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Abstract

In Optimal Recovery, the task of learning a function from observational data is tackled
deterministically by adopting a worst-case perspective tied to an explicit model assumption
made on the functions to be learned. Working in the framework of Hilbert spaces, this article
considers a model assumption based on approximability. It also incorporates observational
inaccuracies modeled via additive errors bounded in /5. Earlier works have demonstrated that
regularization provide algorithms that are optimal in this situation, but did not fully identify
the desired hyperparameter. This article fills the gap in both a local scenario and a global
scenario. In the local scenario, which amounts to the determination of Chebyshev centers,
the semidefinite recipe of Beck and Eldar (legitimately valid in the complex setting only) is
complemented by a more direct approach, with the proviso that the observational functionals
have orthonormal representers. In the said approach, the desired parameter is the solution to
an equation that can be resolved via standard methods. In the global scenario, where linear
algorithms rule, the parameter elusive in the works of Micchelli et al. is found as the byproduct of
a semidefinite program. Additionally and quite surprisingly, in case of observational functionals
with orthonormal representers, it is established that any regularization parameter is optimal.

Key words and phrases: Regularization, Chebyshev center, semidefinite programming, S-procedure,
hyperparameter selection.

AMS classification: 41A65, 46N40, 90C22, 90C47.

1 Introduction

1.1 Background on Optimal Recovery

This article is concerned with a central problem in Data Science, namely: a function f is acquired
through point evaluations

(1) yZ:f(x(l))7 ,L':]‘?"'7m7
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and these data should be used to learn f—or to recover it, with the terminology preferred in this
article. Importantly, the evaluation points W .., 2™ are considered fixed entities in our scenario:

they cannot be chosen in a favorable way, as in Information-Based Complexity [Novak and Wozniakowski,
2008], nor do they occur as independent realizations of a random variable, as in Statistical Learning
Theory [Hastie, Tibshirani, and Friedman, 2009]. In particular, without an underlying probability
distribution, the performance of the recovery process cannot be assessed via generalization error.
Instead, it is assessed via a notion of worst-case error, central to the theory of Optimal Recovery
[Micchelli and Rivlin, 1977].

To outline this theory, we make the framework slightly more abstract. Precisely, given a normed
space F', the unknown function is replaced by an element f € F. This element is accessible only
through a priori information expressing an educated belief about f and a posteriori information
akin to (1). In other words, our partial knowledge about f is summed up via

e the fact that f € K for a subset IC of F' called a model set;

e the observational data y; = \;(f), ¢ = 1,...,m, for some linear functionals A,..., A, € F*
making up the observation map A: g € F — [A1(9);...;Am(g)] € R™.

We wish to approximate f by some f € F produced using this partial knowledge of f. Since the
error || f — f|| involves the unknown f, which is only accessible via f € K and A(f) = y, we take a
worst-case perspective leading to the local worst-case error

(2) Iwee(y, f) == sup ||f — I
fex
A(f)=y

Our objective consists in finding an element fthat minimizes lwce(y, f) Such an fcan be described,
almost tautologically, as a center of a smallest ball containing NA~!({y}). It is called a Chebyshev
center of this set of model- and data-consistent elements. This remark, however, does not come
with any practical construction of a Chebyshev center.

The term local was used above to make a distinction with the global worst-case error of a recovery
map A(= Ax) : R™ — F, defined as

(3) gwee(A) := sup lwee(y, A(y)) = sup [|[f — AA())]-
yeA(K) fek

The minimal value of gwce(A) is called the intrinsic error (of the observation map A over the model
set ) and the maps A that achieve this minimal value are called globally optimal recovery maps.
Our objective consists in constructing such maps—of course, the map that assigns to y a Chebyshev
center of KN A~!({y}) is one of them, but it may be impractical. By contrast, for model sets that
are convex and symmetric, the existence of linear maps among the set of globally optimal recovery
maps is guaranteed by fundamental results from Optimal Recovery in at least two settings: when
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F' is a Hilbert space and when F' is an arbitrary normed space but the full recovery of f gives way
to the recovery of a quantity of interest Q(f), @ being a linear functional. We refer the readers to
[Foucart, To appear, Chapter 9] for details.

1.2 The specific problem

The problem solved in this article is a quintessential Optimal Recovery problem—its specificity
lies in the particular model set and in the incorporation of errors in the observation process. The
underlying normed space F' is a Hilbert space and is therefore denoted by H from now on. Re-
producing kernel Hilbert spaces, whose usage is widespread in Data Science [Scholkopf and Smola,
2002], are of particular interest as point evaluations of type (1) make perfect sense there.

Concerning the model set, we concentrate on an approximation-based choice that is increasingly
scrutinized, see e.g. [Maday, Patera, Penn, and Yano, 2015], [DeVore, Petrova, and Wojtaszczyk,
2017] and [Cohen, Dahmen, Mula, and Nichols, 2020]. Depending on a linear subspace V of H and
on a parameter € > 0, it takes the form

K={feH:dist(f,V) <e}.

Binev, Cohen, Dahmen, DeVore, Petrova, and Wojtaszczyk [2017] completely solved the Optimal
Recovery problem with exact data in this situation (locally and globally). Precisely, they showed
that the solution f to

4 inimize dist .t A =
(4) minimize dist(f,V)  sto A(f) =y,

which clearly belongs to the model- and data-consistent set K N A=*({y}), turns out to be its
Chebyshev center. Moreover, with P, and P),1 denoting the orthogonal projectors onto V and
onto the orthogonal complement V* of V, the fact that dist(f,V) = ||f — Pvf| = ||PyL f|| makes
the optimization program (4) tractable. It can actually be seen that A : y — fis a linear map.
This is a significant advantage because A can then be precomputed in an offline stage knowing only
V and A and the program (4) need not be solved afresh for each new data y € R™ arriving in an
online stage.

Concerning the observation process, instead of exact data y = A(f) € R™, it is now assumed that
y=A(f)+eecR™

for some unknown error vector e € R™. This error vector is not modeled as random noise but
through the deterministic ¢2-bound |le|la < 7. Although other ¢,-norms can the considered for
the optimal recovery of Q(fy) when @ is a linear functional on an arbitrary normed space F' (see
[Ettehad and Foucart, 2021]), here the arguments rely critically on R™ being endowed with the
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ly-norm. It will be written simply as || - || below, hoping that it does not create confusion with the
Hilbert norm on H.

For our specific problem, the worst-case recovery errors (2) and (3) need to be adjusted. The local
worst-case recovery error at y for f becomes

~

lwee(y, f)= sup ||f— ]?H
1P, fll<e
IACH)—yllI<n

As for the global worst-case error of A : R™ — H | it reads

gwee(A) = sup [If = A(A(f) + ).
1P, 1 fl<e
llell<n
Note that both worst-case errors are infinite if one can find a nonzero h in V Nker(A). Indeed, the
clement f; := f+th, t € R, obeys [[Py. fil| = [Py fI| < e and [ly = A(f)ll = lly = A(S)I <, s0
for instance lwce(y, f) > sup;er || ft — f|| = +00. Thus, we always make the assumption that

(5) V Nker(A) = {0}.

We keep in mind that the latter forces n := dim(V) < m, as can be seen by dimension arguments.
With A* denoting the Hermitian adjoint of A, another assumption that we sometimes make reads

This is not extremely stringent: assuming the surjectivity of A is quite natural, otherwise certain
observations need not be collected; then the map A can be preprocessed into another map A
satisfying AA* = Idgm by setting A = (AA*)~1/2A. Incidentally, if wy,...,u, € H represent the
Riesz representers of the observation functionals \1,...,\,, € H*, characterized by (u;, f) = A\i(f)
for all f € H, then the assumption (6) is equivalent to the orthonormality of the system (uq, ..., uy,).
In a reproducing kernel Hilbert space with kernel K, if the \;’s are point evaluations at some z(9’s,
so that u; = K (-, x(i)), then (6) is equivalent to K(x(i),a:(j)) = 0;; foralld,j =1,...,m. This occurs
e.g. for the Paley—Wiener space of functions with Fourier transform supported on [—7, 7] when the
evaluations points come from an integer grid, since the kernel is given by K (z,2) = sinc(mw(x —12')),
z, 7 € R.

