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ABSTRACT
This paper studies distributed Q-learning for Linear Quadratic Reg-
ulator (LQR) in a multi-agent network. The existing results often
assume that agents can observe the global system state, which may
be infeasible in large-scale systems due to privacy concerns or com-
munication constraints. In this work, we consider a setting with
unknown system models and no centralized coordinator. We devise
a state tracking (ST) based Q-learning algorithm to design optimal
controllers for agents. Specifically, we assume that agents maintain
local estimates of the global state based on their local information
and communications with neighbors. At each step, every agent
updates its local global state estimation, based on which it solves an
approximate Q-factor locally through policy iteration. Assuming a
decaying injected excitation noise during the policy evaluation, we
prove that the local estimation converges to the true global state,
and establish the convergence of the proposed distributed ST-based
Q-learning algorithm. The experimental studies corroborate our
theoretical results by showing that our proposed method achieves
comparable performance with the centralized case.
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1 INTRODUCTION
One main objective in the distributed control of multi-agent sys-
tems (MASs) is to learn local controllers for agents in a distributed
manner so as to minimize the global cost. The design of distributed
controllers is challenging due to the networked nature of MASs.
Observe that the agents are physically coupled with certain inter-
connections [5], e.g., the buses in a microgrid are interconnected
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through structural links such as the power transmission lines. Con-
sequently, the controller synthesis at a bus has to account for the
impact of other buses. To deal with the sophisticated coupling in
MASs, the model-based distributed controller design has been stud-
ied in [1, 4, 7]. These studies assume that the underlying system
model is known, which may be infeasible in large-scale systems.

Notably, data-driven Q-learning [10], which is a model-free Rein-
forcement Learning (RL) approach [2], has been proposed to learn
the optimal LQR controller online in the single agent case [3]. Most
recent works apply the Q-learning in the multi-agent LQR control
and show that good performance can be achieved assuming that
the knowledge of global state information is shared by a centralized
coordinator [6, 8]. Nevertheless, such a centralized coordinator is
often not available in many scenarios.

In this work, we consider distributed LQR control in MASs
with only partial observations. We propose a novel distributed Q-
learning approach with state tracking (ST-Q), where each agent first
constructs a global state estimator based on local communication
with its neighbors, and then solves an approximate Q-learning prob-
lem accordingly. Intuitively, by exchanging state estimations with
neighboring agents, an individual agent would be able to improve
its global state estimator as the information continuously diffuses
across the network. The convergence of distributed Q-learning al-
gorithms in multi-agent LQR control has been underexplored. In
this work, we fill this void and establish the convergence of the pro-
posed distributed ST-Q algorithm. Our proposed method achieves
comparable performance with the the full observation case [8].

2 STATE TRACKING METHODS
Distributed LQR Control. Consider a multi-agent network con-
sisting of 𝐿 agents, where the Linear Time Invariant (LTI) system
dynamics at each agent 𝑖 ∈ [𝐿] is given as follows:

𝑥𝑖 (𝑡 + 1) =
∑𝐿
𝑗=1𝐴𝑖 𝑗𝑥 𝑗 (𝑡) + 𝐵𝑖𝑢𝑖 (𝑡) (1)

where 𝑥𝑖 (𝑡) ∈ R𝑛 is Agent 𝑖’s state vector and 𝑢𝑖 (𝑡) ∈ R𝑚 is its
control input at time 𝑡 . 𝐴𝑖 𝑗 and 𝐵𝑖 are unknown system parame-
ters. For the subsystem (1) at each agent 𝑖 , the stage cost incurred
by executing the control 𝑢𝑖 (𝑡) in state 𝑥𝑖 (𝑡) at time 𝑡 is given by
𝑔𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡)) = 𝑥𝑖 (𝑡)⊤𝑃𝑖𝑥𝑖 (𝑡)+𝑢𝑖 (𝑡)⊤𝑅𝑖𝑢𝑖 (𝑡), where 𝑃𝑖 and𝑅𝑖 are
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Algorithm 1 ST based Q-learning (ST-Q)

Require: 𝐾𝑖1: initial stable controller, 𝜃𝑖1 (0) = 0: initial estimation,
𝑞 = 1: policy improvement index, 𝜀𝐾 : tolerance error

