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Abstract

This paper considers the problem of expected loss mini-
mization given a data distribution that is dependent on the
decision-maker’s action and evolves dynamically in time ac-
cording to a geometric decay process. Motivated by prac-
tice, empirical information settings are considered: namely,
the decision-maker either has oracle access, for a fixed batch
size, to the empirical gradient of the loss (first order setting),
or the empirical loss function (zero order setting). Novel al-
gorithms for each of these settings are introduced, both of
which operate on the same underlying principle: the decision-
maker repeatedly deploys a fixed decision over a fixed length
epoch, thereby allowing the dynamically changing environ-
ment to sufficiently mix before updating the decision. The
proposed algorithms are shown to converge to the optimal
point. Specifically, high-probability sample complexity guar-
antees are given, which depend exponentially on the epoch
length and logarithmically on the batch size. The algorithms
are evaluated on a “semi-synthetic” example using real world
data from the SFpark dynamic pricing pilot study; it is shown
that the announced prices result in an improvement for the
institution’s objective (target occupancy), while achieving an
overall reduction in parking rates.

1 Introduction

Traditionally, supervised machine learning algorithms are
trained based on past data under the assumption that the past
data is representative of the future. However, machine learn-
ing algorithms are increasingly being used in settings where
the output of the algorithm changes the environment and
hence, the data distribution. Indeed, loan procurement pro-
cesses, online labor markets (Anagnostopoulos et al. 2018;
Horton 2010), predictive policing (Lum and Isaac 2016), on-
street parking (Pierce and Shoup 2018; Dowling, Ratliff,
and Zhang 2020), and vehicle sharing markets (Banerjee,
Riquelme, and Johari 2015) are all examples of real-world
settings in which the algorithm’s decisions change the un-
derlying data distribution in large part due to the fact that
the algorithm interacts with strategic users.
To address this problem, the machine learning community

introduced the problem of performative prediction which
models the data distribution as being decision-dependent
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thereby accounting for feedback induced distributional shift
(Perdomo et al. 2020; Miller, Perdomo, and Zrnic 2021;
Drusvyatskiy and Xiao 2020; Brown, Hod, and Kalemaj
2020; Mendler-Dünner et al. 2020). With the exception of
(Brown, Hod, and Kalemaj 2020), this work has focused on
static environments.
In many of the aforementioned application domains, how-

ever, the underlying data distribution also may have memory
or even be changing dynamically in time. When a decision-
making mechanism is announced it may take time to see the
full effect of the decision as the environment and strategic
data sources respond given their prior history or interactions.
For example, many municipalities announce quarterly a

new quasi-static set of prices for on-street parking. In this
setting, the institution may adjust parking rates for certain
blocks in order to to achieve a desired occupancy range to
reduce cruising phenomena and increase business district
vitality (Fiez et al. 2018; Dowling et al. 2017; Pierce and
Shoup 2013; Shoup 2006). For instance, in high traffic ar-
eas, the institution may announce increased parking rates to
free up parking spots and redistribute those drivers to less
populated blocks. However, upon announcing a new price,
the population may react slowly, whether it be from initially
being unaware of the price change, to facing natural incon-
veniences from changing one’s parking routine. This intro-
duces dynamics into our setting; hence, the data distribution
takes time to equilibrate after the pricing change is made.
Motivated by such scenarios, we study the problem of

decision-dependent risk minimization (or, synonymously,
performative prediction) in dynamic settings wherein the un-
derlying decision-dependent distribution evolves according
to a geometrically decaying process. Taking into account the
time it takes for a decision to have the full effect on the en-
vironment, we devise an algorithmic framework for finding
the optimal solution in settings where the decision maker has
access to different types of gradient information.
For both information settings (gradient access and loss

function access, via the appropriate oracle), the decision-
maker deploys the current decision for a fixed number of
steps (the length of an epoch) allowing the dynamically
evolving distribution to approach the fixed point distribution
for that announced decision. At the end of the epoch, the de-
cision is updated using a first-order or zeroth-order oracle.
One interpretation of this procedure is that the environ-
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ment is operating on a faster timescale compared to the up-
date of the decision-maker’s action. For instance, consider
the dynamically changing distribution as the data distribu-
tion corresponding to a population of strategic data sources.
The phase during which the same decision is deployed for
a fixed number of steps can be interpreted as the population
of agents adapting at a faster rate than the update of the de-
cision. This in fact occurs in many practical settings such as
on-street parking, wherein prices and policies more gener-
ally are quasi-static, meaning they are updated infrequently
relative to actual curbspace utilization.