1.3 Main results

There are previous works on Optimal Recovery in Hilbert spaces in the presence of observa-
tion error bounded in ¢3. Notably, [Beck and Eldar, 2007] dealt with the local setting, while
[Melkman and Micchelli, 1979] and [Micchelli, 1993] dealt with the global setting. These works un-
derline the importance of regularization, which is prominent in many other settings [Chen and Haykin,
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2002]. They establish that the optimal recovery maps are obtained by solving the unconstrained

program

(7)

minimize (1—7)[|Rys fI° +7IIAf |

for some 7 € [0, 1]. It is the precise choice of this regularization parameter 7 which is the purpose of

this article. Assuming from now on that H is finite dimensional®, we provide a complete (almost)

picture of the local and global Optimal Recovery solutions, as summarized in the four points below,

three of them being new:

L1.

L2.

G1.

G2.

With H restricted here to be a complex Hilbert space, the Chebyshev center of the set
{f e H:||Py.f|| <&, ||Af =yl < n} is the minimizer of (7) for the choice 7 = dy/(cy + dy),

where ¢4, dy are solutions to the semidefinite program?
mir}liglioze e+ (1 —|ly|*)d+t s.to cPyi +dA*A = 1d,
C? "
i [cPy +dA*A | —dAvy] -
| a1t ]

Under the orthonormal observations assumption (6) but without the above restriction on H,
the Chebyshev center of the set {f € H : ||P,of|| < e, ||Af —yl| <n} is the minimizer of (7)
for the choice 7 that satisfies

(1 _ 7_)2{_:2 _ 7_2772
(1—7)e2—m2+ (1 —7)7(1 —27)62’

(8) Amin((1 = 7)Py1r +7A™A) =

where § is precomputed as 0 = min{||Py. f|| : Af = y} = min{||Af —y|| : f € V}. For the
distinct case V = {0}, the best choice of parameter is more simply 7 = max{1 — n/||y||,0}.

A globally optimal recovery map is provided by the linear map sending y € R™ to the
minimizer of (7) with parameter 7 = d,/(c, +d,), where ¢,, d, are solutions to the semidefinite
program

(9) minimize e2¢ + n*d s.to  cPpi +dAA = 1d.

c,d

Under the orthonormal observations assumption (6), the linear map sending y € R™ to the
minimizer of (7) is a globally optimal recovery map for any choice of parameter 7 € [0, 1].

't is likely that the results are still valid in the infinite-dimensional case. But then it is unclear how to solve (8)

and (9) numerically, so the infinite-dimensional case is not given proper scrutiny in the rest of the article.
2In the statement of this semidefinite program and elsewhere, the notation 7' > 0 means that an operator T is
positive semidefinite on H, i.e., that (T'f, f) > 0 for all f € H.
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Before entering the technicalities, a few comments are in order to put these results in context.
Item L1 is the result of [Beck and Eldar, 2007] (see Corollary 3.2 there) adapted to our situation.
It relies on an extension of the S-lemma involving two quadratic constraints. This extension is
valid in the complex finite-dimensional setting, but not necessarily in the real setting, hence the
restriction on H (this does not preclude the validity of the result in the real setting, though). It is
worth pointing out the nonlinearity of the map that sends y € R™ to the above Chebyshev center.
Incidentally, we can safely talk about the Chebyshev center, because it is known [Garkavi, 1962]
that a bounded set in a uniformly convex Banach space has exactly one Chebyshev center. A sketch
of the argument adapted to our situation is presented in the appendix.

For item L2, working with an observation map A satisfying AA* = Idgm allows us to construct the
Chebyshev center even in the setting of a real Hilbert space. This is possible because our argument
does not rely on the extension of the S-lemma—it just uses the obvious implication. As for equation
(8), it is easily solved using the bisection method or the Newton/secant method. Moreover, it gives
some insight on the value of the optimal parameter 7. For instance, the proof reveals that 7 is
always between 1/2 and ¢/(¢ + 7). When € > 7, say, the optimal parameter should then satisfy
7 > 1/2, which is somewhat intuitive: ¢ > 1 means that there is more model mismatch than data
mismatch, so the regularization should penalize model fidelity less than data fidelity by taking
1—7 < 7,ie.,7>1/2. As an aside, we point out that, here too, the map that sends y € R™ to the
Chebyshev center is not a linear map—if it was, then the optimal parameter should be independent
of y.

In contrast, the globally optimal recovery map of item G1 is linear. It is one of several globally
optimal recovery maps, since the locally optimal one (which is nonlinear) is also globally optimal.
However, as revealed in the reproducible® accompanying this article, it is in general the only
regularization map that turns out to be globally optimal. The fact that regularization produces
globally optimal recovery maps was recognized by Micchelli, who wrote in the abstract of [Micchelli,
1993] that “the regularization parameter must be chosen with care”. However, a recipe for selecting
the parameter was not given there, except on a specific example. The closest to a nonexhaustive
search is found in [Plaskota, 1996, Lemma 2.6.2] for the case V = {0}, but even this result does
not translate into a numerically tractable recipe. The selection stemming from (9) does, at least
when H is finite-dimensional, which is assumed here. Semidefinite programs can indeed be solved
in MATLAB using CVX [Grant and Boyd, 2014] and in Python using CVXPY [Diamond and Boyd,
2016].

Finally, a surprise arises in item G2. Working with an observation map A satisfying AA* = Idgm,
the latter indeed reveals that the regularization parameter does mot need to be chosen with care
after all, since regularization maps are globally optimal no matter how the parameter 7 € [0,1] is
chosen. The precise interpretation of the choices 7 = 0 and 7 = 1 will be elucidated later.

3MATLAB and Python files illustrating the findings of this article are located at https://github.com/foucart/COR.
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The rest of this article is organized as follows. Section 2 gathers some auxiliary results that are used
in the proofs of the main results. Section 3 elucidates item L1 and establishes item L2—in other
words, it is concerned with local optimality. Section 4, which is concerned with global optimality,
is the place where items G1 and G2 are proved. Lastly, a short appendix containing some side
information is included after the bibliography.

2 Technical Preparation

This section establishes (or recalls) a few results that we isolate here in order not to disrupt the
flow of subsequent arguments.

2.1 S-lemma and S-procedure

Loosely speaking, the S-procedure is a relaxation technique expressing the fact that a quadratic
inequality is a consequence of some quadratic constraints. In case of a single quadratic constraint,
the relaxation turns out to be exact. This result, known as the S-lemma, can be stated as follows:
given quadratic functions go and ¢; defined on KV, with K=R or K = C,

[qo(x) <0 whenever ¢;(x) < 0] <= [there exists a > 0 : ¢y < aq1],

provided ¢;(Z) < 0 for some Z € K. With more than one quadratic constraint, g1, ...,qx, say,
go(z) < 0 whenever ¢;(x) < 0,...,qrx(x) < 0 is still a consequence of ¢y < ajq; + - -+ + aggy for
some ai,...,ar > 0, but the reverse implication does not hold anymore. There is a subtlety when

k = 2, as the reverse implication holds for K = C but not for K = R, see [Pdlik and Terlaky,
2007, Section 3]. However, if the quadratic constraints do not feature linear terms, then the reverse
implication holds for k = 2 also when K = R. Since this result of [Polyak, 1998, Theorem 4.1] is to
be invoked later, we state it formally below.

Theorem 1. Suppose that N > 3 and that quadratic functions g, q1,q2 on RY take the form

RN*N and scalars ag, o, as € R. Then

gi(z) = (4A;x, ) + o; for symmetric matrices Ag, Ay, Ay €
[q0(x) <0 whenever ¢1(z) <0 and ¢o(z) < 0] < [there exist a1,a2 > 0: qo < a1q1 + a2q2],

provided q1(Z) < 0 and ¢2(Z) < 0 for some T € RY and by A; + by Ay = 0 for some by, by € R.

2.2 Regularization

In this subsection, we take a closer look at the regularization program (7). The result below shows
that its solution depends linearly on y € R™. In fact, the result covers a slightly more general
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program and the linearity claim follows by taking R = P, r =0, S = A, and s = y.

