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Abstract—This paper discusses how a cyber attack could take
advantage of torsional resonances in the shaft of turbo-generators
to inflict severe physical damage to a power system. If attackers
were able to take over the control of a battery energy storage
device, they could modulate the injection of this device at a
frequency that matches one of the sub-synchronous resonance
frequencies of a generator. Small changes in injection might be
sufficient to excite one of these mechanical resonances, resulting
in metal fatigue and ultimately a catastrophic failure in the
shaft of the generator. Using a state-space model of the electro-
mechanical system, the paper develops transfer functions linking
the magnitude of the malicious injections to the magnitude of os-
cillations in the speed and angle of the various masses connected
to the shaft. Numerical results from a two-area power system
demonstrate the existence of vulnerable frequencies and show
that damaging mechanical oscillations can be triggered without
causing easily detectable signals at the generator terminals.

Index Terms—Cyber attack, cyber-physical attack, battery
energy storage, sub-synchronous resonance, state space analysis

I. INTRODUCTION

While a cyber attack [1], [2] [3], [4] [5], [6] cripples a power
system until the malicious software has been expurgated, a
physical attack that destroys a major piece of equipment can
take months to repair. To carry out a physical attack, the
adversary must get in close proximity to the target equipment,
which is expensive and difficult to carry out without detection.
On the other hand, a cyber-physical attack does not require
the malicious actor to get in close proximity of the target
equipment. Instead, the attacker infiltrates some aspect of the
control infrastructure of the power system and manipulates
it to create physical damage [7]. Idaho National Laboratory
demonstrated the feasibility of this type of attack by taking
over the protection system of a generator and manipulating its
synchronization until the generator self-destructed [8].

To avoid detection and countermeasures, malicious ma-
nipulations of the control system should remain small. It is
therefore important to explore how an attacker could use
resonances to amplify their effects. Because their output can be
modulated at high frequency, battery energy storage systems
(BESS) represent an ideal vector for this type of attack.
Furthermore, because the number of BESS deployed in power
systems is increasing rapidly, the attack surface is growing [9]
[10] [11].

This paper explores how a malicious actor could damage
large turbo-generators by taking over the control of a BESS
and using it to inject small amounts of power at frequencies
corresponding to the torsional sub-synchronous resonance

(SSR) frequencies in the shaft of some generators. SSR is
a condition of the electric power system where with a turbine
generator exchanges energy with the rest of the system at one
or more of the natural frequencies of the combined system
below the synchronous frequency of the system [12]. While
sub-synchronous oscillations between the various masses con-
nected to the shaft of the generator typically remain small, they
cause metal fatigue and can over time lead to a catastrophic
failure of this shaft [13].

Physical and control countermeasures can be taken to avoid
SSR [14]. Capacitor compensation can be added to the system,
but the investment cost of such infrastructure measures is high.
Protective relays can also be used to detect oscillations at the
generator terminals. However, as this paper will show, it is
possible to induce mechanical oscillations that are hard to
detect at the generator terminals.

To demonstrate the feasibility of cyber-physical attacks that
leverage sub-synchronous resonances, this paper develops a
state-space model of the combined electromechanical system.
From this state space model, we derive transfer functions
linking the magnitude of the disturbances created by the sub-
verted BESS and the angular frequency of the various masses
connected to the shaft of a generator. These transfer functions
exhibit resonance frequencies that an attacker could target.
A relatively low-power BESS could therefore trigger sub-
synchronous resonances that could ultimately destroy large
generators while remaining hard to detect.

The remainder of the paper is organized as follows: Section
II describes a state-space model of the system dynamics that
combines the swing equations of the generator, the mechanical
characteristics of the shaft system, as well as the power flow
equations. Section III derives transfer functions relating the
BESS injections to the angular frequency and position of
the various masses connected to the generator shaft. Section
IV describes numerical studies that illustrate the frequency-
domain analysis and correlate it with time-domain simulations.
Section V discusses possible countermeasures. Section VI
concludes and discusses further work.