1.1 Contributions

For the decision-dependent learning problem in geomet-
rically decaying environments, we propose first-order or
zeroth-order oracle algorithms (and characterize their sam-
ple complexity) that converge to the optimal point under
appropriate assumptions, which make the performative risk
minimization problem strongly convex.
• Zero Order Oracle (Algorithm 1, Section 3): with prob-
ability 1 � ⇢, for n � ⌦(log ⌘), ⌘ > 1/(3↵t), and
m � ⌦(d log d), the sample complexity is O(t�1/3 +p
d log(1/⇢) log(m)/m).

• First Order Oracle (Algorithm 2, Section 3): with prob-
ability 1 � ⇢, for arbitrary error tolerance ✏ > 0, epoch
length n � ⌦(log ✏), time horizon t, and batch size
m � ⌦(d log d), the sample complexity is

O((1� ↵/M)t + ✏+
p

d log(1/⇢) log(m)/m),

where the loss is ↵-strongly convex and M -smooth, and
d is the dimension of the decision space.

The technical novelty arises from bounding the error be-
tween expected and empirical gradients, considering that the
distribution with respect to which gradient information is
available is changing dynamically over time. We show that
with high probability, the sample complexity is nearly the
optimal rate in the setting where the expected loss is avail-
able, and characterize how it depends on the batch size m.
The algorithms are applied to a set of semi-synthetic ex-

periments using real data from the SFpark pilot study on the
use of dynamic pricing to manage curbside parking (Sec-
tion 4). The experiments demonstrate that optimizing taking
into consideration feedback-induced distribution shift even
in a dynamic environment leads to the institution—and per-
haps surprisingly, the user as well—experiencing lower ex-
pected cost. Moreover, there are important secondary effects
of this improvement including increased access to parking—
hence, business district vitality—and reduced circling for
parking and congestion which not only saves users time but
also reduces carbon emissions (Shoup 2006). A more com-
prehensive set of experiments are contained in Appendix D.

1.2 Related work

Dynamic Decision-Dependent Optimization. As hinted
above, dynamic decision-dependent optimization has been
considered quite extensively in the stochastic optimization
literature wherein the problem of recourse arises due to

decision-makers being able to make a secondary decision
after some information has been revealed (Jonsbråten, Wets,
andWoodruff 1998; Goel and Grossmann 2004; Varaiya and
Wets 1988). In this problem, the goal of the institution is to
solve a multi-stage stochastic program, in which the proba-
bility distribution of the population is a function of the de-
cision announced by the institution. This multi-stage proce-
dure models a dynamic process. Unlike the setting consid-
ered in this paper, the institution has the ability to make a
recourse decision upon observing full or partial information
about the stochastic components.

Reinforcement Learning. Reinforcement learning is a
more closely related problem in the sense that a decision is
being made over time where the environment dynamically
changes as a function of the state and the decision-maker’s
actions (Sutton and Barto 2018). A subtle but important dif-
ference is that the setting we consider is such that the deci-
sion maker’s objective is to find the action which optimizes
the decision-dependent expected risk at the fixed point dis-
tribution (cf. Definition 1, Section 2) induced by the optimal
action and the environment dynamics. This is in contrast to
finding a policy which is a state-dependent distribution over
actions given an accumulated cost over time. Our setting
can be viewed as a special case of the general reinforcement
learning problem, however with additional structure that is
both practically well-motivated, and beneficial to exploit in
the design and analysis of algorithms. More concretely, we
crucially exploit the assumed model of environment dynam-
ics (in this case, the geometric decay), the distribution de-
pendence, and convexity to obtain strong convergence guar-
antees for the algorithms proposed herein.