Proposition 2. Let R, S be linear maps from H into other Hilbert spaces containing points r, s,
respectively. For 7 € (0, 1), the optimization program

(10) miI}ie%ize (1 —=7)|Rf —r||* + 7||Sf — s>
has solutions f, € H characterized by

(11) (1=7)R*R+75*S)fr = (1 —1)R*r +75%s.
Moreover, if ker(R) Nker(S) = {0}, then f; is uniquely given by

(12) fr=(1 —T)R*R+TS*S)_1((1 —7)R'r +15%s).

Proof. The program (10) can be interpreted as a standard least squares problem, namely as

2

{mzﬂf_ [VI=7r]
LV oL v ]

According to the normal equations, its solutions f, are characterized by

[yren]" [vien) [V [viw]
v L T [T T

which is a rewriting of (11). Next, if ker(R) N ker(S) = {0}, then

minimize
feH

fT:

(L=nR*R+78"S)f, f) =1 —RfI* +[SFI* >0,

with equality only possible when f € ker(R)Nker(S), i.e., f = 0. This shows that (1—7)R*R+75*S
is positive definite, and hence invertible, which allows us to write (12) as a consequence of (11). O

The expression (12) is not always the most convenient one. Under extra conditions on R and S, we
shall see that f,, 7 € [0, 1], can in fact be expressed as the convex combination f. = (1—7)fo+7f1.
The elements fy and f; should be interpreted? as

fo=argmin ||Sf — s sto Rf=r,
feHd

fi =argmin ||Rf — r|| sto Sf =s.
fed

“Intuitively, the solution to the program (10) written as the minimization of |Rf — r||*> + (7/(1 — 7))||Sf — s|*
becomes, as 7 — 1, the mininizer of ||Rf — r||* subject to ||[Sf — s||*> = 0. This explains the interpretation of fi.
A similar argument explains the interpretation of fo.
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The requirements that r € ran(R) and s € ran(S) need to be imposed for fy and f; to even exist
and the condition ker(R) N ker(S) = {0} easily guarantees that fy and fi are unique. They obey

(13) Rfo=r, S*(Sfyo—s)ecker(R):, Sfi=s, R*(Rfi—r)e€ker(S)*.

For instance, the identity Rfy = r reflects the constraint in the optimization program defining f,
while S*(Sfo — s) € ker(R)* is obtained by expanding ||S(fo + tu) — s||> > ||S(fo) — s||> around
t = 0 for any u € ker(R). At this point, we are ready to establish our claim under extra conditions
on R and S, namely that they are orthogonal projections. These conditions will be in place when
the observation map satisfies AA* = Idgm. Indeed, in view of ||w|?* = (w, AA*w) = ||A*w]||? for any
w € R™, the regularization program (7) also reads

minimize (1~ Py fIP + T A*Af — Ay,
c

where both P, and A*A are orthogonal projections. The result below will then be applied with
R=Py,,r=0,5=A"A, and s = A*y.

Proposition 3. Let R, S be two orthogonal projectors on H such that ker(R) Nker(S) = {0} and
let r € ran(R), s € ran(S). For 7 € [0, 1], the solution f to the optimization program

(14) minimize (1 —7)||Rf —r||*> + 7||Sf — ||
fed

satisfies

(15) fr=0=-7)fo+7f1.

Moreover, one has

(16) [Bfr —rll=7llfv=fol  and  [ISfr = sl = (1 =7)[[fr = foll

Proof. Taking the extra conditions on R and S into account, the identities (13) read
Rfs=r, Sfo—secran(R), Sfi=s, Rfi—r €ran(S).
In this form, they imply that

(S(fo— f1), (R—=95)(fo— f1)) = (Sfo— s, R(fo — f1)) — (Sfo—s,5(fo — f1))
= (Sfo—s,fo— f1) = (Sfo— s, fo— f1)
(17) =0.

In a similar fashion, by exchanging the roles of R and S, and consequently also of fy and f;, we

have (R(f1 — fo), (S — R)(f1 = fo)) = 0, Le., (R(fo — f1), (R — S)(fo — f1)) = 0. Subtracting (17)
from the latter yields |[(R — S)(fo — f1)||?> = 0, in other words R(fy — f1) = S(fo — f1). Then, the
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element h := fo — f1 — R(fo— f1) = fo— f1 — S(fo — f1) belongs to ker(R) Nker(S), so that h = 0.
In summary, we have established that

(18) R(fo— f1) = S(fo— f1) = fo— f1.

From here, we can deduce the two parts of the proposition. For the first part, we notice that

((1 — T)R—I—TS)((l —7)fo +Tf1) =

which shows that (1 — 7) fo + 7 f1 satisfies the relation (11) characterizing the minimizer f; of (14),
so that f; = (1 — 7)fo + 7f1, as announced in (15). For the second part, we notice that

Rfr —r=(1—1)Rfo+7Rfi — Rfo = TR(f1 — fo) = 7(f1 — fo),

so the first equality of (16) follows by taking the norm. The second equality of (16) is derived in a
similar fashion. O

We complement Proposition 3 with a few additional pieces of information.

Remark. Under the assumptions of Proposition 3, the solution f; to (14) is also solution to

minimize max {(1 —7)[|Rf —r|,7||Sf — s||}

Indeed, at f = f,, the squared objective function equals (1 —7)272||f1 — fo||?, while at an arbitrary
f € H, it satisfies

1

max {(1 = 7)*|Rf —r|*, 7?||Sf = s|*} > ——— (L = DIRf — 7> +7]Sf - s?)
1—7 + T
> (1=7)7((L=Rfr —r|* + ]S fr —s]?)
=1 =) (A =n)72fr = foll* +7(L = )2 fr = foll?)

=1 =772 f1 - foll*-

In the case R = Py1, r =0, S = A*A, and s = A*y, the choice 7 = ¢/(¢ +n) is quite relevant, since
the above optimization program becomes equivalent to

1 1
ml?é%lze max { . 1Py fll, 77H f ?J”}

Its solution is clearly in the model- and data-consistent set {f € H : |Py.f|| < e, ||[Af —y| < n}.
In fact, this could have been a natural guess for its Chebyshev center, but item L2 reveals the
invalidity of such a guess. Nonetheless, the special parameter 7 = £/(¢+n) will make a reappearance
in the argument leading to item L2.

10
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Remark. The proof of Proposition 3 showcased the important identities Rfy = r, Sf; = s, and
R(fo— f1) = S(fo— f1) = fo— f1. In the case R = Py, r =0, S = A*A, and s = A*y, if A,
denotes the recovery map assigning to y € R™ the solution f; to the regularization program (7),
these identities read, when AA* = Idgm,

(19)  Poulg=0, A*AA;=A*,  Pui(Ao—A1) =AA(Ag—Ap) = Ag— A

Remark. Considering again the case R = P, r = 0, § = A*A, and s = A*y, Proposition 3
implies that f, € V4 ran(A*) for any 7 € [0, 1], given that the latter holds for 7 = 0 and for 7 = 1.
For 7 = 0, this is because the constraint P),1 f = 0 of the optimization program defining fy imposes
fo € V. For 7 = 1, this is a result established e.g. in [Foucart, Liao, Shahrampour, and Wang,
2020, Theorem 2]. The said result also provides an efficient way to compute the solution f; of (7)
even when H is infinite dimensional, as stated in the appendix.

3 Local Optimality

Our goal in this section is to determine locally optimal recovery maps. In other words, the section is
concerned with Chebyshev centers. We start by considering the situation of an arbitrary observation
map A, but with a restriction on the space H. Next, lifting this restriction on H, we refine the
result in the particular case of an observation map satisfying AA* = Idgm.

3.1 Arbitrary observations

In this subsection, we reproduce a result from [Beck and Eldar, 2007], albeit with different notation,
and explain how it implies the statement of item L1. The result in question, namely Corollary 3.2,
relies on the S-procedure with two constraints, and as such cannot be claimed in the real setting.