II. MODEL OF SYSTEM DYNAMICS

A. Notation

In this paper, the rated angular velocity in electrical rad/s
is denoted by ω0 = 2πf0, where frequency f0 = 60 Hz.
Assuming the number of field poles pf = 2, we employ ω0m
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as the rated angular velocity in mechanical rad/s, and ω0m =
(2/pf )ω0 = 377 rad/s.

Each generator contains a five-mass torsional system. This
paper denotes the speed and angle deviation of each rotor from
the steady-state values respectively with ωg, ωs1, ωs2, ωs3, ωs4

and θg, θs1, θs2, θs3, θs4. The subscription gi represents the
terminal of generator i, while the subscriptions s1 − s4
represent the other turbine sections. We further define ∆ω and
∆θ as the speed and angle difference between two adjacent
masses connecting to the same shaft. A torsional system of
generator i is presented in Fig. 1 with the variables illustrated,
where the shaft between two adjacent masses is denoted using
a double subscript as 12, 23, 34 and 45.

In the following formulation, the variables and parameters
are employed with their per-unit values if not specially men-
tioned.

Fig. 1. Five-Mass Torsional System.

B. State-Space Model

We investigate the dynamics of generators considering the
swing equations of the generator rotor together with the
torsional characteristics of the shaft system shown below in
(1)-(2) and (3)-(11).

ω̇g =
ω0m

2Hg
(PM − Pe −Dg · ωg) (1)

θ̇g = ωg (2)

ω̇g =
ω0m

2Hg

(
K12(θs2 − θg)−Dg · ωg − Pe

)
(3)

ω̇s1 =
ω0m

2Hs1

(
K23(θs3 − θs2)−K12(θs2 − θg) (4)

−Ds1 · ωs1 + Ps1

)
ω̇s2 =

ω0m

2Hs2

(
K23(θs3 − θs2)−K12(θs2 − θs1) (5)

−Ds2 · ωs2 + Ps2

)
ω̇s3 =

ω0m

2Hs3

(
K34(θs4 − θs3)−K23(θs3 − θs2) (6)

−Ds3 · ωs3 + Ps3

)
ω̇s4 =

ω0m

2Hs4

(
−K34(θs4 − θs3)−Ds4 · ωs4 − Ps4

)
(7)

θ̇s1 = ωs1 (8)

θ̇s2 = ωs2 (9)

θ̇s3 = ωs3 (10)

θ̇s4 = ωs4 (11)

In (3)-(7), parameters D and H are respectively the damping
coefficient and inertia constant of each rotor section. Parameter
K is the shaft stiffness. Note that (1) and (3) illustrate the
dynamics of the generator rotor in different forms. Further-
more, the mechanical torque on the generator rotor equals the
electrical torque in the steady state, i.e. PM = Pe. We can
therefore combine (1) and (3) as (12).

ω̇g =
ω0m

2Hg

(
K12(θs2 − θg)−Dg · ωg − PM

)
(12)

Hence the dynamics of a generator considering the shaft
system is fully described by (2), (4)-(11), and (12). In a power
system containing n generators, we take the rotor speed ω
and angular displacement θ of each generator as state variable
x = [ωT ,θT ]T , where ω and θ are both vectors of length 5n
illustrated in details as:

ω = [ωg1, ωg2, ..., ωgn︸ ︷︷ ︸
n

, ωg1s1, ..., ωg1s4, ..., ωgns1, ..., ωgns4︸ ︷︷ ︸
4n

]T

(13)

θ = [θg1, θg2, ..., θgn︸ ︷︷ ︸
n

, θg1s1, ..., θg1s4, ..., θgns1, ..., θgns4︸ ︷︷ ︸
4n

]T

(14)

In the steady state, the mechanical power PM of the gener-
ator rotor in (12) equals the electrical power. By substituting
the load bus angular displacement in the power flow and power
balance equations with state variables, we write the mechanical
power using the angular displacement vector θ and load vector
L:

PM = Pe = Aeθ +BeL (15)

where PM = [PMg1, PMg2, ..., PMgn]
T . The matrices Ae and

Be depend on the system admittance matrix and topology.
Since the focus of this paper is on the oscillations between
different masses in the generator, we take a load bus to be the
slack bus to emphasis generators internal dynamics.

