agent 1
picks its next-best available chore ¢, and agent 2 is left with cs.

3 VALID REDUCTIONS FOR CHORES

In this section, we first show that the valid reductions techniques
that are typically used for allocating goods can no longer be applied
to chores instances. While typical goods reductions fail in allocating
chores, we then argue that some of the core ideas translate to
chores allocation through careful adaptations. These techniques
are of independent interest as they can be utilized in other heuristic
algorithms (e.g. multiplicative MMS approximations).

3.1 Reductions for goods

Several algorithms that are developed to provide multiplicative
MMS approximations rely on structural properties of MMS and
heuristic techniques to avoid computational barriers of computing
MMS thresholds. To understand common reduction techniques, we
first take a detour to recall techniques that are valid when allocating
goods. For the ease of exposition, we present this section with the
standard definition of 1-out-of-n MMS.

Definition 3.1 (Valid Reduction for Goods). Given an instance,
I = (N,M,V) and a positive integer n, allocating a set of goods
A; € M toan agent i € N is a valid reduction if

(i) vi(A;) 2 MMS? (M), and

(i) Vje N\ {i},MMS}"l(M\Ai) > MMS?(M).

Intuitively, a valid reduction ensures that the MMS values of the
remaining agents in the reduced instance does not strictly decrease;
otherwise, solving the reduced instance may violate the initial MMS
values of agents.

Since computing MMS values is NP-hard [16], one can instead
utilize proportionality as a (loose) upper bound for MMS values.
Given the proportionality bound, it is easy to see that for each agent
i€ N,MMS}(M) < Lé\/l) Therefore, any good g € M with a value

vi(g) = & (nM) for agent i can be assigned to agent i, satisfying i’s

MMS value, without violating conditions of valid reductions. The
next lemma (due to Garg et al. [30]) formalizes this observation and
provides two simple reduction techniques.

Lemma 3.1 (Garg et al. [30]). Given an ordered goods instance I =
(N, M, V) with [N| = n, if 0;({gn, gn+1}) = @ then allocating
Ai = {9gn, gn+1} to agent i (and removing them from the instance)
forms a valid reduction. Similarly, allocating {g1 } to agent i forms
a valid reduction if v; ({g1}) > #

Remark 3.1. When allocating goods, valid reduction techniques
are often used together with scaling of an instance to simplify the
approximation algorithms [30, 31]. The scale invariance property
of MMS [32] states that if an agent’s valuations are scaled by a factor,
then its MMS value scales by the same factor. Formally, given an
instance I = (N, M, V), for every agent i € N with a proportionality
bound w we can construct a new instance I’ = (N, M, V') such

that o] (M) = n and for every g € M, v{(g) = in(g). Using the

Main Track

proportionality bound for scaling an instance implies that allocating
any set S € M such that v;(S) > 1 to agent i forms a valid reduction.

The scale invariance property of MMS and reduction techniques
circumvent the exact computation of MMS thresholds, which en-
ables greedy approximation algorithms for allocating goods. Garg
et al. [30] developed a simple greedy algorithm that guarantees to
each agent 2/3 of its MMS value; later algorithms improved this
approximation to 3/4 [31, 32].

3.2 Failure of Goods Reductions

We briefly discuss how the valid reductions for goods do not trans-
late to instances with chores. The reason is that the reductions for
goods rely upon the fact that, redistributing items from one bundle
of a partition to other bundles weakly increases the value of other
bundles. However, in the context of chores, this assumption does
not hold as we illustrate next.

Example 3.1. Consider three agents and six chores. Agents’ val-
uations are identical such that each agent i € N values each
chore ¢ € M as v;j(c) = —1. The 1-out-of-3 MMS of all agents
is -2, ie. MMS;?v = -2 for every i € N. A reduction that allocates
a single chore (e.g. largest chore), say cj, satisfies agent 1 since
v1(c1) =-12> MMS?. However, this reduction is not valid since the
MMS value of the remaining agents decreases, that is, MMS? =-3
fori € {2,3}.

To illustrate why reductions of larger bundles such as {cn, cp+1}
fail, we provide the following example that generalizes this reduc-
tion to bundles with larger sizes.

Example 3.2. Consider an instance with three agents and 3(k +2)
chores that are each valued —1. Each agent’s MMS value is MMS? =
—(k+2). Take any bundle S ¢ M of k+ 1 chores. Any agent i would
agree to receive S, asv;(S) = —(k+1) > MMS? = —(k+2). However,
allocating the bundle S to agent i is not a valid reduction. This is
because the remaining 2k + 5 chores must be allocated among the
remaining two agents, but MMS? (M \ S) = —(k + 3) which is less
than MMS§ =—(k+2).

Notice that smaller bundles of v;({cn, cn+1}) = —2 do satisfy
agent i as well but still result in decrease of MMS values for other
agents. For example, when k = 2, if {c3, c4 } are allocated to an agent,
the MMS values of the remaining agents decrease from MMS? =—4
to MMS? = —5.

3.3 Estimating the Number of Large Chores

One of the key distinctions between allocating goods and chores
is the tolerance of bounds used for approximating MMS values.
As we discussed previously, proportionality provides a reasonable
upper bound in allocating goods through reductions: as soon as the
value of a bundle reaches an agent’s proportionality threshold, a
reduction can be applied without including any additional item.

In contrast, when allocating chores, proportionality may be a
loose bound: when selecting a set of chores that satisfies propor-
tionality for an agent, it may still be necessary to include additional
chores to ensure that no chore remains unallocated.