1: repeat
2: for Agent 𝑖 = 1, · · · , 𝐿 do
3: Estimate global state using State Tracking (9)
4: Estimate 𝜃𝑖𝑞 by solving (8) (e.g., SGD).
5: end for
6: for Agent 𝑖 = 1, · · · , 𝐿 do
7: Update policy 𝐾𝑖 (𝑞+1) = −𝐻−1𝑖𝑞,22𝐻𝑖𝑞,21 using 𝜃𝑖𝑞 .
8: Set 𝜃𝑖 (𝑞+1) (0) = 𝜃𝑖𝑞 .
9: end for
10: Set 𝑞 = 𝑞 + 1.
11: until ∥𝜃𝑖 (𝑞+1) − 𝜃𝑖𝑞 ∥ < 𝜀𝐾 , ∀𝑖 ∈ [𝐿]

positive semi-definitematrices. Let 𝐽𝑖 (𝑥𝑖 (0)) =
∑∞
𝜏=0 𝑔𝑖 (𝑥𝑖 (𝜏), 𝑢𝑖 (𝜏))

denote the local cost function at Agent 𝑖 .
Let 𝑥N𝑖

(𝑡) ∈ XN𝑖
denote the state information available for

Agent 𝑖 at time 𝑡 , which contains partial entries of the global state
vectors from its neighbors N𝑖 in the graph. Agent 𝑖 then selects
the local control input 𝑢𝑖 (𝑡) ∈ U𝑖 , based on the information 𝑥N𝑖

(𝑡)
and a control policy �̃�𝑖 with a linear feedback controller, i.e.,

�̃�𝑖 : XN𝑖
↦→ U𝑖 . (2)

We further assume that 𝐾𝑖 is the feedback controller in the policy
�̃�𝑖 . The goal of distributed LQR control with local communication is
to find controllers that minimize the global cost function 𝐽 (𝑋 (0)):

min{𝐾𝑖 } 𝐽 (𝑋 (0)) =
∑𝐿
𝑖=1 𝐽𝑖 (𝑥𝑖 (0)), s.t. (1), (2). (3)

In this work, we aim to achieve the optimal controller𝐾∗
𝑖
for each

agent 𝑖 that is the same as in the case where the model parameters
are known, by solving Problem (3).
Q-learning and Policy Iteration.Given the global state𝑋 (𝑡) and
the local control policy 𝜋𝑖 : 𝑢𝑖 (𝑡) = 𝐾𝑖𝑋 (𝑡) for some state feedback
controller 𝐾𝑖 , Q-learning defines the Q-factor for agent 𝑖 as follows:

𝑄𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡)) = 𝑔𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡)) + 𝐽𝑖 (𝑥𝑖 (𝑡 + 1)) . (4)

It can be shown that (4) can be rewritten as the quadratic from:

𝑄𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡)) = [𝑋 (𝑡);𝑢𝑖 (𝑡)]⊤𝐻𝑖 [𝑋 (𝑡);𝑢𝑖 (𝑡)], (5)

where 𝐻𝑖 = [𝐻𝑖,11, 𝐻𝑖,12;𝐻𝑖,21, 𝐻𝑖,22] is a symmetric block matrix
[2]. Suppose we have determined the Q-factor 𝑄𝑖 for a controller
𝐾𝑖 . The policy improvement step aims to find a better controller:

𝐾new
𝑖 = argmin𝐾𝑖

(𝑄𝑖 (𝑥𝑖 (𝑡), 𝐾𝑖𝑋 (𝑡))) = −𝐻−1𝑖,22𝐻𝑖,21 . (6)

To determine the matrix 𝐻𝑖 in the policy evaluation step, along
the same line as in [3], we reformulate the quadratic form of
𝑄𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡)) in (5) in a linear form parameterized by 𝜃𝑖 :

𝑄𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡)) = 𝑦𝑖 (𝑡)⊤𝜃𝑖 , (7)

where 𝑦𝑖 (𝑡) = [𝑥21 (𝑡), 𝑥1 (𝑡)𝑥2 (𝑡), · · · , 𝑥𝐿 (𝑡)𝑢𝑖 (𝑡), 𝑢
2
𝑖
(𝑡)] is a vector

containing all of the quadratic basis over the elements in [𝑋 (𝑡);𝑢𝑖 (𝑡)],
and the parameter 𝜃𝑖 is obtained through some manipulation after
removing the redundant elements of the symmetric matrix 𝐻𝑖 .