This paper further denotes the input power on each mass
of the generator shaft system with a 4-dimensional vector
Pgi = [Pgis1, Pgis2, Pgis3, Pgis4]

T = PMgi ·Bf gi, where the
coefficient vector Bf gi contains the fraction of the total turbine
power generated by each turbine in the steady-state. Following
the pattern of state variables ω and θ, the input power vector
PI = [PM

T ,Pg1
T , ...,PT

gn]
T is defined as:

PI = BI ·PM = BIAeθ +BIBeL (16)

BI =
[
In×n

BF

]
(17)

BF =


Bf g1

Bf g2

. . .
Bf gn

 (18)

where In×n is an n by n identity matrix. The 4n × n-
dimensional coefficient matrix BF is constructed by matrices
Bf g1,Bf g2, ...,Bf gn indicating how much input power each
turbine provides in a generator.
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We therefore build the state-space model of the whole power
system as follows:[

ω̇

θ̇

]
=

[
A11 A12

A21 A22

] [
ω
θ

]
+B · L (19)

The system matrix A consists of four parts, where:

A11=−ω0m

2
diag(−Dg

Hg
,−Ds1

Hs1
,−Ds2

Hs2
,−Ds3

Hs3
,−Ds4

Hs4
)

(20)

A12=BIAe+
ω0m

2


−K12

Hg

K12
Hg

K12
Hs2

−K12+KK23
Hs2

K23
Hs2

K23
Hs3

−K23+K34
Hs3

K34
Hs3

K34
Hs4

−K34+K45
Hs4

K45
Hs4

K45
Hs5

−K45
Hs5


(21)

The sub-matrix A21=I5n×5n is an identity matrix, while sub-
matrix A22=0 is a zero matrix. The input matrix B = BIBe

according to (16).

III. TRANSFER FUNCTION MAGNITUDE ANALYSIS

With access to the BESS on a load bus, potential attack-
ers can inject oscillatory signals into the system, illustrated
mathematically as (22), where the attack signal ∆L is a
square-wave signal. This paper assumes a square-wave attack
signal because it is created by an energy storage device by
constantly changing between the charging and discharging
states. Moreover, we built a model predictive control (MPC)
problem to maximize the oscillation of the generator terminal
variables, and the optimal solution to this problem was a
square wave.

ẋ =

[
A11 A12

A21 A22

]
x+B(L+∆L) (22)

All the elements of the attack signal ∆L are 0 except for the
element corresponding to the load bus where the malicious
energy storage device resides. We assume the oscillatory signal
magnitude is 1 p.u. of the base power considering the limited
power and capacity of the attack energy storage device. The
only factor that affects the system oscillation is, therefore,
the frequency of input signal ∆L. To explore the impact
of the injected oscillatory signal frequency on each rotor
of the generators in the system, we investigate two output
signals denoted as (23) and (24). To explore the impact of the
oscillatory signal injection on the generator terminal and the
torsional system, we define the following output:

y1 =

[
ω
θ

]
= C1x+D1(L+∆L) (23)

y2 =

[
∆ω
∆θ

]
= C2x+D2(L+∆L) (24)

where output y1 is the generator terminal variables. The output
y2 contains torsional variables showing the speed and angle

differences between the rotors connecting to the same shaft.
Output y2 is further explained in (25)-(28).