Theorem 4. Let H be a complex Hilbert space. Let R, S be two linear maps from H into other
Hilbert spaces containing points r, s, respectively. Suppose the existence of f € H such that
IRf — 7| < e and ||Sf — s|| < 1 and the existence of 7 € [0,1] such that (1 — T)R*R + 75*S is
positive definite. Then the Chebyshev center of {f € H : ||Rf — 7| < &,||Sf — s|| < n} equals
fi = (CﬁR*R + dﬁS*S)_l(CﬁR*r + dyS*s), where ¢4, dy are solutions to

mir(liimioze (2 = |Ir|P)e+ (n* — ||s]|*)d + t sto c¢cR*R+dS™S > Id,

cR*R +dS*S | —CR*T‘—dS*S—I -0
I_—c(R*r)*—d(S*s)* ] t J -

and

11
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The statement made in item L1 is of course derived by taking R = Py, r =0, 5 = A, and s = y.
Theorem 4 is indeed applicable, as f = (fo + f1)/2 satisfies the strict feasibility conditions, while
the positive definiteness condition is not only fulfilled for some 7 € [0, 1], but for all 7 € (0,1),
since (((1 — 7)Pyr + 7A*A)f, f) = (1 — 7)||Puorf? + 7||Af||> > 0, with equality only possible
if f € VNker(A), ie., if f = 0 thanks to the assumption (5). We also note that, by virtue
of (12), the element f; defined above is nothing else than the regularized solution with parameter
T =dy/(c; + dy).

3.2 Orthonormal observations

In this subsection, we place ourselves in the situation of an observation map satisfying AA* = Idgm
and we provide a proof of the statements made item L2. In fact, we prove some slightly more
general results and L2 follows by taking R = Py, r = 0, S = A*A, and s = A*y. Note that
we must separate the cases where R = Id (corresponding to V = {0}) and where R is a proper
orthogonal projection (corresponding to V # {0}). We emphasize that, in each of these two cases,
the optimal parameter 7; is not independent of y. Therefore, in view of (15) and of the linear
dependence of fo and f1 on y, the regularized solution fr, does not depend linearly on y. In other
words, the locally optimal recovery map is not a linear map. The following two simple lemmas will
be used to deal with both cases.

Lemma 5. Let R, S be two linear maps from H into other Hilbert spaces containing points r, s,
respectively. Given fy € H, let

|Rfy —r+ Rh| <,

hy € argmax ||h s.to

¢ € argmax||h] {HSfﬁ—s—l—ShHgn.

If the orthogonality conditions

(20) (R*(Rfy —r),hg) =0 and (S*(Sfy—s),hg) =0

are fulfilled, then f; is the Chebyshev center of the set {f € H : |Rf — 7| <¢,||Sf —s|| < n}, ie.,
for any g € H,

(21) sup [[f —gll > sup [If = fil.
|Rf—r||<e |Rf—r|<e
s f=sll<n 5 f—sll<n

Proof. First, writing f = fy + h, we easily see that the right-hand side of (21) reduces to | hy]|.
Second, let us remark that the orthogonality conditions guarantee that fi := fy &= hy both satisfy
|IRf+ — r|| <eand ||Sfy — s|| <n. For instance, we have

(22) IRfs —rl* = |[Rf; —r & Rhy||* = | Rfy — r[|* + [|Rhy||* = | Rf; — 7 + Rhy||* < €%,

12
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where the latter inequality reflects the feasibility of hy. Therefore, the left-hand side of (21) is
bounded below by

1 1 1
(23)  maxllfa— gl 2 S (15 — g+ 17— gl) 2 517 — 9) = (- — 9)ll = 5 l12he] = g,

i.e., by the right-hand side of (21). O

The next lemma somehow relates to the S-procedure. However, it does not involve the coveted
(and usually invalid) equivalence, but only the straightforward implication.

Lemma 6. Let R, S be two linear maps from H into other Hilbert spaces containing points r, s,
respectively. Given f; € H and hy € H, suppose that

(24) [Rfs—r+Rhy|® = and  [ISf;— s+ Shy|* =7*,

and that there exist a,b > 0 such that

(25) aR*R+b5*S = 1d
as well as
(26) aR*(Rfy — 1)+ bS*(Sfy — s) + (aR*R + bS*S)hy = hy.

Then, one has

[ fy =7+ Rh|| <,

27 hy € argmax ||h s.to
) 1 € orgmex {Hsfﬁ—SJrShHSn-

Proof. By writing the variable in the optimization program (27) as h = hy + g, the constraints on h
transform into constraints on g. Thanks to (24), the latter constraints read

(R*Rg,g) + 2(R*(Rfy —r+ Rhy),g9) <0 and (S*Sg,g) +2(S*(Sfy —s+ Shy),g) <0.

Combining these constraints—specifically, multiplying the first by a, the second by b, and summing—
implies that

0> ((aR*R +bS*S)g,g) + 2(aR*(Rf; — r) + bS*(Sf; — 5) + (aR* R + bS*S)hy, g)

>
> (g,9) +2(hy, 9),

where (25) and (26) were exploited in the last step. In other words, one has 0 > ||y + g||> — || %,
ie., ||h]|* < |/hy]|?, under the constraints on h, proving that hy is indeed a maximizer in (27). O

13
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3.2.1 The case R=1d

As mentioned earlier, the case R = Id corresponds to the choice V = {0}, i.e., to a model set K
being an origin-centered ball in H, and to regularizations being classical Tikhonov regularizations.
The arguments are slightly less involved here than for the case R # Id. Here is the main result.

Theorem 7. Let S be an orthogonal projector on H with ker(S) # {0} and let r € H, s € ran(S).
The solution fr, to the regularization program (14) with parameter

n
Ty = max 1—7,0}
: { 57— s]

is the Chebyshev center of the set {f € H : ||f —r| <¢&,||Sf — s|| < n}.

Proof. Before separating two cases, we remark that ||ST — s|| < e+ 7 is implicitly assumed for the
above set to be nonempty. Now, we first consider the case ||Sr — s|| > 7. Defining f; := f;, with
7 = 1—n/||Sr —s|| € (0,1), our objective is to find hy € H and a,b > 0 for which conditions
(24), (25), and (26) of Lemma 6 are fulfilled, so that hy is a maximizer appearing in Lemma 5,
and then to verify that the orthogonality conditions (20) hold, so that f; is indeed the required
Chebyshev center. We take any hy € ker(S), with a normalization will be decided later, and a = 1,
b= /(1 — 7). In this way, since R = Id, condition (25) is automatic, and condition (26) follows
from the characterization (11) written here as (1 —7y)(f; —r) = —74(Sf; —s). This characterization
also allows us to deduce (20) only from (Sf; — s, hy) = 0, which holds because the spaces ran(S5)

2 and

and ker(S) are orthogonal. The remaining condition (24) now reads || fy — r||* + [[]|> = ¢
|S fy — s||* = n*. Recalling from Proposition 3 that f; = (1 —74)fo+ 74 f1, while taking into account
that fo = r here and that f1 = fo+S(fi1— fo) = r+s—Sr thanks to (18), we have f;—r = 74(s—Sr)

and Sfy —s = —(1 —1)(s — Sr). Thus, condition (24) reads
s = SrP+ gl = and (1= m)2s - Sr? =,

The latter is justified by our choice of 74, while the former can simply be achieved by normalizing hy,
so long as € > 7y|ls — Sr|, i.e., € > ||s — Sr|| — n, which is our implicit assumption for nonemptiness
of the set under consideration.

Next, we consider the case ||Sr — s|| < . We note that this implies that r belongs to the set
{feH: | f—r|<e|Sf—s| <n}—we are going to show that r is actually the Chebyshev center
of this set. In other words, since 7 = fo, this means that f;, with 7y = 0 is the Chebyshev center.
To this end, we shall establish that, for any g € H,

sup |If =gl = sup [ =7
I f—rl<e I|f=rl<e
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On the one hand, the right-hand side is obviously bounded above by €. On the other hand,
selecting h € ker(S) with ||h|| = €, we define fi := r £ h to obtain ||f1 — || = ||h| = ¢ and
|Sfe —s|| = ||Sr — s|| <n. Thus, the left-hand side is bounded below by

1 1 1 1
miaXHfi —gll = §Hf+ —gll + §Hf— —gll = §||(f+ —g9)—(f-—9)l = §H2h\| = €.

This proves that the left-hand side is larger than or equal to the right-hand side, as required. [

3.2.2 The case R # Id

We now assume that R is a proper orthogonal projection, i.e., that R # Id, which corresponds to
the case V # {0}. The main result is stated below. To apply it in practice, the optimal parameter
7 needs to be computed by solving an equation involving the smallest eigenvalue of self-adjoint
operator depending on 7. This can be done using an all purpose routine. We could also devise
our own bisection method, Newton method (since the derivative dAp;,/d7 is accessible, see the
appendix), or secant method.