Performative prediction. As alluded to in the introduc-
tory remarks, the most closely related body of literature is on
performative prediction wherein the decision-maker or opti-
mizer takes into consideration that the underlying data distri-
bution depends on the decision. Performative prediction has
been studied in both static and dynamic environments. In the
static setting, as the distribution shifts, a naı̈ve strategy is to
re-train the model on this new distribution using heuristics to
determine when to trigger the retraining process. Under the
guise that if retraining is repeated, eventually the distribution
will stabilize, early works on performative prediction—such
as the works of Perdomo et al. (2020) and Mendler-Dünner
et al. (2020)—studied this equilibrium notion, and called
these points performatively stable. Mendler-Dünner et al.
(2020) and Drusvyatskiy and Xiao (2020) study stochastic
optimization algorithms applied to the performative predic-
tion problem and recover optimal convergence guarantees
to the performatively stable point. Yet, performatively stable
points may differ from the optimal solution of the decision-
dependent risk minimization problem as was shown in Per-
domo et al. (2020). Taking this gap between stable and op-
timal points into consideration, Miller, Perdomo, and Zrnic
(2021) characterize when the performative prediction prob-
lem is strongly convex, and devise a two-stage algorithm for
finding the so-called performatively optimal solution—that
is, the optimal solution to the decision-dependent risk min-
imization problem—when the decision-dependent distribu-



tion is from the location-scale family.
None of the aforementioned works consider dynamic en-

vironments. Brown, Hod, and Kalemaj (2020) is the first pa-
per, to our knowledge, to investigate the dynamic setting for
performative prediction. Assuming regularity properties of
the dynamics, they show that classical retraining algorithms
(repeated gradient descent and repeated risk minimization)
converge to the performatively stable point of the expected
risk at the corresponding fixed point distribution. Counter to
this, in this paper we propose algorithms for the dynamic
setting which target performatively optimal points.

2 Preliminaries

As noted in the introduction, the algorithms we propose pro-
ceed in epochs, wherein the decision-maker deploys the cur-
rent decision for a fixed number of steps (i.e., an epoch)
allowing the dynamically evolving distribution to mix. For
such an approach to work, it needs to be the case that when
the same decision is deployed repeatedly, the distribution
converges to a fixed point. Further, convexity (in the deci-
sion variable) of the expected loss function given the fixed
point distribution ensures the optimal solution is unique and
obtainable via gradient-based learning. This motivates the
assumptions we introduce in this section.
We consider the problem of a single decision-maker fac-

ing a decision dependent learning problem in a geometri-
cally decaying environment. The decision-maker seeks to
minimize its expected loss at the fixed point distribution
which is given by

L(x) = Ez⇠D(x)[`(z, x)].

The loss function is denoted `i : Rd ⇥ Z ! R, where Z is
some q finite dimensional metric space, and D(x) 2 P(Z)
is a probability measure that depends on the decision x 2
X where X ⇢ Rd is closed and convex, and there exists
constants r,R > 0 satisfying rB ✓ X ✓ RB.
As noted, the environment is evolving in time according to

a geometrically decaying process. That is, the random vari-
able z depends not only on the decision xt 2 X at time
t, but also explicitly on the time instant t. In particular, the
random variable z is governed by the distribution pt which
is the probability measure at time t generated by the process
pt+1 = T (pt, xt) where

T (p, x) = µp+ (1� µ)D(x), (1)
and µ 2 [0, 1) is the geometric decay rate. Observe that
given the geometrically decaying dynamics in (1), for any
x 2 X , D(x) is trivially a fixed point—i.e., T (D(x), x) =
D(x). Moreover, for any µ 2 (0, 1) and fixed x 2 X , pt
converges at an exponential rate to D(x).
One interpretation of this transition map is that it captures

the phenomenon that for each time, a 1 � µ fraction of the
population becomes aware of the machine learning model x
being used by the institution. Another interpretation is that
the environment (and strategic data sources in the environ-
ment) has memory based on past interactions which is cap-
tured in the ‘state’ of the distribution, and the effects of the
past decay geometrically at a rate of µ.

Performative optimality is defined as follows.

Definition 1 (Performatively optimal point). For a given
distribution D(x), the decision vector x⇤ 2 X is a perfor-
matively optimal point if

x⇤ 2 argmin
x2X

L(x) = argmin
x2X

Ez⇠D(x)[`(z, x)].

Throughout we use the notation rL to denote the deriva-
tive differentiating through both the x dependence in the loss
and the x dependence in the distribution D. Moreover, the
notationrx` andrz` denote the partial derivative of ` with
respect to x and z, respectively.

We also make the following standing assumptions on the
loss ` and distribution D.
Assumption 1 (Standing). The loss ` and distributionD sat-
isfy the following:
1. The loss `(z, x) is C1 smooth in x, and L-Lipschitz in

(x, z).
2. The map x 7! rx`(z, x) is �-Lipschitz continuous in z.
3. The loss `(z, x) is ⇠-strongly convex in x.