Example 3.3. Consider an instance with 10 chores and 10 agents

with identical valuations: three small chores valued at —%, six

600

AAMAS 2022, May 9-13, 2022, Online

medium chores valued at —%, and one large chore valued at —1. The
proportionality threshold is —% but the MMS is —1. Once an agent
reaches the proportionality threshold, say by receiving a single
medium chore, it could still receive an additional medium or small
chore.

The main challenge is how to pack as many chores as possible
within a bundle without violating the maximin share threshold.

We start by making a simple assumption on the size of the in-
stance. For any instance, without loss of generality, we can always
add dummy chores with value 0 and assume that m > 2d + 1.2

Our first lemma will be used to bound the number of large chores
in each bundle. It states that in an ordered chores instance, the most
preferred k + 1 chores from the set of the least preferred kd + 1
chores are valued at least as much as 1-out-of-d MMS share.

Lemma 3.2. Let I = (N, M, V) be an ordered chores instance, and
k and d be non-negative integers such that kd + 1 < m. Then, for
each agenti € N,

01 ({Chd(k—1)s Ckd— (k-2 - - -+ Ckd+1}) = MMS{ (M).

Proor. Consider the subset of chores S = {c1,c2, ..., Crds1}-
By definition, for every chore ¢ € M, vij(c) < 0, thus we have
MMS?(S) > MMS? (M). By the pigeonhole principle, since |S| >
kd, any partition of S into d bundles (Aj, ..., A7) must contain at
least one bundle, say A, which contains at least k + 1 chores. By
definition, we have v; (A7) > MMS? (S).

Let the set B C S contain the k + 1 last (most preferred) chores
of S. most preferred chores of S. Since chores are ordered from the
least to the most preferred chores, this B is weakly preferred to Ay.
Thus, v;(A¢) < v;(B) where B = {ck4—(k-1) Ckd—(k-2)> - - -> Ckd+1}-
By transitivity, v; (B) > v;(Ar) > MMS?(S). o

Lemma 3.2 links the number of chores to their values, and enables
us to identify the number of large (least preferred) chores.

Corollary 3.1. Given an ordered chores instance I = (N, M, V),
and an integer d > 1, the following statements hold>:

(1) vi({c}) > MMS? (M), for all ¢ € M;

(2) vi({ca casa}) = MMSE (M);

(3) vi({c2d-1. C2d: Caar1}) > MMS(M).

PRrOOF. By setting k = 0 in Lemma 3.2, for each agent v;({c1}) >
MMS?(M). Since c; is the worst chore in an ordered instance, for
every other chore ¢ € M, v;({c}) > MMS?(M). Similarly, setting
k =1and k = 2 in Lemma 3.2 yields claims (2) and (3). O

4 l-OUT-OF-l_%”J MAXIMIN SHARE FOR
CHORES IN POLYNOMIAL TIME

In this section, we present a polynomial-time algorithm for allocat-
ing chores that achieves l-out-of—[z?"J MMS. The algorithm takes
a chores instance along with a set of thresholds for agents as an
input and utilizes a greedy “bag-filling” procedure to assign bundles
of chores to agents. The high-level idea behind the algorithm is
allocating the large (least desirable) chores first and packing as

%In the full version of the paper [38], we show this without adding dummy chores.
31f d < 2d + 1, we may add 2d + 1 — m dummy chores with value 0 to all agents.

Main Track

ALGORITHM 1: Algorithm for 1-out-of-d MMS approximation

Input: An ordered chores instance I = (N, M, V') and threshold
values (f;)L; with B; < 0foralli € N.
Output: Allocation A = (Ay,...,Ap) s.t. v;(A;) > f;foralli € N.
1 while |[N| > 0do // there are remaining agents
> Adding as many chores as possible to a bundle

2 Initialize B as an empty bundle ;

3 for each remaining chore ¢ in descending order of absolute values
(hardest to easiest chore) do

4 L if there exists agent i s.t. v; ({BU c}) > f; then

5

| B—BuU{c}// Adding ¢ to B
> Allocating the bundle to an agent.
6 Select an agent i such that v; (B) > f; (arbitrary break ties);
7 Ai «— B 5

8 N « N\ {i};
9 M« M\B;

many chores as possible into a bundle up to the given threshold.
The algorithmic idea is simple. The key in achieving l-out-of-LzT"J
MMS approximation is selecting appropriate threshold values.

Algorithm description. The underlying structure of Algorithm 1 is
similar to the First-Fit-Decreasing algorithm for bin-packing [40].% It
starts by selecting an empty bundle and adding a large (lowest value)
chore to the bag. While the value of the bag is above a threshold for
at least one agent, add an additional chore—in order of the largest
to smallest—to the bundle. If a chore cannot be added, the algorithm
skips it and considers the next-smallest (more preferred) chores.
Each agent has a different threshold, f;, and assesses the bundle
based on this threshold. When no more chores can be added, the
bundle is allocated to an arbitrary agent who still finds it acceptable.
The algorithm repeats with the remaining agents and chores.

For any selection of non-positive thresholds (f;)}-, Algorithm 1
guarantees that 1) every bundle is allocated to an agent who values
it at least f;, and 2) every agent receives a bundle (possibly an
empty bundle). However, if the thresholds are too optimistic (too
close to zero), the algorithm may result in a partial allocation, i.e.,
some chores might remain unallocated. The main challenge is to
carefully choose the threshold values such that the algorithm will
provably terminate with a complete allocation.’

Theorem 4.1. Given an additive chores instance, a 1-out-of- L%”J
MMS allocation exists and can be computed in polynomial time.

Proor. Let I = (N, M, V) be an ordered instance and d = LZTHJ
Without loss of generality, we can assume that m > 2d+1 by adding
dummy chores with value 0 for all agents.