∆ω = [∆ωg1,∆ωg2, ...,∆ωgn]
T (25)

∆θ = [∆θg1,∆θg2, ...,∆θgn]
T (26)

For generator i, ∆ωgi and ∆θgi are both 4-dimensional
vectors:

∆ωgi=[ωgi−ωgis1, ωgis1−ωgis2, ωgis2−ωgis3, ωgis3−ωgis4]
T

(27)

∆θgi=[θgi−θgis1, θgis1−θgis2, θgis2−θgis3, θgis3−θgis4]T
(28)

We analyze the magnitudes of the transfer functions between
the input signal ∆L and the output signals in (23) and (24)
over the frequency spectrum from 0Hz to 60Hz. The mag-
nitudes of the transfer functions |Γ1|j and |Γ2|k correspond
respectively to the jth generator terminal variable and the kth
torsional variable of a generator.

|y1(jωa)|j = |Γ1(jωa)|j · |∆L(jωa)| (29)
|y2(jωa)|k = |Γ2(jωa)|k · |∆L(jωa)| (30)

Equations (29) and (30) show that with the same oscillatory
input signal, the oscillation magnitudes of the generator termi-
nal variables as well as the torsional variables are determined
by the magnitude of the corresponding transfer function. With
an oscillatory input signal at frequency ωa, if the magnitude
|Γ2(jωa)|k is higher than |Γ1(jωa)|j as shown in (31), the
internal torsional system of the generator suffers a more severe
oscillation compared to the generator terminal.

|Γ2(jωa)|k > |Γ1(jωa)|j , j, k ∈ the same generator (31)

Additionally, the protection system is usually designed to pre-
vent the generator terminal rotor from significant oscillation,
i.e., damping the frequencies that lead to high |Γ1(jωa)|i
values. The input oscillation frequencies denoted in (31)
therefore remain commonly neglected. A ratio parameter RM

is further defined in (32) as the ratio between the transfer
function magnitudes of the torsional output and the terminal
output.

RM (ωa) =
|Γ2(jωa)|k
|Γ1(jωa)|i

, i, k ∈ the same generator (32)

The higher the ratio RM is, the more severe the oscillation
inside the generator shaft system occurs while the measure-
ments at the generator terminal remain close to the steady-state
values. If the attack frequency ωa in (32) is lower than the
nominal frequency, i.e. ωa < ω0, the input attack signal leads
to subsynchronous oscillation of the generator. Such oscillation
is easily neglected in the power system, for the generator
terminal measurements stay nearly unchanged. However, the
subsynchronous oscillation will cause mechanical fatigue and
fracture in the long term. In addition to the theoretical analysis
in the frequency domain, we also testify the vulnerability
leveraging SSR in the time domain, shown with the numerical
studies in the following section.
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IV. A TWO-AREA SYSTEM EXAMPLE

To investigate the existence of the vulnerability presented in
this paper in the power system, we employ a commonly used
two-area system for numerical studies shown in Fig. 2.

Fig. 2. Two-area System

In Fig. 2, the line reactances are shown in p.u. on 230
kW and 100 MW [14]. A linear system is considered here
with a single circuit tie line. And an energy storage device
is integrated to Bus 3 to inject malicious input signal with a
magnitude of 1 MW, which is 1 p.u.. The power transfer from
Area 1 to Area 2 is 400 MW, where L1 = 970 MW and L2
= 1770 MW. Four identical generating units Gen 1, Gen 2,
Gen 11, and G 12, are respectively loaded to 700 MW, 670
MW, 670 MW, and 700 MW, with a five-mass torsional system
each. The inertia constant, power fraction, and shaft stiffness
of the generator torsional system are presented in Table I.

TABLE I
GENERATOR TORSIONAL SYSTEM PARAMETERS

A. Frequency-Domain Analysis

While the damping factor of the generator terminal is
commonly neglected, i.e. Dg1 =Dg2=Dg11=Dg12 = 0, the
damping factor of each mass in the torsional system strongly
affects the transfer function magnitudes according to our tests.
The impact of the mass damping factor on the transfer function
magnitude is depicted in Fig. 3. Note that such impact on each
generator is similar, we take Gen 1 as an example to avoid
repeating. In Fig. 3, the transfer function magnitude curves
of rotor speed ω and angular displacement θ are respectively
normalized. Thus the y-axis ranges from 0 to 1. The |Γ|θ
curves in Fig. 3 see their maximums with the input signal
frequencies close to 0Hz. The maximums of the |Γ|θ curves are
significantly higher than the other |Γ|θ values, which indicates
the most notable oscillation occurs when the input signals
approximate DC signals. With the increase of mass damping
factor, the |Γ|ω curve becomes smoother and moves upward.
A more significant oscillation is therefore expected due to the
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Fig. 3. Transfer Function Magnitude Curves of Gen 1.