We assume that the distribution D(x) is �-Lipschitz with
respect to the Wasserstein-1 distance denoted byW1.
Assumption 2. There exists an � > 0 such that for any
x, x0 2 X ,W1(D(x),D(x0))  �kx� x0k.
The following assumption implies a convex ordering on

the random variables on which the loss is dependent.
Assumption 3 (Mixture Dominance). The distribution map
D and loss ` satisfy mixture dominance—i.e., for any
x 2 X and s 2 (0, 1), Ez⇠D(sx0+(1�s)x00)[`(z, x)] 
Ez⇠sD(x0)+(1�s)D(x00)[`(z, x)], for all x0, x00 2 X .

Under Assumptions 2, 1, and 3, the expected loss L(x) is
↵ := (⇠ � 2��) strongly convex (cf. Theorem 3.1 Miller,
Perdomo, and Zrnic (2021)), so that the performatively op-
timal point is unique.
We make the following assumption on the regularity of

the expected loss.
Assumption 4. The map x 7! rL(x) is M -Lipschitz con-
tinuous.
An important class of distributions in the performative

prediction literature that satisfy this assumption are location-
scale distribution.
Example 1 (Losses with Decision-Dependent Location-S-
cale Distributions are Smooth). We say D(✓) belongs to the
family of location-scale distributions if

z ⇠ D(x) () z = ⌃0z0 + a0 +A>x,

where the location depends on x, the base random variable
z0 ⇠ D0 is a sample from a zero-mean distribution, and
A is norm bounded. Then, under the Assumption 1.2, the
expected risk L(x) is �(kAk2op + 2kAkop + 1)–smooth.

3 Algorithms & Sample Complexity Analysis

As alluded to in the introduction, the algorithms we propose
for each of the information settings are similar in spirit—
namely, they each operate by holding fixed a decision for
the length n of each epoch and sampling or querying the



Algorithm 1: Epoch-Based Zeroth Order Algorithm
Initialization: epoch length n, step-size ⌘, initial
point x1, query radius �, horizon T , batch sizem,
initial distribution p0;
for t = 1, 2, . . . , T do

// Step 1: Mixing
Sample vector vt from the unit sphere;
Run xt + µvt for n steps, so
pt = T (. . . T (T (pt�1, xt + �vt), xt +
�vt) . . . , xt + �vt);

// Step 2: Update
Oracle reveals ĝt = d

�

1
m

P
m

k=1 `(zk, xt + �vt)vt,
zk ⇠ D(xt + �vt);
Update xt+1 = ⇧(1��)X (xt � ⌘ĝt);

end

Algorithm 2: Epoch-Based First Order Algorithm
Initialization: epoch length n, step-size ⌘, initial
point x1, horizon T , batch sizem, initial
distribution p0;

for t = 1, 2, . . . , T do

// Step 1: Mixing
Run xt for n steps, so
pt = T (. . . T (T (pt�1, xt), xt) . . . , xt);

// Step 2: Update
Oracle reveals ĝt = 1

m

P
m

k=1 r`(zk, xt),
zk ⇠ D(xt);

Update xt+1 = ⇧X (xt � ⌘ĝt);
end

environment until the distribution dynamics have mixed suf-
ficiently towards the fixed point distribution.
In practice, different information may be available to the

decision maker. We consider two settings: zero order and
first order oracle.
To characterize the sample complexity in both of these

settings, we need to bound the error between the empirical
gradient information and the expected gradient information.
Towards this end, we need the following assumption that
now explicitly depends on the algorithm structure—namely,
that it proceeds in epochs of length n.
Assumption 5. Given an epoch length m, for every pt =
µnpt�1 + (1 � µn)D(x) induced by the initial distribution
and the mapping D(·), the loss `(z, x) is G-Lipschitz con-
tinuous and H-Hessian Lipschitz continuous.

The location-scale family of distributions satisfies As-
sumption 5. The following example shows what the value
of G is and H can similarly be derived.
Example 2 (Location-Scale Distributions). We sayD(x) be-
longs to the family of location-scale distributions if

z ⇠ D(x) () z = ⌃0z0 + a0 +A>x,

where the location depends on x, z0 ⇠ D0 is a sample from
a zero mean distribution, andA is norm bounded. If p0 is ad-

ditionally a location-scale distribution, then pt is a location-
scale family for all t, such that `(z, x) is G-Lipschitz with
G = ⇣((1� µn)kAkop + 1).