Theorem 8. Let R # 1d, S # Id be two orthogonal projectors on H such that ker(R)Nker(S) = {0}
and let 7 € ran(R), s € ran(S). Consider 74 to be a (often unique) 7 between 1/2 and /(e + 1)
such that

(1 _ 7_)2{_:2 _ 7_2772 0

(28) Amin((1 = )R +75) = (1-7)e2—m2+(1—-7)r(1 —27)62

where ¢ is precomputed as 6 = min{||Rf —r| : Sf = s} = min{||Sf — s|| : Rf = r}. Then the
solution fr, of the regularization program (14) with parameter 73 is the Chebyshev center of the
set {f € H:|Rf —r|[ <& |Sf—s|<n}

Remark. It there is no observation error, i.e., if n = 0, then the parameter solving equation (28)

is7y =1 Incase R= Py, r=0,5=A"A, and s = A"y, this means that the Chebyshev center is

f1 = argmin ||P),1 f|| s.to Af = y and we thus retrieve the result of [Binev, Cohen, Dahmen, DeVore, Petrova, and \
2017).

The proof of Theorem 8 requires an additional result that gives information about the norms of the
projections Rh and Sh when h is an eigenvector of the positive semidefinite operator (1—7)R+7S.
This result will be applied for the eigenvector associated with the smallest eigenvalue.

Lemma 9. Let R, S be two orthogonal projectors on H. For 7 € (0,1), let h € H be an eigenvector
of (1 —7)R+ 7S5 corresponding to an eigenvalue A # 1/2. Then

1—7—-X))
WP and  [shf? =" 2 m2.

B (T—=A)A
(29) |RA|*> = T —2n)

1— 7)1 —2\)

15
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Proof. We notice, on the one hand, that

(30) (1= 7)|RR|* + 7||Shl> = (1 — 7)(Rh, h) + 7(Sh,h) = (1 — T)R + 7S)h, )
= IR,

and, on the other hand, that

(1 —7)%|Rh|? — 7%|Sh||* = (1 — T)Rh + 7Sh, (1 — T)Rh — 7Sh) = (Ah, (1 — T)Rh — 7Sh)
A1 — 7)||RR||* — A7||Sh|?.

Rearranging the latter yields
(31) (1 —=7)(1 —7 = N)||Rh|* = 7(r — N)||Sh|* = 0.

Together, the equaltions (30) and (31) form a two-by-two linear system in the unknowns || Rh|?
and ||Sh||? with determinant —(1 — 7)7(1 — 2)) # 0. Its solutions are easily verified to be the ones
given in (29). O

Remark. Because ||Rh|?, |Sh||?, and ||h||?* are all nonnegative, Lemma 9 implicitly guarantees
that 7 — X and 1 — 7 — X\ have the same sign as 1 — 2\ # 0. These quantities are nonnegative when
R #1d, S # Id, and A is the smallest eigenvalue—the case of application of the lemma. Indeed,
taking f € ker(R) with ||f|| = 1 (which is possible because R # Id), one has

Amin = Amin((1 = 7)R+78) < ||(1 = 7)Rf +7Sf||=7||Sf|| < 7,

i.e., T — Amin > 0. The inequality Ay < 1 — 7, ie., 1 — 7 — Apin > 0, is obtained in a similar
fashion. These inequalities sum up to give 1 — 2\, > 0. The latter is in fact (strictly) positive
when 7 # 1/2, since either 7 or 1 — 7 is smaller than 1/2, so that Ayin < 1/2.

With the above result at hand, we are ready to fully justify the main result of this subsection.

Proof of Theorem 8. Let us temporarily take for granted the existence of a solution 74 to (28).
Defining f; := fr,, our objective is again to find hy € H and a,b > 0 for which conditions (24),
(25), and (26) of Lemma 6 are fulfilled, so that hy is a maximizer appearing in Lemma 5, and then
to verify that the orthogonality conditions (20) hold, so that f; is indeed the required Chebyshev
center. Writing Ay := Amin((1 —74) R+ 735), we choose hy to be a (so far unnormalized) eigenvector
of (1 — )R + 1S corresponding to the eigenvalue \s. Setting a := (1 — 73)/A\s and b := 73/ Ny,
conditions (25) is swiftly verified, since RR* = R, SS* = S, and

(1 — Tﬁ)R—FTﬁS

— - 1d.
RS = S = R+ 79)

16
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Then, the characterization (1—74)R(fy—r) = —74S(fy—s) of the regularization solution f;, see (11),
allows us to validate condition (26) via

aRuy—m+5ﬂm—sy+mR+bam::i(u—wﬂmﬂ—m+wsu¢—$+«1—wﬂa+m$m)

_ !

Athy) = hy.
3 O Aele) =

The orthogonality conditions (20) are also swiftly verified: the second one follows from the first one
using (11); the first one holds because, while hy is an eigenvector of (1 — 74) R 4 73S corresponding
to its smallest eigenvalue, R(f; —7) = —13/(1 — 173)S(f; — s) is an eigenvector corresponding to the
largest eigenvalue (i.e., to one), since it is invariant when applying both R and S. Thus, it remains
to verify that the two conditions of (24) are fulfilled. In view of the orthogonality conditions (20),
they read

(32) IRf; —r* + [Rhg|? =€ and  [|Sf; — s[* + | Shy]|* = n*.

Now, invoking Proposition 3, as well as Lemma 9, the two conditions of (24) become

— M)A
33 7252 4 (18 — M)A 2 _ 2
(33) : (1 —7)(1—2X) Il
1—7— M)A
4 1 — 71)252 ( 1 WA B2 = n2.

After some simplification work, starting by forming the combinations (1 — Tﬂ)X(33)—Tﬁ2X(34) and
(1 =7 — X)) (1 — 73)x(33)— (73 — Ag)(73) x(34), these two conditions are seen to be equivalent to

1_2/\11 2.2 2.2
@Eﬁfﬁ%ﬂ—ﬂ)g_ﬂny

(1— Tﬁ)2€2 - 7‘5772
(1 — Tﬁ)ez — Tﬁ??z + (1 — Tﬁ)Tﬁ(l — 27}1)52.

(35) | =

(36) Ay =

These two conditions can be fulfilled: the latter is the condition that defined 7y, i.e., (28), while
the former is simply guaranteed by properly normalizing the eigenvector hy.

Before establishing the existence 74, we point out that its uniqueness holds when fo # f1, i.e., when
there is no f € H such that Rf = r and S f = s—such an f would solve the regularization program
for any 7 € [0,1]. Indeed, if 7 # 7/ were two solutions to (28), then the previous argument would
imply that f; and f. are both Chebyshev centers, which could only happen if they were equal, i.e.,
if fo = f1 by (15). Now, for the existence of 73, it will be justified by the fact that the function

(1—7)2e2 — 722

0:7 = Anin((1 = 7)R+785) — Q-1 — 2+ (1—7)r(l - 27)82

is continuous between 1/2 and ¢/(e¢ + 1) and takes values of different signs there. To see the
difference in sign, notice that Apin((1 —7)R +75) € [0,1/2] by the remark after Lemma 9—this is

17
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where the assumption R # Id is critical—so that

1 1 1 €
— 1 < === >0—-0>0.
9<2>_2 2_O and 9<5+77>_0 0>0

To see the continuity, we need the continuity of the smallest eigenvalue as a function of 7 and the
nonvanishing of the denominator (1 — 7)e? — 702 + (1 — 7)7(1 — 27)62 between 1/2 and /(¢ + n).
The former is a consequence of Weyl’s inequality, yielding

Amin(1=7)R+78) = Amin(1=7)R+7'8)| < [(1-7)R+78)— (1= R+7'9)|| = |7—7| |[R-S||.
The latter is less immediate. We start by using (16) and recalling the very definition of f; to write
(1—7)162 = (A =7)|Rfr —7|> + 7||Sfr —7||> < (1 — 1) + 1%

Therefore, if the denominator vanished for some 7 € (0,1) \ {1/2}, we would have

0= ( _17—)_622; ™’ + (1 —71)78* < u —;-)_522; i’ + (1 -7+ = 2(1 - 7'1)2_522; 272
1—-7 T l1—-7)e—1 -7
-« )€+172)(—(7 Je = ) :((1—7)6+T77)(6+77)5/(1€/+_)T.