higher values of the magnitude |Γ|ω . Hence it is reasonable for
us to employ a low damping factor for the torsional mass in
further analysis. A low mass damping factor is also consistent
with the commonly-used steel masses in real power systems.

The values of the ratio RM (ωa) proposed in (32) are
shown in Fig. 4 for Gen 1: where Fig. 4 (a) presents the
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RMθ 3
RMθ 4

×1013

Fig. 4. RM Values of Gen 1

magnitude ratio between the torsional speed difference and the
terminal rotor speed, and Fig. 4 (b) illustrates the magnitude
ratio between the torsional angle difference and the terminal
rotor angel. The higher RM (ωa) value is, the more severe
the oscillation of the torsional system will be compared to
the generator terminal. Due to the low magnitudes of their
transfer functions, the generator terminal variables stay closely
to their steady-state values. The internal oscillation of the
torsional system will thus be difficult to recognize. The system
is also more vulnerable when exposed to the malicious input
at frequency (ωa).

In Fig. 5, the blue curves are the terminal speed and angle
of Gen 1. The orange curves represent the speed and angel
differences between the third and fourth mass, both connecting
to shaft 34 of Gen 1.

As shown in Fig. 5(a), the |Γ|θg1 values are close to 0
when the input signal frequency is above 0Hz, which explains
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Fig. 5. Comparison of |Γ|ω , |Γ|θ and |Γ|∆ω , |Γ|∆θ of Gen 1

the reason why RMθ values in Fig. 4(b) are significantly
high. Therefore the the local maximums of RMθ shown in
4(b) coincide with the local maximums of |Γ|∆θ shown in
5(a). In Fig. 5(b), when the input signal frequency is close
to 34.47Hz, both curves see a local maximum value. This
local maximum is also the global maximum of |Γ|θg1, meaning
the oscillation at this frequency is usually damped by power
system stabilizers, which are usually designed according to
the speed and angle of the generator terminals. However,
the oscillations corresponding to other local maximums often
remain neglected from protective measures due to the lack of
attention to the speed and angle of the torsional masses. The
torsional system is therefore vulnerable to attack signals at
these frequencies. Potential attacks can thus attack the system
with injection of oscillatory signals at such frequencies with
an energy storage device either remotely hacked or physically
controlled by them. Considering the results shown in Fig. 3,
the example system is at risk when input signal frequency lies
within the range of 25.42-25.47Hz or 26.73-26.81Hz.

Note that the input signal frequency ranges depicted in Fig.
3-Fig. 5 are 0-50Hz, which is the typical frequency range of
SSR. From 50 to 60Hz, the y-axis values in in Fig. 3-Fig. 5
approximate 0, and are left out for concision.

B. Time-Domain Analysis

Assuming the system is exposed to a square-wave input
signal with magnitude |∆L| = 1MW at Bus 3, we analyze
the time-domain response of the output considering two attack
frequencies: fa1 = 25.42Hz, and fa2 = 26.81Hz. The
severity of an oscillation is measured by the amplitude of
a signal’s deviation from its steady-state value. We define
Rωj =

max(|∆ωj−∆ωj,0|)
max(|ωi−∆ωi,0|) , where the numerator is the deviation

of the speed difference between mass j and mass j + 1
from the initial steady-state difference. The denominator is the
deviation of the terminal rotor speed from its initial state. Thus
if the value of Rωj is higher than 1, the oscillation inside the
torsional system is more significant than that at the terminal
rotor, and the significance increases with the rise of Rωj value.
The same definition and characteristic are applied to Rθj , thus
is not repeated. Considering a 10s control horizon with a time

step of 10−3s, an attack is issued at t = 2s, the values of Rωj

and Rθj are presented in the following table.