For each agent, let the thresholds be selected as follows:

0; (M)
d

Bi = min |v;(c1), vi({cg, cas1}), vil{c2d-1> C2d> C2d41})>

4The same algorithm is used by Huang and Lu [39] for achieving multiplicative ap-
proximations of MMS. They prove that, with appropriate thresholds, Algorithm 1
guarantees every agent at least 11/9 of its MMS value. This does not directly imply
any result for ordinal approximation as shown in Example 1.1.

5In contrast, when allocating goods, all goods are allocated, and the challenge is
showing that all agents receive a bundle of certain threshold.

601

AAMAS 2022, May 9-13, 2022, Online

2ir) (é\/l) > MMS? (M) imply that all

agents receive their 1-out-of-d MMS, that is, f; > MMS?(M).

In order to show that all chores are allocated, we split the chores
into three categories of large ({c1, . . ., ¢g}), medium ({cg41, . - -, Cag}),
and small ({c3441,---,cm}) chores.

Since for all i € N, v;(c1) > f;, every single chore can be added
to an empty bag. Consider the first d bundles. Since these bundles
contain at least one chore each, and d < n, the d large chores are
allocated within the first d iterations.

Similarly, since v;(cg, c4+1) > pi, the medium chores may be
bundled in pairs from largest to smallest and form the next bundles.

Corollary 3.1 and the inequality

This implies that, within the first d + [%-‘ allocated bundles, all large

and medium chores are allocated. Importantly,

o525
2 3 2 3 3

Thus, we conclude that all large and medium chores are allocated
upon the termination of the algorithm.

The last step is to prove that all small chores are allocated too.
These chores are added to bundles whenever there is additional gap
between v;(A;) and f;. Consider the last agent, i, who receives a
bundle before Algorithm 1 terminates. If no small chores remain
before agent i receives a bundle, then we are done.

Suppose that there is some remaining small chore ¢ before agent
i receives a bundle. For each other bundle A; already allocated,
necessarily 0;(A; U {c}) < p;, because otherwise agent i would
have accepted A; U {c} and chore ¢ would have been added to A;.
Now, since v;({cag-1, 24> C24+1}) = Pi and the instance is ordered,

we have that v;(c) > vi(cage1) = % In turn, this implies that
0i(Aj) < fi —0i(c) = 23& for each j # i.
By the way we selected the thresholds, we have that f; < % (dM) .

We use this fact to upper bound the amount of value in each previ-
ously allocated bundle:

2 .
wiay < 2,

which implies that
20; (M)
3d

vi(Aj) < .
By replacing the value of d, we have
20i(M)

313

2.3 uM) _ oM
32 n n -’
This inequality implies that before the last bundle is initialized,

agent i values the remaining items at least 0; (M) — 3} j4; 0i(Aj) >
vi(M) — (n— 1)%]\4) = %M) > fi. Thus, agent i can take all the
remaining chores. m]

0;i(Aj) <

Therefore,

Remark 4.1. Interestingly, for goods, 1-0ut-0f-|_37”J MMS approx-
imations exist [36] and can be computed in polynomial time [37].
However, the techniques used for proving the existence results as
well as developing a tractable algorithm are substantially different
due to reductions available for goods (as discussed in Section 3) as
well as challenges posed by packing bundles to ensure complete

Main Track

allocations of chores. On the other hand, in the case of goods even a
slight error in computing MMS values may result in wasting values
and not having sufficient goods to satisfy some agents (see [36]
for an example) whereas for chores we can tolerate an estimate of
MMS values as long as all chores are allocated.

5 1-OUT-OF-| 3| MMS ALLOCATIONS EXIST
FOR CHORES

In this section, we show that a careful selection of threshold values
in Algorithm 1, in fact, guarantees l-out-of—l_%"J MMS approxi-
mation. To achieve this result we require a precise computation
of MMS values for each agent, which in turn is intractable [16].
Nonetheless, we prove the existence of l—out—of—L%J MMS, and
later in Section 6 provide a polynomial-time algorithm that achieves
an approximation of this bound.

Theorem 5.1. Given an additive chores instance, a 1-out-of- L%J
MMS allocation is guaranteed to exist.

Theorem 5.1 is an immediate corollary of Lemma 5.1 below. For
the ease of exposition, we first provide the proof of the theorem.

Proor. By construction, Algorithm 1 terminates and every agent
i € N receives a bundle (possibly empty) with the value of at
least f;. By Lemma 5.1, we can pick for each agent i the threshold
Bi = MMS?I(M) where d = L%J, and all chores will be allocated.
Thus, we have a complete allocation in which each agent’s value is
at least 1-out-of- I_%J MMS, which proves Theorem 5.1. O

Lemma 5.1. Suppose Algorithm 1 is executed with threshold val-

3n
ues fi; < MMS!‘ 7 (M) for all i € N. Then all chores are allocated
upon termination of the algorithm.

Proor. Let I = (N, M,V) be an ordered chores instance. For
simplicity, we start by scaling the valuations such that for each

3n
agent i € N, MMSIL 4 J(M) = —1.° This implies that

3n

vi(M) = - {TJ 3n

> ——

: 1)

and f; < —1 for each agent i € N.

Let agent i be the last agent who received a bundle (in the n-th
iteration). The proof proceeds by considering two types of remain-
ing chores according to their value: 1) small chores ¢ € M with
value v;(c) > —1, and 2) large chores ¢ € M with value v;(c) < —4—11.