This would force /(¢ +n) — 7 and 1/2 — 7 to have the same sign, contrary to the assumption
that 7 runs between 1/2 and €/(¢ + 7). Thus, the nonvanishing of the denominator is explained,
concluding the proof. O

Remark. The above arguments contain the value of the minimal local worst-case error, i.e., of the
Chebyshev radius of the set C = {f € H : ||[Rf —r| <&, ||Sf — s|| < n}. Indeed, we recall from the
proof of Lemma 5 that this radius equals ||h4||, whose value was derived in (35). This expression
can be simplified with the help of (36) by noticing that

1—2)\ﬁ _

_ 1) (1 —7)e? +mym? — (1 — 1) 736>
A : '

(1 —7)%e2 — 7'5772

As a consequence, we deduce that the Chebyshev radius satisfies

1- 1
radius(C)? = )\_ﬁTﬁez + ;—1772 - ()\7;%52’ At = Amin((1 = 1) R + 73.5).

4 Global Optimality

Our goal in this section is to uncover some favorable globally optimal recovery maps—favorable
in the sense that they are linear maps. We start by considering the situation of an arbitrary
observation map A before moving to the particular case where it satisfies AA* = Idgm.

18
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4.1 Arbitrary observations

In this subsection, we first recall a standard lower bound for the global worst-case error. This lower
bound, already exploited e.g. in [Micchelli, 1993], shall be expressed as the minimal value of a
certain semidefinite program. This expression will allow us to demonstrate that the lower bound
is achieved by the regularization map

Ar:yeR"— ar}gﬂ;}ﬂ (L= DIPy fI? +7lIAf — gl
S

for some parameter 7 € (0,1) to be explicitly determined. Here is a precise formulation of the
result.

Theorem 10. Given the approximability set K = {f € H : dist(f,V) < ¢} and the uncertainty
set £ ={e e R™: |le|]| < n}, define 7, :=d,/(¢, + d,) where ¢,,d, > 0 are solutions to

mini1>noize ce? + dn? sto cPpr +dA*A = 1d.

c,az

Then the regularization map A, is a globally optimal recovery map over K and &, i.e.,

(37) gwee(A,) = A:Hg’llf;H gwee(A).

The proof relies on three lemmas given below, the first of which introducing the said lower bound.

Lemma 11. For any recovery map A : R™ — H, one has gwce(A) > 1b, where

Ib:= sup A
[Py, hll<e
[[AR]|<n

Proof. As a reminder, the global worst-case error of A is defined by

gwee(A) = sup ||f = A(AS +e)|.
1P, flI<e
lell<n

For any h € H such that ||P,.h| < € and ||Ah|| < n, since fi = +h satisfies ||Py1 fi| < e and
et = FAh satisfies ||ex|| <7, we have

1 1
gwee(A) 2 max || fy — A(Afx + el = max||f — AQ)| 2 Sl f+ — AQ)] + SlIf- — AO)]
1 1
> (s = AO) = (7=~ AO)] = 512l = 1]
Taking the supremum over h leads to the required inequality gwce(A) > 1b. O

19
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The second lemma, expresses the square of the lower bound as the minimal value of a semidefinite
program. In passing, the square of the global worst-case error of a linear recovery map is also
related to the minimal value of a semidefinite program.

Lemma 12. One has

38 1b? = min ce? + dn? s.to cPpi +dATA = 1d.
c,d>0 v

Moreover, if a recovery map A : R™ — H is linear, one also has

(39) gwee(A)? < g}lizno ce? + dn? s.to {CZVL } dIC?Rm} - {Id _Aj}k*A*} [Id —AA| A} .

Proof. The first semidefinite characterization is based on the version of the S-procedure stated in
Theorem 1. Precisely, we write the square of the lower bound as
1b? = sup |hl|? s.to ||[Pyih|?® <e? and ||AR|* < 5?
= ir;f vy s.to ||h]|* < v whenever ||P,.h||? < e? and ||Ah|> < 7?
= igf v stoJe,d>0: ||h)> —v < c(||Pyrh|?* — ) + d(||AR||* —7?) for all h € H

= inf 4 s.to c(PyLh, h) + d(A*Ah,h) — (h,h) +v —ce® —dn® > 0 for all h € H.
c,d>0

The validity of Theorem 1 in ensured by the facts that || P, h||2—2 < 0 and ||AR||2—n? < 0 for h = 0
and that P),1 +A*A > 0. Note that the resulting constraint decouples as (cPy, 1 h+dA*Ah—h,h) >0
for all h € H, i.e., cPyr + dA*A —1d = 0, and v — c£2 — dn? > 0. Taking the minimal value of v
under the latter constraint, namely ce? + dn?, leads to the expression of 1b? given in (38).

As for (39), we start by remarking that the linearity of the recovery map A allows us to write
gwee(A) =sup [|f — AAS — Ael* sto Ry f|* < & and [Je]* <o
f.e
=inf v s.to ||f — AAf — Ae|® < v whenever | Py, f||> < 2 and |le||? < n?.

v

The latter constraint can be expressed in terms of the combined variable v = (f, —e) € H x R™ as
2 2 2 N

(40) H [Id —AA | A] UH <« whenever H |:Pvl ] 0] UH < ¢e* and H [O \ Id]Rm:| UH <.

Although the proviso of Theorem 1 is not fulfiled here, the constraint (40) is still a consequence of
(but is not equivalent to) the existence of ¢,d > 0 such that

H [Id— AN | A] UH2—’7 < C<H [ij_ | 0} ’UH2—€2> +d(H [0 | IdRm] UH2—’I’}2) for all v € H xR™.
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The latter can also be written as the existence of ¢,d > 0 such that, for all v € H x R™,
((e[Pve10] [Rs 10] + 0] 1den] [0 1dan] ~ [l —AATA] [1d—AA|A] )u,0)
+y—ce? —dn® > 0.
Therefore, we obtain the inequality (instead of the equality)

, Py |0 0] 0 Id — A*A*
gwee(A)? < 671:71;0 v s.to c{ gl ‘ O} +d {0 ‘ IdRm} B { &) } [Id—AA \ A} =0

and v —ce? —dn? > 0.

The variable v can be eliminated from this optimization program by assigning it the value ce? +dn?,
thus arriving at the semidefinite program announced in (39). O

The third and final lemma relates the constraints of (38) and (39): while the constraint of (39) with
any regularization map A, implies the constraint of (38), see the appendix, we need the partial
converse that the constraint of (38) implies the constraint of (39) for a specific regularization
map A,.

Lemma 13. If cP),1 + dA*A > 1d, then setting 7 = d/(c + d) yields

[ePye |0 | [1d-AtA]
| 0 | dlden| — | Ar ]

[Id “AA AT] .

Proof. We recall from Proposition 2 adapted to the current situation that, for any 7 € (0, 1),

A; = ((1=7)Pyr +7A*A) ' (rA*), hence Id— A A= ((1—7)Pys +7AA) (1 = 1)Pyo).
We now notice that the hypothesis cP),1 + dA*A > Id is equivalent to Apin(cPpi + dA*A) > 1.
With our particular choice of 7, this reads Apin((1 —7)Ppr +7A*A) > 1/(c + d). It follows that

A — 1
Amas (1= 7)Pys + TATA) ™) = Amin((1 = 7) Py + 7A*A) setd

The inverse appearing above can be written as

(1= )Py +7A"A) ™ [VT= 7R | N | 1\;;5” (1 =7)Pys +7A%A) "

and since AB and BA always have the same nonzero eigenvalues, we derive that

)\ (\/1-7’va

NG (1= )Py +7A8) * [VT= 7R | ﬁA*]) <c+d
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Writing the latter as

\/?fVL (Q—=7)Pys + 7'A*A)_2 [\/ﬁPVL ‘ \/FA*] 2 (c+d)ld

[vi—7p,. | 0 ]

and multiplying on both sides by L 5 NG J yields

(1 — T)ij_ ] {(1 — T)PVJ' | 0 -I
— _ x| < .
SV (1= )Ry + TAA) (1=7)Pys | 747 2 e+ ) o ]
Taking the expressions of A and Id — A A into account, we conclude that
Id — A*A? [Py | 0 ]
H{Id—AA | AL = ,
A* [ | ] - L 0 | dIdRmJ
as announced. O

With the above three lemmas at hand, the main result of this subsection follows easily.