This class encompasses a broad set of distributions that
are commonplace in the performative prediction literature.
This class of distributions is also �-sensitive and satisfies
the mixture dominance condition when ` is convex, obser-
vations that appeared in Miller, Perdomo, and Zrnic (2021).

3.1 Zero Order Oracle

In this setting, the decision-maker has access only to the em-
pirical loss at the current distribution pt. This is a more real-
istic setting given that the form of the data distribution pt—
and more specifically, D(·)—may be a priori unknown. For
example, if the data is generated by strategic data sources
having their own private utility functions and preferences,
then the decision-maker does not necessarily have access to
the distribution map D(x) in practice.
A decision-maker using Algorithm 1 updates with gradi-

ent estimates

ĝt =
d

�

1

m

mX

k=1

`(zk, xt + �vt)vt,

where vt is a unit vector and zk ⇠ pt = µnpt�1 + (1 �
µ)nD(xt + �vt) is the k-th sample from pt. This is a one-
point gradient estimate of the expected loss at pt (cf. Flax-
man, Kalai, and McMahan (2004)). As is well known, for a
given function f : Rd ! R and query radius � > 0,

Ev⇠S[f(x+ �v)v] =
�

d
rf̂(x),

where f̂(x) = Ev⇠B[f(x + �v)] and B and S are the Eu-
clidean unit ball and sphere, respectively, in dimension d.
In each iteration t, the zero-order algorithm samples vt ⇠

S uniformly at random and then declares
xt+1 = ⇧(1��)X (xt � ⌘ĝt) .

The reason for projecting onto the set (1� �)X is to ensure
that in the next iteration, the decision is in the feasible set.
In the zero order setting, we also need the loss to be uni-

formly bounded.
Assumption 6. The quantity `⇤ := sup{|`(z, x)| : x 2
X , z 2 Z} is finite.
In order to analyze Algorithm 1, we bound the difference

in the expected gradients at z ⇠ pt = µnpt�1 + (1 �
µn)D(xt + �vt) and z ⇠ D(xt + �v) (Lemma 1), and we
bound the difference between the empirical gradient at pt of
the smoothed loss and the gradient of the smoothed loss at
pt (Lemma 5, Appendix A). Define the smoothed expected
risk as follows:
L�(x) = Ev⇠B[Ez(x+�v)⇠D(x+�v)[`(z(x+ �v), x+ �v)]].

Lemma 1. Under Assumptions 1–3 and 6, the error be-
tween the gradient smoothed loss at pt and the gradient of
the smoothed expected risk at the fixed point D satisfies

krEv⇠B[Ez⇠pt [`(z, xt + �v)]]�rL�(xt)k

 L ·
✓
µnW (p0) + 2µn�� + `⇤

�⌘

µ

µn

1� µn

◆



where pt = µnpt�1 + (1� µn)D(xt + �vt), and W (d0) =
maxx2X W1(p0,D(x)).
We defer the proof to Appendix B.1. We apply Lemma 5

to get a bound on the error between the empirical gradient
of the smoothed loss, which is given by

L�,(m)
t

(xt) =
1

m

mX

k=1

E
v⇠B

[`(z, xt + �v)],

and the gradient of the smoothed loss

L�

t
(xt) = E

v⇠B,z⇠pt

[`(z, xt + �v)]

at the current distribution pt.
Under Assumption 5, we have that with probability 1�⇢,

the error krL�

t
(x) � rL�,(m)

t
(x)k uniformly converges—

i.e.,

sup
x2X

krL�

t
(x)�rL�,(m)

t
(x)k  G

2

r
Cd logm

m
(2)

form � ⌦(d log d) and where C depends on ⇢ as detailed in
the following theorem which characterizes the sample com-
plexity of Algorithm 1. This follows from a small modifi-
cation of Theorem 1 in Mei, Bai, and Montanari (2016) to
apply to norm-subGaussian random vectors, so we leave it
to the appendix. For a fixed time t, let Et be the event that
(2) for all s 2 {0, . . . , t}.
Theorem 1. Suppose that Assumptions 1-6 hold. There
exists a universal constant C0 such that with probability
1 � ⇢, Algorithm 1 with epoch length n � ⌦(log ⌘), step-
size ⌘ = ⌘0/t with ⌘0 > 1/(3↵), and query radius � =
(d2`2⇤⌘/(2MR))1/3, returns iterates satisfying

E[ 12kxt � x⇤k2|Et]  O

 
d2t�

1
3 +

s

log

✓
1

⇢

◆
d logm

m

!

for m � Cd log d, C = C0 max{ch, log(RG/⇢), 1} and
ch = 1

log d
max

�
log

�
4M
G2

�
, log

�
8H
G3

� 
.