Case 1: small chores. Suppose for contradiction that there is
some chore ¢ € M such that v;(c) > —% that remains unallocated
at the end of the algorithm. By assumption, agent i could not add
c to any allocated bundle, including i’s own bundle. Since i is the
last agent, we infer that for each agent j € N with bundle A s
0;(Aj U{c}) < —1. By additivity, because v;(c) > -1 we can write
vi(Aj) < —% for all j € N. Summing over all assigned bundles
gives v;(M) < —32 which contradicts (1). Therefore, no such small
chore remains at the end of the algorithm.

OThis scaling step is only used to simplify the proof. An identical result can be achieved
without scaling the valuations by setting all thresholds to ; = MMS? (M) where
d= |_3T"J and updating the rest of the values in the proof accordingly.

602

AAMAS 2022, May 9-13, 2022, Online

Case 2: large chores. Suppose that there is some chore ¢ € M
such that v;(c) < —% that remains unallocated at the end of the
algorithm. We define the following sets of bundles.

o My,... ,MLMJ are MMS bundles — bundles that comprise a
4

3n
MMSI!‘ il (M) partition of agent i.

e Bi,..., By, are algorithm bundles — bundles allocated by Al-
gorithm 1. B; denotes the bundle allocated at iteration ¢.

For each MMS bundle Mj, let M;[s] denote the s-th largest chore
(least valued) of M;. Whenever [M;| < s, we define v;(M;[s]) = 0.
Without loss of generality, we assume that the MMS bundles are
sorted such that |o; (M [1])| > |o;(M2[1])] > ... > |Ui(M|_3T"J [1D].

3n
Since valuations are scaled so that MMSI!‘TJ (M) = —1, there are at
most 3 large chores (with value less than %) in each MMS bundle.
For the sake of the proof, we maintain a vector of shadow-bundles
Ml' , Mz’, ..., M}, which is initialized as follows:

e Foreach j € {1,..., DT"J} M]’. := the set of large chores
(with value less than —‘—11 to i) in M;.
e Foreach j € {L%’J ,...,n},M}f = 0.
At each iteration ¢t of the algorithm, we edit the vector of shadow-
bundles by moving some chores between bundles. We do so such
that, at the start of iteration ¢, the following invariants hold:
1y M J’ C Bj forall j < t. That is, each chore in the shadow-
bundles Ml’, o Mt’_1 is allocated.
(2) |M]{| <3and ui(M]f) > —1for j > t. That is, each remaining
shadow-bundle M/, ..

Both invariants hold before the first iteration (¢ = 1): invariant (1)
holds vacuously, and invariant (2) holds since each bundle M]f is
contained in one of i’s MMS bundles. Suppose the invariants hold
before iteration t > 1. We show how to edit the shadow-bundles
such that the invariants still hold before iteration ¢ + 1.

We reorder the shadow-bundles M;, ..., M, so that M/[1] is the
largest remaining chore. Hence, in iteration ¢, Algorithm 1 selects
this chore first to add to the bag. That is, B;[1] = M/[1]. We split
to cases based on the size of |M]|, which must be in {1,2,3} by
invariant (2).

If |Mt’| = 1, then both invariants hold at ¢ + 1, since Mt’ C B¢, and
the shadow-bundles do not change.

If [M/| = 2, then we have to handle M/[2]. By invariant (2) we
have M/[1] + M][2] > —1. This means that M [2] can potentially
be inserted as the second chore in B;. If indeed B; [2] = M/[2], then
we are done — both invariants hold at ¢ + 1, since Mt’ C B;, and the
shadow-bundles do not change. If B;[2] # M/[2], this means that
Algorithm 1 processed chore B;[2] before chore M][2]. Since the
algorithm processes jobs by ascending order of values (descending
order of absolute values), this implies that v; (B;[2]) < v;(M[[2]).
Now, we find the chore B;[2] in some shadow-bundle M]’ for some
j > t, and swap it with M/[2]. We claim that both invariants hold:

(1) M] C By, since after the swap B;[1] = M][1] and B;[2] =
M;[2], and |M]| = 2.

(2) The remaining shadow bundles remained as before, except
for the shadow-bundle M}’., in which a single chore was
swapped. But, because v;(B;[2]) < 0;(M[[2]), the value
of M]’. weakly increases, so it is still at least —1.

., M], has value at least —1.

Main Track

Finally, suppose |M;| = 3. We handle M/[2] as in the previ-
ous case, so that now M/[1] = B;[1] and M/[2] = B;[2]. It re-
mains to handle M/[3]. Because M/[3] is the smallest chore in
M/, and v;(M]) > —1, by the pigeonhole principle we must have
v (M/[3]) > —%. We move chore M;[3] to a bundle M]’. which was
initially empty and which contains fewer than 3 chores (all of which
were moved to the bundle this way and thus have value at least
—%). Such a bundle can always be found because at most one chore
is moved this way in each iteration, and there are at most [%J bun-
dles M J’ which were initially non-empty. Thus an upper bound on
the number of bundles filled this way is: [% . [%"H <% <n- [%"J
Since each chore moved this way has value at least —1, we pre-
serve invariant (2) |Mj’.| < 3and vi(Mj’.) > —1. After the move, M]
contains only two chores, both of which are in By, so invariant (1)
holds too.

We note that if the first chore B;[1] is selected from one of these
growing bundles, then because this chore has value at least —% and
because chores are only moved if v; (M/[1]) < -1,
will be moved in later iterations.

The final step in proving the lemma is to move all chores from
B \ M] to M]. This step is necessary in order to guarantee that the
largest remaining chore in later steps is not from B; \ M] (and thus
M/, [1] ¢ B \ Mt’).7 We may do this because it preserves M/ C B;.
Notice that vj(B;) > —1 for the agent j € N who received bundle
B;; however, we do not require that v; (B;) > —1, as agent i is not be
allocated the bundle B;. Observe that the chores B; \ M/ correspond
to additional large chores which could be added to the bundle M/,
and thus, in moving these chores, the value of bundles M]’. forj >t

no more chores

can only weakly increase and will remain at least —1.