Proof of Theorem 10. Since Lemma 11 guarantees that inf{gwce(A),A : R™ — H} > lb, we only
need to show that gwce(A, ) <lb. By the first part of Lemma 12, we have 1b? = ¢,e% + dyn? with
¢, and d, satisfying ¢, P,1 + d,AA* = Id. By Lemma 13, the latter implies that

le,Pr | 0 ]}{Id—A*A;}]
0 | dlden| — [ A7 |

d—a,04,].

By the second part of Lemma 12, it follows that gwce(A,,)? < ¢,e? + dyn? = 1b2, which is the
required inequality. O

Remark. When V = {0}, so that P),. = Id, we obtain ¢, = 1 and d, = 0, resulting in a minimal
global worst-case error equal to ¢ and achieved for the regularization map Ag = 0. This result can
be seen directly from gwce(A) > sup{||h|| : ||k] < &, ||AR]| < n} = ¢ for any A : R™ — H, while
gwee(Ag) = sup{||f[| : [[fl| < e} =e.

4.2 Orthonormal observations

In this subsection, we demonstrate that the use of orthonormal observations guarantees, rather
unexpectedly, that regularization provides optimal recovery maps even without a careful parameter
selection. The main result reads as follows.
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Theorem 14. Given the approximability set K = {f € H : dist(f,V) < e} and the uncertainty set
E={ecR™": |e|]| <n}, if AA* = Idgm, then all the regularization maps A, are optimal recovery
maps, i.e., for all T € [0, 1],

(41) gwee(A;) = AzR}gf_)ngce(A).

The proof strategy consists in establishing that the constraints in (38) and in (39) with A = A,
are in fact equivalent for any 7 € [0, 1]. This yields the inequality gwce(A;) < 1b, which proves the
required result, given that 1b was introduced as a lower bound on gwce(A) for every A. While the
constraint in (39) implies the constraint in (38) for any observation map A (see the appendix), the
reverse implication relies on the fact that AA* = Idgm, e.g. via the identity A, = (1 —7)A¢ + 744
derived in Proposition 3. The following realization is also a crucial point of our argument.

Lemma 15. Assume that AA* = Idgm. For c¢,d > 0, let h be an eigenvector of cP,1 + dA*A
associated with an eigenvalue A. For any 7 € [0, 1], one has

o if A # c+d, then

(Id — A* AR = £ d

APvJ_h and AN ATh = XA*Ah;
e if A\ =c+d, then

(Id = A*AY)h=(1—-7)h and AN A*h = Th.

Proof. Multiplying the eigenequation defining i on the left by A*AX, we obtain
(42) cN*AZP, h + dA"AZA Ah = AN AZh.

According to (19), we have AjP,1 = 0, ATP,1 = AT—Aj, ATA*A = A, and AJA*A = AJ—AT+A.
Thus, the relation (42) specified to 7 = 0 and to 7 = 1 yields

(43) AN*AGh — dA*ATh + dA*Ah = AA*Ajh,
(44) cN*ATh — eN* AL+ dA*Ah = AN*A%h.

Subtracting (44) from (43) yields (¢ + d)(A*Ajh — A*ATh) = MA*Afh — A*ATh). Therefore, we
derive that A*Ajh = A*ATh provided A # ¢+ d. In this case, the equations (43)-(44) reduce to
AN Ah = A*ATh = (d/AN)A*Ah. Inview of A = (1—7)A¢g+7A;, we arrive at A*A%h = (d/X\)A*Ah
for any 7 € [0, 1]. The relation (Id — A*A¥)h = (¢/\) Py, h follows from the eigenequation rewritten
as (¢/\)Pyih+ (d/A)A*Ah = h.

It remains to deal with the case A = ¢+ d. Notice that this case is not vacuous, as it is equivalent to
h € V+ Nran(A*A), which is nontrivial by a dimension argument involving assumption (5). To see

this equivalence, notice that h € YV Nran(A*A) clearly implies cPy,.h + dA*Ah = (c + d)h, while
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the latter eigenequation forces c||P,Lhl|? + d||A*Ah||? = (c + d)||h||?, hence ||P,Lh|? = ||h]|* and
|A*AR|? = ||h|j?, ie., h € V! and h € ran(A*A). We now consider such an eigenvector h associated
with the eigenvalue ¢ + d: in view of h € V- Nran(A*A), we remark that Ajh = AjP,.h = 0 and
that ATh = AJA*Ah = Ah. We deduce that A*AXh = (1 —7)A*Afh+TA*ATh = TA*Ah = Th and
in turn that (Id — A*AX)h = (1 —7)h. O

We are now ready to establish the main result of this subsection.

Proof of Theorem 14. Let 7 € [0,1] be fixed throughout. As announced earlier, our objective is to
establish that, thanks to AA* = Idgm, the condition cP),1 + dA*A > Id implies the condition

[P | 0 | [1a-aaz]

| J | dTdgn | EL Ar | [Id_ATA‘AT]’
or equivalently the condition

[cPe | 0 [1d — AA]

|dA*AJEL A J[Id—ATAmTA].

| 0
The equivalence of these conditions is seen as follows: the former implies the latter by multiplying

d | 0 d | 0

on the left by and on the right by while the latter implies the former

| AT | Al
. . —_ | 0 .
under the assumption AA* = Idgm= by multiplying on the left by A and on the right by
Id | 0 . .
0 | A As a matter of fact, according to a classical result about Schur complements, see e.g.

[Boyd and Vandenberghe, 2004, Section A.5.5], the latter is further equivalent to

Id | Id—AA | AA]
Id—A*A* | c¢Pyr | 0
AAE 0 | dA*A]

= 0.

Thus, considering f,g,h € H, our objective is to prove the nonnegativity of the inner product

[ | Td—AA | A
ip == < Id — A*AY | cPyo | 0
| AAr 0 | dA*A]
=(f,f) + c(Pyrg,g) + d(A"Ah, h) +2((Id — A*AT) f, g) + 2(A"AZf, ).

Let us decompose f, g, and has f = f'+f", g= ¢ +¢", and h = W' +h", where f’, ¢’, and I/ belong
to the space H' spanned by eigenvectors of cP,1 +dA*A corresponding to eigenvalues A # c+d and
where f”, ¢”, and h” belong to the eigenspace H” of cPy,. + dA*A corresponding to the eigenvalue
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A =c+d, ie, H = V!t Nnran(A*A). We take notice of the fact that the spaces H’ and H" are
orthogonal. With this decomposition, the above inner product becomes

lp — lp/ + ip// + ip///,
where we have set
i = (' f) + e(Pogs o) + AN AR ) + 2((1d = A*AS) ) g') + 2(A*ALf,H),

ip// — <f//7f//> + C(Pvlg//,g//> + d<A*Ah//,h//> + 2<(Id _ A*A;k_)f//,g//> + 2<A*A;’if//,h//>,

ip" = 2(f', f") + 2(Pyrg’, g") + 2(A"AR B 4+ 2((Td — A*AL) f', g") + 2(A" AL, B”)
+2((1d — A*ADf”, ') + 2(A AL K.

We first remark that the terms in ip” are all zero: first, it is clear that (f’, f”) = 0; then, one has
(Pyig,d") = (¢, Pyrg"y =(¢,¢") =0 and (A*AK',h") = 0 is obtained similarly; next, Lemma 15
ensures that ((Id — A*AX) " ¢y = (1 —7)(f",¢') = 0 and (A*AXf"” h') = 0 is obtained similarly;
last, writing f' = >, f; where the f; € H' are orthogonal eigenvectors of cP),1 +dA* A corresponding
to eigenvalues \; < ¢+ d, we derive from Lemma 15 that

(CENSUFIEDS A%<Pm2-,g”> =3 §i<fz-, Pog') =3 A%«fi, q") =0,

(2

and (A*A%f' B} = 0 is obtained similarly. As a result, we have ip”" = 0.