The proof is deferred to Appendix B.2. Unlike the stan-
dard constrained zero order setting for which it has been
shown that the approach of Flaxman, Kalai, and McMahan
(2004) obtains aO(d2t�1/3) rate (Agarwal, Dekel, and Xiao
2010), we have an additional error term due to the envi-
ronment dynamics that results in having to bound the error
between the empirical and expected gradients at pt to their
counterparts atD(x)—i.e., the distribution which defines the
performatively optimal point (cf. Definition 1). In expecta-
tion with respect to pt, the rate is O(d2t�1/3).

3.2 First Order Oracle

In this setting, we assume access to an oracle that reveals
the empirical gradient of the performative risk at the current
distribution—i.e.,

ĝt =
1

m

mX

k=1

r`(zk, xt)

where zk is the k-th sample from pt. To analyze the per-
formance of Algorithm 2, there are two crucial steps: (1)
Obtain a bound on the difference between the gradient of
the expected performative risk at the current distribution pt
and the gradient of the expected risk at D(xt) (Lemma 2);
(2) Obtain a bound on the difference between the empirical
gradient and the expected gradient (Lemma 5, Appendix A).
Lemma 2. Under Assumptions 1–3, the gradient error sat-
isfies

krEzt⇠pt [`(zt, xt)]�rEzt⇠D(xt)[`(zt, xt)]k

 µtn�W1(p0,D(x1)) + ✏L(1 + �)
�⌘µn

1� µn
+ µnL�,

where pt = µnpt�1 + (1� µn)D(xt).
We defer the proof to Appendix C.1. The first term

µtn�W1(p0,D(x1)) captures how the dependence on the
initial decision x1 in the gradient error exponentially de-
cays to zero as t approaches infinity. The second term
�⌘�L(1 + �)µn/(1 � µn) captures the difference between
subsequent decisions of Algorithm 2. The third term µnL�
captures the effect of the decision on the loss function. Ob-
serve that as the epoch length n becomes large, the bound
approaches zero, which is equivalent to the static setting—
i.e., there is no past state dependence (equivalently, µ = 0),
and hence, the gradient error is zero.
To bound the difference between the empirical gradient

and the expected gradient we apply Lemma 5 (Appendix A)
to the empirical loss

L(m)
t

(xt) =
1

m

mX

k=1

`(zk, xt)

and the expected loss

Lt(xt) = E
z⇠pt

[`(z, xt)].

Indeed, Assumptions 4 and 5 are enough so that the assump-
tions of Lemma 5 hold. Hence, with probability 1 � ⇢, we
have that

sup
x2X

krL(m)
t

(x)�rLt(x)k  G

2

✓
Cd logm

m

◆ 1
2

(3)

for m � ⌦(d log d) and C depends on ⇢ as detailed in the
following theorem which characterizes the sample complex-
ity of Algorithm 2 given the two gradient error bounds.
Theorem 2. Suppose that Assumptions 1–5 hold. Fix arbi-
trary ✏ > 0 and let ⌘ = 1/M and m � log(✏↵/C̃)/ log(µ)
where C̃ = �W1(D(x1), d0) + ��L(1+ �)/M + �L+ ✏↵.
There exists a universal constant C0 such that with proba-
bility 1� ⇢, Algorithm 2 returns iterates that satisfy

kxt+1 � x⇤k 
⇣
1� ↵

M

⌘t

kx1 � x⇤k+ ✏

+

✓
log

✓
1

⇢

◆
d logm

m

◆ 1
2

for m � Cd log d where C = C0 max{ch, log(RG/⇢), 1}
with ch = 1

log d
max

�
log

�
4M
G2

�
, log

�
8H
G3

� 
.



We defer the proof to Appendix C.2. The idea is to mas-
sage the problem into stochastic gradient descent with bi-
ased gradients where there are two sources of bias. While the
size of the error ✏ > 0 can be arbitrarily chosen, the lower
bound on the number of samplesm depends logarithmically
on the choice of ✏ and hence, there is a tradeoff between the
error tolerance and epoch size. If access to an expected gra-
dient oracle is available, then the convergence rate is anal-
ogous to Ajalloeian and Stich (2020, Theorem 6) since the
batch-size n dependent term drops out.