Lastly, invariant (2) implies that after iteration (n — 1), M;, has
value at least —1 for agent i. All remaining large chores lie in this
bundle. Thus agent i may take all such large chores. This implies
that M;, C By, and that no large chores remain when the algorithm
terminates. O

We do not know whether the |3n/4] factor is tight in general.
The following proposition shows a non-tight upper bound on the
performance of Algorithm 1 for large values of n.

Proposition 5.1 (Upper bound for Algorithm 1). For any integer
k > 0, there is an instance with n = 11k + 7 agents in which
Algorithm 1 cannot guarantee to each agent its 1-out-of-(9k + 6)
MMS.

Proor. When all agents have the same valuation and the same
threshold, Algorithm 1 reduces to an algorithm for bin-packing
known as First Fit Decreasing (FFD) [12, 40]. FFD sorts the chores
by descending value, and allocates each chore to the first (smallest-
index) agent who can take it without going over the threshold.
Algorithm 1 (with identical valuations and thresholds) does exactly
the same, only in a different order: instead of making a single pass
over all the chores and filling all bins simultaneously, it makes n
passes over the chores, and fills each bin in turn with the chores
that would be inserted to it in that single pass.

"For example, consider M; = {c1,c2} and M; = {c3,cy,c5}. It is possible that
Bj = {c1, c2, ¢3 }, which means that Bz [1] = ¢4 but M [1] = cs.

603

AAMAS 2022, May 9-13, 2022, Online

Désa [24] and Désa et al. [25] have shown that, for every integer
k > 1, there is a bin packing instance in which the optimal packing
needs 9k + 6 bins but FFD needs 11k + 8 bins. We construct a
chore allocation instance with n = 11k + 7 agents with identical
valuations, taken from that bin-packing instance. Assume that the
agents’ thresholds are at least their 1-out-of-(9k + 6) MMS. Then,
after Algorithm 1 allocates bundles to all n agents, some chores
may remain unallocated. O

Consider Proposition 5.1 with k = 0 and n = 7. By Theorem 5.1,
our algorithm achieves |3n/4] = 5 ordinal approximation. This
bound is tight since we cannot guarantee to all agents their 1-out-
of-6 MMS. We present this tight example below.

Example 5.1 (A tight example for Algorithm 1). Consider an in-
stance with n = 7 agents and m = 20 chores valued as follows for
all agents: four chores valued at —201, four chores valued at —102,
four chores valued at —101, and eight chores valued at —98. For
each agent, the 1-out-of-6 MMS partition contains the following
bundles with the MMS value of —400:

e 4 bundles of chores with values {—201, =101, —98};

e 2 bundles of chores with values {—102, —102, —98, —98}.

With the threshold values set as -400, Algorithm 1 generates the

following bundles:
4 bundles with chores {-201, —102};
1 bundle with chores {—101, -101, —101};
1 bundle with chores {—101, —98, —98, —98};
1 bundle with chores {—98, —98, —98, —98}.
After allocating these 7 bundles, a chore with the value of —98 re-
mains unallocated and cannot be added to any of the above bundles
since it would violate the threshold of —400.

6 POLYNOMIAL-TIME APPROXIMATIONS

In this section, we develop an efficient approximation algorithm that
achieves 1-out-of- L HT"J —O(log n)J MMS for any chores instance.
We rely on Algorithm 1 while utilizing an efficient approximation
algorithm to find reasonable threshold values.

This result provides an interesting computational contrast be-
tween multiplicative and ordinal approximations of MMS for allo-
cating chores: multiplicative approximations require exact MMS
values, which can be seen as a job scheduling problem where the
goal is to minimize the makespan (the maximum completion time
of a machine). However, ordinal MMS approximation on chore in-
stances can be modeled as a combinatorial problem of bin packing
(see Korte and Vygen [41] for a detailed survey) where the goal is
to minimize the number of bins subject to an upper bound on the
total size of items in each bin.

While both problems are NP-hard, they differ in the approxi-
mation algorithms available for them. The job scheduling problem
has polynomial-time approximation schemes (PTAS) [54], but their
runtime is exponential in the approximation accuracy 1/e. On the
other hand, the bin packing problem used for our ordinal MMS
approximation admits additive approximation algorithms.

In particular, we use an algorithm by Hoberg and Rothvoss [34],
which we call Algorithm HR. Algorithm HR takes as input a bin-
packing instance I, and returns a packing with at most [OPT(I)+a-
log(OPT(I))] bins (for some fixed constant a) in time polynomial

Main Track

AAMAS 2022, May 9-13, 2022, Online

ALGORITHM 2: Computing an approximate MMS value
Input: Aninteger d > 1; a single agent with value function v; over
a set of chores M; all values are negative integers.
Output: A number f; in the interval
[Mms 84 (an), MMsE (M)].
> Construct a bin-packing instance:
1 LetS::{—oi(c) |c EM};
> Initialize a lower and an upper bound for the bin

size:

2 LetL:=0;
3 Let U := (), S) rounded up to the nearest power of 2;

> Run binary search:
4 whileU > L+ 1do
5 Letb:=(U+L)/2;
6 Run Algorithm HR [34] on instance S with bin-size b ;
7 if at most d bins are used then
8 L Let U := b; // Try smaller bins

9 else

10 L Let L := b; // Try larger bins

11 return -U.

in m (the number of input numbers in I), where OPT(I) denotes
the smallest possible number of bins for I. We combine Algorithm
HR with binary search on the bin size.?