We now turn to the quantity ip’. Exploiting Lemma 15 again, we write
ip" = (f', f') + c(Pyrg', g') + d(A"ARS B) + 2< Z )\%Pvlfi7g/> + 2< Z /\%A*Afu h/>
=(f", )+ C<<PVJ—9/,PVJ-9/> + 2< Z /\iinsz’a Pvl9/>>
(N*AR', A*AR') + 2< Z /\%A*Afi, A*Ah’>)
R
st

+d
= <f’,f’>+c<

|
X

1
Pog +) TP fi

|

* ! l * 3
A*Ah +ZZ.:AZ-A Af;
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At this point, we can bound ip’ from below as

A (S 50)| +dfpea(E55)
=(f,f) - <<CPVJ- +dA*A> (Z)\%ﬁ» (Z)%fz)>
= Z I1£ill* — <quz )\izfz> = Z HfiH2<1 - %)

This shows that ip’ > 0 since the condition cPy1 + dA*A = Id ensures that \; > 1 for every i.

2
i > (' f) ( | +d

)

Finally, Lemma 15 also helps us to bound the quantity ip” from below according to

ip" = 12 + cllg” I + I + 21 = 7)1, g") + 271", 1)
= (L= ) (LI + 247,67 + (11 + 2087, 50) + ellg” I + a2
(U= )lg" I = T + ellg” |+ .

v

This allows us to obtain ip” > 0 since the condition cPyi + dA*A > 1d ensures that ¢ > 1 and
d > 1. Altogether, we have shown that ip = ip’ +ip” + ip”” > 0, which concludes the proof. O

Remark. The value of the minimal global worst-case error can, in general, be computed by solving
the semidefinite program (38) characterizing the lower bound lb. In the case where AA* = Idgm, it
can also be computed without resorting to semidefinite programming. Precisely, if 74 denotes the
(unique) 7 between 1/2 and ¢/(e + n) such that

(1= 7)2%2 — 7292
(1—7)e2 —mn?

(45) Amin (1 = 7) Py +7A™A) =

and if Ay denotes Amin((1 — 7)1 + 73A*A), then we claim that, for any 7 € [0, 1],

1—
gwee(A,)? = )\—ﬁTﬁe2 + ;——in2.

Indeed, since we now know that the global worst-case error gwee(A;) equals its lower bound b
independently of 7 € [0, 1] and since ¢ := (1—74)/\; and dy := 73/ Ay are feasible for the semidefinite
program (38) characterizing lb, we obtain

L= o0 T o

"+ —n".

4 A2 <
(46) gwee(Ar)” < v ¥

Moreover, going back to the proof of Theorem 8, we recognize that the choice of 7 here corresponds
to the instance y = 0 there. This instance comes with f; being equal to zero and with hy being equal
to a properly normalized eigenvector of (1 — 74) P + 73A*A corresponding to the eigenvalue A;.
The identities (32) now read ||Pyihy|? = €? and ||[A*Ahy||? = n?, ie., ||ARy|*> = n?. Setting f = hy
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and e = —Ahy, which satisfy ||Py. f|| = € and ||e|]| = 7, the very definition of the global worst-case
error yields

(47) gwee(Ar)? > || f — Ac(Af +e)[* = ||y

1 *
= )\—ﬁ<((1 — Tﬁ)PvL +7—tiA A)hﬁ,hﬁ>

1—m T N
= Byl o+ SE A Ay
i g
S s U

= —2&+ Lt
Mg M

Together, the inequalities (46) and (47) justify our claim about the value of the global worst-case
error. In passing, it is worth noticing that the above argument reveals that f = hy and e = —Ahy
are extremal in the defining expression for the global worst-case error of the regularization map A
independently of the parameter 7 € [0, 1].
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Appendix

This additional section collects justifications for a few facts that were mentioned but not explained
in the main text. These facts are: the uniqueness of a Chebyshev center for the model- and data-
consistent set (see page 6), the efficient computation of the solution to (7) when AA* = Idgm (see
page 11), the form of Newton method when solving equation (28) (see page 15), and the reason
why the constraint of (39) always implies the constraint of (38) (see pages 21 and 23).

Uniqueness of the Chebyshev center. Let ]?1, ]?2 be two Chebyshev centers, i.e., minimizers
of max{||f — gl : |[Pyrgll < e,||Ag —y|| < n} and let u be the value of the minimum. Consider
g € H such that |[(f1 + f2)/2 = gll = max{[[(f1 + f2)/2 = gll : |Pvrg] <&, [|Ag —yl| < n}. Then

- = P DS (NG
p=l(fi+ f2)/2 =gl < 5llA =9l + 5llf2 — 9l
1 ~ 1 .
< gmax{[|fi — gl : [Pyrgll < & [|Ag =yl < 0} + 5 max{||fo —gll : [Pyrgll <&, [Ag —yll < n}

= gHt G =p

Thus, equality must hold all the way through. This implies that fl —g= f2 -9, i.e., that fl = fg,
as expected.

Computation of the regularized solution. Let (v1,...,v,) be a basis for V and let uy, ..., up
denote the Riesz representers of the observation functionals Aq, ..., Ay, which form an orthonormal
basis for ran(A*) under the assumption that AA* = Idgm. With C' € R™*" representing the cross-
gramian with entries (u;,v;) = A;i(v;), the solution to the regularization program (7) is given, even
when H is infinite dimensional, by

m n
f7— = TZCLZ'UZ' + Z bj’l)j,
i=1 j=1
where the coefficient vectors a € R™ and b € R™ are computed according to
b= (CTC)_ICTy and a=1y—Ch.

This is fairly easy to see for 7 = 0 and it has been established in [Foucart, Liao, Shahrampour, and Wang,
2020, Theorem 2] for 7 = 1, so the general result follows from Proposition 3. Alternatively, it can
be obtained by replicating the steps from the proof of the case 7 = 1 with minor changes.

Newton method. Equation (28) takes the form F(7) = 0, where
(1 _ 7_)2{_:2 _ 7_2172
(1—7)e2 =2+ (1 —7)7(1 — 27)62%"

F(1) =X nin((1 =7)R+71S) —
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Newton method produces a sequence (7j)r>o converging to a solution using the recursion

F(7y)
Py 2

(48) Thtl = Tk —

In order to apply this method, we need the ability to compute the derivative of F' with respect to
7. Setting Amin = Amin((1 — 7)R + 75), this essentially reduces to the computation of dAnyi,/dT,
which is performed via the argument below. Note that the argument is not rigorous, as we take
for granted the differentiability of the eigenvalue A, and of a normalized eigenvector h associated
with it. However, nothing prevents us from applying the scheme (48) using the expression for
dAmin/d7 given in (49) below and agree that a solution has been found if the output 7x satisfies
F(7K) <« for some prescribed tolerance ¢ > 0. Now, the argument starts form the identities

(1 =7)R+7S)h = Aminh  and  (h,h) =1,

which we differentiate to obtain

(S = R)h+ (1 — )R + r5) L = BAmin dh 2(h, 2 — .

dr dr h+ /\mmE and dr

By taking the inner product with A in the first identity and using the second identity, we derive

d>\min . d>\min o 2 2
dT 9 1.e., d—T - HShH ”RhH .

((§ = R)h, h) =

According to Lemma 9, this expression can be transformed, after some work, into

d>\min o 1-27 /\min(1 - /\min)
dr  1(1—7) 1—2\un

(49)

Relation between semidefinite constraints. Suppose that the constraint of (39) holds for a
regularization map A,. In view of the expressions

A= ((1=7)Pyr +7A*A) ' (rA*) and 1d — A;A = (1= 7)Pyr +7A*A) (1 = 7)Pyu),
this constraint also reads

IVCPVL | 0 -|> IV(l—T)PvL-I
| 0 | dldgn| — | 7A

(1= 7)Pys + 7A*A) [(1 — )Py | TA*] .

P,
Multiplying on the left by |P,. | A*| and on the right by Vo yields
v A

cPyi +dAN A = (1 —7)Pyr 4+ 7A*A) (1 — 7) Py + TA™A) _2((1 —7)P,1 +7AA) =1d.

This is the constraint of (38).
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