4 Numerical Experiments

In this section, we apply our aforementioned algorithms to
a semi-synthetic example based on real data from the dy-
namic pricing experiment—namely, SFpark1—for on-street
parking in San Francisco. Parking availability, location, and
price are some of the most important factors when people
choose whether or not to use a personal vehicle to make
a trip (Shoup 2006, 2021; Fiez and Ratliff 2020). The pri-
mary goal of the SFpark pilot project was to make it easy to
find a parking space. To this end, SFpark targeted a range
of 60–80% occupancy in order to ensure some availabil-
ity at any given time, and devised a controlled experiment
for demand responsive pricing. Meter operational hours are
split into distinct rate periods, and rates are adjusted on
a block-by-block basis, using occupancy data from park-
ing sensors in on-street parking spaces in the pilot areas.
We focus on weekdays in the numerical experiments; for
weekdays, distinct rate periods are 900–1200, 1200–1500,
and 1500–1800. Excluding special events, SFpark adjusted
hourly rates as follows: a) 80–100% occupancy, rates are in-
creased by $0.25; b) 60� 80% occupancy, no adjustment is
made; c) 30 � 60% occupancy, rate is decreased by $0.25;
d) occupancy below 30%, rate is decreased by $0.50. When
a price change is deployed it takes time for users to become
aware of the price change through signage and mobile pay-
ment apps (Pierce and Shoup 2013).
Given the target occupancy, the dynamic decision-

dependent loss (or performative risk) is given by

Ez⇠pt [`(z, x)] = Ez⇠pt [(z � 0.7)2 + ⌫

2x
2],

for each block, where z is the occupancy (which is between
zero and one), x is the change in price from the nominal
price at the beginning of the SFpark study, and ⌫ is the regu-
larization parameter. For the initial distribution p0, we sam-
ple from the data at the beginning of the pilot study where
the price is at the nominal (or initial) price. The distribution
D(x) is defined as follows:

z ⇠ D(x) () z = ⇣0 + ax

where ⇣0 follows the same distribution as p0 described
above, and a is a proxy for the price elasticity which is esti-
mated by fitting a line to the final and initial occupancy and
price (cf. Appendix D.1).2

1SFpark: tinyurl.com/dwtf7wwn
2Price elasticity is the change in percentage occupancy for a

given percentage change in price.

Comparing Performative Optimum to SFpark. We run
Algorithms 2 and 1 (using parameters as dictated by The-
orems 2 and 1, respectively) for Beach ST 600, a repre-
sentative block in the Fisherman’s Wharf sub-area, in the
time window of 1200–1500 as depicted in Figure 1. Beach
ST is frequently visited by tourists and local residents. For
Beach ST 600, we compute a ⇡ �0.157, which means that
a $1.00 increase in the parking rate will lead to a 15% de-
crease in parking occupancy at the fixed point distributions.
Additionally, we use the data to compute the geometric de-
cay rate of � ⇡ 0.959 (computations described in Appendix
D). Since the initial price is $3 per hour for this block, we
take X = [�3, 5], since the maximum price that SFpark
charges is $8 per hour, and the minimum price is zero dol-
lars. Additionally, we set ⌫ = 1e-3.
The first and third plots in Figure 1 show prices an-

nounced and corresponding occupancy, respectively, for Al-
gorithm 2, on 600 Beach Street, with different choices of
n and T ; and, they show the prices announced and corre-
sponding occupanices by SFpark as compared to the per-
formatively optimal point (computed offline). Similarly, the
second and fourth plots in Figure 1 show this same informa-
tion for Algorithm 1. Since Algorithm 1 is zero order, con-
vergence requires more time and has variance coming from
the randomness of the query directions.
The SFpark experiment changed prices approximately ev-

ery eight weeks. As observed in Figure 1, this choice of n is
reasonable—the estimated � value is close to one—and leads
to convergence to the performatively optimal point for both
the first order and zero order (more realistic for this applica-
tion) algorithms. As n increases, the performance degrades.
This observation holds for this street generally; however, in
our experimentation we found that other frequencies (i.e.
epoch length) were optimal suggesting that a non-uniform
(across blocks) price update schedule may lead to better out-
comes. Appendix D.2 contains additional experiments.
Moreover, the prices under the performatively optimal so-