To efficiently apply binary search, we assume in this section that
the values of chores are negative integers with a bounded binary
representation. The run-time of our algorithm will be polynomial
in the size of the binary representation of the input.

Lemma 6.1. Given an additive chores instance with integer values,
for any integer d > 1 and agent i, it is possible to compute a number

Pi for which
mmstaated) < g < MMSE(M) < 0
i = Ml = i = U,
in time polynomial in the size of binary representation of the input.

Proor. We start by applying Algorithm 2. The algorithm con-
verts the chores allocation instance to a bin-packing instance, where
each chore ¢ € M is converted to an input of size |v;(c)|. Then it
applies binary search with lower bound L and upper bound U.
Throughout the search, the following invariants are maintained:

1) U>L=0

(2) Algorithm HR with bin-size U needs at most d bins;

(3) Algorithm HR with bin-size L needs more than d bins.

The invariants are obviously true at initialization, and they are
maintained by the way U and L are updated. Let f; be the returned
value, that is, the value of —U once the algorithm terminates. By
the termination condition, at this point U = L + 1.

Invariant (2) implies that there exists a partition of chores into d
bins, in which the total absolute value of each bin is at most U, so
the total value is at least —U. Therefore, MMS;’I (M) = -U = p;.

Invariant (3) implies that there is no partition of the chores into
ld — a-logd] or fewer bins, in which the total absolute value of
all bins is at most L—otherwise the HR algorithm could have filled

8Similar search techniques have been used for MultiFit scheduling algorithms [23]
and the dual approximation scheme of Hochbaum and Shmoys [35].

604

ALGORITHM 3: Algorithm for ordinal MMS approximation in
polynomial time

Input: An ordered chores instance I = (N, M, V).
Output: Allocation A = (Ay, ..., A,) satisfying
0i(A;) > MMS?(M) for all i € N, such that
d=|[%]-alog|3¥]]
1 for each agenti € N: do
2 L Run Algorithm 2 with d = |_3—"J and valuation v;;
3

4
Let f; be the returned value;
4 Run Algorithm 1 on I with the threshold values (f1, . ..

2 Bn)-

at most [[d —a-logd] +a-log|d—a-logd|] < d bins of size
L. Therefore, MMSI.Ld_a'IOgGlJ (M) < —L. Since we assumed that

all chores’ values are integers, this implies MMSI.L”I_a'IOg dl (M) <
-L-1=-U=p.

The binary search uses [log,(2] S)] iterations, which is poly-
nomial in the size of the binary representation of the input. Each
iteration runs the HR algorithm, whose run-time is polynomial in
m. This concludes the proof of the lemma. O

Theorem 6.1. Given an additive chores instance with integer val-
ues, it is possible to find in polynomial time, for some fixed positive
constant g, a 1-out-of- L L%J —a-log L%JJ MMS allocation

Proor. We use Algorithm 3 which starts by computing a thresh-
old value f3; for each agent i € N using Algorithm 2. Then, it applies
Algorithm 1 with the resulting thresholds for allocating the chores.

Lemma 6.1 implies that f§; < MMS?(M) with d = L%J for all
i € N. By Lemma 5.1, this implies that Algorithm 1 allocates all the
chores. Therefore, Algorithm 1 yields a complete allocation in which
the value of each agent i is at least ;. By Lemma 6.1, this value is

3 glog | 32
at least MMSIU' #]-atog %]] (M), concluding the proof. O

7 DISCUSSION

Theorem 5.1 shows that, asymptotically (when n islarge), Algorithm
1 guarantees 1-out-of-(~ 0.75n) MMS. Proposition 5.1, however,
shows that this bound cannot be improved to 1-out-of-(~ 0.81n)
MMS using this algorithm. An immediate, but challenging, re-
search direction is closing this approximation gap and developing
polynomial-time algorithms beyond those presented in this paper.

All of our results use the same algorithm (Algorithm 1) to allocate
the chores, but with different threshold values. This approach is
“pluralistic” in that it allows each agent to choose between these
thresholds: each agent may choose whether to settle for a lower
but easy-to-compute threshold of Section 4, or put an extra effort
to compute a higher thresholds of Sections 5 or 6. This pluralistic
approach may be useful in other fair division settings.

ACKNOWLEDGMENTS

Hadi Hosseini acknowledges support from NSF IIS grants #2052488
and #2107173. Erel Segal-Halevi is supported by the ISF grant 712/20.
We are grateful to anonymous referees of EC 2021 and AAMAS
2022 for their valuable feedback.

Main Track

REFERENCES

(1]

[2

[

[10]

(11

[12]

[13

[14]

[15

[16]

[17]

[18

[19]

[20

[21]

[22

[23]

[24

[25

[26]

Elad Aigner-Horev and Erel Segal-Halevi. 2022. Envy-free matchings in bipartite
graphs and their applications to fair division. Information Sciences 587 (2022),
164-187.

Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi.
2017. Approximation algorithms for computing maximin share allocations. ACM
Transactions on Algorithms (TALG) 13, 4 (2017), 52.

Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. 2019. Fair
allocation of combinations of indivisible goods and chores. In Proceedings of the
28th International Joint Conference on Artificial Intelligence (IJCAI). 53-59.

Haris Aziz, Hau Chan, and Bo Li. 2019. Maxmin share fair allocation of indivisible
chores to asymmetric agents. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems. 1787-1789.