Based on the linear form (7), by observing sufficient samples
of the stage cost 𝑔𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡)) and 𝜙𝑖 (𝑡), 𝜃𝑖 can be obtained by
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Figure 1: Convergence comparisons among three cases.

solving a least square estimation problem (Policy Evaluation):

𝑔𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡)) = (𝑦𝑖 (𝑡) − 𝑦𝑖 (𝑡 + 1))⊤𝜃𝑖 ≜ 𝜙𝑖 (𝑡)⊤𝜃𝑖 . (8)

State Tracking. To address the issue that the global state 𝑋 (𝑡)
is not available, we propose a state tracking scheme to facilitate
the estimation of the global state 𝑋 (𝑡) through the information
exchange among agents. At time 𝑡 each agent 𝑖 maintains a local
estimation 𝑍𝑖 (𝑡) of the global state 𝑋 (𝑡):

𝑍𝑖 (𝑡) = col(𝑥𝑖1 (𝑡), 𝑥𝑖2 (𝑡), · · · , 𝑥𝑖𝐿 (𝑡)),
where 𝑥𝑖 𝑗 (𝑡) is the estimation of Agent 𝑗 ’s state 𝑥 𝑗 (𝑡) at Agent 𝑖 for
time 𝑡 . In particular, 𝑥𝑖𝑖 (𝑡) = 𝑥𝑖 (𝑡). At time 𝑡 + 1, each agent 𝑖 first
receives the state 𝑥 𝑗 (𝑡 + 1) from every neighbors, and then updates
the corresponding entries in its estimation 𝑍𝑖 (𝑡), i.e., 𝑥𝑖 𝑗 (𝑡) ←
𝑥 𝑗 (𝑡 +1), ∀𝑗 ∈ N𝑖 . Consequently, an updated estimation 𝑍𝑖 (𝑡 +1) =
col(𝑥𝑖1 (𝑡 + 1), 𝑥𝑖2 (𝑡 + 1), · · · , 𝑥𝑖𝐿 (𝑡 + 1)) can be obtained with

𝑥𝑖 𝑗 (𝑡 + 1) =
{
𝑥𝑖 𝑗 (𝑡) ∀𝑗 ∉ N𝑖 ,
𝑥 𝑗 (𝑡 + 1) ∀𝑗 ∈ N𝑖 .

Next, each agent 𝑖 shares its updated global state estimation 𝑍𝑖 (𝑡 +
1) with its neighbors. After receiving the global state estimation
𝑍𝑖 (𝑡 + 1) from the neighboring agents, Agent 𝑖 computes the state
estimation 𝑥𝑖 𝑗 (𝑡 + 1) by taking a weighted average of the corre-
sponding estimations 𝑥𝑘 𝑗 (𝑡 + 1) from its neighbors 𝑘 ∈ N𝑖 . The
weighting process is modeled by a doubly stochastic weight matrix,
𝑊 = [𝑤𝑖 𝑗 ]. The specific update rule is shown as following

𝑥𝑖 𝑗 (𝑡 + 1) =
{∑𝐿

𝑘=1𝑤𝑖𝑘𝑥𝑘 𝑗 (𝑡 + 1) ∀𝑗 ∉ N𝑖 ,
𝑥 𝑗 (𝑡 + 1) ∀𝑗 ∈ N𝑖 .

(9)

3 RESULTS AND CONCLUSION
In the technical report [9], we theoretically analyze the conver-
gence of the proposed ST-Q learning algorithm (Algorithm 1) under
mild assumptions. Empirically, we demonstrate the performace of
ST-Q learning on a four-agent LTI system with unknown dynamics.
As shown in Fig. 1a, the controller obtained by the ST-Q learning
approach eventually converges to the optimal controller. More-
over, Fig. 1b further demonstrates the convergence performance of
the local controller �̂�𝑖 at each agent 𝑖 compared with distributed
Q-learning with global state (DQG), i.e., each agent in the ST-Q
learning almost has the same convergence behaviour as in DQG.
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