lution obtained by the proposed algorithms are lower than
the SFpark solution for the entire trajectory, and the algo-
rithms both reach the target occupancy while SFpark is far
from it. The third and fourth plots of Figure 1 show the ef-
fect of the negative price elasticity on the occupancy; an in-
creased price causes a decreased occupancy. An interesting
observation is that for Algorithm 2, a larger choice of n, and
consequently a smaller choice of T , allows for convergence
closer to the performatively optimal price, but for Algorithm
1, a smaller choice of n, and consequently, a larger choice
of T , allows for quicker (and with lower variance) conver-
gence to the performatively optimal price. This is due to the
randomness in the query direction for the gradient estimator
used in Algorithm 1, meaning that a larger T is needed to
converge quickly to the optimal solution. This suggests that
in the more realistic case of zero order feedback, the institu-
tion should make more price announcements.

Redistributing Parking Demand. In this semi-synthetic
experiment, we set ⌫ = 1e-3 and take X = [�3.5, 4.5]
since the base distribution for these blocks has a nominal
price of $3.50. We also use the estimated � and m values



Figure 1: Results of Algorithm 2 (first and third plots) and Algorithm 1 (second and fourth plots) with different (n, T ) pairs
for 600 Beach ST and time window 1200–1500. Each marker represents a price announcement, and the plots show the prices
and corresponding predicted occupancies. The SFpark prices and occupancies are far from the target and performative optimal
price, whereas the proposed algorithms obtain both points up to theoretical error bounds.

Figure 2: Final prices announced by first and zero order algorithms (Algorithms 2 and 1) run with (n, T ) = (8, 15) and
(n, T ) = (1, 120), respectively, as compared to SFpark for streets depicted in the right graphic (color coded to the bar charts)
during the 900–1200 time period. The center plot shows the corresponding predicted occupancies. The dotted lines represent
performatively optimal price and target occupancy of 70%, in the left and center plots, respectively. The average price overall
is lower for both proposed methods, the occupancy is better distributed, and the average occupancy closer to the desired range.

(described in more detail in Appendix D.3). We run Algo-
rithms 2 and 1 (using parameters as dictated by the corre-
sponding sample complexity theorems) for a collection of
blocks during the time period 900–1200 in a highly mixed
use area (i.e., with tourist attractions, a residential building,
restaurants and other businesses). The results are depicted in
Figure 2.
Hawthorne ST 0 is a very high demand street; the occu-

pancy is around 90% on average during the initial distribu-
tion and remains high for SFpark (cf. center, Figure 2). The
performatively optimal point, on the other hand, reduces this
occupancy to within the target range 60–80% for both the
first and zeroth order methods. This occupancy can be seen
as being redistributed to the Folsom ST 500-600 block, as
depicted in Figure 2 (center) for our proposed methods: the
SFpark occupancy is much below the 70% target average for
these blocks, while both the decision-dependent algorithms
lead to occupancy at the target average. Interestingly, this
also comes at a lower price (not just on average, but for each
block) than SFpark.
Hawthorne ST 100 is an interesting case in which both

our approach and SFpark do not perform well. This is be-
cause the performatively optimal price in the unconstrained
case is $9.50 an hour which is well above the maximum
price of $8 in the constrained setting we consider. In addi-

tion, the price elasticity is positive for this block; together
these facts explain the low occupancy. Potentially other con-
trol knobs available to SFpark, such as time limits, can be
used in conjunction with price to manage occupancy; this is
an interesting direction of future work.

5 Discussion and Future Directions

This work is an important step in understanding performa-
tive prediction in dynamic environments. Moving forward
there are a number of interesting future directions. We con-
sider one class of well-motivated dynamics. Another practi-
cally motivated class of dynamics are period dynamics; in-
deed, in many applications there is an external context which
evolves periodically such as seasonality or other temporal
effects. Devising algorithms for such cases is an interesting
direction of future work. As compared to classical reinforce-
ment learning problems, in this work, we exploit the struc-
ture of the dynamics along with convexity to devise conver-
gent algorithms. However, we only considered general con-
ditions on the class of distributions D(x); it may be possi-
ble to exploit additional structure on D(x) in improving the
sample complexity of the proposed algorithms or devising
more appropriate algorithms that leverage this structure.
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