Haris Aziz, Hau Chan, and Bo Li. 2019. Weighted Maxmin Fair Share Allocation
of Indivisible Chores. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, [JCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 46-52. https://doi.org/10.24963/ijcai.2019/7
Haris Aziz, Bo Li, and Xiaowei Wu. 2019. Strategyproof and Approximately
Maxmin Fair Share Allocation of Chores. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, I[JCAI-19. International
Joint Conferences on Artificial Intelligence Organization, 60-66. https://doi.org/
10.24963/ijcai.2019/9

Haris Aziz, Bo Li, and Xiaowei Wu. 2020. Approximate and Strategyproof
Maximin Share Allocation of Chores with Ordinal Preferences. arXiv preprint
arXiv:2012.13884 (2020).

Haris Aziz, Hervé Moulin, and Fedor Sandomirskiy. 2020. A polynomial-time
algorithm for computing a Pareto optimal and almost proportional allocation.
Operations Research Letters 48, 5 (2020), 573-578.

Haris Aziz, Gerhard Rauchecker, Guido Schryen, and Toby Walsh. 2017. Al-
gorithms for Max-Min Share Fair Allocation of Indivisible Chores. Proceed-
ings of the AAAI Conference on Artificial Intelligence 31, 1 (Feb. 2017). https:
//ojs.aaai.org/index.php/AAAT/article/view/10582

Moshe Babaioff, Noam Nisan, and Inbal Talgam-Cohen. 2019. Fair Allocation
through Competitive Equilibrium from Generic Incomes. In Proceedings of the
Conference on Fairness, Accountability, and Transparency. 180-180.

Moshe Babaioff, Noam Nisan, and Inbal Talgam-Cohen. 2021. Competitive equi-
librium with indivisible goods and generic budgets. Mathematics of Operations
Research 46, 1 (2021), 382-403.

Brenda S Baker. 1985. A new proof for the first-fit decreasing bin-packing
algorithm. Journal of Algorithms 6, 1 (1985), 49-70.

Siddharth Barman and Sanath Kumar Krishna Murthy. 2017. Approximation
algorithms for maximin fair division. In Proceedings of the 2017 ACM Conference
on Economics and Computation. 647-664.

Anna Bogomolnaia and Hervé Moulin. 2022. Guarantees in Fair Division: General
or monotone preferences. arXiv preprint 1911.10009.

Anna Bogomolnaia, Hervé Moulin, Fedor Sandomirskiy, and Elena Yanovskaia.
2019. Dividing bads under additive utilities. Social Choice and Welfare 52, 3 (2019),
395-417.

Sylvain Bouveret and Michel Lemaitre. 2016. Characterizing conflicts in fair
division of indivisible goods using a scale of criteria. Autonomous Agents and
Multi-Agent Systems 30, 2 (01 Mar 2016), 259-290. https://doi.org/10.1007/s10458-
015-9287-3

Steven J Brams and Alan D Taylor. 1996. Fair Division: From cake-cutting to
dispute resolution. Cambridge University Press.

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérome Lang, and Ariel D Procaccia.
2016. Handbook of computational social choice. Cambridge University Press.
Eric Budish. 2011. The combinatorial assignment problem: Approximate compet-
itive equilibrium from equal incomes. Journal of Political Economy 119, 6 (2011),
1061-1103.

Simon Caney. 2009. Justice and the distribution of greenhouse gas emissions.
Journal of global ethics 5, 2 (2009), 125-146.

Bhaskar Ray Chaudhury, Jugal Garg, Peter McGlaughlin, and Ruta Mehta. 2020.
Dividing bads is harder than dividing goods: On the complexity of fair and
efficient division of chores. arXiv preprint arXiv:2008.00285 (2020).

Xingyu Chen and Zijie Liu. 2020. The fairness of leximin in allocation of indivisi-
ble chores. arXiv preprint arXiv:2005.04864 (2020).

Edward G Coffman, Jr, Michael R Garey, and David S Johnson. 1978. An applica-
tion of bin-packing to multiprocessor scheduling. SIAM . Comput. 7, 1 (1978),
1-17.

Gyorgy Dosa. 2007. The tight bound of first fit decreasing bin-packing algorithm
is FFD (I) <= 11/90PT (I)+ 6/9. In International Symposium on Combinatorics,
Algorithms, Probabilistic and Experimental Methodologies. Springer, 1-11.
Gyorgy Dosa, Rongheng Li, Xin Han, and Zsolt Tuza. 2013. Tight absolute bound
for First Fit Decreasing bin-packing: FFD (L) <= 11/9 OPT (L)+ 6/9. Theoretical
Computer Science 510 (2013), 13-61.

Edith Elkind, Erel Segal-Halevi, and Warut Suksompong. 2021. Graphical Cake
Cutting via Maximin Share. In Proceedings of [JCAL

605

[27

[28

[29]

(30]

(31]

(32]

[33

(34

[35

[36]

(37]
(38]

[39

[40

N
furg

[42

[43

[44

[45

[47

(48

o
&

o
&

AAMAS 2022, May 9-13, 2022, Online

Edith Elkind, Erel Segal-Halevi, and Warut Suksompong. 2021. Mind the Gap:
Cake Cutting With Separation. In Proceedings of the AAAI Conference on Artificial
Intelligence. 5330-5338.

Uriel Feige, Ariel Sapir, and Laliv Tauber. 2021. A tight negative example for
MMS fair allocations. arXiv preprint arXiv:2104.04977 (2021).

Rupert Freeman, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. 2020. Equitable Allo-
cations of Indivisible Chores. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems. 384-392.

Jugal Garg, Peter McGlaughlin, and Setareh Taki. 2018. Approximating Maximin
Share Allocations. In 2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Jugal Garg and Setareh Taki. 2020. An improved approximation algorithm for
maximin shares. In Proceedings of the 21st ACM Conference on Economics and
Computation. 379-380.

Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Sed-
dighin, and Hadi Yami. 2018. Fair allocation of indivisible goods: Improvements
and generalizations. In Proceedings of the 2018 ACM Conference on Economics and
Computation. ACM, 539-556.

Laurent Gourveés and Jérome Monnot. 2019. On maximin share allocations in
matroids. Theoretical Computer Science 754 (2019), 50-64.

Rebecca Hoberg and Thomas Rothvoss. 2017. A logarithmic additive integrality
gap for bin packing. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2616-2625.

Dorit S Hochbaum and David B Shmoys. 1987. Using dual approximation algo-
rithms for scheduling problems theoretical and practical results. Journal of the
ACM (JACM) 34, 1 (1987), 144-162.

Hadi Hosseini and Andrew Searns. 2021. Guaranteeing Maximin Shares: Some
Agents Left Behind. In Proceedings of the Thirtieth International joint Con-
ference on Artificial Intelligence, IJCAI-21, Zhi-Hua Zhou (Ed.). International
Joint Conferences on Artificial Intelligence Organization, 238-244. https:
//doi.org/10.24963/ijcai.2021/34 Main Track.

Hadi Hosseini, Andrew Searns, and Erel Segal-Halevi. 2021. Ordinal Maximin
Share Approximation for Goods. arXiv preprint arXiv:2109.01925 (2021).

Hadi Hosseini, Andrew Searns, and Erel Segal-Halevi. 2022. Ordinal Maximin
Share Approximation for Chores. arXiv:2201.07424 [cs.GT]

Xin Huang and Pinyan Lu. 2021. An algorithmic framework for approximating
maximin share allocation of chores. In Proceedings of the 22nd ACM Conference
on Economics and Computation (EC). 630-631.

David S Johnson. 1973. Near-optimal bin packing algorithms. Ph.D. Dissertation.
Massachusetts Institute of Technology.

Bernhard Korte and Jens Vygen. 2018. Bin-Packing. In Combinatorial Optimiza-
tion. Springer, 489-507.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki. 2021. Indivisible Mixed Manna:
On the Computability of MMS + PO Allocations. In Proceedings of the 22nd ACM
Conference on Economics and Computation. 683-684.

David Kurokawa, Ariel D Procaccia, and Junxing Wang. 2018. Fair enough:
Guaranteeing approximate maximin shares. Journal of the ACM (JACM) 65, 2
(2018), 8.

Peter McGlaughlin and Jugal Garg. 2020. Improving Nash social welfare approxi-
mations. Journal of Artificial Intelligence Research 68 (2020), 225-245.

Hervé Moulin. 2019. Fair Division in the Internet Age. Annual Review of Economics
11, 1(2019), 407-441. https://doi.org/10.1146/annurev-economics-080218-025559
arXiv:https://doi.org/10.1146/annurev-economics-080218-025559

Nhan-Tam Nguyen, Trung Thanh Nguyen, and Jorg Rothe. 2017. Approximate
solutions to max-min fair and proportionally fair allocations of indivisible goods.
In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Sys-
tems. International Foundation for Autonomous Agents and Multiagent Systems,
262-271.

Ariel D Procaccia and Junxing Wang. 2014. Fair enough: Guaranteeing approxi-
mate maximin shares. In Proceedings of the fifteenth ACM conference on Economics
and computation. ACM, 675-692.

Mathias Risse. 2008. Who Should Shoulder the Burden? Global Climate Change
and Common Ownership of the Earth. Technical Report. Harvard University, John
F. Kennedy School of Government.

Andrew Searns and Hadi Hosseini. 2020. Fairness Does Not Imply Satisfaction
(Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence
34, 10 (Apr. 2020), 13911-13912. https://doi.org/10.1609/aaai.v34i10.7228

Erel Segal-Halevi. 2019. The Maximin Share Dominance Relation. arXiv preprint
1912.08763.

Erel Segal-Halevi. 2020. Competitive equilibrium for almost all incomes: existence
and fairness. Autonomous Agents and Multi-Agent Systems 34, 1 (2020), 1-50.
Martino Traxler. 2002. Fair chore division for climate change. Social Theory and
Practice 28, 1 (2002), 101-134.

Miroslaw Truszczynski and Zbigniew Lonc. 2020. Maximin Share Allocations on
Cycles. Journal of Artificial Intelligence Research 69 (2020), 613-655.

Gerhard] Woeginger. 1997. A polynomial-time approximation scheme for maxi-
mizing the minimum machine completion time. Operations Research Letters 20, 4
(1997), 149-154.

https://doi.org/10.24963/ijcai.2019/7
https://doi.org/10.24963/ijcai.2019/9
https://doi.org/10.24963/ijcai.2019/9
https://ojs.aaai.org/index.php/AAAI/article/view/10582
https://ojs.aaai.org/index.php/AAAI/article/view/10582
https://doi.org/10.1007/s10458-015-9287-3
https://doi.org/10.1007/s10458-015-9287-3
https://doi.org/10.24963/ijcai.2021/34
https://doi.org/10.24963/ijcai.2021/34
https://arxiv.org/abs/2201.07424
https://doi.org/10.1146/annurev-economics-080218-025559
https://arxiv.org/abs/https://doi.org/10.1146/annurev-economics-080218-025559
https://doi.org/10.1609/aaai.v34i10.7228

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	3 Valid Reductions for Chores
	3.1 Reductions for goods
	3.2 Failure of Goods Reductions
	3.3 Estimating the Number of Large Chores

	4 1-out-of-2n3 Maximin Share for Chores in Polynomial Time
	5 1-out-of-3n4 MMS Allocations Exist for Chores
	6 Polynomial-time Approximations
	7 Discussion
	Acknowledgments
	References