TABLE II
Rω AND Rθ VALUES UNDER DIFFERENT ATTACK FREQUENCIES

The maximums of the Rωj and Rθj under each attack
signal frequency are highlighted in bold in Table II. The
time-domain responses of unit Gen 2 is further illustrated in
Fig. 6, where Fig. 6(a) depicts output ∆ωg2s4 and ωg2, and
Fig. 6(b) presents output ∆θg2s4 and θg2. The Rωj and Rθj
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Fig. 6. Time-domain Response under Attack Frequency 26.81Hz

values in Table II higher than 1 indicate that the torsional
system of the corresponding generators oscillate notably while
the terminal measurements close to the initial steady-state
values. Considering attack signal frequencies fa1 and fa2 are
both below 60Hz, the vulnerability revealed here results in
SSR of the generators. And we prove the existence of such
vulnerability that leads to SSR when the system is exposed
to the proposed cyber-physical attacks. This paper assumes
access to a complete knowledge of system structure and data,
which is difficult to achieve in practice. To explore the system
vulnerability with limited access to the system information
remains our future work.

V. COUNTERMEASURES

The cyber-physical attack discussed in this paper requires
only a relatively low-power BESS that can be located at
some distance from the targeted generators. The resulting SSR
leads to metal fatigue of the generator shafts through small
oscillations and that could ultimately cause a fatal mechanical
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failure. Further work is needed to identify generators that
might be particularly susceptible to this type of attack and to
develop effective countermeasures. These countermeasures can
be divided into four categories: prevention, detection, reaction
and mitigation.

Prevention is the first line of defense. Using best cyber
security practices, it aims to prevent attackers from taking
control of power devices. Unfortunately, the attack surface is
getting larger due to the increasing number of BESS and other
controllable components.

Detecting this form of cyber-physical attack and locating
their source are challenging issues. Because the malicious
power injections are small, they are likely to be lost in the
noise in conventional SCADA measurements, especially if the
network is large and complex. More sensitive measurements
at a higher time resolution are likely to be needed to be able
to pinpoint the source of the attack, which may be in a remote
part of the network.

Once an attack has been detected and its source identified,
to ensure a quick reaction, procedures must be in place
to disconnect it from the system. Alternatively, the targeted
generators may need to be disconnected.

If prevention, detection and reaction are deemed insuffi-
ciently effective, mitigation may be required. Such measures
could be similar to those that were developed to deal with nat-
urally occurring sub-synchronous resonance. Reference [15]
groups these countermeasures into four categories: system
switching and generator tripping, generator and system mod-
ifications, relaying and detecting devices, and filtering and
damping devices. While some of these measures have been
shown to be effective, they may be harder to implement in
an adversarial context because the attack may be aimed at
any generator rather than at a particular generator identified
as being susceptible to sub-synchronous resonance through
careful system studies. Protecting all generators against attacks
at any dangerous frequency may also be difficult or very costly

VI. CONCLUSION

This paper exposes a potential vulnerability of power sys-
tems to a cyber-physical attack where a malicious actor could
trigger a SSR in the shaft of large generators by creating
small oscillations in the active power injections of a battery
energy storage system. These small mechanical oscillations
between the various masses connected to the shaft would cause
metal fatigue and ultimately lead to a catastrophic failure of
the generator. Because this resonance takes place within the
shaft, it does not create significant perturbations at the terminal
of the generator and might therefore be difficult to detect.
Gaining access to the control system of a relatively low power
BESS would therefore give an attacker an opportunity to inflict
physical damage on equipment of a considerably larger rating
and importance to the reliable operation of the system. Our
further work will explore detection, reaction and mitigation
countermeasures.
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